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Abstract Among the goals of statistical matching, a very important one is
the estimation of the joint distribution of variables not jointly observed in a
sample survey but separately available from independent sample surveys. The
absence of joint information on the variables of interest leads to uncertainty
about the data generating model since the available sample information is
unable to discriminate among a set of plausible joint distributions.

In the present paper a short review of the concept of uncertainty in statis-
tical matching under logical constraints, as well as how to measure uncertainty
for continuous variables is presented. The notion of matching error is related
to an appropriate measure of uncertainty and a criterion of selecting matching
variables by choosing the variables minimizing such an uncertainty measure is
introduced. Finally, a method to choose a plausible joint distribution for the
variables of interest via Iterative Proportional Fitting algorithm is described.

The proposed methodology is then applied to household income and expen-
diture data when extra sample information regarding the average propensity
to consume is available. This leads to a reconstructed complete dataset where
each record includes measures on income and expenditure.
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1 Introduction

Let (Y, Z, X) be a three-dimensional variate, defined on an appropriate pop-
ulation, and let s4 and sp be two independent samples of n4 and ng records
from (Y, Z, X), respectively. The observational mechanism is such that (i)
only the variates (Y, X) are observed in s4, and (ii) only the variates (Z, X)
are observed in sp. The variable X is common to the samples s4, sp, and
plays the role of matching variable.

The main goal of statistical matching consists in estimating the joint distri-
bution of (Y, Z, X). Roughly speaking, two approaches have been considered.
At first, techniques based on the conditional independence assumption be-
tween Y and Z given X (CIA assumption) were considered, see Okner (1972).
Appropriateness of CIA is discussed in several papers. We cite, among others,
Sims (1972) and Rodgers (1984). The second group of techniques uses exter-
nal auxiliary information on the statistical relationship between Y and Z (e.g.,
an additional dataset where all the variables are jointly observed is available,
as in Singh et al. (1993)).

As a matter of fact, the CIA is usually a misspecified assumption, while
external auxiliary information is hardly ever available. The lack of joint in-
formation on the variables of interest is the cause of uncertainty about the
model for (Y, Z, X) since the available sample information is actually unable
to discriminate among a set of plausible models for the variables of interest,
see Conti et al. (2012), Conti et al. (2013), Conti et al. (2016a).

When extra sample information is available some models become illogical
and must be excluded from the set of plausible distribution functions. As a
consequence, the statistical model for the data becomes less uncertain. Clearly,
each distribution in the class of plausible models can be taken as a surrogate
of the actual joint distribution of (Y, Z, X). Then, the statistical matching
problem essentially consists in choosing a distribution in such a class.

The most favourable case, that for instance happens under CIA, occurs
when the class of plausible distribution functions collapses into a single distri-
bution function and the model is identifiable on the basis of sample data.

Our contribution to the existing literature is twofold. First of all, a method
to choose a plausible joint distribution for the variables not jointly observed
(that is, a matching distribution) from the set of equally plausible joint distri-
butions for (Y, Z, X) via the Iterative Proportional Fitting (IPF) algorithm
is proposed. The reliability of the estimate provided by IPF is evaluated via
an appropriate measure of uncertainty. Once a matching distribution has been
estimated, a final dataset can be reconstructed in which each record includes
measures on (Y, Z, X). Secondly, we take into account the complexity of the
sampling design (based on stratification, different level of clustering and inclu-
sion probabilities proportional to an appropriate measure of size). The .4.d.
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assumption is hardly ever valid for sample surveys data, then the sample selec-
tion process must be taken into account in order to avoid misleading results;
see Pfeffermann (1993) for an insightful discussion on this point.

Statistical matching in complex sample surveys is studied in Rubin (1986),
Renssen (1998) and Wu (2004). The method proposed in Rubin (1986)
has been seldom used in practice, since it requires the knowledge of inclusion
probabilities of the units in one sample under the sampling design of the other
sample. Renssen (1998) approach consists in calibrating the actual survey
weights of the two distinct samples sy and sp to the common information
in the two samples, in order to have compatible distributions on (Y, X) and
(Z,X) estimated on s4 and sp, respectively. Further contributions are in Wu
(2004). D’Orazio et al. (2009) show by simulation that the methods in Rubin
(1986), Renssen (1998) and Wu (2004) are nearly equivalent in terms of
estimable parameters and bounds of the uncertainty set of distributions. In
Conti et al. (2016b) the choice of the estimators is based on attainment of
good asymptotic properties going beyond the computation of finite sample
size efficiency of the different estimators. For this reason, no comparison with
the other estimators is proposed, given that their asymptotic behavior is not
clear.

In Italy, the main sources used for households income and expenditures
are the Banca d’Italia Survey on Household Income and Wealth (SHIW, for
short) and the Italian National Statistical Household Budget Survey (HBS,
thereafter), respectively. However, no single data source containing information
on both expenditures and incomes currently exists.

Household-level data on income and consumption expenditure are widely
used by policy makers and empirical researchers to provide insights into a
number of areas. A first important field of research relates household’s saving
decisions. Many studies have focused on the reasons why people save, trying to
quantify the importance of precautionary or pension accumulation motives (see
among others Kennickell and Lusardi (2004), Guiso et al. (1992), Caballero
and Ricardo (1990)).

