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1. INTRODUCTION27

Every finite partition of incompatible and exhaustive events represents a univariate random28

quantity ([33]). Each event is a particular random quantity because it admits only two possible29

numerical values, 0 and 1. Only one of these two possible values will be true “a posteriori”.30

Every event is then a special point in the space of random quantities. Such a space is linear and31

it is provided with a metric structure. It is therefore represented by vectors all having a length32

equal to 1. Moreover, two different vectors of a basis of it are always orthogonal to each other.33

The same symbol P consequently denotes both prevision of a random quantity and probability34

of an event ([10]). An event is a statement such that, by betting on it, we can establish whether35

it is true or false, that is to say, whether it has occurred or not ([16]). We distinguish the36

domain of the possible from the domain of the probable ([17]). It is not possible to use the37

notion of probability into the domain of the possible ([26]). What is objectively and logically38

possible identifies the space of alternatives and it is different from what is subjectively probable.39

A subjective probability expressed by a given decision-maker is not predetermined when it is40

concerned with a possible or uncertain event at a given instant. Conversely, a subjective opinion41

expressed by a given decision-maker in terms of probability of an event is always predetermined42

when it is “a posteriori” certainly true or false. One always means uncertainty as a simple43

ignorance. We always observe two different and extreme aspects characterizing the space of44

alternatives. The first aspect deals with situations of non-knowledge or ignorance or uncertainty.45

Thus, a given decision-maker determines the set of all possible alternatives of a random quantity46

with respect to these situations. The second aspect deals with the definitive certainty expressed47

in the form of what is true or false. The notion of probability is essentially of interest to an48

intermediate aspect which is included between these two extreme aspects ([25], [28]). It is a49

psychological notion ([34], [35]). Common sense expressed as conditions of coherence plays50

the most essential role with respect to all theorems of probability calculus ([11]).51
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2. REASONS JUSTIFYING OUR GEOMETRIC APPROACH TO INFERENCE FROM FINITE52

POPULATIONS53

Our mathematical model is based on “a priori” possible data concerning a given set of in-54

formation at a certain instant of a given decision-maker. We accept the principles of the theory55

of concordance into the domain of subjective probability. We connect vector spaces with ran-56

dom quantities in this way. All logically possible alternatives for a given decision-maker with57

a given set of information at a given instant identify a set of possible data ([19]). This set58

coincides with its parameter space. It is not subjective but it is objective because he never ex-59

presses his subjective opinion in terms of probability on what is uncertain or possible for him at60

a given instant. We consider different spaces of possible alternatives geometrically represented61

by different random quantities. We firstly study an one-dimensional parameter space geometri-62

cally represented by a univariate random quantity. A given decision-maker assigns a subjective63

probability to each possible alternative before knowing which is the true alternative to be ver-64

ified “a posteriori”. We consequently study a discrete and finite probability distribution in this65

way. All coherent probability distributions are admissible. We are interested in them. Only66

coherence cannot be ignored with respect to a probability distribution ([18], [31]). A discrete67

probability distribution is coherent when non-negative probabilities assigned to all possible (in-68

compatible and exhaustive) alternatives considered “a priori” sum to 1. It is summarized by69

means of the notion of prevision or mathematical expectation or expected value of a univariate70

random quantity. All coherent previsions of a univariate random quantity are obtained by con-71

sidering all coherent probability distributions with respect to this random quantity. All coherent72

previsions can geometrically be represented by an one-dimensional convex set. Thus, when73

the space of alternatives geometrically coincides with the real number line we observe that an74

one-dimensional convex set is represented by a closed line segment. Therefore, every possible75

alternative belonging to the set of all possible alternatives is viewed as a coherent prevision76

of a univariate random quantity. This thing means that a set of possible alternatives for a given77

decision-maker with a given set of information at a given instant is viewed as a set of all possible78

samples selected from a finite population. Their size is equal to 1. Each sample belonging to the79

set of all possible samples represents this population ([24], [27]). Such a population coincides80
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with those coherent previsions of a univariate random quantity representing all possible alterna-81

tives considered “a priori”. We are then able to consider a discrete probability distribution of all82

possible samples belonging to the set of all possible samples. We assume that every sample of83

this set has a probability greater than zero. We approximately get the standardized normal dis-84

tribution from this probability distribution. Hence, a continuous probability distribution of all85

