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Abstract

Background

Amongst therapeutic radiopharmaceuticals, targeted alpha therapy (TαT) can deliver potent and 

local radiation selectively to cancer cells as well as the tumor microenvironment and thereby 

control cancer while minimizing toxicity. 

Design

In this review, we discuss the history, progress, and future potential of TαT in the treatment of 

prostate cancer, including dosimetry-individualized treatment planning, combinations with small-

molecule therapies, and conjugation to molecules directed against antigens expressed by 

prostate cancer cells, such as prostate-specific membrane antigen (PSMA) or components of 

the tumor microenvironment.

Results

A clinical proof of concept that TαT is efficacious in treating bone-metastatic castration-resistant 

prostate cancer has been demonstrated by radium-223 via improved overall survival and long-

term safety/tolerability in the phase III ALSYMPCA trial. Dosimetry calculation and 

pharmacokinetic measurements of TαT provide the potential for optimization and individualized 

treatment planning for a precision medicine–based cancer management paradigm. The ability to 

combine TαTs with other agents, including chemotherapy, androgen receptor (AR)-targeting 

agents, DNA repair inhibitors, and immuno-oncology agents, is under investigation. Currently, 

TαTs that specifically target prostate cancer cells expressing PSMA represents a promising 

therapeutic approach. Both PSMA-targeted actinium-225 and thorium-227 conjugates are under 

investigation. 
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Conclusions

The described clinical benefit, safety and tolerability of radium-223 and the recent progress in 

TαT trial development suggest that TαT occupies an important new role in prostate cancer 

treatment. Ongoing studies with newer dosimetry methods, PSMA targeting, and novel 

approaches to combination therapies should expand the utility of TαT in prostate cancer 

treatment. 

Key Words

Targeted alpha therapy (TαT), radium-223, prostate cancer, prostate-specific membrane 

antigen (PSMA) 

Key Message

Targeted alpha therapy (TαT) delivers highly potent, selective, and local alpha radiation to 

cancer cells and the tumor microenvironment. TαT occupies an important place in prostate 

cancer treatment, and its utility may be expanded to multiple cancer types. This review 

discusses the history, progress, and potential of TαT in oncology with a focus on prostate 

cancer. 

D
ow

nloaded from
 https://academ

ic.oup.com
/annonc/advance-article-abstract/doi/10.1093/annonc/m

dz270/5550674 by Volunteer State C
om

m
unity C

ollege user on 17 August 2019
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Introduction

The therapeutic effectiveness of specific radionuclides is determined by the specificity of 

targeting and the innate characteristics of the particle emitted, including potential range, 

effective travel distance in tissue, and the magnitude of energy emitted [1]. Radionuclides may 

be classified by their emission of particles, including alpha and beta particles [2]. Beta particles 

have a low linear energy transfer (LET) (0.2 keV/μm), which results in sparse ionization events, 

individual DNA lesions, and repairable single-strand DNA breaks. Alpha particles have higher 

LET (50–230 keV/μm), which results in clusters of double-strand breaks (DSBs) in DNA and 

increased cytotoxicity relative to beta particles. Alpha particles also have a shorter path length in 

tissue (50–100 μm) compared with beta particles (1000–10,000 μm). The short range of alpha 

particle radiation has the potential to minimize cytotoxic damage in non-targeted cells, 

potentially enabling specific cancer cell targeting with reduced toxicity to normal cells [3, 4]. This 

is exemplified by radium-223 dichloride (radium-223, Xofigo®), a first-in-class alpha particle–

emitting agent approved for castration-resistant prostate cancer (CRPC) with symptomatic bone 

metastases [5]. Radium-223 is a calcium mimetic that can preferentially bind to areas of 

hydroxyapatite deposition, such as bone metastases in prostate cancer (PC) [6-8]. Other bone-

seeking, beta particle–emitting radionuclides, such as strontium-89 and samarium-153-EDTMP, 

are indicated for pain relief for skeletal metastases [9-11]. Although these radionuclides 

provided pain palliation in bone-metastatic CRPC (mCRPC), they have failed to confer survival 

benefit [10, 12]. By contrast, in addition to reducing bone pain in a subset of patients, radium-

223 provided survival benefit when added to best standard of care (SoC) [7, 13, 14]. Recent 

progress in targeted alpha therapy (TαT) offers the potential to deliver cytotoxic radiation in a 

highly localized manner[3, 4]. In addition to exploring radium-223 in combination with other 

cytotoxic agents, androgen receptor (AR)-targeting agents, or immuno-oncology agents, 
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preclinical and clinical studies investigating other alpha particle–emitting radionuclides for use 

as TαTs (e.g. actinium-225 and thorium-227 conjugates) are ongoing (Table 1). This review will 

discuss the history, progress, and future potential of TαT for the treatment of PC, including: (1) 

treatment optimization and individualized planning; (2) combination therapies (e.g. radium-223 

with AR-targeting agents, cytotoxic agents, or immuno-oncology agents); (3) prostate-specific 

membrane antigen (PSMA) as an emerging therapeutic target; and (4) next-generation TαTs 

(e.g. targeted thorium-227 and actinium-225 conjugates).