A second area of research relates the reaction of household expenditure
/saving to temporary and permanent income changes. These changes may re-
flect both external shocks such as financial distress, job losses, tax reforms and
changes in the pension system, see Browining and Collado (2001), Browining
and Collado (1996). Another field of research relates the analysis of household
economic well-being. It is widely accepted that both income and consumption
are not sufficient measures of achieved standards of living when considered
separately. A better approach is to use both simultaneously.

Despite the importance of such topics, most countries do not have sin-
gle sources of micro-data including high-quality disaggregated information on
both incomes and expenditures. One of the main reasons is that collecting
high-quality data on both topics requires a very large number of questions
that would result in an excessive respondent burden. Quality expenditure data
usually call for the use of diaries in which the household records all purchases
made within a short period of time (at least for small and frequently purchased



4 Uncertainty analysis in combining household income and expenditure data

items). The diary method minimizes the reliance on respondents’ memories at
a higher cost in terms of respondent burden. On the other hand, collecting
high-quality information on income require asking each member of the house-
hold whether or not he/she has received a particular type of income. This
should be done for all possible sources of income (self-employment, employ-
ment, pensions, return on assets, etc.). Moreover, it is also a good practice to
collect additional data such as the type of work the respondent is engaged in,
the type of pension received, the characteristics of a rented dwelling, and so on.
As a consequence, since asking detailed questions on income and consumption
in the same survey can be problematic, surveys tend to specialize in one of the
two topics.

Browining et al. (2014) describe the alternative solutions available to
economists in the existing literature to address this issue. One of the most
widespread approach is to use statistical matching techniques to merge two
or more sources of information, see D’Orazio et al. (2006a). These techniques
usually are based on the CIA assumption. This approach has been widely used
in the analysis of household’s saving decisions. Skinner (1987) is the first to
suggest imputing the total consumption expenditure of the Panel Survey of
Income Dynamics respondent households (PSID), on the basis of the limited
expenditure questions in the PSID and information from the Consumer Ex-
penditure Survey. Cifaldi and Neri (2013) and Tedeschi (2013) use a similar
approach to combine the information of SHIW with that coming from the
HBS. Other studies have extended this procedure to allow for more flexible
functional forms (Palumbo (1999)). For instance, Battistin et al. (2003) and
Attanasio and Pistaferri (2014) model the relationship between total con-
sumer expenditure and expenditure on a particular good as an inverse Engel
curve.

The CIA assumption is particularly unappropriate when the matching re-
lates consumption expenditure and income of households. In this paper an
uncertainty analysis on the joint distribution of household income and expen-
diture under logical constraints regarding the average propensity to consume
is performed, using SHIW and HBS datasets. The paper is organized as fol-
lows. Section 2 provides an overview on the uncertainty in statistical matching
under logical constraints as well as how to measure uncertainty. Furthermore,
the uncertainty is related to the matching error in order to evaluate how far is
a matching distribution from the true distribution of the variables not jointly
observed. Section 3 deals with the estimation of the uncertainty measures for
complex survey data, as well as on choosing a matching distribution. In Sec-
tion 4, the SHIW and HBS surveys are briefly described. In Section 5.1 an
uncertainty analysis in combining household income and expenditure is per-
formed and a new criterion for the matching variables selection is introduced.
Finally, in Section 5.2 a method to pick a matching distribution from the set
of plausible joint distributions for the variables of interest is proposed. Once
such a joint distribution has been chosen, a “fused” SHIW dataset can be
reconstructed.
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2 Uncertainty in statistical matching

As previously stressed, the lack of joint information on the variables of interest
is the cause of uncertainty about the model for (Y, Z, X). Sub-section 2.1 is
devoted to a short review of the concept of uncertainty in statistical matching
under logical constraints, as well as how to measure uncertainty. In sub-section
2.2 the notion of matching error is introduced and related to the uncertainty
measure in order to evaluate how far is a plausible joint distribution function
for the variables not jointly observed (matching distribution) from the true
distribution.

2.1 Uncertainty: definition and descriptive aspects

Let Uy be a finite population of N units labeled by integers 1, ..., N, and
denote by Y, Z, X three characters of interest, taking values y;, z;, x;, respec-
tively, for unit ¢ (i =1, ..., N). Next, consider the indicators

lify; <y

I(yigy):{Oifyi>y’ i=1,...,N

and define similarly the indicators I, <.) and I(,,<,). The (finite) population
(joint) distribution function (p.d.f.) of the three characters Y, Z, X is:

N
1
Hn(y, 2, 2) = D yeplcicolwce) v5 25 T ER.
=1

Let
Qn(7) = Hy(oo, 00, ), pn(z) = QN () —Qn(27) (1)

be the marginal p.d.f. of X and the proportion of population units such that
X = z, respectively. From now on, we will assume that X is a discrete char-
acter. Define further the conditional p.d.f.s

N
1
Hy(y, z|z) = Non(@) ;Ryigy)](zigz)fm:r)a (2)
Fn(y|z) = Hn(y, 0o|z), Gn(z|x) = Hy(oo, z|x). (3)

Knowledge of the p.d.f.s Fx(y|z), Gny(z|z) does not imply knowledge of
Hy(y, z|z) (the most important exception occurs under CIA assumption). If
only the p.d.f.s (3) were known, then one could only say that

max(0, Fy(ylz) + Gy (ylz) —1) < Hy(y, 2[x) < min(Fy (ylz), Gn(z]2))-(4)

The bounds in (4) are the well-known Fréchet bounds. Fréchet bounds (4)
can be improved when extra-sample information is available. In statistical
practice, a kind of extra-sample information frequently available consists in
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logical constraints, namely in restrictions on the support of (Y, Z)|X. Given
X = z, the kind of constraints we consider is

az < fu(y, 2) < by, (5)

where f,(y, z) is a monotone function of y (z) for each z (y). In case of i.i.d.
observations, such constraints were first discussed in Conti et al. (2012), and
used in Conti et al. (2013) in the special case of discrete ordinal variates Y,
Z.