coherent previsions of a univariate random quantity is approximately the standardized normal86

distribution. It is then possible to consider different intervals of plausible values with respect to87

a given value viewed as a center in addition to point estimates. This value viewed as a center88

of the distribution of all possible samples is not necessarily a possible alternative considered “a89

priori”. We underline a very important point: conditions of coherence are objective and they90

are made explicit by means of mathematics. They coincide with non-negativity of probability91

of an event and additivity of probabilities of different and incompatible events whose number92

is finite ([13], [7], [8]). Only inadmissible evaluations must be excluded. An evaluation is in-93

admissible when it is not coherent. Nevertheless, the essence of the notion of coherence is not94

of a mathematical nature because it pertains to the meaning of probability of an event. Such95

a meaning is not of a mathematical nature but it is of a psychological nature. An event is not96

then a measurable set so we do not consider random variables viewed as measurable functions97

into a probability space characterized by a σ -algebra. Anyway, an one-dimensional parameter98

space is always provided with a metric structure that we introduce after studying the range of99

possibility. This metric structure is useful in order to obtain different quantitative measures that100

allow us of considering meaningful relationships between random quantities. Everything we101

said can be extended to two-dimensional or three-dimensional parameter spaces that we con-102

sider according to this geometric approach into this paper. A two-dimensional parameter space103

is geometrically represented by a bivariate random quantity. A three-dimensional parameter104

space is geometrically represented by a trivariate random quantity. We have to note another105

very important point: all coherent previsions of a bivariate random quantity can always be di-106

vided into all coherent previsions of two univariate random quantities. This principle has been107

borrowed from geometry. It is known that all vectors viewed as ordered pairs of real numbers108
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can always be expressed as linear combinations of other vectors representing a basis of the two-109

dimensional vector space under consideration. Therefore, every vector of this linear space can110

always be divided into two elements that are its components. Given an orthonormal basis, such111

components can be projected onto two orthogonal axes of a Cartesian coordinate system. The112

same principle goes when we consider all coherent previsions of a trivariate random quantity.113

Such a quantity is divided into three bivariate random quantities in order to satisfy essential114

metric reasons. This process of separating a complex object into simpler objects even holds by115

considering measures of statistical dispersion. Thus, given a bivariate random quantity having116

two univariate random quantities as its components, the covariance of these two univariate ran-117

dom quantities is analytically expressed by using a coherent prevision of the starting bivariate118

random quantity. Two coherent previsions of two univariate random quantities are also used in119

order to obtain it. These two univariate random quantities are the components of the starting120

bivariate random quantity.121

3. POSSIBLE DATA OF AN ONE-DIMENSIONAL PARAMETER SPACE122

An one-dimensional parameter space contains all possible parameters viewed as real num-123

bers. They are “a priori” possible data. Only one of them will be true “a posteriori”. It represents124

the real explanation of the phenomenon under consideration ([1], [2]). An one-dimensional pa-125

rameter space Ω⊆ R can be represented by a univariate random quantity. A univariate random126

quantity represents a partition of incompatible and exhaustive events. We consider different127

univariate random quantities that are elements of a set of univariate random quantities denoted128

by (1)S. These different univariate random quantities have at least a possible value that is the129

same. This common value is the true value to be verified “a posteriori”. We denote by Ω ∈ (1)S130

one of these univariate random quantities. Every random quantity belonging to the set (1)S is131

represented by a vector belonging to Em, where Em is an m-dimensional vector space over the132

field R of real numbers. An orthonormal basis of Em is denoted by {e j}, j = 1, . . . ,m. The dif-133

ferent possible values of every random quantity of (1)S are m in number. These values can also134

be considered on the real number line because they are different. It turns out to be (1)S ⊂ Em.135

A univariate quantity Ω is random for a given decision-maker because he is in doubt between136

two or more than two possible values of Ω belonging to the set I(Ω) = {θ 1,θ 2, . . . ,θ m}. We137
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assume that it turns out to be θ 1 < θ 2 < .. . < θ m. Each possible value of Ω is then an event.138

Only one of them will occur “a posteriori”. We consider a univariate random quantity as a finite139

partition of incompatible and exhaustive events. Every single event of a finite partition of events140

is a statement such that, by betting on it, we can establish whether the bet has been won or lost141