What is the proof of concept for TαT?

Mechanism of action of radium-223, the first-in-class TαT in PC 

Radium-223 is the most-investigated TαT in clinical settings. Radium-223 is a calcium mimetic 

that is recruited to newly forming bone and induces an intense, local cytotoxic effect, affecting 

both cancer cells and the tumor microenvironment [8]. In murine tumor models, radium-223 

suppresses tumor-induced osteoblastic activity, tumor growth, and pathological bone formation 

[8]. In PC xenograft models, radium-223 inhibits abnormal bone metabolic activity by reducing 

the number of bone-forming osteoblasts and obliterating bone-degrading osteoclasts [8]. In vitro 

studies suggest that radium-223 may enhance T-cell–mediated lysis of prostate, breast, and 

lung carcinoma cells through induction of immunogenic cell death [15, 16].

Clinical outcomes of radium-223 treatment

Radium-223 has provided clinical proof of concept that TαT is an effective treatment strategy for 

PC [5]. In the phase III ALSYMPCA trial [17] of patients with bone-mCRPC and no known 

visceral metastases, radium-223 significantly extended overall survival (OS) (radium-223, 14.9 

months; placebo, 11.3 months; hazard ratio, 0.70 [95% CI, 0.58–0.83], P<0.001) [7]. Radium-
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223 also provided clinically meaningful improvement in health-related quality of life (QoL) and 

prolonged the time to first symptomatic skeletal event (SSE) and subsequent SSEs [7, 13]. 

Despite these results, median times to increase in prostate-specific antigen (PSA) levels were 

similar among treatment arms [7]. While rising PSA has been used as a biomarker for increased 

tumor growth, it has not been proven to be a reliable biomarker for therapies that do not directly 

affect the AR pathway [18, 19]. Potential biomarkers for treatment response with radium-223, 

including alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), are summarized in 

Table 2. Mutations in DNA repair pathway genes are included, as patients with these alterations 

may be particularly susceptible to radium-223 treatment [20-22] .

Combining radium-223 with second-generation AR-targeted therapies

Radium-223 has six years of real-world evidence supporting its efficacy and safety in mCRPC 

[7, 13, 14]. Because abiraterone and enzalutamide have both been shown to improve 

progression-free survival and OS as a first-line treatment for mCRPC, and neither has 

overlapping toxicity with radium-223, the combinations of these agents with radium-223 are 

being investigated [23, 24]. In a retrospective analysis of an international, early access, open-

label, single-arm, non-randomized trial including 696 patients with mCRPC, radium-223 used 

with initial and concurrent treatment with abiraterone or enzalutamide improved survival with no 

unexpected safety concerns [25]. In the eRADicAte study (NCT02097303), an investigator-

initiated, phase II, prospective, single-arm study including 31 patients with mCRPC, radium-223 

in combination with abiraterone plus prednisone (initiated <90 days prior to or <30 days after the 

first radium-223 treatment) conferred clinically meaningful improvements in QoL and pain, 

without unexpected adverse toxicities [26]. However, the phase III ERA 223 trial 

(NCT02043678) investigating radium-223 in concurrent combination with abiraterone plus 

prednisone/prednisolone raised safety concerns: more fractures (28.6% versus 11.4%, based 
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on central radiological review) were observed in the combination arm versus the arm with 

abiraterone plus prednisone/prednisolone alone [27, 28]. It should be noted that 79% of the 

fractures in the combination arm were not at sites of bone metastasis and osteoporotic fractures 

were most common [29]. The fact that the combination therapy in ERA 223 was administered 

concomitantly may partially explain the difference in safety profile compared with the 

ALSYMPCA, eRADicAte, and REASSURE studies. If the combination therapy was instead 

sequential, this may have allowed the bone to recover from the impact of the normal hormonal 

agent, thus preventing radium-223 from having a further compounding effect on bone 

irradiation. Additional analysis of the ERA 223 data showed a lower fracture rate in both study 

arms in patients who received bone health agents (BHAs) than in those who did not [29], 

suggesting that the use of BHAs could mitigate the risk of bone fractures for all patients. 

The US Food and Drug Administration evaluated the data of ERA 223 and added a warning 

statement on the use of radium-223 in combination with abiraterone acetate plus 

prednisone/prednisolone [5]. The Japanese Pharmaceuticals and Medical Devices Agency and 

Health Canada also issued a similar precaution [30, 31]. However, the European Medicines 

Agency (EMA) restricted the use of radium-223 to patients who have progressed following two 

prior systemic treatments for bone-mCRPC or who are ineligible for other treatments. The EMA 

also issued a contraindication for use in combination with abiraterone acetate plus 

prednisone/prednisolone [32]. Radium-223 is also being studied in combination with 

enzalutamide in ongoing phase II (NCT02225704) and phase III trials (NCT02194842) [33, 34]. 

