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Abstract: A numerical approach for generating a limited number of water demand scenarios and
estimating their occurrence probabilities in a water distribution network (WDN) is proposed. This
approach makes use of the demand scaling laws in order to consider the natural variability and
spatial correlation of nodal consumption. The scaling laws are employed to determine the statistics
of nodal consumption as a function of the number of users and the main statistical features of
the unitary user’s demand. Besides, consumption at each node is considered to follow a Gamma
probability distribution. A high number of groups of cross-correlated demands, i.e., scenarios, for the
entire network were generated using Latin hypercube sampling (LHS) and the numerical procedure
proposed by Iman and Conover. The Kantorovich distance is used to reduce the number of scenarios
and estimate their corresponding probabilities, while keeping the statistical information on nodal
consumptions. By hydraulic simulation, the whole number of generated demand scenarios was used
to obtain a corresponding number of pressure scenarios on which the same reduction procedure was
applied. The probabilities of the reduced scenarios of pressure were compared with the corresponding
probabilities of demand.

Keywords: uncertain water demand; scaling laws; scenario generation; scenario reduction;
water distribution networks; hydraulic simulation

1. Introduction

The conventional modelling of water distribution networks (WDNs) is normally based on a
deterministic approach, not merely with regard to the geometrical and hydraulic features, but also
with respect to the demand loadings [1]. However, water demand, being influenced by many factors,
i.e., type of users, socio-economic conditions, geographic location with its climate, seasonal fluctuation
of weather, water fixtures technology, policies in water management, and tariffs, is subject to a
natural variability. Surely, the variability of the demand represents the major source of uncertainty,
which affects the overall reliability of the model for the assessment of the spatial and temporal
distribution of pressure heads as well as for the evaluation of the water quality in the different
pipes. Uncertainty produced by the random nature of demand assumes a different importance in
relation to the spatial and temporal scales that are considered in modelling the network. Obviously,
they become more and more relevant as the finer scales are reached, that is small groups of users and
instantaneous demands are considered. As stated by Bargiela & Sterling [2], it is possible to obtain
accurate predictions for the network as a whole, however estimating nodal consumptions for nodes
where the population is low is more difficult.

Thus, considering and quantifying the uncertainty of water demand could allow for the
association of an acceptable probability/level of risk to the results from hydraulic and optimization
models of WDNs at different temporal and spatial scales: a more robust design and control of these
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systems can be realized, and obvious opportunities can arise in dimensioning pipes, formulating water
balances, controlling a system’s components, and identifying and quantifying leakages.

An approach to dealing with the uncertainty of demand consists in explicitly considering different
possible realizations of its value at the nodes of a WDN, i.e., different loading scenarios and associating
to each of them a measure of their probability. So, it is possible to find a feasible solution which
is also as close as possible to the optimum for all the scenarios: this scenario-based approach is
known as robust optimization [3]. In the same way it is possible also to derive WDN reliability [4]
or to localize leakages [5] or to map pressure-heads for a real-time control [6], all under uncertain
demand conditions. Different possible scenarios, which include various aspects, such as peak flows,
fire conditions at certain nodes, or pipe breakage, and the corresponding probabilities of occurrence
could be obtained by consulting a panel of experts. However, this solution can have strong limitations
in such a mathematically sensitive problem and can lead to arbitrary solutions.

To this aim, this paper focuses on defining an objective methodology for the generation of demand
scenarios. In the literature, the issue of generating demand scenarios has been faced in [7] where
uncertain future water consumptions are modeled using probability density functions (PDF) assigned
in the problem formulation phase. Scenarios with correlated nodal demands are generated using LHS
and the procedure suggested by Iman and Conover [8]. All nodal demands follow a Gaussian PDF
with a coefficient of variation Cv = 0.10. The correlation coefficient between any two nodal demands is
assumed equal to 0.50, as completed by Tolson et al. [9]. In [10] different demand scenarios for a WDN
are derived combining demand values with a specific return period at each node. The probability
of each scenario is obtained considering a multivariate normal distribution (MVN). The correlation
between demand was found to significantly affect the occurrence probability of the demand scenarios.
Also, Eck et al. [11] generated demand scenarios considering a MVN distribution. They assumed a
prior estimate of the mean values and covariance matrix of water demand from a preliminary analysis.
An original, but computationally expensive, approach for estimating the probability of a given demand
scenario is based on the use of the contingency tables [12]. This is a non-parametric method in which
the various random variables are divided into classes and their marginal probabilities are calculated
through the frequency of occurrence of each class. The joint probabilities are evaluated by counting
the occurrences of the simultaneous classes.

