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Abstract. Vertical landing is becoming popular in the last fifteen years, a tech-
nology known under the acronym VTVL, Vertical Takeoff and Vertical Landing 
[1,2]. The interest in such landing technology is dictated by possible cost reduc-
tions [3,4], that impose spaceship’s recycling. The rockets are not generally de-
signed to perform landing operations, rather their design is aimed at takeoff op-
erations, guaranteeing a very high forward acceleration to gain the velocity 
needed to escape the gravitational force. In this paper a new control method based 
on Feedback Local Optimality Principle, named FLOP is applied to the rocket 
landing problem. The FLOP belongs to a special class of optimal controllers, 
developed by the mechatronic and vehicle dynamics lab of Sapienza, named Var-
iational Feedback Controllers - VFC, that are part of an ongoing research and are 
recently applied in different field: nonlinear system, marine and terrestrial auton-
omous vehicles [5-7], multi agents interactions and vibration control [8, 9]. The 
paper is devoted to show the robustness of the nonlinear controlled system, com-
paring the performances with the LQR, one of the most acknowledged methods 
in optimal control. 
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1 Introduction 

Landing, as for the Apollo 11 mission to the Moon, is an operation deputed to a lander 
module of the rocket body, the LEM, Lunar Excursion Module. As a new frontier of 
space discovery, space vehicles are today required to be able to land with reliability on 
different surfaces. Among the multiple complexities implied by the vertical landing, 
the control strategy plays a determinant role to obtain reliability and robustness. While 
take-off operations are better predictable and can be specifically designed by using suit-
able launch infrastructures, the landing phase is affected by higher uncertainties due to 
weather disturbances and ground surface imperfections. The launch umbilical tower, 
evacuation vanes, shockwaves dissipation, vibrations insulation and accurately de-
signed attitude during the first phases of the launch help much in facilitating the take-
off operations. The return trajectory is instead weakly stable due to the presence of 
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random disturbances. Hence, to improve the landing success probability, a feedback 
optimal trajectory is to be identified. The “Moon landing problem” is one of the proto-
type problems included in many control books and it is an excellent example of a two-
boundary optimization problems, that is difficult to approach by a feedback control 
strategy. Moreover, the vertical landing is a nonlinear problem with instabilities, anal-
ogous to the challenging control of the inverse pendulum. The Feedback Local Opti-
mality Principle FLOP approach represents an interesting alternative to more classical 
solutions, as the LQR. The aim of this paper is to define a robust and reliable control to 
land the vehicle safely. The quality of the control law is investigated considering the 
landing approach manoeuvre, starting from an assigned altitude, and varying the initial 
conditions, namely attitude and speed. The control actions involve the magnitude and 
the direction of the thrust, and orientable grid fins mounted on the top of the vehicle 
controlling the aerodynamic forces. The model of the system includes also actuators 
saturation effects. 

2 FLOP: a new local optimality principle 

A new control strategy based on classical variational approach has been recently 
developed by the authors and named Feedback Local Optimality Principle or FLOP 
[58,9]. The method relies on a local optimality criterion, replacing the global one used 
in the optimal control theory based on the Pontryagin approach. By using this idea, the 
chance to obtain a feedback control law for nonlinear dynamic system is supported. In 
classical variational problem the performance index J,̅ represented by the integral of the 
cost function 𝐸(𝒙, 𝒖) subjected to the dynamic differential constraint �̇� = 𝒇(𝒙, 𝒖) (rep-
resenting the system dynamics) has to be minimized (or maximized) along the entire 
time interval [0, T]:   

 min 𝐽 ̅ = ∫ 𝐸(𝒙, 𝒖) + 𝝀7(�̇� − 𝒇(𝒙(𝑡), 𝒖(𝑡)))	𝑑𝑡7
<  (1) 