For instance, if Y is the household expenditure, Z is the household income,
and X the household size (i.e. the number of household components), using
techniques of national accounting it is possible to produce fairly reasonable
lower and upper bounds of the average propensity to consume (apc), namely
of the ratio between consumption expenditure and income, for each household
size. In this case f.(y, z) =Y/Z.

Another kind of constraint frequently occurring in practice is Y > Z, given
X. For instance, this is the case of Okner (1972) where Y plays the role of
total income and Z plays the role of income subject to taxation.

Note that great caution is needed in defining the set of logical constraints.
In fact, if the constraints are not compatible with the marginal information on
Y| X and Z|X the set of plausible joint distributions is an empty set. Roughly
speaking, as stressed in Vantaggi (2008), when logical constraints are used,
global coherence of partial assessment drawn from different sources needed to
be checked, and if coherence is not satisfied, incoherences have to be removed.
The problem of resetting coherence can been faced by considering different
criteria. D’Orazio et al. (2006b) restore consistency by using an iterative al-
gorithm based on maximum likelihood estimates. Brozzi et al. (2012) adopt
an approach based on the minimization of distances. Another plausible ap-
proach could be that of restoring consistency by changing as little as possible
the marginal distributions.

Under the constraint (5), the Fréchet bounds (4) reduce to

K]m\f—(y7 Z) g HN(y7 Z|$) < le\f-&-(yv Z)) (6)
where using the notation a A b = min(a;b) it is not difficult to see that

KN _(y, 2) = max(0, Gn(z[2) A Gn(vy(as) ) + Fn(y[2) A Fn(8:(be) [2) — 1,
Fn(yle) + Gn(z|z) —1) (7)
K4 (y; 2) = min(Gn (2 |2), Gn (y(az) |2), Fn(y|2), Fn(0:(be) |2)) (8)

with v,(-), 6.(-) being the inverse functions of f,(y, z) for fixed y and z,
respectively.

If K§_(y,2) = K§,(y, 2) (for each y, z), then there is only one d.f.
Hy(y, z|z) satistying (6). In this case, Hy(y, z |z) is identified, and there is no
uncertainty at all. The larger the distance between K§;_(y, z) and K§_ (y, 2),
the higher the uncertainty about Hy(y, 2 |x).

Then, it is natural to use, as a measure of uncertainty on Hy(y, z|z),
a distance between K§ _(y, z) and K% (y, z). Using the same arguments
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as in Conti et al. (2012), a simple measure of uncertainty on Hy(y, z |x)
conditionally on x is

N N
1

A (Fr, Gr) = 3 S (Ks 0s 23) = K3 Wis %)) Tiwrma It

( N N) NZpN(I)Z z:1j:1( N+(y J) N (y J)) (zi=2z)* (z;=1)

= /Rz (KRy(y, 2) = KX _(y, 2)) d[Fn(y |2)Gn (y |2)] 9)

while an unconditional uncertainty measure of the (Y, Z, X) joint distribution
is

A(FN,GN) ZZAw(FN,GN)pN(.T). (10)

Clearly, the unconditional uncertainty measure (10) is the average of the con-
ditional uncertainty measures (9), w.r.t. the marginal distribution of X. An
interesting property of the proposed uncertainty measures (either conditional
or unconditional) is that their maximal value can be computed as shown in
Proposition 1. Proof is in Appendix.

Proposition 1 The maximal value of uncertainty measures A*(Fn,Gn)(9)
and A(Fy,Gn) (10) is 1/6 = 0.167.

2.2 Matching error: the role of uncertainty measures in statistical matching

As previously stressed, even when the conditional p.d.f.s Fy(y|z) and Gy (z|x)
are completely known, the lack of joint observations on the variables (Y, Z, X)
is the cause of uncertainty on Hy(y, z| z). Roughly speaking, the available
information is unable to discriminate among a set of plausible (joint) distri-
butions for (Y, Z) given X. The only thing we can say is that the true p.d.f.
Hy(y, z| z) belongs to the set

HY = {HnN(y, z|7) : Hn(y, o] z) = Fn(y|z), Hy (o0, 2| 7) = Gn(z]2),
az < fz(y, z) < bz} (11)

of all joint probability distributions of (Y, Z)|X compatible with Fi (y|z)
and Gn(z|r) and satisfying the imposed logical constraint. The measure of
uncertainty (9) is, in a sense, a measure of the size of the class (11). If no
further information are available, each d.f. in the class (11) is a plausible joint
p.d.f. for (Y, Z| X), i.e. is a plausible joint d.f. that matches Fn(y|z) and
Gn(z|x) (matching distribution).

A statistical matching procedure essentially consists in picking a specific
d.f. Hy(y, z|z) in the class H% (11), and in using such a d.f. as if it was the
“true” p.d.f. Hy(y, z|z). Hy(y, z|z) is a matching distribution for Y and Z
(given X), and plays the role of “blurred image” of the true p.d.f. Hy(y, z|z).
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Suppose now that a d.f. fIN(y, z|z) in the class H% is used to match
Fn(ylz) and Gn(z|x), but that the “true” d.f. of (Y, Z| X) is Hy(y, z|x), say.
The discrepancy between Hy (y, z|z) and Hy/(y, z|x) is the matching error,
that cannot be neither directly observed nor estimated on the basis of sample
data. The notion of matching error is of basic importance in assessing the
quality of matching procedures, because the smaller the matching error, the
better the matching procedure.