The initial results of the phase III PEACE III (NCT02194842) trial show that, while fractures 

increased when radium-223 was added to enzalutamide, this risk was nearly abolished with 

continuous use of BHAs such as zoledronic acid [35]. After the trial was amended to make 

BHAs mandatory, no excess fractures were observed in the radium-223 arm [35].
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De Vincentis 9

Can we personalize treatment and optimize clinical outcomes of TαT 

through the addition of dosimetry considerations?

Is TαT dosimetry feasible? 

One advantage of TαT compared with other systemic advanced PC modalities is that it enables 

collection of pharmacokinetic data by imaging in a clinical study setting, which can be used for 

dosimetry calculations [36]. Radiation dosimetry provides a logical basis for understanding the 

biological effects of radiation quantities and comparing the effects of different radiation-based 

treatments [37]. Owing to uptake heterogeneity of alpha particle emitters on a small scale and 

their potent cytotoxicity, macroscopic dosimetry at the tumor and organ levels is insufficient, and 

thus microdosimetry that takes into consideration the activity distribution as a function of time at 

the cellular and subcellular levels should be further developed for more-precise dosimetry 

calculations [37]. Currently, several small-scale modeling and microdosimetric approaches are 

being developed, with potential application to clinical imaging and dosimetry [36, 38-40].

Quantification of radium-223 uptake 

In vivo dosimetry requires in vivo radium-223 uptake quantification. The low gamma-radiation 

yield generated through the radium-223 decay pathway allows quantitative imaging of radium-

223 therapy and individualized biodistribution studies, although long image acquisition times 

limit the widespread use of this option [41-43]. 

Recent evidence has demonstrated a potential correlation between absorbed dose and local 

lesion response to TαT [42]. A study including nine patients with bone metastases reported that 

the lesion uptake quantification of radium-223 was significantly correlated with that of 

technetium-99m-methylene diphosphonate [43]. This introduces the possibility of using 
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De Vincentis 10

conventional radiolabeled diphosphonate scintigraphy to contour bone lesions and define lesion 

extent in a more reliable manner.Overlapping radium-223 images of the region of interest allow 

for more accurate radium-223 uptake quantifications for dosimetry and for the assessment of 

local response of bone metastases to the therapy (i.e. lesion geometric extent and uptake) [43]. 

Dosimetry and clinical outcomes 

The feasibility of TαT dosimetry (e.g. in vivo quantification of radium-223 uptake [43]) might 

introduce the possibility of clinically investigating the value of personalized treatment and the 

outcome of radium-223 in relation to the absorbed dose. Recently, in a study including five 

patients with mCRPC, a correlation between fluorine-18-fluoride (18F-fluoride) and radium-223 

uptake was observed [42]. This study, to our knowledge, represents the first observed 

correlation between absorbed dose and local lesion response of TαT, suggesting that 

quantitative 18F-fluoride imaging might predict radium-223 uptake and, potentially, treatment 

response. More robust studies using more advanced imaging techniques are needed to confirm 

these preliminary findings, explore treatment optimization, and investigate the potential of 

dosimetry to predict clinical outcomes [42, 43]. 

In overall survival analyses of the number of radium-223 injections in patients with mCRPC in 

the US expanded access program, OS was longer in patients receiving 5 or 6 injections versus 

those receiving 1–4 injections [44]. However, a post hoc analysis of the ALSYMPCA trial 

showed similar findings with 5 or 6 injections of placebo versus 1–4 injections of placebo [45]. 

Further study is needed to determine the dosimetry of multiple cycles of radium-223 

incorporated in the bone, to assess its impact on biological activity and to investigate the 

potential of radium-223 dosimetry for treatment optimization and individualized treatment 

plans[41]. A randomized trial (NCT02023697) compared SSE-free survival (SSE-FS) with 

different radium-223 regimens in 391 patients with mCRPC and bone metastases: standard 
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De Vincentis 11

activity (55 kBq/kg q4w for 6 cycles), high activity (88 kBq/kg q4w for up to 6 cycles), and 

extended standard activity (55 kBq/kg q4w for up to 12 cycles) [46]. No statistically significant 

differences in SSE-FS were observed between the standard activity and either the high or 

extended standard activity. However, an increased incidence of grade ≥3 treatment-emergent 

AEs were observed in the latter groups. This result supports the approved radium-223 regimen 

[46] and also supports the interest of dosimetry calculation to individualize the optimal activity 

regimen, as increased- or extended-activity regimens may not necessarily improve efficacy. 

The possibility of evaluating TαT distributions after injection and predicting absorbed radiation 

doses and exposure within tumor and normal tissues introduces the potential for optimizing 

treatment to maximize anti-tumor effect while sparing normal tissues [36]. 

What is the future of TαT in PC?

Radium-223–based radioimmunoconjugates were challenging to develop due to the difficulties 

associated with stable chelation and conjugation of radium-223 to biomolecules [47, 48]. 