In this paper a numerical approach for generating a limited number of water demand scenarios
and estimating their occurrence probabilities in a WDN is presented. Scaling laws [1,13,14] are used to
evaluate the statistics of aggregated demand at each node of the network, starting from the statistics of
demand of the unitary user. The Apulian WDN [15] is considered as a case-study and two different
hypotheses are made for the number of users in the nodes. For each of these hypotheses a large
number of cross-correlated demands, i.e., scenarios, was generated using LHS from Gamma PDF and
a procedure based on the approach proposed by Iman and Conover [8]. The Kantorovich distance [16]
is used to reduce the number of scenarios and estimate their corresponding probabilities. In this way,
the limited number of network demand scenarios maintain the statistical information on the demand
and the effects on the performance of a WDN. In the design and control of WDNs, demand scenarios
are mostly functional to the evaluation of service conditions and specifically pressure-heads in the
nodes. In order to evaluate how the uncertainty of demand is conveyed to the pressure-head field,
a demand-driven hydraulic model was also applied to solve the Apulian network. Many pressure
scenarios were obtained, and the same reduction procedure was employed. The probabilities of the
reduced scenarios of pressure were compared with the corresponding probabilities of the demand.

Here, a brief summary of the structure of this work is presented. In Section 2 the description
of the proposed methodology is provided. In particular, a summary of the scaling law approach for
water demand is reported in Section 2.1, the scenario generation procedure in Section 2.2, and the
scenario reduction procedure in Section 2.3. In Section 3 an example is carried out by applying the
whole procedure on a literature WDN and the results are discussed. Finally, Section 4 provides some
conclusive comments.
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2. Description of Methodology

2.1. Scaling Laws

In the first phase of the proposed methodology, the statistical features of WDN nodal demand are
derived using the scaling laws [1,13]: i.e., the first and second statistical moments and cross-correlation
are evaluated, and the probability distributions defined. Input data are the nodal number of consumers
and the statistical features of water demand of the typical single user, the unitary user. The statistical
parameters of the unitary user’s demand can be derived either by monitoring, or simulating by
descriptive models, such as End-Uses models [17] or Poisson Rectangular Pulse models preserving
correlation [18].

We consider a network with i = 1, 2, 3, . . . , N nodes and ni = n1, n2, n3, . . . , nN users at each
node. The demand of a unitary user, identified by subscript 1, is described by an ergodic stationary
stochastic process, with mean µ1, variance σ2

1 and cross-correlation coefficient between each couple of
single-user ρ1. The whole nodal demand, that is the sum of all users’ consumption at each node, is
a realization of the stochastic process whose statistics are dependent on the number of nodal users.
The expected value E[µni ] for the mean of the aggregated process at the ith node is given by:

E[µni ] = ni·E[µi], (1)

and the expected value for the variance E[σ2
ni
] at the same node, neglecting the bias that can be caused

when using small the demand series (short observation periods) [13], is given by:

E[σ2
ni
] = ni

2·E[ρ1]·E[σ2
1 ] + ni·[1− E[ρ1]]·E[σ2

1 ] (2)

Equation (2) shows that the expected value of the variance of the aggregated process depends
on E[ρ1] : if demands are perfectly correlated in space, i.e., E[ρ1] is equal to one, Equation (2) is
simplified into:

E[σ2
ni
] = ni

2·E[σ2
1 ] (2a)

if demands are uncorrelated in space, i.e., E[ρ1] is equal to zero, equation [2] is simplified into:

E[σ2
ni
] = ni·E[σ2

1 ] (2b)

For partially correlated demands, a power law E[σ2
ni
] = nα

i E[σ2
1 ], with α scaling variance exponent,

has been also derived [1,14]. Therefore, a complete statistical characterization of demand requires
not only the definition of its mean and variance, but also the definition of the correlation between
demands of each couplet of users and groups of users. The cross-correlation refers to the similarity
between demand patterns from different consumers or from different nodes. This parameter was
proved to be not negligible [19] and to affect the hydraulic performance of a WDN as well as the cost
to achieve a desired level of reliability. It was verified that higher cross correlations lead to higher
pressure fluctuations, which have negative impacts on the reliability of the WDN [20]. Following the
same assumption and notation, the expected value for the cross-correlation between all nodes of the
network is represented by a N-by-N square matrix, whose elements are given by:

E
[
ρninj

]
=

E
[
covninj

]
E[σni ]·E

[
σnj

] =
ninjE[ρ1]

[ni(1 + E[ρ1](ni − 1))]
1
2 ·[nj

(
1 + E[ρ1]

(
nj − 1

))
]

1
2

(3)

with i, j = 1, 2, 3, . . . , N, and where, for example, ρn1n2 is the cross-correlation coefficient between the
demand of n1 aggregated users at node 1, and the demand of n2 aggregated users at node 2.

Through Equations (1)–(3) the nodal demand statistics of the network and the correlation structure
between them are entirely defined.
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2.2. Generation of Scenarios

In simulation and optimization problems, several methods exist to cope with uncertainty [21,22].
If we do not know exactly the input data, in our case water demand at the nodes of a WDN, because
they can assume different values and then many combinations of them are possible, we are dealing
with scenarios. But, if the statistical features of uncertain data are known, numerical solutions can be
obtained by approximating the probability distribution function with discrete distributions having a
finite number of outputs, again referred to as scenarios.