Conditionally on z, the matching error at the point (y, z) is

Xy, 2) = [Hy(y, 2 |z) — Hy(y, 2 |2)| < K*(y, z|z) = K~ (y, z|z) (12)

so that the overall matching error is given by
ME(fix,Hy) = [ (v, 2 dFx(y]e)dGn (= o) < A(Fx.G). (13)

As a consequence, the uncertainty measure (9) can be interpreted as the
maximal error occurring when the true p.d.f. Hy(y, z|z) is replaced by a
matching distribution Hpy (y, z|z). Since A*(Fy,Gx) only depends on the
marginal d.f.s Fiy(y|x) and Gn(z|z), it can be estimated on the basis of sample
data in s4 and sp, respectively. In other words, the observed samples s4,
sp provide useful information on the maximal error occurring in matching
Fn(ylx) and Gn(z|z), and hence on how reliable is the use of a matching
distribution. This statement is strengthened by Proposition (1), that allows
one to interpret how “small” or “large” is the value of the uncertainty measure
if compared to its maximum 0.167.

A similar interpretation can also be given for the unconditional measure of
uncertainty (10).

3 Estimating the uncertainty measures and choosing a matching
distribution for complex survey data

In order to make inference on the uncertainty measures it is necessary to
make assumptions on the sampling designs according to which the samples
sa, sp are drawn. Theoretical details are involved, and far from the goal of
the present paper. For this reason, we confine ourselves to a short introduction.
A wider theoretical treatment, with full details, is in Conti et al. (2016b). This
section is devoted to the estimation of the uncertainty measures for complex
survey data (sub-section 3.1). In sub-section 3.2 a method to choose a matching
distribution for the variables of interest via IPF algorithm is proposed.

3.1 Plug-in estimates of uncertainty measures

For each unit ¢ of the finite population Uy, let D; 4 (D; ) be a Bernoulli
random variable (r.v.), such that ¢ is in the sample s4 (sp) whenever D; 4 =1
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(D;,p = 1), whilst ¢ is not in s4 (sp) whenever D; 4 = 0 (D; g = 0). Let
further m; 4 (m; B) be the first order inclusion probabilities of the population
units under the sampling design used to select ss(spg).

The simplest approach to estimate the conditional uncertainty measure (9)
consists in using a plug-in approach, i.e. in estimating Fy(y|z) and Gy (z|x)
by their (Héjek) design-based estimators given by

N Dy,
Zz 1 75 A [(yz y)I(wz_lﬂ)

N Dz,AI ’
Zi:l A (zy=x)

Fr(ylz) =

(14)

N D,
(y|z) Ei:l Tsl(zzSZ)I(xi:I)
H = B
Ei:l Wi,sl(xi:m)

and then in plugging such estimates in (9). In the sequel, we will denote by
A%, the estimator of the uncertainty measure A*(Fy,Gy) given by

N
1 = D; A DB
Sr Z ( ym Zj Kf(yw Z])) I(aci,a:j::r) (15)

Ti,A T B

B i=1 j=1

where Iz, 2,=2) = L(@;=2)l(a;=2); IA(f, IA(f_ are defined exactly as (7), (8),
respectively, but with Fiv and Gx replaced by the corresponding estimators
Fg and Gy, and N3 and N§ defined as

e = Dia co = Dip
N2 = Z T, Ng = Z — P (16)

i=1 " i=1 "

We now turn to the problem of estimating the unconditional uncertainty
measure. From the structure of (10), the following estimator can be defined

K
Ay = A% py.ap(a®) (17)
k=1
with
Pr.ap (") = Tpu,a(z") + (1 — 73)pm, 5 (z") (18)

where Py a(2*) and Py p(z*) are the Héjek estimators of py(z¥) (for k =
1,...,K) obtained from s4, sp, respectively, and 0 < 75 < 1. As far as the
value of 75 is concerned, details are in Conti et al. (2016b), where the asymp-
totic normality of AA% and Ay is also proved. According to these asymptotic
results the evaluation of the reliability of a matching distribution can be dealt
with in terms of testing the hypotheses.

In Proposition 2 we confine ourselves to the asymptotic design-consistency
(in the Brewer sense) of the estimators A and A H, which does not require any
special regularity assumption on the samphng designs. Proof is in Appendix.
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Proposition 2 The estimators AA}}(15) and Ay (17) are asymptotically de-
sign consistent.

3.2 Choosing a matching distribution

The goal of the present sub-section is to define a reasonable criterion to choose
a matching distribution for (Y, Z)|X in the class (11), with marginal d.f.s
Fn(y|z) and Gn(z|z) replaced by their Héjek design-based estimators and
satisfying the constraint (5). As already stressed, the smaller the estimate AA%
of the uncertainty measure A*(Fy, Gy), the closer the matching distribution
to the true distribution of Y and Z, given X.

We actually attack a slightly simplified version of this problem, where
discretized versions of Y, Z are considered. In order to select a matching
distribution from HF, the following stepwise procedure can be used.