([16]). It is essential to note a very important point: each θ i, i = 1, . . . ,m, can also represent a142

cell midpoint when Ω is a bounded (from above and below) continuous parameter space. On143

the other hand, it is possible to dichotomize a bounded (from above and below) continuous144

random quantity by giving origin to different dichotomic random quantities whose number is145

finite. Thus, a space of alternatives can indifferently be discrete or continuous. We assume that146

information and knowledge of a given decision-maker allow him of limiting it from above and147

below. This thing often happens so it is not a loss of generality. The different possible val-148

ues of Ω belonging to the set I(Ω) coincide with the different components of a vector ω ∈ Em149

and they can indifferently be denoted by a covariant or contravariant notation after choosing150

an orthonormal basis of Em. We should exactly speak about components of ω having upper151

or lower indices because we deal with an orthonormal basis of Em. Indeed, it is geometrically152

meaningless to use the terms covariant and contravariant because the covariant components of153

ω coincide with the contravariant ones. Nevertheless, it is appropriate to use this notation be-154

cause a particular meaning connected with these components will be introduced. Having said155

that, we will continue to use these terms. Thus, we choose a contravariant notation with respect156

to the components of ω so it is possible to write ω = (θ i). We choose a covariant notation157

with respect to the components of p so it is possible to write p = (pi). We note that pi repre-158

sents a subjective probability assigned to θ i, i = 1, . . . ,m, by a given decision-maker according159

to his psychological degree of belief. Different decision-makers whose state of knowledge is160

hypothetically identical may choose different pi. Each of them may subjectively give a greater161

attention to certain circumstances than to others ([29]). A given decision-maker is into the do-162

main of possibility when he considers only ω ∈ Em, while he is into the domain of the logic of163

the probable when he considers an ordered pair of vectors given by (ω,p). Thus, a prevision of164

Ω is given by165

(1) P(Ω) = Ω̄ = θ
i pi,166
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where we imply the Einstein summation convention. This prevision is coherent when we have167

0≤ pi ≤ 1, i = 1, . . . ,m, as well as ∑
m
i=1 pi = 1 ([4]). By considering the different components168

of ω on the real number line we are able to say that a coherent prevision of Ω always satisfies169

the inequality in f I(Ω) ≤ P(Ω) ≤ sup I(Ω) and it is also linear ([5], [6], [21]). These two170

properties mean that all coherent previsions of Ω geometrically identify a closed line segment171

belonging to the real number line. A coherent prevision of Ω can be expressed by means of the172

vector ω̄ = (ω̄ i) that allows us of defining a transformed random quantity denoted by
Ω

t : it is173

represented by the vector ω t = ω− ω̄ whose contravariant components are given by174

(2) ωt i = θ
i− ω̄

i.175

This linear transformation of Ω is a change of origin. A coherent prevision of the transformed176

random quantity
Ω

t is given by177

(3) P(Ωt) = (θ i− ω̄
i)pi = 0.178

The α-norm of the vector ω is expressed by179

(4) ‖ω‖2
α = (θ i)2 pi.180

It is the square of the quadratic mean of Ω. It turns out to be ‖ω‖2
α ≥ 0. In particular, when the181

possible values of Ω are all null one writes ‖ω‖2
α = 0: this is a degenerate case that we exclude.182

Hence, it is possible to say that the α-norm of the vector ω is strictly positive. The α-norm of183

the vector representing
Ω

t is given by184

(5) ‖ω t‖2
α = (ωt i)2 pi = σ

2
Ω.185

It represents the variance of Ω in a vectorial fashion ([3]). We will later explain why we use186

the term α-norm. A space of alternatives containing all “a priori” possible points is denoted187

by I(Ω) = {θ 1,θ 2, . . . ,θ m}. We are interested in all discrete coherent probability distributions188

connected with I(Ω). We always summarize them by means of the notion of prevision of Ω.189

All coherent previsions of Ω are infinite in number. They coincide with all points of a closed190

line segment whose endpoints are θ 1 and θ m after representing all “a priori” possible points on191

the real number line. Each θ i, i = 1, . . . ,m, is a sample whose size is equal to 1 belonging to the192
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set of all possible samples selected from a finite population. Each θ i, i = 1, . . . ,m, is a coherent193

prevision of Ω. We consequently consider a finite population of coherent previsions of Ω. Only194

one of these coherent previsions will be the true parameter of the population to be verified “a195

posteriori”. A given decision-maker does not know it yet. An estimator is evidently P. It is196

linear. We consider a discrete probability distribution of all possible samples belonging to the197

set of all possible alternatives. We define a sampling design in this way. We assume that every198

sample of the set of all possible samples has a probability greater than zero. In particular, if all199

samples belonging to the set of all possible samples have the same probabilities whose sum is200

equal to 1, then a coherent prevision of them coincides with that value representing their center.201