Then, the second phase of the present approach consists in the generation of a large number
of water demand scenarios for a WDN, based on the statistics estimated by the scaling laws and
making the hypothesis of Gamma-distributed water demand at each node. The knowledge of the
scaling laws of the statistical moments and the type of the probability distributions of water demand
in relation to the number of users, prove to be a useful tool to face the inherent uncertainty of demand
and in particular to address the optimization problems. Using Gamma distribution for demand is
supported when the number of aggregated users is high enough or the time resolution is greater than
five minutes, by measurements in the Latina case-study [1]. Furthermore, in a recent work Kossieris
and Makropoulos [23] investigated the performance of ten probabilistic models showing that both
Gamma and Weibull distributions can be used to adequately describe the nonzero water demand
recorded at different time scales.

Scenarios can be generated following different methods: by matching a small set of statistical
properties, e.g., moments [24,25] or simulating some defined mathematical process (e.g., Brownian
motion) or sampling from known distributions [26]. For scenarios with a large number of variables
correlated in between, sampling from the joint distribution is not usual for the difficulty in defining the
distribution itself. An alternative to specifying the joint distribution is to make use of just the marginal
distributions and the linear or rank correlation matrix alone. If nothing is known about the form of the
joint distribution, a coupling procedure can be used: in this case the generated scenarios will respect
an arbitrary dependency structure based on the procedure followed.

Each demand scenario Du is defined here as a set or combination of nodal demand values
occurring simultaneously in the WDS. This can be represented by the N dimensional vector:

Du = [d1,u, d2,u, . . . dN,u], (4)

where u = 1, 2, . . . , S is the index identifying the different scenarios, and di,u is the demand at node i
for the uth scenario and Du depicts a one-dimensional stochastic data process.

A sampling method from the marginal distribution based on the LHS and the Iman-Conover
approach [8] is followed. The restricted pairing technique by Iman and Conover induces rank
correlation between the given marginals by shuffling finite-size samples from each of them.
The appropriate shuffle is determined by ranking the input samples the same as in a reference sample
with the desired rank correlation. The complete procedure, that will be described in the following,
is quite straightforward because it requires only the Cholesky decomposition, some matrix algebra,
and the final rearrangement of the original uncorrelated sample.

Description of the Procedure:

Step 1. Create a random (S, N) dimensional matrix Z*, containing S Latin Hypercube Samples of size
N from a standardized normal distribution, where S is the number of scenarios and N the
number of the demand nodes in the WDN. For this purpose, the Matlab function lhsnorm was
used. Owing to the finite size of the samples their correlation matrix I* (Here, the asterisk
is used to distinguish data and corresponding correlation matrices to be corrected) does not
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coincide with the identity matrix I, that is they are not independent. Then, the lower triangular
Cholesky decomposition is applied to induce the desired correlation [27]. Specifically:

I = C·CT

I∗ = E·ET

Z = Z∗·C·E−1
(5)

and the (S, N) dimensional matrix Z of perfectly independent S samples of size N from a
standardized normal distribution is obtained. In order to obtain the Cholesky root, the Matlab
function chol was used.

Step 2. Create a random (S, N) dimensional matrix G containing S standardized normal samples with
the correlation matrix Corr from the scaling laws for nodal demand. To this aim the desired
correlation is induced in Z also applying the lower triangular Cholesky decomposition [27],
that is:

Corr = P·PTG = Z·P·C−1 (6)

Step 3. Transform the matrix G in the (S, N) dimensional matrix D* which complies with the desired
marginal distributions at each demand ith node. Transformation is based on the inverse
cumulative distribution function, CDF, of the desired marginals, Fi. Specifically, for each
element D*i of matrix D*, i.e., a non-normal random sample with the desired CDF, the following
equation holds:

D∗i = F−1
i (Φ(Gi)) (7)

where Φ(Gi) is the CDF of the ith samples of G and it is uniformly distributed. This procedure
is known as the inverse transformation method [28]. Function Φ(Gi) can also be interpreted
as a realization from the Gaussian copula. Applying the inverse CDF F−1

i to the uniform
random variable Φ(Gi) ensures that D∗i is distributed according to Φi. Unfortunately,
the transformation in Equation (1) is non-linear, and therefore the correlation matrix Corr* of
D* is not equal to the desired correlation matrix Corr.

