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Abstract—We present a novel smart camera - the FlexSight
C1 - designed to enable an industrial robot to detect and localize
several types of objects and parts in an accurate and reliable
way. The C1 integrates all the sensors and a powerful mini
computer with a complete Operating System running robust 3D
reconstruction and object localization algorithms on-board, so it
can be directly connected to the robot that is guided directly
by the device during the production cycle without any external
computers in the loop.
In this paper, we describe the FlexSight C1 hardware config-
uration along with the algorithms designed to face the model
based localization problem of textureless objects, namely: (1) an
improved version of the PatchMatch Stereo matching algorithm
for depth estimation; (2) an object detection pipeline based on
deep transfer learning with synthetic data. All the presented
algorithms have been tested on publicly available datasets,
showing effective results and improved runtime performance.

Index Terms—Structured light cameras, Object Detection,
Stereo Matching, Deep Learning, Texture-less Objects

I. INTRODUCTION

One of the key challenges in many industrial robotics ap-
plications is the capability to automatically identify and locate
various types of objects, in such a way that a robot can inspect,
grasp or manipulate them accurately and reliably. Depending
on the application, objects can be regularly disposed in trays,
but often they are randomly placed inside bins, or over tables,
pallets or conveyor belts. A reliable perception systems is thus
required to identify and precisely locate the objects in 3D, and
to guide robots during the manipulation tasks.

Industrial machine vision systems currently work with
3D sensors, sometimes coupled with a color or gray-level
cameras. Such sensors can be classified between passive
stereo cameras (e.g., the KUKA 3D Perception sensor [1]),
structured Structured Light (SL) cameras (e.g., the Photoneo
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Fig. 1: The FlexSight C1 Sensor: (top left) The prototype without the external
case; (bottom left) A render of the finalized sensor; (right) The FlexSight C1
installed on a real robotic cell for random bin-picking applications.

Fig. 2: An example of active stereo 3D reconstruction: (left) The input left
and right RGB images; (right) The resulting colored point cloud. The slight
red brightness originates from the projected red pseudo-random pattern, that
enables to obtain an accurate dense 3D reconstruction also for untextured
surfaces.

PhoXi 3D Scanner [2]), and Time-of-Flight (ToF) cameras
(e.g., the Basler ToF Camera [3]).

Differently from the systems presented above, we present
here the FlexSight C1 embedded device (Fig. 1, see Sec. III)
that integrates 2D/3D acquisition, data processing and data



Fig. 3: The FlexSight C1 sensor embeds multiple types of vision technologies
by using two color cameras (C1 and C2) and a visible pseudo-random pattern
(P ): two active stereo systems (C1 + P and C2 + P ) and one passive
stereo system (C1 + C2). The green ovals highlight which of the sensors
are calibrated between them.

interpretation capabilities in the same sensor. In particular,
two high resolution color cameras provide the system with
passive stereo capabilities, and a pseudo-random pattern pro-
jector mounted at the center of the cameras baseline enable
both active stereo and structured light capabilities (Fig. 3).
The proposed device also integrates a CPU and a powerful
Graphical Processing Unit (GPU) specifically designed to run
complex and high demanding processing algorithms (e.g. Deep
Learning inference) and a complete Linux based Operating
System.

A high resolution depth map is internally generated by
leveraging the C1 active stereo capabilities and a novel
pyramidal stereo matcher (see Sec. IV-A) built upon the Patch
Match Stereo algorithm [4]. From the extracted depth map it
is possible to generate accurate colored 3D point clouds of
the scene even in presence of textureless objects or untextured
surfaces Fig. 2.

To enable real-time model based object detection and
localization capabilities, we propose to employ deep neural
network based object detectors trained by using synthetically
generated data (see Sec. IV-B). This process drastically
decreases the time needed for collecting data, and does not
require any human intervention for annotating the data.

Quantitative evaluations of the proposed solutions on pub-
licly available datasets are reported in Sec. V, where we
employ the Kitti Stereo and the Middlebury Stereo datasets
to evaluate the depth estimation, and the T-Less dataset to
evaluate the object detection for texture-less objects. All
the proposed algorithms have been implemented on the real
embedded system.