However, combination of radium-223 with other treatments and at earlier disease stages may 

broaden its clinical utility [49]. For example, combination therapy of radium-223 with other anti-

tumor agents (e.g. chemotherapy, AR-targeting agents, DNA damage response [DDR] 

inhibitors, and immuno-oncology drugs) for PC may be a viable treatment approach. Clinical 

trials are ongoing to assess these combinations (Tables 1 and 3). Additionally, certain alpha 

emitters can be targeted to tumors by conjugating them to small molecules (e.g. actinium-225–

PSMA-617 and bismuth-213–PSMA-617) [50-52] or radioimmunotherapy, e.g. thorium-227 

conjugated to a monoclonal antibody [mAb]) that bind to specific antigens (e.g. PSMA) on tumor 

cells [3, 50]. Many preclinical and clinical studies are ongoing to investigate the potential of 

these therapeutic options, which may expand the utility of TαT in the management of PC.
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De Vincentis 12

How to develop combination therapies which harness the MoA of TαT?

In addition to combining radium-223 with best SoC (e.g. local external-beam radiation therapy, 

corticosteroids, antiandrogens, estrogens, estramustine, or ketoconazole) [5], chemotherapy 

(e.g. docetaxel in the phase III DORA trial [NCT03574571] [53]) and other antiandrogens (e.g. 

enzalutamide in the phase III PEACE trial [34]), the MoA of radium-223 provides a basis for 

investigating its potential combination with other therapies, such as immuno-oncology agents 

and DDR inhibitors. 

Combining TαT with immuno-oncology agents 

In addition to cytotoxicity caused by the production of difficult-to-repair clusters of DNA DSBs 

(targeted effects), TαT may also produce off-target effects, such as systemic bystander 

(abscopal) effects that may be observed at distances from the target [3, 4, 37, 54, 55]. These 

systemic bystander effects are potentially mediated by the immune response [54] and could be 

exploited by appropriate treatment combinations. Combining alpha-emitted radiation and 

immunostimulatory therapies, such as anti-programmed death receptor-(ligand)1 (PD-1/PD-L1) 

or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAbs, has been shown to reduce 

nonirradiated metastatic tumor size and of metastatic spread [54]. However, randomized trials to 

confirm these preliminary findings are needed. Radium-223 has also been demonstrated to 

sensitize breast, prostate, and lung carcinoma cell lines to cytotoxic T-lymphocyte–mediated 

lysis by the induction of immunogenic cell death [15]. In in vitro cancer model systems, radium-

223 can increase expression of major histocompatibility complex-I, induce endoplasmic 

reticulum stress response in tumor cells, and upregulate the expression of calreticulin and 

induce its surface translocation. These events ultimately augment tumor sensitivity to T-

lymphocyte-mediated lysis [15]. The ability of TαT to induce immunogenic modulation and 
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De Vincentis 13

enhance T-cell–mediated tumor cell lysis across multiple human tumor cell lines suggests wide-

ranging applicability and a potential for combination with immuno-oncology agents [15], such as 

atezolizumab [56], pembrolizumab [57], and sipuleucel-T [58].Given that TαT may modulate 

tumor phenotype and enhance T-cell lysis, it has been hypothesized that the immunostimulatory 

environment created by TαT may potentiate the anti-tumor activity of these immunotherapies 

[15]. Given the non-overlapping safety profiles of these therapies and their distinctive MoAs 

from radium-223, it is potentially advantageous to combine TαT and immuno-oncology agents. 

Currently, phase I trials examining the combination of atezolizumab and radium-223 are 

ongoing to investigate its potential in treating mCRPC with disease progression after androgen 

pathway inhibitor treatment (NCT02814669) [59], and in treating urothelial carcinoma with bone 

metastases and disease progression after platinum-based chemotherapy (NCT03208712) [60] 

(Table 3). NCT02814669 includes an adaptive study design with a cohort phase to evaluate the 

safety and tolerability of the combination with concurrent initiation or a staggered dosing 

(atezolizumab initiated at the beginning of cycle 2 or 3 of radium-223) before a potential 

randomization phase [59]. Pembrolizumab in combination with radium-223 is under investigation 

in a phase II trial in mCRPC (NCT03093428) [61]. Sipuleucel-T combined with radium-223 is 

being investigated in a phase II trial in men with asymptomatic or minimally symptomatic bone-

mCRPC (NCT02463799) [62] (Table 3). 

Combining TαT and DDR inhibitors 

DNA damage response (DDR) pathways comprise a network of signaling pathways that 

maintain genomic stability and cell viability by orchestrating the detection and repair of DNA 

damage with transient cell cycle arrest [63]. As mentioned above and shown in Table 2, several 

patients with alterations in DDR pathway genes have been shown to respond to radium-223 
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De Vincentis 14

treatment [20-22]. Ataxia-telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-

related protein (ATR) kinases are two master regulators of the DDR signaling pathway. ATM is 

primarily activated by double-strand breaks (DSBs), whereas ATR responds to a broad 

spectrum of DNA damage, including DSBs, lesions from interference with DNA replication, and 

elevated oncogene-induced replication stress [64, 65]. Poly (ADP-ribose) polymerase (PARP) 

also plays a vital role in DDR and can be activated by a wide range of stimuli (e.g. single-strand 

breaks, DSBs, and unusual DNA conformations) [66]. Defective PARP functions can lead to 

genomic instability and cell death, providing a basis for investigating PARP inhibitors (PARPis) 

in anti-cancer therapies [66]. It has been hypothesized that combining TαT and ATR inhibitors 

(ATRis) or PARPis may potentiate synthetic lethality and anti-tumor effects [49]. 