Step 4. Apply the Iman-Conover algorithm proposed by Ekström [29] in order to get a better
approximation of the desired correlation matrix Corr for the (S, N) matrix of nodal demand
scenarios D*. The algorithm is described in the following steps:

4.1 Calculate lower triangular Cholesky decomposition V of Corr, i.e., Corr = V·VT.
4.2 Calculate lower triangular Cholesky decomposition Q of Corr*, i.e., Corr* = Q·QT.
4.3 Obtain T such that Corr = T·Corr·TT, can be calculated as T = V·Q−1.
4.4 Obtain the matrix ScoreD* by rank-transforming D and convert to van der Waerden

scores, defined as F−1
i (Φ(i/(N + 1)) where φ is the CDF of the standard normal

distribution, i is the assigned rank and N is the total number of samples.
4.5 Calculate the target scores matrix ScoreD = ScoreD*·TT.
4.6 Match up the rank pairing in D* according to ScoreD, obtaining the new (S,N)

dimensional matrix D containing the S scenarios of the N nodal demand in the WDS.
The N samples are distributed according to the desired marginals and their correlation
matrix is close to the correlation matrix derived from the scaling laws.

2.3. Scenario Reduction

With the scenario generation procedure, we obtain a great number of pictures, each of which
represent a single snapshot of the whole water demand in the network. The higher the number
of scenarios generated, the better the description of the variability of water demand in the WDS.
However, it is not possible to manage such a large number of scenarios to deal with stochastic or robust
optimization problems. Moreover, the probability associated with each of them is not very significant.



Water 2019, 11, 493 6 of 20

We have to reduce the scenarios and at the same time determine, for the reduced scenarios, a significant
weight representative of their possibility to be realized. Then, the goal of scenario reduction is to
approximate the discrete distribution of the generated scenarios with another discrete distribution
having fewer elements. At this point, the choice of the number of scenarios becomes a critical step in
obtaining meaningful solutions taking into account the system performance and the robustness of the
solution to variations in the uncertain data.

It is assumed that the probability distribution P of the N-dimensional stochastic data process is
approximately given by many scenarios:

Du = [d1,u, d2,u, . . . dN,u], u = 1, 2, . . . , S (8)

to which the probabilities pu are associated and ∑S
u=1 pu = 1.

In order to approximate the probability distribution P with another Q distribution, with a smaller
number of elements, so that Q will be as close as possible to P in terms of probabilistic distance,
we use the Kantorovich distance, K, which is the most common probability distance used in stochastic
optimization [30]. It represents the optimal value to a linear transportation problem. In this problem a
cost function cN , defined by some norm | .| on <n is introduced as a measure of the distance between
couples of scenarios [30].

The previous problem is not easy to solve and in order to overcome to these difficulties, heuristic
algorithms have been developed, in particular fast-backward and fast forward strategies have been
implemented [31]. In this paper, we make use of the forward selection algorithm. It defines an iterative
process which starts with an empty set. At each iteration, from the set of the non-selected scenarios,
the scenario minimizing the Kantorovich distance between the reduced and original sets is selected
and inserted in a reduced set. The optimal selection of a single scenario may be repeated recursively
until the prescribed number S of elements is reached.

Actually, the forward selection algorithm does not guarantee that the reduced set of scenarios
is the closest in the Kantorovich distance with respect to the original set and represents the optimal
solution of the original transportation problem. However, the empirical results described in the
literature [32] indicate that the forward selection algorithm works well in practice.

Description of the Procedure:

In this paper a scenario reduction algorithm based on Kantorovich distance was used (Figure 1).
In particular, the fast-forward selection algorithm as described in [30] was applied. Starting from
an empty set, an iterative process was followed until the required number of selected scenarios was
reached. In the following is reported a brief description of this methodology.

First, the high number of generated demand scenarios at each node have been assumed to be
equiprobable. Thus, at each iteration, using the Euclidean norm `2, the distances between all the
possible pairs of scenarios were calculated for each node. Then, by summing the corresponding
distances for all the different nodes, the cost function matrix cN was derived considering the Euclidean
norm. This function allows the evaluation of the Kantorovich distances matrix between pairs of
scenarios taking into account their probability of occurrence.

The scenario corresponding to the minimum value of the Kantorovich distance is then selected
and the cost matrix is updated by replacing each element with the minimum value between the
original element and the one corresponding to the selected scenario. At this point, the procedure
is repeated, and a new scenario is added to the reduced scenario set until the number of requested
scenarios is reached. In the end, an optimal redistribution of probabilities was carried out by adding
the probabilities of non-selected scenarios to the probabilities of those in the reduced set, that is the
probability of each non-selected scenario was summed to the probability of the closest selected scenario
according to the cost function.
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Therefore, according to equation, the new probability of a preserved scenario is equal to the sum
of its former probability and all the probabilities of the deleted scenarios that are closest to it according
to cN . Obviously, the deleted scenarios have probability zero.
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This network is used only with the objective of defining a scene and providing visual help to the
application example. The scaling laws have an important role, mostly when the number of users at
each node is low and the sampling time short, because in this case the cross-correlation between pairs
of nodal demands preserves values that are not too large. In great WDN the approach can be used but
it is significant only if the network is well described, i.e., it is not too skeletonized. Otherwise, with a
great number of users in the nodes, the most probable scenario can be derived by simply considering
the mean demand in the node. The Apulian network is representative of a real situation and its small
size determines very short computational times and makes more readable the results. The geometrical
features of the WDN are summarized in Table 1.