II. RELATED WORKS

A. Stereo Matching

Depth estimation from stereo is one of the most active
topics in computer vision of the last 30 years. Given two
rectified images, the problem is to find for each pixel in the
reference image the corresponding point in the second image.
Rectification reduces the correspondences’ search along the
same scanline. As described in [5], the main steps of stereo

algorithms are: matching cost computation, cost aggregation,
disparity optimization followed by a disparity refinement step.
Methods can be categorized in local [4], [6]–[8], global [9]–
[12] or semiglobal [13], [14], depending on the techniques
used to solve each step of the pipeline.

Recent works exploit the framework of PatchMatch Stereo
[4], [10]. These methods exploit alternatively a random depth
generation procedure and the propagation of depth, resulting
in a total runtime cost of O(W logL), where W is the window
size used to compute the matching cost between patches and
L the number of searched disparities. The method proposed
in [8], instead, strongly relies on superpixels, removing the
linear dependency on on both the window size and label
space. However, the superpixels’s estimation requires a high
computational time.

The active stereo problem has been recently addressed by
exploiting efficient learning-based solutions [15] [16] [17]
[18]. Recent deep learning based methods, among the oth-
ers [19] [20], provide very accurate results. However, these
techniques usually don’t generalize well to different contexts
and require a fine-tuning of the CNN. Others [21] [22] try to
predict depth from a single image, but in practice are limited
to very specific scenes.

B. Texture-less Object Detection

Object detection in images has been addressed traditionally
in two ways: methods based on sliding window as Deformable
Part Model [23]; classification of regions produced with region
proposal algorithms, e.g. Selective Search [24]. Methods based
on region proposals have become recently prominent thanks
to the growing interest in Convolutional Neural Networks
(CNNs). R-CNN [25] has been the first deep neural network
trained for extracting features from region proposals using
convolutional networks. This approach has been further im-
proved in Faster R-CNN [26] where the selective search region
proposal algorithm has been replaced with a Region Proposal
Network (RPN, introduced in [27] and [28]) and the complete
deep network is trained end-to-end for extracting the proposals
and performing classification on the object’s bounding box
retrieved performing regression.

In the last years, object detectors like Single Shot Detector
[29] and YOLO [30] improved the quality and speed of the
detection by simultaneously producing a score for each object
category in each predicted box and then classifying them. In
this way, the deep network is easier to train, faster, and ready
to be integrated into other tasks.

All the aforementioned methods require huge amount of
annotated data for training, most of the time taken by manually
annotating thousand of images of the real objects. To overcome
this high effort task, different solution based on synthetic
data has been proposed. [31] trained large and complex deep
convolutional networks with pure synthetic images performing
transfer learning from a pre-trained network. Although this
approach has been proved to be very promising in terms
of minimal human intervention while generating the data,
it suffers from the so called domain gap problem: real and



synthetic images domains are too separated. To recover this
gap and increase the performance of the detection, different
solutions has been recently proposed, e.g. [32] learns 3D
features from synthetic depth images and then tries to map
the feature vectors to the RGB domain optimizing a specific
loss function. [33] uses CAD models to produce synthetic
depth data with domain-relevant background and randomized
augmentation to train an end-to-end, multi-task network to
detect and estimate poses of texture-less objects in real-world
depth images.

III. HARDWARE

The proposed system integrates all the sensors and pro-
cessing units inside a compact and robust case (Fig. 1). As
processing unit, we employ a NVIDIA Jetson TX1 module,
running Ubuntu 16.04 Linux as Operating System, that in-
cludes in a small form factor both a fast ARM8 CPU with
4 GB of RAM and a powerful NVIDIA GPU with 256
CUDA cores and 4 GB of dedicated RAM. Following the
configuration depicted in Fig. 3, as imaging sensors we use
two 12 megapixels color cameras connected to the processing
unit through the MIPI CSI-2 interface. As pattern projector,
we selected a visible pseudo random projector that produces a
fixed pattern by means of a special lens placed in front of a red
dot laser (wavelenght 660nm). The projector has a horizontal
and vertical field of view of 35°, while the pattern is composed
of 23,880 red dots.