Step 1 The variables of interest Y and Z are first discretized by grouping their
values in classes. Conditionally on x, denote by Y; and Z; the discrete
counterparts of Y and Z, where Yy has r, and Z,; has s, outcomes, respec-
tively. Furthermore, let C* be the contingency table with r, rows and s,
columns and mj; the probability in cell (h,j) of C* for h=1,...,7r, and
i=1,2,..., 5.

Step 2 Given z, the marginal probabilities mj and m?j, i.e. the probabilities that
Y, falls into category h and Z; falls into category j, respectively, can be
estimated by

N Dia I( ;)I( ; N DiB I( -)I( )
~p _ Hi=l wy o (=) A=) S Lei=1 wy gt (35=0) M (e =
my, = N Dia » M = N DPiB (19)
i=1m; 4 (@=w) i=1m; g~ (2;=@)

forh=1,2,...,r, and j =1,2,...,8;.

Step 3 If the characters Y, Z are discretized, then the constraints (5) become
structural zeros in the contingency table C*. The results is an incomplete
table. The expected cell probabilities are then estimated wvia the iterative
proportional fitting (IPF) algorithm.

The distribution obtained by the IPF algorithm matches both the esti-
mated marginal d.f.s and the imposed constraint. However, if the constraint
is not consistent the IPF algorithm does not converge. In this situation alter-
native solutions can be adopted.

(i) Change the initial estimated marginal probabilities mj, and m? in order
to restore consistency and estimate the expected cell probabilities via IPF.
(ii) Use the initial estimated marginal probabilities mj and Mm%, and stop the
IPF algorithm in a given number of iterations; this implies that just one
marginal is matched.
(iii) Consider two consecutive iterations of the IPF algorithm and take the mean
of the two fitted marginals.
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4 The SHIW and HBS surveys

In Ttaly, the main sources used for estimating income and expenditures of
households are the SHIW and HBS sample surveys. SHIW is conducted by
Banca d’Italia every two years. Its main goal is to study the economic be-
haviors of Italian households. The sample for the SHIW survey is drawn in
two stages, with municipalities and households as, respectively, the primary
and secondary sampling units. The primary units are stratified by region and
population size. Bigger municipalities (with more than 40,000 inhabitants)
are all included in the sample, while the smaller towns are selected using a
probability proportional to size sampling (PPS). The individual households to
be interviewed are then selected by simple random sampling. In the present
paper we use the 2010 wave, whose sample consists of 7951 households and
387 municipalities. The main focus of the survey is the measurement of house-
hold income and wealth. The survey also includes some retrospective questions
aimed at constructing a measure of total expenditure.

The HBS collects a rich set of information on both socio-demographic
characteristics and detailed information on consumption behaviour of a cross-
section of Italian households for a very disaggregated set of commodities (both
durable and non-durable). The HBS survey is based on a two-stages sampling
design similar to the SHIW survey. In the paper we use the 2010 wave. The
sample is drawn in two stages with around 470 municipalities selected among
two groups according to the population size at the first stage and 22227 house-
holds at the second stage. It is main goal is to measure total household con-
sumption and its components.

Household income is defined as the combined disposable incomes of all peo-
ple living in the household. It includes every form of income, e.g., salaries and
wages, self-employment income, retirement income, cash government transfers
like unemployment benefits, and investment gains. The definition of household
consumption used in the present paper includes the households’ purchases of
products for their everyday needs. It includes the expenditure for food and
beverage, clothing and footwear, dwelling, fuels and electric power, for leisure,
shows and education, for transport and communication, for health expendi-
tures, and so on.

5 Beyond conditional independence: statistical matching between
SHIW and HBS

The aim of this section is twofold. First of all, conditionally on X in section
5.1 the maximal error arising from the combination of households income and
expenditure under logical constraints regarding the propensity to consume, is
studied. Furthermore, the criterion of selecting matching variables by choosing
the variables minimizing such an error is introduced. Secondly, in section 5.2 a
matching distribution for income and expenditure, that is a distribution lying
in the class (11), is estimated on the basis of available sample data. An appli-
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cation of statistical matching to household income and expenditure data is in
Donatiello et al. (2016) where EU-SILC (EU Statistics on Income and Living
Condition) 2012, with income reference year 2011, and the HBS 2011 are con-
sidered. However, in Donatiello et al. (2016) an uncertainty analysis is carried
out discretizing the two variables of interest and no matching distribution is
selected from the set of plausible joint distribution functions.

5.1 Uncertainty analysis: a new criterion to choose the matching variables

Roughly speaking, the literature highlights two main criteria for selecting the
matching variables, see D’Orazio et al. (2006a). First of all, there must be
both homogeneity in their statistical content and similarity in the distributions
of the variables across the two surveys. Secondly, the variables must be sig-
nificant in explaining variations in the target variables, in this case household
expenditure and income. In the present section the criterion based on the un-
conditional uncertainty measure (17) is used to select the matching variables.
A similar criterion based on an iterative procedure is proposed in D’Orazio et
al. (2015), where categorical X, Y and Z variates are considered. However,
in our approach the method of selecting matching variables by choosing the
variables minimizing the uncertainty measure can be applied to both ordinal
and continuous variables Y and Z.