In (1), 𝒙 is the system state, 𝒖 the control vector and 	
𝒙(0) = 𝒙𝟎 the initial condition. The differential constraint is introduced through Ham-
ilton’s formulation using the Lagrange multiplier 𝝀(𝑡). The solution of (1) provides 
both the optimal control 𝒖∗(𝑡)	and the corresponding optimal trajectory 𝒙∗(𝑡). The 
Feedback Local Optimality Principle, or FLOP approach, starts splitting the original 
integral (1) into 𝑁 = 𝑇/𝛥𝜏	integrals, where Δτ represents the time horizon of each of 
them (2). The FLOP method requires a weaker minimization concept, based on the 
extremal value for each individual integral within the related time horizon Δτ:  

 𝐽 = ∑ 𝐽G = ∑ ∫ ℒ(�̇�, 𝒙, 𝒖, 𝝀)𝑑𝑡IJK
LJK

M
GNO

M
GNO  (2) 

where ℒ(�̇�, 𝒙, 𝒖, 𝝀) = 𝐸(𝒙, 𝒖) + 𝝀7(�̇� − 𝒇(𝒙(𝑡), 𝒖(𝑡))). 𝐽 is minimized following 
the optimality criterion: 

 
min(𝐽G) ∀	𝑖 
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where UBT and LBT limits indicate upper bound and lower bound. Each integral so-
lution satisfies the boundary conditions: 

 
𝒙LJK = 𝒙IJKVW
𝝀IJK = 𝟎  (3) 

This approach provides three main advantages, with respect to the classical varia-
tional approach:  

• The considered dynamic system can be described by a nonlinear model, 
namely belonging to the class of the affine systems �̇� = 𝝓(𝒙) + 𝑩𝒖. 

• A more general class of nonlinear penalty functions, with respect to the 
classical quadratic forms of the state 𝒙, can be included into the cost 
function	and represented by 𝑔(𝒙)  

• The FLOP approach provides a feedback solution for the control vector 𝒖. 
This permits to overcome the main engineering drawback of the Pontryagin’s 
or the Bellman’s approaches. In fact, they both provide feed-forward control 
law, taking into account only one single information related to the initial state 
of the system, not using the information coming out, as the time marches, from 
the sensors measurements of the system state evolution. 

The FLOP approach, in general, provides a solution, with a performance that de-
pends on the choice of the variable Δ𝜏 that acts as a tuning parameter. 

2.1 Resume of FLOP technicality 

The continuous counterpart of equations (2) and (3) as shown in [5,8,9], leads to an 
augmented form of the Variational set of equations. In fact, solving each integral of (2) 
with its boundary conditions (3), is equivalent to solve the integral (1) for the entire 
time interval [0-T], where the final constraint for 𝝀(𝑇) = 𝟎 is replaced with a first order 
differential equation �̇� = 𝑮𝝀 as in the following: 

 

⎩
⎪
⎨

⎪
⎧

			

∇𝒙𝐸 − ∇𝒙𝒇7𝝀 − �̇� = 0
∇𝒖𝐸 − ∇𝒖𝒇7𝝀 = 0
�̇� = 𝒇(𝒙, 𝒖, 𝑡)
�̇� = 𝑮𝝀	
									

∀		𝑡 ∈ [0, 𝑇] (4) 

where 𝑮 = −bM
7
c 𝑰 i.e. the chosen horizon time interval Δ𝜏. The set of equation (4) can 

be, in general, explicitly solved for a penalty function 𝐸(𝒙, 𝒖), that is required to be 
quadratic in the control 𝒖 and with any degrees of nonlinearities in 𝒙, with 𝑔(𝒙) differ-
entiable. For affine systems, equations (4) after some mathematics produces:  

𝐽 = e
1
2𝒖

7𝑹𝒖 + 𝑔(𝒙) + 𝝀7i�̇� − (𝝓(𝒙) + 𝑩𝒖)j	𝑑𝑡
7

<

 

 𝒖𝑭𝑳𝑶𝑷 = 𝑹o7𝑩7[∇𝒙𝝓(𝒙)7 − 𝑮]oO∇𝐱𝑔(𝒙)7 (5) 
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The cost function O
q
𝒖7𝑹𝒖 + 𝑔(𝒙) exhibits a more general form than quadratic cost 

function in terms of the control variable, where additionally very weak hypotheses are 
required on 𝑔(𝒙), since is sufficient its differential at the first order exists. 