Fig. 4: Simulation of the sensors placement: the two red devices represent
the cameras, the central gray device represents the pattern projector, while
the gray box in the bottom represents the working volume. The green lines
delimit the sensors frustums.

We studied the sensors placement by simulating the pro-
jector and cameras frustums and checking their intersec-
tions (Fig. 4). The current sensor placement, with a baseline
between cameras of 500 mm, has been optimized for a
600 × 400 × 400 mm working volume, at a distance of
1250mm from the volume centroid. The theoretical resolution
at farthest distance is 0.3 mm.

The FlexSight C1 exposes an Ethernet interface for data
exchange, an USB interface, a HDMI video connection, and
some general purpose I/Os for interfacing with low level
devices, such as grippers, proximity sensors, etc. It also
integrates a led illumination system to self illuminate the
working area (white bars in Fig. 1, top left).

This design enables the possibility to mount the system
directly on top of a robotic cell and being connected bidirec-

Fig. 5: Overview of the proposed pyramidal stereo matching. Given two
rectified images, we construct the pyramids and process from top to bottom.
On each level of the pyramids, the matching algorithm proposed in [4] is
performed, and the results of each level are used as initialization of the next
lower level. The disparities computed at the bottom level are finally refined
by applying occlusion filling via left/right consistency checking.

tionally with the robot system without the need of any external
unit (e.g., Fig. 1, right).

IV. PERCEPTION

A. Pyramidal Stereo Matching

In local stereo matching, a support window is centered on
a pixel of the reference frame. In order to find the corre-
spondence, this support window is displaced in the second
image along the related epipolar line to find the point of
lowest dissimilarity. Here is used the implicit assumption
that the pixels within the support region have a constant
disparity. This does not apply to slanted surfaces, which are
then reconstructed as compositions of frontal-parallel surfaces.
The PatchMatch Stereo algorithm presented in [4] overcomes
this problem by estimating a 3D plane at each pixel onto
which the support window is projected (i.e., each disparity
is parametrized as a 3D plane) . In particular, after a random
initialization of the 3D planes guesses, three main steps are
performed in [4]: spatial propagation, random search and view
propagation. In the spatial propagation step, the planes guesses
with low cost are propagated to the neighboring planes. Then,
each estimated plane is randomly perturbated within a certain
range in order to find a better estimation that has lower cost. In
the view propagation step, each plane is reparametrized in the
other view and propagated if the cost is lowered. These three
steps are iterated until convergence. At the end, the algorithm
provides both left and right disparities that are refined by
applying occlusion filling via left/right consistency checking.

As shown in [34], this technique provides very accurate
disparities but it is also very slow, i.e., it is not suitable for
real-time computing.

Inspired by [35], we propose to embed the PatchMatch
Stereo algorithm in a pyramidal framework (see Fig. 5) in
order to reduce the matching time, while sensibly increasing
the accuracy of the estimated disparities.

Two pyramids are built from the input rectified stereo
image pair and processed from top (lower image resolution)
to bottom (full image resolution). On each pyramid level, the
PatchMatch Stereo algorithm provides left and right disparities
estimations that are used as initialization for the next levels.
The good initial guesses coming from the upper pyramids
levels enable a considerable speed up of the random search
step of the matching algorithm in the lower levels.



Fig. 6: An example of estimated confidence maps: (left) Input left and right
RGB images; (middle) Left and right disparity maps used for the confidence
computation; (right) Left and right resulting confidence maps.

Fig. 7: Sample images from the full-synthetic (top row) and semi-synthetic
(bottom row) datasets.

The random search step is the most time consuming part
of the matching algorithm. However, decreasing the iterations
of the random search may lead to not accurate disparity esti-
mations. Let assume having the confidence of each estimated
pixel’s disparity, the idea is to relax the random search for
high confidence disparities, while focus on the refinement
of disparity estimation for those pixels with low confidence.
In this work, we compute the confidence maps from the
left/right disparities estimated in the previous (higher) pyramid
level. Formally, for each pixel p in the reference image with
estimated disparity dp, we compute its matching point p′ in the
other view with disparity dp′ . The confidence C(p) is given
by:

C(p) = 1/(1 + |dp − dp′ |) (1)

An example of estimated confidence maps is shown in Fig. 6.
Then, we use C(p) in the random search step of the Patch-
Match Stereo matching algorithm in order to reduce the
number of iterations accordingly to the estimated disparity
confidence.