The unconditional uncertainty measure is the average of the conditional
uncertainty measures (9), w.r.t. the marginal distribution of X. Then, as X
changes, the unconditional uncertainty measure changes too. The criterion
consists in choosing as matching variables those achieving the lowest level
of uncertainty, namely the minimum “maximal error” occurring in combin-
ing household income and expenditure data. Clearly, the larger is the num-
ber of matching variables, the smaller is the number of observations used
for estimating the conditional uncertainty measure with a reduction of the
corresponding accuracy. Such a new criterion is not alternative but com-
plementary to the previously described criteria. In our application, a set of
variables have been considered as possible matching variables and have been
harmonized across the two datasets. The set is composed by the variables:
ncomp=number of household components, area=geographical area of residence
and condlav=occupational status.

With regard to the first criterion, one of the main methods for evaluating
the degree to which distributions of variables are similar across data sets is
to compute a measure such as the Hellinger Distance (HD). It is generally
considered that an HD of over 5% should raise concerns about the similarities
in distributions. The HD is equal to 2.67, 2.43 and 5.47 for ncomp, area and
condlav, respectively.

According to the second criterion, the common variables which should be
used for matching are those that are statistically significant in explaining vari-
ations in both expenditure and income. Then an expenditure model was esti-
mated on HBS data and an income model was estimated on SHIW data. Since
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Table 1: Conditional Uncertainty Measure - X=number of household compo-
nents

ncomp MAz NBe Oz by r A=

1 5851 1989 0.41 0.97 60 0.099
2 6292 2522 040 0.86 63 0.094
3 4758 1589 0.43 0.85 66 0.090
44 5326 1851 0.49 099 66 0.087

both expenditure and income are highly positively skewed, the regression mod-
els were estimated on the logarithm of expenditure and income, respectively.
Formally, the natural logarithm of household expenditure or household in-
come, was modeled as a function of household characteristics. All the variables
(ncomp, area, condlav) are statistically significant in explaining variations in
both expenditure and income.

As far as the third criterion (based on the uncertainty measure (17)) is
concerned, we assume that, conditionally on X, the constraints take the form
a; <Y/Z < b, where Y and Z denote the household expenditure and income,
respectively. Then the ratio apc = Y/Z represents the propensity to consume.

Since extra-sample information is not available, the bounds a,,b, have
been estimated by the ratio between the first quartile and the third quartile
of expenditure in HBS and the median of income in SHIW| respectively, using
the results in Cifaldi and Neri (2013), Tedeschi (2013), and Battistin et al.
(2003). All these papers compare household expenditure data coming from
the two surveys and show that SHIW underestimates households expenditure.
This is also coherent with the fact that HBS is specialized on the measurement
of household expenditure, while SHIW it is not. As a consequence, we may
assume that for a given class of SHIW respondents (defined by their socio-
demographic characteristics) the true expenditure lies between the SHIW and
the HBS estimates. In order to define the bounds we prefer to use the quartiles
of the expenditure distributions instead of the simple averages, obtaining more
robust estimates.

We first develop a univariate uncertainty analysis to evaluate the effect on
uncertainty measure of each possible matching variable independently. Next,
we proceed to a bivariate analysis. Conditionally on X = ncomp, in Table 1
the sample sizes

N N
naz = ZDi,AI(xe), NBa = Z DiBI(3;=z), (20)

i=1 i=1

the bounds a, and b,, the percentage r of sample observations that do not
satisfy the constraint a, < apc < b, and finally the conditional uncertainty
measure are reported.

The same analysis has been performed also for both X = area and X =
condlav. The results are reported in Tables 2 and 3, respectively.
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Table 2: Conditional Uncertainty Measure - X=area of residence

area NAe NBgz Az by r A=
North 9880 3477 042 0.95 63 0.094
Center 4157 1699 0.37 0.81 63 0.092

South and Islands 8190 2775 0.46 1.07 64 0.093

Table 3: Conditional Uncertainty Measure - X=occupational status

condlav NAw NB e Az by r A=

Employed 8670 2605 0.46 0.93 65 0.089
Self — employed 2510 784 040 0.85 67 0.083
Unemployed 582 251 0.67 1.49 74 0.065
Inactive 10465 4311 0.36 0.89 61 0.097

Conditionally on X, the value A? in Tables 1,2 and 3 can be interpreted
as the maximal error occurring when the true p.d.f. is replaced by a matching
distribution belonging to the class (11). The larger error correspond to Single
in Table 1, North-Italy in Table 2 and Inactive in Table 3, respectively.

As previously stressed, r represents, in percentage terms, the effect of
the constraint on the support reduction of the joint distribution of (Y, Z)|X.
Clearly, the larger the reduction of support induced by a constraint, the larger
the effect of the constraint on model uncertainty, i.e. the more informative
the constraint. The average percentage of support reduction is equal to 63%
for the houselhold size and the geographical area of residence and equal to
67% for the occupational status, respectively. Furthermore, as shown in Table
1,2 and 3 the admissible range for the apc is approximately the same as X
changes. These two factors helps to explain: (i) the strong reduction in the
uncertainty measure when the constraint a,, < apc < b, is introduced; (ii) the
small differences in the uncertainty measures as X changes.

Table 4 shows the unconditional uncertainty measure (17) as the matching
variables change. In order to assess the effect on the uncertainty measure com-
ing from the introduction of an additional matching variable, the uncertainty
analysis has been repeated for the following combinations : (ncomp,area),
(ncomp,condlav). Roughly speaking, the constraint on apc halves the uncer-
tainty on the data generating statistical model from 0.17 to 0.09, whatever the
matching variables are.

From Table 4 the reduction of uncertainty as X changes is approximately
the same for different choices of X variables. In conclusion, since the variable
condlav has an HD larger the 5% and the uncertainty measure for ncomp is
0.092, we consider as final matching variable the household size.