3 Dynamic model 

In this section the rocket dynamic model depicted in Fig. 1 is presented. The dynamic 
of the system is described by a 6 DOF rigid body motion with an additional equation 
describing the fuel mass consumption. The origin of the mobile frame is placed in the 
geometric center of the vehicle body, since the 𝐶𝑜𝐺 longitudinal position changes dur-
ing the flight, due to the mass variation of the system. As usual for aerial vehicles, the 
𝑥 axis is aligned along the longitudinal axis, the 𝑦 axis is set on the wing’s plane, the 𝑧 
axis is orthogonal to the previous two (see figure Fig. 1). 

 

 
Fig. 1. Rocket main systems, body reference and NED reference. 

The equations of motion are written within this frame in terms of the vehicle longi-
tudinal, transverse and vertical speed components 𝝂 = [𝑢, 𝑣, 𝑤], along x, y and z, re-
spectively, and in terms of the angular speed components 𝝎 = [𝑝, 𝑞, 𝑟], along the axes, 
associated to the roll, pitch and yaw motions, respectively. The absolute position 𝜼 =
[𝑋, 𝑌, 𝑍] of the rocket is described within an earth fixed, NED (North-East-Down) ref-
erence frame. To avoid gimbal lock when the rocket approaches the vertical attitude, 
the quaternions 𝒒 = [𝑞<, 𝑞O, 𝑞q, 𝑞�] description is used. The state vector is arranged as 
𝒙 = �𝜼, 𝒒, 𝝂,𝝎,𝑚����(𝑡)� and the vehicle dynamic equation can be shortly written as: 

 𝑴(𝑡)�̇� + 𝑪(𝒙)𝒙 = 𝝉 (6) 

where 𝑴(𝑡), 𝑪(𝒙) are the time variable, inertia and the generalized Coriolis matrices 
respectively. The mass variation due to fuel consumption is described adding the equa-
tion: 
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 �̇�����(𝑡) = −𝛾𝑇��� (7) 

where the total thrust is 𝑇��� = 𝑇O + 𝑇q + 𝑇� + 𝑇� + 𝑇�, sum of the individual forces 
provided by the main engines and 𝛾 is a suitable engine constant.  

The external forces 𝝉 collect the gravity action 𝝉�, the aerodynamic forces 𝝉���� 
acting on the vehicle body, the 𝑖 − 𝑡ℎ main thrusters forces 𝝉7K, the 𝑗 − 𝑡ℎ cold gas 
thrusters actions 𝝉¢£ and the 𝑘 − 𝑡ℎ forces generated by the trimmable grid fins 𝝉�¥¦§: 

 𝝉 = 𝝉� + 𝝉���� + ∑ 𝝉7K
�
GNO + ∑ 𝝉¢£

�
¨NO + ∑ 𝝉�¥¦§

�
©NO  (8) 

Where the generic 𝝉⊠ = �𝟎«,O; 𝑭⊠;𝑴⊠; 0�. The gravity action is 𝑭� =
𝑱7(𝑞<, 𝑞O, 𝑞q, 𝑞�)�0,0,𝑚����𝑔�

7
, with 𝑱 is the transformation matrix from the vehicle to 

the NED Earth reference. Since the dynamic equations are written in the body frame, 
the 𝐶𝑜𝐺 position varies during the flight, and the gravity action generates torque 𝑴� =
[𝑥®�¥, 0,0] × 𝑭�. Analogously, for aerodynamic action 𝑭����,𝑴����. These last depend 
on the angle of attack 𝛼 = atan	(𝑤/𝑢), and 𝛽 = atan	(𝑣/𝑢), the sideslip angle. Drag 
and Lift coefficients 𝐶´, 𝐶L for the forces acting in the two planes 𝑥𝑦 and 𝑥𝑧 are intro-
duced, together with the effective cross section areas 𝐴, the position of the centre of 
pressure 𝑐·, and are expressed through nonlinear function of the attack and sideslip 
angles as 𝐶´¸¹(𝛼), 𝐶L¸¹(𝛼), 𝐶´¸º(𝛽), 𝐶L¸º(𝛽), 𝐴»¼(𝛼), 𝐴»½(𝛽), 𝑐·¸¹(𝛼), 𝑐·¸º(𝛽), while 
dependences from �̇� and �̇� are neglected. These permit to evaluate the aerodynamic 
forces due to the airflow around the rocket body, with 𝑖 = 𝑦, 𝑧 and 𝑉»½q = 𝑢q + 𝑣q, 
𝑉»¼q = 𝑢q + 𝑤q the quadratic speed modulus in the 𝑥 − 𝑦 and 𝑥 − 𝑧 plane respectively. 

 𝐷»G = −1/2𝜌ÁG�(𝑍)𝐴»G𝐶´¸K𝑉»G
q   ,  𝐿»G = 1/2𝜌ÁG�(𝑍)𝐴»G𝐶L¸K𝑉»G

q  (9) 

The air density 𝜌ÁG�(𝑍) is a nonlinear function of the height 𝑍. Torque associated to 
the set of forces (10) are: 

 𝑴���� = Ã𝑐·¸º, 0,0Ä × b𝑹(𝛽)𝑭����¸º	c + �𝑐·¸¹, 0,0� × i𝑹(𝛼)𝑭����¸¹	j   (10) 

Where 𝑹(𝛼) and 𝑹(𝛽) are the rotation matrices around 𝑦 and 𝑧 respectively and 
𝑭����¸K = [𝐷»G; 0; 𝐿»G]. Analogous expressions follow for 𝝉7K and 𝝉¢£, these last due to 
cold gasses thrusters 𝑃O, 𝑃q, 𝑃�, designated to control the vehicle attitude in the LEO 
(Low-Earth-Orbit).  

When the vehicle approaches the atmosphere during the descent phase, the cold gas-
ses thrusters have not enough power to control the vehicle attitude. Hence, the actions 
𝝉�¥¦§ become predominant by suitable variations of their angles of attack 𝛿© stabilizing 
the vehicle’s flight. 

The forces and torques 𝑭�¥¦,𝑴�¥¦ are born because of the trimmable fins and they 
are:  

 𝑭�¥¦ = ∑ 𝑭�¥¦§i𝐷�GÇ§j
�
©NO   ,  𝑴�¥¦ = ∑ 𝒃© × 𝑭�¥¦§i𝐷�GÇ§j

�
©NO  

                        𝐷�GÇ§ = −1/2𝜌ÁG�(𝑍)𝐴�GÇ§𝐶´§(𝛿© + 𝜙)𝑉©
q𝑞(𝜙) (11) 
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where for the 𝑘 − 𝑡ℎ fin, 𝐴�GÇ§ is the wing section area, 𝐶´§(𝛿© + 𝜙) is its drag coeffi-
cient, depending on 𝛿© and on the angle 𝜙 equal to 𝛼 or 𝛽 depending on the considered 
fin. 𝑉© represents the component of the 𝐶𝑜𝐺 velocity along the 𝑥 axis, the parameter 
𝑞(𝜙) is the shadowing coefficient that varies between 0 and 1 depending on its config-
uration, and finally 𝒃© is the position vector of the 𝑘 − 𝑡ℎ fin. 