We use it in order to obtain the standardized normal distribution. This value is connected with202

a linear nature of P. We obtain the standardized normal distribution by subtracting this value203

denoted by µΩ from each θ i, i = 1, . . . ,m, and dividing the difference by the square root of the204

squared deviations of each θ i from µΩ. We obtain z-values in this way, so we write205

(6) Z =
[P(Ω) = θ i]−µΩ√

σ2
Ω

.206

Hence, a continuous probability distribution of all coherent previsions of a univariate random207

quantity is approximately the standardized normal distribution. It is then possible to consider208

different intervals of plausible values with respect to µΩ in addition to point estimates ([9]). In209

general, an interval of plausible values is given by210

(7) [θ i− zα/2

√
σ2

Ω
, θ

i + zα/2

√
σ2

Ω
],211

with zα that is the α-quantile of the standardized normal distribution. Such an interval derives212

from213

(8) P(−zα/2 ≤
[P(Ω) = θ i]−µΩ√

σ2
Ω

≤ zα/2) = 1−α.214

A point estimate is P(Ω) = θ i, i = 1, . . . ,m, as well as it is ‖ω t‖2
α = σ2

Ω
. However, a point215

estimate is always a real number within this context because we consider an one-dimensional216

parameter space. Two point estimates are represented by two single real numbers. Three point217

estimates are represented by three single real numbers and so on. We have to note another very218
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important point: a given decision-maker chooses “a priori” that possible alternative to which219

he subjectively assigns a larger probability. In other words, he chooses that probability distri-220

bution whose expected value denoted by P coincides with this “a priori” possible alternative.221

Another probability distribution must then be considered when he knows “a posteriori” the true222

parameter of the population. It is a particular but coherent probability distribution because all223

false alternatives have probabilities equal to 0 while the true alternative has a probability equal224

to 1. If the true alternative coincides with that one chosen “a priori” by him, then it is possible225

to note that its posterior probability has increased. Otherwise, it has decreased. We have used226

the Bayes’ rule within this context.227

4. POSSIBLE DATA OF A TWO-DIMENSIONAL PARAMETER SPACE228

A two-dimensional parameter space contains all possible parameters viewed as ordered pairs229

of real numbers. They are “a priori” possible data. Only one of them will be true “a posteriori”.230

A two-dimensional parameter space Ω⊆R2 can be represented by a bivariate random quantity.231

A bivariate random quantity has always two univariate random quantities as its components.232

Each of them represents a partition of incompatible and exhaustive events. Each of them is a233

marginal univariate random quantity. We denote by (2)S
(2) a set of bivariate random quantities.234

We denote by Ω12 ≡ {1Ω,2Ω} a generic bivariate random quantity belonging to (2)S
(2). A235

pair of univariate random quantities (1Ω,2Ω) evidently represents an ordered pair of univariate236

random quantities that are the components of Ω12. Each element of (2)S
(2) can be represented237

by an affine tensor of order 2 denoted by T ∈ (2)S
(2). Moreover, it turns out to be (2)S

(2) ⊂ E(2)
m ,238

where we have E(2)
m = Em⊗Em. An orthonormal basis of Em is denoted by {e j}, j = 1, . . . ,m.239

Therefore, the possible values of Ω12 coincide with the numerical values of the components240

of T . A vector space denoted by Em is m-dimensional. The number of the different possible241

values of every univariate random quantity of Ω12 is equal to m. Thus, T is an element of242

an m2-dimensional vector space. We can represent the possible values of Ω12 by means of an243

orthonormal basis of Em. These values coincide with the contravariant components of T so it is244

possible to write245

(9) T = (1)ω ⊗ (2)ω = (1)θ
i1
(2)θ

i2ei1⊗ ei2.246
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The tensor representation of Ω12 expressed by (9) depends on (1Ω,2Ω). Indeed, if one considers247

a different ordered pair (2Ω,1Ω) of univariate random quantities one obtains a different tensor248