TαT and DDR inhibitor combination therapy has been explored in different tumor types [67]. For 

example, another TαT—thorium-227 conjugate targeting mesothelin, a surface glycoprotein 

overexpressed in multiple cancer types (e.g. pancreatic, ovarian, and lung cancers and 

mesothelioma) [68]—has demonstrated synergistic anti-tumor effects when combined with ATRi 

or PARPi in preclinical cancer models [67, 69]. These synergistic effects [67, 69] suggest that 

inhibiting DDR pathways may sensitize cancer cells to TαT and warrant clinical investigation. 

Currently, multiple clinical studies investigating the potential of combining TαT and DDR 

inhibitors in patients with mCRPC and bone metastases are ongoing, such as the phase Ib trial 

of radium-223 and the PARPi niraparib (NCT03076203) [70] and the phase I/II trial of radium-

223 and olaparib (NCT03317392) [71](Table 3).

PSMA — an emerging and promising target for PC therapy

PSMA is a type II transmembrane protein that is expressed at low levels in a variety of tissues 

(e.g. the prostate, brain, small intestine, salivary glands, and kidneys) and is overexpressed in 
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De Vincentis 15

primary and metastatic PC cells [52, 72-75]. Although 5–10% of men with PC do not express 

PSMA, and PSMA may not be expressed uniformly within the tumor [76, 77], high levels of 

expression of PSMA are observed across the spectrum of aggressive and poorly differentiated 

PC [72-75, 78], making PSMA a promising therapeutic target [79]. PSMA targeting allows the 

creation of novel treatment options that would be complementary to existing therapies [80] 

(Figure 1). 

Investigational agents targeting PSMA can be labeled with different radionuclides, including 

alpha (e.g. actinium-225 and thorium-227) and beta emitters (e.g. lutetium-177 [177Lu] and 

iodine-131). These agents can be targeted to PSMA via different vehicles, such as antibodies 

(e.g. thorium-227–labeled anti-PSMA IgG1) and small-molecule ligands (e.g. 225Ac-PSMA-617). 

While antibodies bind PSMA with high affinity, they have a long serum half-life and greater 

potential for bone marrow and liver toxicity. Small-molecule ligands have a favorable 

biodistribution but have risk of off-target toxicity in the kidneys, salivary glands, and lacrimal 

glands [4, 52, 81]. Other PSMA-targeted therapies under investigation include vaccines and cell 

therapies. 

Among investigational PSMA-targeted therapeutics, beta particle–emitting radionuclides 

targeting PSMA include 177Lu-J591 and 177Lu-PSMA-617. Both agents demonstrated clinical 

activity in mCRPC [82-89]. A single-arm, single center, phase II study investigating 177Lu-PSMA-

617 in mCRPC found that 17 out of 30 patients with mCRPC achieved a ≥50% PSA decline, 

with a low toxicity profile and improvement in QoL [82]. A multicenter randomized phase II trial 

comparing 177Lu-PSMA-617 with cabazitaxel chemotherapy (NCT03392428) is ongoing [90]. 

The phase III VISION trial investigating PSMA-617 coupled to Lu-177 in mCRPC is also 

ongoing (NCT03511664) [91]. However, it seems some patients may not respond to 177Lu 

radioligand therapy, as 9 out of 30 patients saw no PSA response [ 92]. Such patients may 
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De Vincentis 16

respond to an alpha particle–emitting radionuclide, such as actinium-225–PSMA-617 (225Ac-

PSMA-617) (Figure 2) [50]. Alpha particles are characterized by high LET and short travel 

distances; therefore, PSMA-targeted alpha therapies may cause potent and local cytotoxicity to 

PSMA-expressing cells [3, 4]. Alpha-labeled bisphosphonates, such as 225Ac-EDTMP or 225Ac-

zolendronate, may also be considered as they accumulate in the bone microenvironment of 

osteoblastic lesions [93, 94] .

What PSMA–TαT agents are under investigation for PC?

PSMA–TαTs under investigation 

Investigational TαTs targeting PSMA include bismuth-213–PSMA-617 (213Bi-PSMA-617) [51], 

225Ac-PSMA-617 [95], astatine-211–PSMA–pentanedioic acid (211At-PSMA-pentanedioic acid) 

[96], and thorium-227–labeled anti-PSMA IgG1 (227Th-PSMA-IgG1) [97]. The first-in-human 

treatment concept with 213Bi-PSMA-617 was demonstrated in a patient with mCRPC who had 

progressed on conventional therapy. Molecular imaging (re-staging with 68Ga-PSMA PET/CT) 

and biochemical (decline in PSA level from 237 μg/L to 43 μg/L) responses were observed in 

this patient after 11 months [51].