Finally, conditionally on household size the same analysis has been re-
peated using alternative bounds for the apc. Conditionally on household size,
the lower bound a, has been estimated using the 10th and the 20th percentile
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Table 4: Overall Uncertainty Measure

X A\H

ncomp 0.092
area 0.093
condlav 0.091
ncomp,area 0.094

ncomp,condlav ~ 0.092

Table 5: Conditional uncertainty measure as the constraint varies - X=ncomp

ag A* ‘ ag A*

0.29 0.120 | 0.37 0.108
0.29 0.127 | 0.36 0.115
0.28 0.129 | 0.35 0.119
0.31 0.117 | 0.38 0.107

of the household propensity to consume distribution in SHIW, respectively.
The upper bound b, is set equal to 1 for both cases.

Note that, the larger the set of possible values for the apc the smaller the
reduction of the conditional uncertainty measure, that is less informative is
the imposed constraint.The average percentage of support reduction is equal
45% and 53% for the 10th and 20th percentile, respectively.

5.2 Choosing a plausible distribution for the statistical matching between
expenditure and income

The set of plausible d.f.s for (Y, Z)|X, given the sample information and the
constraint a, < apc < by is HY;, as defined in (11). This means that any
d.f. in H%; can be used to estimate the true p.d.f. Hy(y, z|z). Clearly, such
a estimate can be used to perform the statistical matching between SHIW
and HBS, that is to reconstruct a “fused file” in which each record includes
measures on (Y, Z, X).

In order to select a matching distribution from H¥; the stepwise procedure
described in Section 3.2 has been used. The discretization is performed by
equal frequency binning. Then, conditionally on X the thresholds of all bins are
selected in such a way that all bins contain the same number of observations,
equal to the square root of sample size. As a results, the size of each interval
can be different. Conditionally on X, the number of bins r, s, for Y and Z are
reported in Table 6. Furthermore, the discretization should be fine enough if a
final SHIW dataset containing a continuous household expenditure value has
to be reconstructed, since continuous data must be recovered from discretized
data.

As far as step 3 is concerned, let S* be the set of cells consisting of all cells
not containing structural zeros. In case of incomplete table, we can adopt the
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Table 6: IPF results for X=number of household components

X Te Sz accuracy level
1 75 43  0.0006
2 75 49  0.0003
3 67 37 0.0007
44 70 41  0.0008

IPF to compute estimates expected cell values, except that the initial values
must reflect the presence of structural zero cells, see Goodman (1968) and
Bishop et al. (1975). This means that, in applying the IPF method the choice
of the initial values must satisfy the quasi-independence relationship

m’ﬁj = 5hjaﬁbj? (21)

for h=1,2,...,r, and j =1,2,...,s, where d5; = 1 for cells (h,j) € S* and
0n; = 0 otherwise. As initial values ﬁlg’f, that is at the Oth step of iterative
algorithm, we set

T = GG m (22)

for all (h,7) € S*. Then IPF proportionally adjusts the values ﬁm%f in order to
fit the marginals m7 and ﬁfj, respectively, until the desired level of accuracy
is achieved. The fitted cells m{; represent a matching distribution for (Y, Z)| X.
Conditionally on X = ncomp, in Table 6 the number of categories r;, s, and
the IPF achieved accuracy levels are reported. Furthermore, in Figures 1 and
2 the two-dimensional plot and the bivariate density estimate of the matching
distribution is shown, respectively.

In Figure 1, conditionally on X, the two straight lines show the restriction
on the support of the joint distribution of (Y, Z)|X when the constraint a, <
apc < b, is introduced. Note that, in Figure 1 the frequency of the number of
observations for each point is the largest integer less than or equal to n Bﬁ@fj.

Once a matching distribution for (Y,Z,X) has been estimated, a fused
SHIW dataset can be reconstructed in which each record includes measures
on (Y, Z, X). Suppose that SHIW represents the recipient file and HBS the
donor file. Conditionally on X, for each unit £ = 1,---,np the following two
step procedure can be applied: (i) given (xg, zx) a categorical value for the
expenditure ¢, is imputed choosing one of the plausible values of variable Yy
with probabilities given by the IPF fitted cells m7;/ > m?; (ii) draw a donor
unit in the class C* = {i € HBS : x; = 2, y; € §d, 0z < Yi/2k < by} with
probability proportional to sampling weights in HBS.

Note that, following Réssler (2002), four increasingly demanding levels of
validity can be identified in the statistical matching problem: (i) preserving
household values, (ii) preserving joint distributions, (iii) preserving correlation
structures, (iv) preserving marginal distributions.

As stressed in Réssler (2002) the only way the first level validity can be as-
sessed is by means of a simulation study, since the true household expenditure
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Fig. 1: Two-dimensional plots of matching distributions under the constraints
a; < ape < b, (a) x=1. (b) x=2. (¢) x=3. (d) x=4+.
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Fig. 2: Bivariate density estimates of matching distributions under the con-
straints a, < ape < b, (a) x=1. (b) x=2. (c¢) x=3. (d) x=4+.
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Fig. 3: Kernel density of overall expenditure in HBS and “fused” file

values are unknown. The second level requires the knowledge of the (Y, Z, X)
joint distribution. This distribution is unknown but, as previously stressed, the
uncertainty measure can be used to asses how far is the matching distribution
from the true joint distribution. Then, the smaller the uncertainty measure
the more the matching distribution preserves the true joint distribution. Con-
ditionally on the household size and under the constraint a, < apc < b, this
error is equal to 0.092.