representation of Ω12. It is expressed by249

(10) T = (2)ω ⊗ (1)ω = (2)θ
i2
(1)θ

i1ei2⊗ ei1250

because the tensor product is not commutative ([30]). Therefore, the components of T expressed251

by (10) are not the same of the ones expressed by (9). Both these formulas express an affine252

tensor of order 2 whose components are different. In particular, we could consider two vectors253

of E3254

(1)ω = (1)θ
1e1 + (1)θ

2e2 + (1)θ
3e3255

and256

(2)ω = (2)θ
1e1 + (2)θ

2e2 + (2)θ
3e3257

in order to realize that it turns out to be (1)ω ⊗ (2)ω 6= (2)ω ⊗ (1)ω by summing over all values258

of the indices. We must then consider (9) and (10) in a jointly fashion in order to release a259

tensor representation of Ω12 from any ordered pair of univariate random quantities that can be260

considered, (1Ω,2Ω) or (2Ω,1Ω). In fact, when m = 3 and we express T by means of (9) and261

(10) we observe that three of nine summands are equal. It is consequently possible to say that262

the possible values of a bivariate random quantity must be expressed by the components of an263

antisymmetric tensor of order 2. It is expressed by264

(11) T = ∑
i1<i2

((1)θ
i1
(2)θ

i2− (1)θ
i2
(2)θ

i1)ei1⊗ ei2.265

The number of the components of an antisymmetric tensor of order 2 is evidently different from266

the one of the components of an affine tensor of the same order. Thus, a tensor representation267

based on an antisymmetric tensor of order 2 does not depend either on (1Ω,2Ω) or (2Ω,1Ω).268

We choose it in order to represent a generic bivariate random quantity Ω12 in a geometrical269

fashion. Therefore, 12 f is an antisymmetric tensor of order 2 called the tensor of the possible270
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values of Ω12. The contravariant components of 12 f expressed by271

(12) 12 f (i1i2) =

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(1)θ

i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣∣∣
272

represent the possible values of Ω12 in a tensorial fashion. When these components have equal273

indices it follows that they are equal to 0. It is evident that a vector space of the antisymmetric274

tensors of order 2 is not m2-dimensional but it is
(m

2

)
-dimensional. Now, we must introduce275

probability into this geometric representation of Ω12. This means that a given decision-maker276

must distribute a mass over the possible alternatives coinciding with the possible values of277

Ω12. Therefore, he leaves the domain of the possible in order to go into the domain of the278

probable. We say that the tensor of the joint probabilities p = (pi1i2) is an affine tensor of order279

2 whose covariant components represent those probabilities connected with ordered pairs of280

components of vectors representing the marginal univariate random quantities, 1Ω and 2Ω, of281

Ω12. A coherent prevision of Ω12 is then expressed by282

(13) P(Ω12) = Ω̄12 = (1)θ
i1
(2)θ

i2 pi1i2,283

so it is also possible to consider an affine tensor of order 2 denoted by 12ω̄ whose contravari-284

ant components are expressed by 12θ̄ i1i2 . They are all equal. We must consider those vector285

homographies that allow us of passing from the contravariant components of a type of vector286

to the covariant ones of another type of vector by means of the tensor of the joint probabilities287

under consideration. We define the covariant components of 12 f in this way. The covariant288

components of 12 f represent those probabilities connected with the possible values of each289

marginal univariate random quantity of Ω12. These components are obtained by summing the290

probabilities connected with the ordered pairs of components of (1)ω and (2)ω : putting the joint291

probabilities into a two-way table we consider the totals of each row and the totals of each col-292

umn of the table as covariant components of 12 f . In analytic terms we have (1)θ
i1 pi1i2 = (1)θi2293

and (2)θ
i2 pi1i2 = (2)θi1 by virtue of a particular convention that we introduce: when the covariant294

indices to right-hand side vary over all their possible values we obtain two sequences of values295

representing those probabilities connected with the possible values of each marginal univariate296
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random quantity of Ω12. They are the covariant components of 12 f . It turns out to be297