Initial clinical experience with targeted actinium conjugates 

225Ac-PSMA-617 was investigated in an observational, single-center study as salvage therapy 

among patients with mCRPC who had exhausted all approved treatment options and had a 

PSMA-positive tumor phenotype [50]. In the preliminary report including two patients who 

received ≥8 prior therapies, 225Ac-PSMA-617 (100 kBq/kg bimonthly) resulted in a PSA decline 

below the measurable level and complete imaging response in both cases [50]. In the full report 

including 14 patients, PSA response was observed in 75% of patients, and promising anti-tumor 
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De Vincentis 17

activity was detected in brain, bone, liver, and pulmonary lesions. However, persistent 

xerostomia was regularly reported with a dose of 225Ac-PSMA-617 ≥100 kBq/kg per treatment 

cycle and was considered intolerable when the dose exceeded 150 kBq/kg. All-grade 

hematological AEs occurred in six patients (42.9%), and xerostomia was observed in eight 

patients (57.1%). With xerostomia being the dose-limiting factor, 100 kBq/kg was considered the 

maximum tolerable dose. Based on these findings, 100 kBq/kg 225Ac-PSMA-617 is tolerable and 

presents promising anti-tumor activity [95]. Antitumor activity of 225Ac-PSMA-617 was further 

demonstrated in 40 patients with mCRPC [98]. Although 225Ac-PSMA-617 was generally well 

tolerated, xerostomia remained the main reason for toxicity-associated treatment 

discontinuation [98]. Clinical trials with larger patient populations are needed to further 

investigate the efficacy, safety, and patient selection for 225Ac-PSMA-617. 

Preclinical development of targeted astatine and thorium conjugates 

211At-PSMA-pentanedioic acid has demonstrated significant tumor growth delay in a PC 

xenograft model. 211At-PSMA-pentanedioic acid also showed preclinical efficacy by significantly 

improving survival in mice bearing PC micrometastases. These results expand the potential 

utility of PSMA–TαTs from macrometastases to micrometastases of PC, including those not 

visible by traditional imaging techniques [96]. Another PSMA–TαT under preclinical investigation 

is 227Th-PSMA-IgG1, a targeted thorium conjugate delivering the alpha particle–emitting 

radionuclide thorium-227 to PC cells through a conjugated mAb (IgG1) specific for PSMA 

(Figure 3) [97]. 

Targeted thorium conjugates are next-generation TαTs that integrate a targeting molecule (e.g. 

mAb) stably bound to a chelator, and the alpha particle-emitting radioisotope thorium-227 

(227Th) [99-101] (Figure 3). Thorium-227 is a promising candidate for TαT for its relatively long 

half-life (18.7 days) and favorable chemical properties that allow stable chelation, preparation, 
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De Vincentis 18

and administration [101, 102]. In addition, thorium-227 decays via alpha particle emission to 

radium-223, which subsequently decays to stable lead-207; during this process, five alpha 

particles are released [102]. 

Preclinical studies showed that 227Th-PSMA-IgG1 was mainly distributed in tumors, followed by 

blood, with lower levels of distribution in other tissues (e.g. spleen, kidneys, and liver), indicating 

highly specific delivery of the alpha therapy to tumors. In vitro studies demonstrated that 227Th-

PSMA-IgG1 induced tumor cell death, difficult-to-repair DNA DSBs, and cell cycle arrest in 

G2/M phase of PC cells. 227Th-PSMA-IgG1 also induced immunogenic cell death of PC cells. 

These in vitro studies suggest that 227Th-PSMA-IgG1 may cause cytotoxicity through inducing 

DNA DSBs in PC cells and potentiation of tumor sensitivity to immunogenic lysis [97]. 

In vivo studies also demonstrated anti-tumor activity of 227Th-PSMA-IgG1 in several PC 

xenograft models (LNCaP-luc, C4-2, and LAPC-4) and its tolerability (i.e. no significant body 

weight loss). Tumor growth inhibition was observed with a single dose of 227Th-PSMA-IgG1 in 

both PC xenograft models with moderate (22Rv1) and high (MDA-PCa-2b) PSMA expression. 

In a bone-metastatic PC model, a single dose of 227Th-PSMA-IgG1 reduced tumor burden, 

abnormal osteoblastic bone growth, and serum PSA levels [97]. Potent dose-dependent 

antitumor activity of 227Th-PSMA-IgG1 was observed in both hormone-sensitive (ST1273) and 

enzalutamide-resistant (KuCap-1) patient-derived PC xenograft models [103]. 