4 Control 

The simulations were carried out considering a control frequency loop of 100Hz.The 
control action is performed introducing specific penalty functions, for each phase of the 
flight, this is represented by a quadratic penalty function of the state 𝒙 and target 𝒙7: 

 𝑔(𝒙) = O
q
(𝒙 − 𝒙7)7𝑸(𝒙)(𝒙 − 𝒙7) (12) 

 The matrix 𝑸 is suitably varied during the flight. The vehicle flight is composed by 
three main phases as shown in Fig. 2: the first is the attitude correction in LEO. The 
vehicle actuates the FLIP manoeuvre to reach the desired pitch. The state target is re-
ferred to a specific attitude and null angle rates 𝒙7ËÌÍÎ = [𝟎�×O, 𝒒7, 𝟎�×O	, 𝟎�×O, 0], with 
suitable 𝐾 − 𝑔𝑎𝑖𝑛𝑠 for 𝑸¦LÓ¢ = 𝑑𝑖𝑎𝑔i�𝟎�×O, 𝐾𝒒𝟏�×O, 𝟎�×O, 𝐾𝝎𝟏�×O, 0�j. 

In the second phase, the vehicle reaches the re-entry speed and pitch angle. The tar-
get is 𝒙7ÕÖÖ×ØÕº = [𝟎�×O, 𝒒7, 𝝂7	, 𝟎�×O, 0], and 𝑸���Ç��½ =
𝑑𝑖𝑎𝑔i�𝟎�×O, 𝐾𝒒𝟏�×O, 𝐾𝝂𝟏�×O, 𝐾𝝎𝟏�×O, 0�j. 

The third phase is the atmospheric flight terminating with the vertical landing oper-
ation. The target is 𝒙7ÙÚ×ÛK×Ü = [𝟎�×O, 𝒒7, 𝝂7	, 𝟎�×O, 0], and 𝑸�ÁÇÝGÇ� =
𝑑𝑖𝑎𝑔i�𝐾𝜼𝟏�×O, 𝐾𝒒𝟏�×O, 𝐾𝝂𝟏�×O, 𝐾𝝎𝟏�×O, 0�j.  

 
Fig. 2. Rocket flight phases. 

 
The variation of the set 𝒈(𝒙) in dependence of the actual state of the vehicle is widely 
used in control application, such as the gained scheduled technique used for MPC. 

5 Results 

The simulations consider a rocket with the following characteristics:  

phase 1: FLIP phase 2: Reentry phase 3: landing

LEO
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Table 1. Rocket’s parameter 

Characteristics Value Characteristics Value 
Rocket mass 20000 [kg] Nr. Lateral thrusters 8 
Fuel mass 150000 [kg] Max lateral thrust 400 [N] 
Nr. Main thrusters 5 Nr. Grid fins 4 
Max thrust T 1521.4 [kN] Max grid trim angle ±60 [°] 

 
In the FLIP maneuver, the vehicle flies at 100 [km] above the Earth surface at a speed 
of 10000 [km/h], with initial pitch 45 [°]. The lateral thrusters provide the required force 
for the rotation that sets the vehicle at the desired pitch. Fig. 3 shows the pitch evolution 
in time, its rate and the thrust provided by the lateral thruster responsible of the pitch 
control.  

 
Fig. 3. FLIP maneuver. 

 
In the second phase, the rocket is still in LEO, flying 100 [km] above earth surface, 

travelling at 10000 [km/h], with initial pitch 180 [°]. The value required for the pitch to 
safely approach the atmosphere is 80 [°]. Moreover, the vehicle approaches the atmos-
phere reducing the effect of gravity using the main engines. 

 
Fig. 4. reentry maneuver. 

 
Eventually, the landing phase is shown in Fig. 5. Here the vehicle is travelling through 
the atmosphere starting from a height of 30 [km] at 4320 [km/h], thanks to the grid fins 
and the main thrusters, and it safely performs the vertical landing. 

Acceleration

Braking
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Fig. 5. Vertical landing maneuver. 

6 Conclusions 

The FLOP control shows good performances in all the phases that characterize the 
vehicle flight and landing, in a compound complex control operation. These results are 
possible thanks to the FLOP formulation, that allows to take into account the nonline-
arities, typical of the rocket model. Further tests will be performed, introducing pres-
ence of random disturbances, both with state estimation algorithm in order to validate 
the good performance shown in the present paper. 
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