Finally, the disparities provided at the bottom of the pyra-
mids are post-processed for occlusion handling as done in [4].

B. Deep Learning Texture-less Object Detection

We address the object detection task using state of the art
methods based on CNNs. These methods require huge amount
of annotated data for training. We overcome the problem
of manual annotating thousand of images implementing a
full-automatic procedure for synthetic data generation. In

Fig. 8: Object detection examples with the semi-synthetic training.

particular, synthetic data have been generated using 2 different
approaches (see Fig. 7):

a) full-synthetic: exploiting the information of the 3D CAD
model of the object, train data are created by projecting
the model on the image plane using random natural
images as background;

b) semi-synthetic: train data are generated using images
of real objects. Those images are segmented and the
extracted object patches are then overlapped onto random
natural images as background.

Both approaches make possible to generate infinite amount of
data by controlling multiple parameters such as:
• For case a): Number and type of the objects for each

sample, object pose in camera frame, level of occlusion,
color of the render, illumination type (diffuse or spotlight)
and position, level of gaussian noise to be applied to the
rendered object;

• For case b): Number and type of the objects for each
sample, patch position in the xy image 2D space, level
of occlusion, level of gaussian noise to be applied to the
patch, rotation and scale of the patch.

In both cases, it is also possible to apply some post-processing
to the generated images, e.g., horizontal-vertical flip and slight
rotation along the z-axis of the image plane.

Using the two sets of data, we are able to train the Single
Shot Detector (SSD) network using the implementation avail-
able within the Google Detection API1. In particular we chose
the SSD implementation that uses the MobileNet [36] network
as feature extractor because it has been demonstrated to be the
fastest network while maintaining comparable performance in
terms of detection accuracy. The network has been trained
performing transfer learning by freezing during train all the
feature extractor layers set with the pre-trained on ImageNet
weights, and only the detector part of the network has been
left free to be trained with our datasets. This method has been
demonstrated to be very effective when training large and
complex deep convolutional networks with synthetic images
[31].

C. 6D Object Localization

The neural network provides as output a set of 2D bounding
boxes enclosing the searched objects within the image (e.g.,

1https://github.com/tensorflow/models/tree/master/research/object
detection



Algorithm bad 0.5 bad 1.0 bad 2.0 bad 4.0 Runtime
PSMNet [19] 89.4% 76.5% 57.1% 35.9% 0.7 s (GPU)

MC-CNN [20] 67.9% 40.2% 26.7% 13.9% 101 s (GPU)
ELAS [38] 67.3% 38.6% 25.9% 13.5% 0.3 s
PMS [4] 47.2% 27.5% 15.8% 6.2% 22.3 s

PPMS (Ours) 46.3% 25.8% 12.9% 5.5% 8.7 s

TABLE I: Average performance on Middlebury training dataset [39] (best
results are highlighted in bold).

Algorithm bad 2.0 bad 3.0 Runtime
PSMNet [19] 2.4% 1.5% 0.4 s (GPU)

MC-CNN [20] 3.9% 2.4% 67 s (GPU)
ELAS [38] 10.8% 8.2% 0.2 s
PMS [4] 8.1% 5.3% 13.1 s

PPMS (Ours) 7.4% 4.5% 5.6 s

TABLE II: Average performance on Kitti Stereo 2012 dataset [40].

Fig. 8) and the related object class. This information is used
by the position refinement module to estimate the exact 6D
position (rotation and translation) of the object w.r.t. the
camera reference frame. To this purpose, we use the model
based localization algorithm proposed in [37]. This algorithm
is executed only inside the detected bounding boxes, searching
for a single object class for each box and using the depth
values in that part of the image as initial guess for the object
scale. To further refine the estimated object position, we align
each object model with the input point cloud (e.g., Fig. 2,
right) by using the Iterative Closest Point (ICP) algorithm.