(14) 12 f(i1i2) =

∣∣∣∣∣∣∣∣∣∣
(1)θi1 (1)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(1)θ

i2 pi2i1 (1)θ
i1 pi1i2

(2)θ
i2 pi2i1 (2)θ

i1 pi1i2

∣∣∣∣∣∣∣∣∣∣
.298

The covariant indices of the tensor p can be interchanged when it is necessary so we have,299

for instance, (1)θ
i1 pi1i2 = (1)θ

i1 pi2i1 . Each ordered pair of vectors ((1)ω , (2)ω ) mathematically300

determines an affine tensor of order 2 when a given decision-maker is into the subjective domain301

of the logic of the probable. Each ordered pair of vectors ((1)ω , (2)ω ) represents two univariate302

random quantities, 1Ω and 2Ω, into Em ([32]). Both these univariate random quantities belong303

to the set denoted by (2)S
(1), so it turns out to be (2)S

(1)⊂ Em. On the other hand, it is possible to304

write (2)S
(1)⊗ (2)S

(1) = (2)S
(2), so we reach a vector space of the antisymmetric tensors of order305

2 by anti-symmetrization. It is denoted by (2)S
(2)∧. We have evidently (2)S

(2)∧ ⊂ E(2)∧
m . We will306

show that a metric defined on (2)S
(2)∧ is a consequence of a metric defined on (2)S

(1). When we307

observe that the number of the components of an antisymmetric tensor of order 2 decreases by308

passing from an affine tensor of order 2 to an antisymmetric tensor of the same order we say309

that this thing is useful in order to satisfy simplification and compression reasons. Nevertheless,310

it is essential to note a very important point: this thing does not mean that the original structure311

of the random quantity under consideration changes. It remains unchanged. We only consider312

a smaller number of elements by means of a tensorial representation. The original elements313

of the random quantity under consideration do not disappear. Indeed, we will show that they314

are fully considered in order to establish quantitative relationships between multivariate random315

quantities. It is therefore possible to compress elements of a random quantity without changing316

conceptual terms of the problem under consideration.317

5. A SEPARATION OF THE POSSIBLE DATA OF A TWO-DIMENSIONAL PARAMETER318

SPACE319

A set of univariate random quantities that are the components of bivariate random quantities320

is denoted by (2)S
(1) ⊂ Em. It is a vector space smaller than Em because each m-tuple of real321

numbers is always a sequence of m different numbers. Thus, since (2)S
(1) is closed under322
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addition of two elements of it, we must obtain a sequence of m different numbers even when an323

m-tuple is the result of the addition of two m-tuples. If this thing does not happen then a random324

quantity unacceptably changes its structure. Univariate random quantities are represented by325

two vectors, (1)ω and (2)ω , belonging to Em. A given decision-maker deals with two ordered326

m-tuples when he is into the domain of the possible. An affine tensor p of order 2 must be327

added to the two vectors under consideration when it is necessary to pass from the domain of328

the possible to the one of the probable. Therefore, it is always necessary to consider a triple of329

elements. We transform (2)ω into (2)ω
′ by means of the tensor p. Hence, it is possible to write330

the following dot product331

(15) (1)ω · (2)ω
′ = (1)θ

i1
(2)θ

i2 pi1i2 = (1)θ
i1
(2)θi1.332

We note that333

(16) (2)θi1 = (2)θ
i2 pi1i2 = (2)ω

′
334

is a vector homography whose expressions are obtained by applying the Einstein summation335

convention. Then, the α-product of two vectors, (1)ω and (2)ω , is defined as a dot product of336

two vectors, (1)ω and (2)ω
′, so we write337

(17) (1)ω � (2)ω = (1)ω · (2)ω
′.338

In particular, the α-norm of the vector (1)ω is given by339

(18) ‖(1)ω‖
2
α = (1)θ

i1
(1)θ

i1 pi1i1 = (1)θ
i1
(1)θi1 .340

Now, we can explain why we use this term: we use it because we refer to the α-criterion of341

concordance introduced by Gini ([23], [22]). There actually exist different criteria of concor-342

dance in addition to the α-criterion. Nevertheless, it always suffices to use the α-criterion343

when one considers quadratic measures of concordance ([20]). When we pass from the notion344

of α-product to the one of α-norm we say that the corresponding possible values of the two345

univariate random quantities under consideration are equal. Moreover, we say that the corre-346

sponding probabilities are equal. Therefore, the covariant components of the tensor p = (pi1i2)347

having different numerical values as indices are null. Thus, we say that the absolute maximum348
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of concordance is realized. Hence, it is evidently possible to elaborate a geometric, original and349

extensive theory of multivariate random quantities by accepting the principles of the theory of350

concordance into the domain of subjective probability. This acceptance is well-founded because351