Table 1. WDN geometrical features, number of users and water demand at nodes.

PIPES
Pipe

Number
Start
Node

End
Node

Length
(m)

C Hazen
Williams

D
(m)

Pipe
Number

Start
Node

End
Node

Length
(m)

C Hazen
Williams

D
(m)

1 1 2 348.5 100 0.327 18 1 19 583.9 100 0.164
2 2 3 955.7 100 0.29 19 5 18 452 100 0.229
3 3 4 483 100 0.1 20 6 16 794.7 100 0.1
4 3 9 400.7 100 0.29 21 7 15 717.7 100 0.1
5 2 4 791.9 100 0.1 22 8 14 655.6 100 0.258
6 1 5 404.4 100 0.368 23 15 14 165.5 100 0.1
7 5 6 390.6 100 0.327 24 16 15 252.1 100 0.1
8 6 4 482.3 100 0.1 25 17 16 331.5 100 0.1
9 9 10 934.4 100 0.1 26 18 17 500 100 0.204

10 11 10 431.3 100 0.184 27 17 21 579.9 100 0.164
11 11 12 513.1 100 0.1 28 19 23 842.8 100 0.1
12 10 13 428.4 100 0.184 29 21 20 792.6 100 0.1
13 12 13 419 100 0.1 30 20 14 846.3 100 0.184
14 22 13 1023.1 100 0.1 31 9 11 164 100 0.258
15 8 22 455.1 100 0.164 32 23 21 427.9 100 0.1
16 7 8 182.6 100 0.29 33 19 18 379.2 100 0.1
17 6 7 221.3 100 0.29 34 24 1 158.2 100 0.368

NODES
node ID elevation (m) users A DemandA (l/s) users B DemandB (l/s)

1 6.4 932 10.86 155 1.8
2 7 1461 17.03 427 4.98
3 6 1282 14.95 48 0.56
4 8.4 1224 14.28 129 1.5
5 7.4 869 10.13 1270 14.81
6 9 1316 15.35 486 5.67
7 9.1 782 9.11 63 0.73
8 9.5 901 10.51 766 8.93
9 8.4 1045 12.18 63 0.73

10 10.5 1249 14.57 45 0.52
11 9.6 848 9.88 964 11.24
12 11.7 650 7.58 354 4.12
13 12.3 1303 15.2 122 1.42
14 10.6 1162 13.55 185 2.15
15 10.1 791 9.23 81 0.94
16 9.5 960 11.2 55 0.64
17 10.2 984 11.47 968 11.29
18 9.6 928 10.82 55 0.64
19 9.1 1258 14.68 45 0.52
20 13.9 1142 13.32 416 4.85
21 11.1 1255 14.63 567 6.61
22 11.4 1030 12.01 137 1.59
23 10 886 10.33 920 10.73

24 (Reservoir) 36.4 24258 282.86 8321 96.97

Data from two-years long water demand measurements of 82 single household users in the town
of Latina, Italy [1] were considered for the definition of the statistical parameters of a typical residential
consumption and the calibration of the scaling laws. Table 2 summarizes the average water demand of
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each typical user and its relevant statistics at peak hour (7:00 a.m.–8:00 a.m.), considering a five-minute
time step in data monitoring. The users were considered all the same type and for this reason the same
statistical parameters were employed. The number of users at each node of the WDN is also listed in
Table 1. In the following examples, residential water consumers are considered, but the approach can
be applied to any type of consumption, provided that the statistical characteristics of the typical user
are available through monitoring or numerical simulation. Regarding the correlation between pairs
of single households a very low value of the Pearson coefficient, i.e., E[ρ1] = 0.0043, was considered,
in agreement with most of the experimental data from the case study of Latina. Table 1 also shows the
number of consumption units for each water demand node. In order to highlight how the number of
users per node and their relationships affect the generated demand scenarios two different frameworks
were examined to which correspond respectively DemandA and DemandB column. The DemandA values
are the same used by Giustolisi et al. [33] for Apulian network and the users’ number is consequent.
Differently, DemandB values were defined assuming a smaller total number of users and a greater
variability of the number of users per node.

Table 2. Relevant statistics and parameters derived from the consumption data of Latina.