V. EXPERIMENTS

A. Stereo Matching

The proposed stereo matching algorithm has been tested
and evaluated on two popular benchmark datasets: Middlebury
Stereo 2014 [39] and Kitti Stereo 2012 [40]. We evaluated
our approach (Pyramidal PatchMatch Stereo, PPMS) against
the original PatchMatch Stereo (PMS) method [4], the popular
and very efficient ELAS stereo matcher [38], and two state-of-
the-art deep learning based methods: PSMNet [19] and MC-
CNN [20]. For ELAS, PSMNet and MC-CNN, we used the
original open-source implementations provided by the authors,
while for PMS we used an effective third-party open-source
implementation2. Although we have efficiently implemented
the PPMS algorithm for our sensor, we tested PPMS, PMS and
ELAS on an Intel Core-i7 5700HQ 2.70GHz CPU since the
the last two are not provided with implementations optimized
for ARM CPUs. PSMNet and MC-CNN have been tested on a
NVIDIA GTX 1070 GPU using the pretrained models on the
Kitti Stereo 2012 training dataset. The results in Tab. I refer
to down-scaled (0.5Mpx) version of the Middlebury training
images. The evaluation on the Kitti dataset (see Tab. II),
instead, has been performed using the original resolution
(1242x375px) of the images. As reported in Tab. II, PSMNet
and MC-CNN show superior performance when using fine-
tuned models on the specific benchmark. However, the de-
graded results in Tab. I show the difficulty of these techniques
to generalize to completely different scenarios. The proposed

2https://github.com/ZhaozhengPlus/PatchMatchStereo

Training Data Obj 5 Obj 8 Obj 9 Obj 10 Average
full-synthetic 0.3732 0.288 0.3179 0.2725 0.3129
semi-synthetic 0.5283 0.468 0.4956 0.477 0.49225

TABLE III: Detection performance for 4 classes and average results for all the
30 classes. Results are given in terms of mAP@0.5 (mean Average Precision
with 0.5 Intersection Over Union threshold).

method, instead, is able to generalize (the same set of parame-
ters has been used in both evaluations), providing comparable
results, in terms of bad pixel rate3, in both benchmarks and
outperforming the other algorithms. More specifically, the
proposed method, compared to [4], is able to decrease the
computational time up to 60%, while the accuracy of the
disparities is improved up to 20%, showing the effectiveness
of the pyramidal framework.

B. Deep Learning Texture-less Object Detection

For the object detection experiments, datasets have been
generated using the objects from the T-Less Dataset [41]
and the images used as background are from a selection
of the Microsoft Research Cambridge Object Recognition
Image Database4. For both the approaches, a set of 10000
samples have been generated. Some examples of the generated
synthetic images are given in Fig.7.

In Table III we report quantitative results showing the mean
average precision among all the 30 classes of the T-Less test
primesense dataset. The table also shows detection results for
some specific object classes. Training the model with the full-
synthetic data results in poor performance, this means that
the network is not capable of generalize well the task. An
improvement of performance has been obtained with the semi-
synthetic one. This demonstrates that the latter approach makes
the transfer learning task easier: real object patches contains
more visual information and this helps the network in learning
more robust features. The SSD model with the MobileNet [36]
feature extractor runs on the FlexSight C1 in inference mode
at 7 fps.

VI. CONCLUSION

In this work an embedded, all-in-one system for machine
vision in industrial settings has been proposed. Moreover, two
contributions have been shown, namely an efficient pyramidal
implementation of the PatchMatch stereo matching algorithm
and an object detection pipeline based on deep convolutional
networks trained with synthetic data. The two approaches are
meant for running on the proposed embedded device and
showed promising results in terms of accuracy and compu-
tation time trade-off.

Future works include a highly optimized GPU implementa-
tion of the proposed stereo matcher and an enhanced synthetic
training data generator that employ state-of-the-art ray tracing
techniques to improve the photorealism of the generated data.

3The “bad N” metric, used in Tab. I and II, refers to the percentage of
pixels whose disparity error is grater than N .

4https://www.microsoft.com/en-us/download/details.aspx?id=52644
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