Compelling preclinical evidence [97, 103] supports clinical investigation of 227Th-PSMA-IgG1 for 

PC, including mCRPC. Further development of other targeted thorium conjugates as precision 

anti-cancer modalities to deliver local alpha therapy to other tumor types are ongoing [104-106]. 
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De Vincentis 19

Conclusions

TαT has the potential to deliver high-energy alpha radiation selectively to cancer cells and the 

tumor microenvironment in order to control cancer while minimizing systemic toxicity. The 

survival benefit and long-term safety profile of radium-223 demonstrated in clinical trials and 

clinical practice has provided both the proof of concept and real world experience for TαT as a 

viable therapeutic approach for cancer. Dosimetry calculation and pharmacokinetic 

measurements of TαT may drive precision medicine–based treatment in a more cost-effective 

and efficient manner. Potential combination of TαT with chemotherapy, AR-targeting agents, 

DDR inhibitors, or immuno-oncology drugs may enhance the anti-tumor activity of each 

individual therapy through synergistic or complementary interactions, which may expand the 

clinical utility of TαT in PC. Additionally, PSMA represents a promising therapeutic target for PC. 

PSMA-targeted thorium and actinium conjugates are under investigation as  next-generation, 

precision anticancer modalities that deliver local alpha therapy to PSMA-expressing cancer 

cells. 
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Figure Legends 

Figure 1. PSMA TαT is complementary to existing therapies for prostate cancer. Depicted is a 

suggested clinical sequencing, in which PSMA TαTs would be considered after a failure of a 

first-line therapy for mCRPC and PSMA expression was confirmed positive. ADT, androgen 

deprivation therapy; CT, computed tomography; mHSPC, metastatic hormone-sensitive 

prostate cancer; mCRPC, metastatic castration-resistant prostate cancer; NAH, novel anti-

hormonal; nmCRPC, non-metastatic castration-resistant prostate cancer; PET, positron 

emission tomography; PSMA, prostate-specific membrane antigen; TAT, targeted alpha 

therapy.

Figure 2. PSMA as a potential therapeutic target for prostate cancer. PSMA is a 

transmembrane protein overexpressed in prostate cancer. The extracellular domain of PSMA is 

internalized after ligand binding, allowing intracellular delivery of conjugated therapeutic agents, 

such as actinium-225. PSMA, prostate-specific membrane antigen; TαT, targeted alpha 

therapy.

Figure 3. Schematic representation of 227Th-PSMA-IgG1. An N-hydroxysuccinimide-activated 

3,2-hydroxypyridinone chelator is coupled to the PSMA antibody and radiolabeled with the 

thorium-227 radionuclide. PSMA, prostate-specific membrane antigen.
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Table 1. TαTs in Prostate Cancer

 TαT MoA Half-life Number of 
alpha 
particles 
emitted 

Highlights of ongoing 
clinical trials or key 
findings

The phase III PEACE III trial 
on the combination of radium-
223 and enzalutamide in 
mCRPC [34]
The phase III DORA trial on 
the combination of radium-
223 and docetaxel in mCRPC 
[53]
Phase I trial on the 
combination of radium-223 
and atezolizumab in mCRPC 
[60]; phase II trials on 
pembrolizumab [61] or 
sipuleucel-T [62] and radium-
223 in mCRPC 

Radium-223 
dichloride

Bone-seeking 
alpha-emitting 
radionuclide [8]

11.4 
days 
[107]

4 [107]

Phase Ib trial of radium-223 
and niraparib (PARPi) in 
CRPC [70]; phase I/II trial of 
radium-223 and olaparib 
(PARPi) in mCRPC [71]

213Bi-PSMA-
617

45.6 
minutes 
[108] 

1 [108] Molecular imaging and 
biochemical responses in a 
patient with mCRPC [51]

225Ac-PSMA-
617

10.0 
days 
[109]

4 [109] Anti-tumor activity was 
observed in patients with 
mCRPC with xerostomia as 
dosing-limiting factor and 
reason of treatment 
discontinuation [50, 95, 98]

211At-PSMA-
pentanedioic 
acid

PSMA-targeting 
small-molecule 
ligand conjugated 
with alpha-
emitting 
radionuclide

7.2 hours 
[110]

1 [110] Significant tumor growth 
delay and improved survival 
were seen in preclinical 
prostate cancer xenograft 
model and mice bearing 
prostate cancer 
micrometastases [96]

227Th-PSMA-
IgG1

PSMA-targeting 
mAb conjugated 
with alpha-
emitting 
radionuclide

18.7 
days 
[102]

5 [102] Preclinical anti-tumor activity 
and safety were observed in 
models of prostate cancer 
[97, 103]; phase I trial of 
227Th-PSMA immune-
conjugate in mCRPC [111]
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CRPC, castration-resistant prostate cancer; DSB, double-strand breaks; mAb, monoclonal 
antibody; mCRPC, metastatic CRPC; MoA, mechanism of action; PARPi, poly (ADP-ribose) 
polymerase inhibitor; PSA, prostate-specific antigen; PSMA, prostate-specific membrane 
antigen; TαT, targeted alpha therapy
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Table 2. Summary of Potential Biomarkers for Treatment Response with Radium-223
Potential 

biomarker
Rationale Clinical evidence

Alkaline 
phosphatase 
(ALP)

ALP is a nonspecific 
marker of osteoblast 
activity [112] 

Patients treated with radium-223 
experienced significantly prolonged time to 
increase in tALP and a greater tALP 
response compared with placebo [7] 
tALP decline at 12 weeks after radium-223 
was initiated correlated with longer OS, but 
did not meet statistical surrogacy 
requirements [113]