Statistical Parameter Value

µaverage (L/min) 0.365
µpeak hour (L/min) 0.700
σpeak hour(L/min) 0.870

scaling law exponent α 1.230

3.2. Generation of Demand Scenarios

The methodology presented in this work was applied to generate scenarios of contemporary
water demands in the supply nodes of the Apulian distribution network. Two different hypotheses
have been made on the number of users at the demand nodes. In the first one, DemandA, the number of
users was determined in order to obtain the demand values assumed by Giustolisi et al. [33], which are
appropriate for the subsequent hydraulic simulation of the network. Instead, the second hypothesis,
DemandB, considers a lower number of total users, but, above all, considerably differentiates the
number of users at each node. This was done with the aim of highlighting how the correlation matrix
obtained from the scaling laws is influenced by the number of users in the nodes and by their mutual
relations, and the proposed methodology can manage complex scenarios. The statistical parameters
describing the unitary user’s demand are obtained from the experimental data of a group of users
in the case study of Latina [1]. Data are referred to peak hour and their sampling interval is equal to
five minutes.

3.2.1. DemandA

Twelve-thousand demand scenarios were generated using the statistics estimated by the scaling
laws and making the hypothesis of Gamma-distribution at each node, as shown in Figure 3. The large
number of scenarios makes it difficult to distinguish them. But above all, nothing can be said about
their probability.
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Gamma distribution proves to be the best in fitting the generated data in all nodes of the WDN,
as shown in Figure 4. The scale and shape parameters of the input distributions Γ(a,b), estimated by
the scaling laws (INPUT), agree well with the corresponding parameters of the generated scenarios
(OUTPUT), Table 3. Regarding the correlation matrix of the generated scenarios, it almost perfectly
matches with the input correlation matrix obtained from the scaling laws. Table 4 compares the
minimum, average and maximum value of the input and output correlation matrices.
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Table 3. Parameters a and b of Gamma distributions of input and output data, DemandA.

INPUT OUTPUT INPUT OUTPUT

Node ID a b a b Node ID a b a b

1 125.20 0.0868 125.21 0.0868 13 162.06 0.0938 162.07 0.0938
2 176.99 0.0963 177.01 0.0963 14 148.38 0.0914 148.39 0.0914
3 160.04 0.0935 160.06 0.0934 15 110.35 0.0836 110.36 0.0836
4 154.44 0.0925 154.45 0.0925 16 128.09 0.0874 128.10 0.0874
5 118.63 0.0855 118.65 0.0855 17 130.55 0.0879 130.56 0.0879
6 163.30 0.0940 163.32 0.0940 18 124.79 0.0868 124.80 0.0868
7 109.38 0.0834 109.39 0.0834 19 157.73 0.0930 157.75 0.0930
8 121.98 0.0862 122.00 0.0862 20 146.41 0.0910 146.42 0.0910
9 136.73 0.0892 136.75 0.0892 21 157.44 0.0930 157.46 0.0930

10 156.86 0.0929 156.88 0.0929 22 135.22 0.0889 135.24 0.0889
11 116.42 0.0850 116.43 0.0850 23 120.42 0.0858 120.43 0.0858
12 94.86 0.0799 94.87 0.0799 - - - - -

Table 4. Min, average, max values of input and output cross-correlation matrix, DemandA.

E[$1] = 0.0043

$
Input

Correlation Matrix
(Scaling Laws)

$
Output

Correlation Matrix
(Scenarios)

min 0.7542 0.7542
average 0.8147 0.8147

max 0.8568 0.8567

3.2.2. DemandB

Also, in this case twelve-thousand scenarios were generated using the statistics estimated by
the scaling laws, considering Gamma-distributed demands at each node, Figure 5. Differently from
DemandA case, the value of generated data shows a great excursion between node and node due to the
large variability in the number of users.
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Similar to the previous case, Gamma distribution proves to be the best in fitting the generated
data, as in Figure 6. Also, the INPUT distributions parameters, estimated by the scaling laws, well
agree with the corresponding parameters of the generated scenarios distributions (OUTPUT), as in
Table 5. In this case the correlation matrix of the generated scenarios almost matches perfectly with
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the input correlation matrix obtained from the scaling laws. Table 6 compares the minimum, average
and maximum value of the input and output correlation matrices. The input and output correlation
matrices are almost identical, but it should be noted that the correlation coefficient has very low values
when considering node pairs with low number of users, intermediate values when one of the two has
many users, higher values when the number of users is high for both. This responds to the fact that
the correlation coefficient depends on the product of the number of users of the two considered nodes,
see Equation (3).
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Table 5. Gamma PDF parameters a and b input and output data at each node, DemandB.

INPUT OUTPUT INPUT OUTPUT

Node ID a b a b Node ID a b a b

1 31.46 0.0575 31.46 0.0575 13 26.16 0.0544 26.16 0.0544
2 68.64 0.0726 68.65 0.0726 14 36.05 0.0599 36.05 0.0599
3 12.76 0.0439 12.76 0.0439 15 19.08 0.0495 19.09 0.0495
4 27.31 0.0551 27.31 0.0551 16 14.17 0.0453 14.17 0.0453
5 158.89 0.0933 158.90 0.0932 17 128.91 0.0876 128.92 0.0876
6 75.83 0.0748 75.84 0.0748 18 14.17 0.0453 14.17 0.0453
7 15.73 0.0467 15.73 0.0467 19 12.14 0.0433 12.14 0.0432
8 107.65 0.0830 107.66 0.0830 20 67.28 0.0721 67.28 0.0721
9 15.73 0.0467 15.73 0.0467 21 85.39 0.0775 85.40 0.0775

10 12.14 0.0433 12.14 0.0432 22 28.60 0.0559 28.61 0.0559
11 128.50 0.0875 128.51 0.0875 23 123.96 0.0866 123.97 0.0866
12 59.41 0.0695 59.42 0.0695 - - - - -



Water 2019, 11, 493 13 of 20

Table 6. Min, average, max values of input and output cross-correlation matrix, DemandB.