In order to test the validity at the third level, the correlation observed in
the original SHIW dataset between income and expenditure is 0.65, in the
“fused” resulting SHIW dataset the correlation between imputed expenditure
and income is 0.70.

Finally, as far as the fourth level of validity in Figure 3, the Kernel den-
sity of overall expenditure in HBS and in the “fused” dataset is reported. As
expected, the procedure preserves the marginal distribution of expenditure in
the “fused” dataset, as a consequence of IPF algorithm that proportionally
adjust the initial values in order to fit the marginal distributions of income
and expenditure in SHIW and HBS, respectively.

Then, the procedure proposed to choose a matching distribution in the
class (11) always respects the fourth level of validity.

The same considerations hold when the bounds a, and b, are estimated as
in Table 5.

6 Conclusions
In this paper an uncertainty analysis in combining household income and ex-

penditure data under constraints regarding the average propensity to consume
has been performed. The analysis allowed us: (i) to introduce a new criterion
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to choose the matching variables in performing the statistical matching. The
criterion consists in choosing as matching variables those achieving the low-
est level of uncertainty, namely the minimum “maximal error” occurring in
combining household income and expenditure data; (ii) to select a matching
distribution from the class of equally plausible joint distributions (11) via IPF
algorithm. As previously stressed, the matching distribution estimated via IPF
algorithm is not preferable to another belonging to the class H¥;, its reliability
is evaluated via the proposed uncertainty measure. Clearly, in order to apply
the IPF algorithm the continuous variables of interest income and expenditures
have been first discretized by grouping their values in classes.

Finally, once a matching distribution has been estimated, it can be used to
impute expenditure microdata in SHIW. This leads to a “reconstructed com-
plete dataset”, characterized by an intrinsic matching error. By practitioners,
although it can be used for inferential purposes, it cannot be considered as a
genuine complete dataset, but only a “blurred image” of the actual joint dis-
tribution. The amount of blur is expressed by the uncertainty measure studied
in the paper.

Appendix

Proof of Proposition 1 Taking into account that

L K4 (y, ) < min(Fy(ylz), Gn(z]z));
2. K§_(y, 2) 2 max(0, Fx(y|z) + Gn(z|z) — 1);

it is not difficult to see that
A7(Fy,Gy) < [ {min(Fy(ylo), G (elo)
R2
—max(0, Fx(ylz) + Gn(z]z) — 1)} dFN(y |2)dG N (2 |x)

11

/ / {min(u, v) — max(0, u+v — 1)} dudv
o Jo

1

Q

=-. 23
. (23)
In other terms, the maximal value of the conditional measure of uncertainty
(9) is essentially 1/6 ~ 0.167. As an easy consequence of Proposition 1, also
the unconditional uncertainty measure computed as in (10) takes the value
1/6.
Proof of Proposition 2 The following two statements hold:

A B AT (Fy, Gy) ask — oo (24)
A B A(Fy, Gy) ask — (25)

Asymptotic analysis requires to define how the samples sizes n4, np and the
population size N go to infinity. As in Brewer (1979) (cfr. also Little (1983)),
this will be done as follows:
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1. k replicates of the original population are formed.

2. From each replicate, an independent sample s4 (sp) of size na (ng) is
selected, according to the sampling design P4 (Ppg). Using notation intro-
duced above, let D] , (D] ) be a Bernoulli r.v. taking the value 1 if unit
¢ is included in the éamplé drawn from the jth replicate of the population
(j =1, ..., k) according to the sampling design P4 (Pg), and the value 0
otherwise.

3. The k populations are aggregated to a population of size N* = kN. We will
denote by Fn«(y|z), Gy=(z|z), pn+(x) the conditional p.d.f.s of Y and Z
given X = x and the proportion of units such that X = x, respectively.

4. The k samples drawn with the sampling design P4 (Pg) are aggregated to
a sample s% (s§) of n¥ = kny (nl; = knp) units.

5. The quantities Fy«(y |x), Gy« (z|z), pn=(x) are estimated by their Hajek
estimators, as defined in sub-section 3.1, and based on n% and nj sample
units. Such estimates are denoted by ﬁ};(y |z), CA;*H(Z |z), pi;(x), respec-
tively. Then, the uncertainty measures are estimated accordingly. We will
denote by A%F (A%;) the estimate of the conditional (unconditional) mea-
sure of uncertainty.

6. k is allowed to tend to infinity.

First of all, it is immediate to see that
Fy-(ylz) = Fn(y|z), Gn-(z|z) =Gn(z]|z), pN-(x) =pn(2).
In the second place, from
N kDI
Zi:l {llc Zj:l m:} I(yigy)l(m:w)
N kD]
Zi:l {Ilc Ej:l m,: } I(z,=a)

and using the law of large numbers
1 i
=1

converges in probability to 1 as k goes to infinity, then it is not difficult to
see that Fj;(y|zr) converges in probability to Fn(y|z) as k tends to infinity,
for each x and uniformly in y. In the same way, it is possible to show that
G3;(z|x) converges in probability to Gy (z|z) as k tends to infinity, for each
2 and uniformly in z. Since the functional A*(Fy, G ) is continuous in the
sup-norm, (24) is proved. In the same way, (25) can be proved.

Frlyle) =

J
i, A

D
- (26)

i, A

Nl
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