Lactate 
dehydrogenase 
(LDH)

LDH is a metabolic 
enzyme that 
participates in the 
glycolysis and 
gluconeogenesis 
pathways, important 
for tumor growth [114, 
115]

LDH decline at 12 weeks after radium-223 
was initiated correlated with longer OS, but 
did not meet statistical surrogacy 
requirements [113]
Increased levels of LDH are associated 
with poor clinical outcomes in prostate 
cancer and aggressive phenotypes in 
patients with bone metastases [115]

CHEK2 (DNA 
repair gene)

Mutation corresponds to a higher risk of 
prostate cancer, but there is no clear 
familiar association [116] 
More than one patient who responded to 
radium-223 was found to have a mutation 
in this gene [20, 21]

BRCA2 (DNA 
repair gene)

Mutation corresponds to a higher risk of 
prostate cancer, with a familiar association 
[117] 
More than one patient who responded to 
radium-223 was found to have a mutation 
in this gene [20, 22] 

MRE11A (DNA 
repair gene)

A patient who responded to radium-223 
was found to have a mutation in this gene 
[20] 

CHD1 (DNA 
repair gene)

Loss of CHD1 in prostate cancer results in 
increased sensitivity to DNA damaging 
agents [118] 
A patient who responded to radium-223 
was found to have a mutation in this gene 
[20] 

SPOP (DNA 
repair gene)

Radium-223 emits 
alpha particles, which 
have high LET, 
resulting in clusters of 
DSBs in DNA. 
Therefore, patients 
with mCRPC with 
alterations in their 
DNA repair pathway 
genes may be 
particularly 
susceptible to radium-
223 treatment [20-22]

The most commonly mutated gene in 
primary prostate cancer that serves to 
modulate DNA DSB repair [119]
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A patient who responded to radium-223 
was found to have a mutation in this gene 
[20] 

tALP, total alkaline phosphate; OS, overall survival; CRPC, castration-resistant prostate cancer; 
mCRPC, metastatic CRPC; LET, light energy transfer; DSB, double-strand break
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Table 3. Clinical Trials Investigating Combination Therapies of TαT and Immuno-

oncology Agents or DDR Inhibitors

Agents in 
combination with 
TαT

Therapeutic 
indication

Phase ClinicalTrials.gov identifier

Immuno-oncology agents in combination with radium-223
Atezolizumab (PD-L1 
mAb)

mCRPC with 
disease progression 
after androgen 
pathway inhibitor 
treatment

I NCT02814669 [59]

Atezolizumab (PD-L1 
mAb)

Urothelial carcinoma 
with bone 
metastases and 
disease progression 
after platinum-based 
chemotherapy

I NCT03208712 [60]

Pembrolizumab (PD-1 
receptor mAb)

mCRPC II NCT03093428 [61]

Sipuleucel-T 
(autologous cellular 
immunotherapy 
Targeting PAP)

asymptomatic or 
minimally 
symptomatic bone-
metastatic CRPC

II NCT02463799 [62]

DDR inhibitors in combination with radium-223
Niraparib (PARPi) Bone-metastatic 

CRPC
Ib NCT03076203 [70]

Olaparib (PARPi) Bone-metastatic 
CRPC

I/II NCT03317392 [71]

ATRi, ataxia telangiectasia and Rad3-related protein inhibitor; CRPC, castration-resistant 
prostate cancer; DDR, DNA damage response; PAP, prostatic acid phosphatase; PARPi, poly 
(ADP-ribose) polymerase inhibitor; mAb, monoclonal antibody; mCRPC, metastatic CRPC; 
TαT, targeted alpha therapy
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Figure 1. PSMA TαT is complementary to existing therapies for prostate cancer. Depicted is a suggested 
clinical sequencing, in which PSMA TαTs would be considered after a failure of a first-line therapy for mCRPC 

and PSMA expression was confirmed positive. ADT, androgen deprivation therapy; CT, computed 
tomography; mHSPC, metastatic hormone-sensitive prostate cancer; mCRPC, metastatic castration-resistant 
prostate cancer; NAH, novel anti-hormonal; nmCRPC, non-metastatic castration-resistant prostate cancer; 

PET, positron emission tomography; PSMA, prostate-specific membrane antigen; TAT, targeted alpha 
therapy. 
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Figure 2. PSMA as a potential therapeutic target for prostate cancer. PSMA is a transmembrane protein 
overexpressed in prostate cancer. The extracellular domain of PSMA is internalized after ligand binding, 
allowing intracellular delivery of conjugated therapeutic agents, such as actinium-225. PSMA, prostate-

specific membrane antigen; TαT, targeted alpha therapy. 
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Figure 3. Schematic representation of 227Th-PSMA-IgG1. An N-hydroxysuccinimide-activated 3,2-
hydroxypyridinone chelator is coupled to the PSMA antibody and radiolabeled with the thorium-227 

radionuclide. PSMA, prostate-specific membrane antigen. 
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