E[ρ1] = 0.0043

ρ

Input
Correlation Matrix

(Scaling Laws)

ρ

Output
Correlation Matrix

(Scenarios)

min 0.1627 0.1627
average 0.4329 0.4330

max 0.8261 0.8261

3.3. Reduction of Demand Scenarios

The final phase of the procedure involves reducing the number of scenarios by aggregating them
in relation to the distance of Kantorovich. For the application of the method the Euclidean norm was
considered here. A reduced number of scenarios equal to 20 was chosen. In general, the choice of the
number of scenarios should be based on the requirements of robust optimization problems and on the
need for the reduced set to continue to describe the whole probability distribution of the demand at
each node of WDN.

3.3.1. DemandA

In Figure 7 the reduced demand scenarios are represented. The ‘mean scenario’, i.e., the one
defined by the average nodal values of nodal demand is plotted by the black dotted line. The red
dotted line indicates the most probable scenario, as reported in Figure 7. Mean and most probable
scenarios, actually, do not coincide but are very close.
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The most probable scenario in the set of generated ones, number 3720, shows a relevant weight,
approximately equal to 0.3. Also, scenarios 5945 and 4492 exhibit significant weights, respectively 0.25
and 0.11. All the others have weights lower than 0.05, Figure 8. Nodal demands of the three most
remarkable scenarios are reported in Table 7 and compared with the average value of demand in each
node, ‘mean scenario’. We can notice that all the selected scenarios are close to the mean one.
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Table 7. Nodal demand (l/s) of most probable scenarios and mean scenario, DemandA.

Node
ID

Scenario
3720

Scenario
5945

Scenario
4492

Mean
Scenario

Node
ID

Scenario
3720

Scenario
5945

Scenario
4492

Mean
Scenario

1 10.87 11.31 10.29 10.73 13 15.20 15.66 14.98 14.94
2 17.04 16.88 15.71 17.27 14 13.56 13.43 13.09 13.53
3 14.96 14.67 14.15 14.66 15 9.23 8.96 8.44 8.90
4 14.28 13.82 13.32 14.35 16 11.20 10.85 10.40 11.01
5 10.14 9.97 10.73 10.40 17 11.48 12.04 10.77 11.59
6 15.35 15.19 14.71 16.08 18 10.83 10.61 10.31 10.64
7 9.12 8.94 8.31 8.71 19 14.68 14.65 14.11 14.71
8 10.51 10.64 9.92 10.24 20 13.32 14.10 13.45 13.40
9 12.19 12.38 11.26 12.85 21 14.64 14.35 14.39 13.89
10 14.57 14.33 14.19 14.41 22 12.02 12.34 11.12 12.19
11 9.89 9.53 9.53 9.96 23 10.34 10.53 10.12 10.37
12 7.58 7.58 7.33 7.25 - - - - -

3.3.2. DemandB

In Figure 9 the reduced demand scenarios are represented. In this case it is more difficult to
distinguish one scenario from the other because of the big difference of average demand in the nodes
Also, here there is no coincidence between the mean and the most probable scenario, number 6232 in
the set of generated scenarios, but they are very close, as in Figure 10. In this case only another scenario,
number 9392 has a weight greater than 0.1, but four scenarios exceed the probability threshold of 0.05.
In Table 8 nodal demands of the three most remarkable scenarios are reported and compared with the
average value of demand in each node, the ‘mean scenario’.
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3.4. Hydraulic Simulation with Scenarios from DemandA

Water demand is the forcing parameter of a WDN and its natural variability is reflected on the
variability of the quantities describing the hydraulic behavior of the whole system. The following
question arises: how does the uncertainty of water demand determine the uncertainty of nodal
pressure-heads and pipe flow-rate in a WDN? More specifically, how does the most probable water
demand scenario coincide with the most probable pressure-head scenario? At this aim a set of pressure
scenarios was derived from the set of generated demand scenarios in the DemandA case using a
demand-driven hydraulic model based on the Global-Gradient algorithm proposed by Todini and
Pilati [34]. Twelve-thousand pressure scenarios have been obtained for the Apulian network, as shown
in Figure 11. This example does not take into account service constraints on each node. Actually,
not all pressure scenarios deriving from demand scenarios can be significant in dealing with design
and optimization problems. Using pressure-driven hydraulic models can allow the automatic filtering
of unrealistic scenarios. The reduction algorithm was also carried on and twenty reduced scenarios
with the corresponding probabilities were derived, as in Figures 12 and 13.Water 2018, 10, x FOR PEER REVIEW  17 of 20 
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The results show how the twelve-thousand scenarios generated, unlike the corresponding ones
of the water demand, have the same ‘shape’, which depends on the geometrical and hydraulic
characteristics of the WDN. From the results it is also possible to identify the nodes in which the
pressure value shows greater variability: this can provide important support in positioning pressure
gauges. Only two scenarios, number 7577, with weight approximately equal to 0.48, and number 6780,
with weight about 0.39, remark a significant probability. All the others have probability lower than
0.025. In Table 9 pressure height in each node is reported for the two most probable pressure scenarios,
for the scenario of mean pressure, for that of most probable demand (3720) and for the ‘mean scenario’.
There are no significant differences between the highlighted scenarios.

Table 9. Nodal pressure (m) for different scenarios, DemandA.

Node
ID

Scenario
7577

Scenario
6780

Scenario
Mean

Pressure

Scenario
3720

Scenario
Mean

Demand

Node
ID

Scenario
7577

Scenario
6780

Scenario
Mean

Pressure

Scenario
3720

Scenario
Mean

Demand

1 25.965 25.962 25.963 25.966 25.965 13 15.754 15.904 15.684 15.839 15.723
2 28.077 28.052 28.061 28.085 28.070 14 17.727 17.850 17.661 17.697 17.692
3 24.548 24.543 24.512 24.592 24.534 15 18.135 18.278 18.001 18.107 18.041
4 21.829 21.852 21.714 21.963 21.755 16 21.023 21.222 21.042 21.138 21.068
5 25.280 25.314 25.254 25.289 25.267 17 22.946 23.040 22.908 22.930 22.927
6 24.875 24.929 24.829 24.888 24.849 18 22.933 22.966 22.895 22.906 22.911
7 22.453 22.522 22.383 22.449 22.407 19 25.149 25.185 25.147 25.139 25.155
8 21.545 21.618 21.454 21.522 21.483 20 21.019 21.193 20.997 21.021 21.026
9 20.647 20.691 20.592 20.694 20.620 21 18.794 18.859 18.768 18.731 18.785

10 19.421 19.553 19.366 19.501 19.404 22 15.926 16.363 15.908 16.111 15.959
11 18.808 18.864 18.731 18.855 18.764 23 21.919 21.976 21.894 21.862 21.909
12 17.846 17.902 17.700 17.901 17.747 - - - - - -

4. Conclusions

This paper describes a complete procedure to generate and reduce the number of water
consumption scenarios in order to represent the uncertainty due to the variability of demand in
a WDN. Moreover, with this procedure, an objective measure of the probability of occurrence is related
to each of the reduced scenarios.

For this purpose, the scaling laws, proposed by Magini et al. [1], prove all their potentials. In fact,
they allow for a definition of the main statistical features of consumption for a different number of
aggregated consumers, starting from the statistical characteristics of a typical user. Here, the features of
a specific residential water demand are considered. However, if water demand is adequately typified,
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it is possible to examine different kinds of water use (commercial, public, . . . ), different socio-economic
categories and geographical locations.

One of the main goals of the proposed procedure is to correctly reproduce the statistical
characteristics of water consumption in generating scenarios. The nodal water demand is supposed
to follow a Gamma probability distribution with parameters dependent on the number of users.
To respect cross-correlation between couples of water demand in the nodes, a generation algorithm
based on the approach of Iman-Conover is implemented [8]. The generated water demand scenarios
respect the hypothesized marginal probability distributions and reproduce the cross-correlations
almost perfectly.

Regarding the scenario reduction, a probability/weight is defined for each of the reduced
scenarios. Obviously, the probability/weight depends on the number of the reduced scenarios. The
results show that the most likely scenario is close to the scenario represented by the average demand
in each node. This fact may seem trivial, less trivial is the weight that is associated with them. We can
observe that the reduced scenarios do not cover the whole set of generated scenarios, so they cannot
completely describe the uncertainty of the demand, leaving out the tails of probability distributions, i.e.,
not considering the least likely scenarios. Probably, the relevant cross-correlation between couples of
nodal water demand makes the Euclidean norm not perfectly suitable to describe the whole probability
distributions, and the use of a different norm should be tested in future developments.

The reduction procedure has been applied also to the pressure-head scenarios which are derived
from the generated demand. Also, in this case the most probable scenario is close to that defined by
the average pressures in each node of the WDN, but it does not coincide with that produced by the
most probable demand scenario.

The proposed procedure is certainly of considerable importance not only in the problems of
robust optimization, but more in general in the modeling of the WDNs, both for their design and for
their control.
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