the definition of concordance is implicit as well as the one of prevision of a random quantity and352

in particular of probability of an event. Indeed, these definitions are based on criteria which al-353

low of measuring them. Given the vector ε = (1)ω +b(2)ω , with b∈R, its α-norm is expressed354

by355

(19) ‖ε‖2
α = ‖(1)ω‖

2
α +2b((1)ω � (2)ω )+b2‖(2)ω‖

2
α .356

It is always possible to write ‖ε‖2
α ≥ 0. Moreover, the right-hand side of (19) is a quadratic357

trinomial whose variable is b ∈ R, so we must consider a quadratic inequation. All real num-358

bers fulfill the condition stated in the form ‖ε‖2
α ≥ 0. This means that the discriminant of the359

associated quadratic equation is non-positive. We write360

∆b = 4[((1)ω � (2)ω )2−‖(1)ω‖
2
α‖(2)ω‖

2
α ].361

Given ∆b ≤ 0, it turns out to be362

((1)ω � (2)ω )2 ≤ ‖(1)ω‖
2
α‖(2)ω‖

2
α ,363

so we obtain364

(20) |(1)ω � (2)ω | ≤ ‖(1)ω‖α‖(2)ω‖α .365

The expression (20) is called the Schwarz’s α-generalized inequality. When b = 1 we have366

ε = (1)ω + (2)ω . By replacing ((1)ω � (2)ω ) with ‖(1)ω‖α‖(2)ω‖α into (19) we have the square367

of a binomial given by368

‖(1)ω + (2)ω‖
2
α = ‖(1)ω‖

2
α +2‖(1)ω‖α‖(2)ω‖α +‖(2)ω‖

2
α ,369

so we obtain370

(21) ‖(1)ω + (2)ω‖α ≤ ‖(1)ω‖α +‖(2)ω‖α .371
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The expression (21) is called the α-triangle inequality. Dividing by ‖(1)ω‖α‖(2)ω‖α both sides372

of (20) we have373 ∣∣∣∣∣ (1)ω � (2)ω

‖
(1)ω‖α‖(2)ω‖α

∣∣∣∣∣≤ 1,374

that is to say,375

−1≤ (1)ω � (2)ω

‖
(1)ω‖α‖(2)ω‖α

≤ 1,376

so there exists a unique angle γ such that 0≤ γ ≤ π and such that377

(22) cosγ =
(1)ω � (2)ω

‖
(1)ω‖α‖(2)ω‖α

.378

It is possible to define this angle to be the angle between (1)ω and (2)ω . By considering the379

expression (17) it is also possible to define it to be the angle between (1)ω and (2)ω
′. The two380

vectors (1)t and (2)t represent the two transformed random quantities
1Ω

t and
2Ω

t defined on381

1Ω and 2Ω. The contravariant components of (1)t and (2)t are given by (1)t
i = (1)θ

i− (1)ω̄
i and382

(2)t
i = (2)θ

i− (2)ω̄
i. Then, their α-product is given by383

(23) (1)t� (2)t = (1)t
i1
(2)ti1 = (1)t

i1
(2)t

i2 pi2i1.384

It represents the covariance of 1Ω and 2Ω in a vectorial fashion. When one considers the385

expression (22) connected with (1)t and (2)t it becomes386

(24) cosγ =
(1)t� (2)t

‖
(1)t‖α‖(2)t‖α

.387

It expresses the Pearson α-generalized correlation coefficient. We have to note a very important388

point: we aggregate possible data when we consider P(Ω12) as an α-product. We use the joint389

probabilities in order to determine P(Ω12) as an α-product. We obtain the marginal probabil-390

ities after establishing the joint ones. We obtain the marginal probabilities by means of vector391

homographies. Now, we have to separate possible data concerning Ω12. We have consequently392

I(1Ω)= {(1)θ
1, (1)θ

2, . . . , (1)θ
m} and I(2Ω)= {(2)θ

1, (2)θ
2, . . . , (2)θ

m}. Each set contains all “a393

priori” possible points concerning one of two marginal univariate random quantities. They can394

be viewed as two sets of all possible samples whose size is equal to 1 selected from two finite395

populations, 1Ω and 2Ω. They are two finite populations of coherent previsions of 1Ω and 2Ω.396

We separately consider two discrete probability distributions of all possible samples belonging397
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to the two sets of possible alternatives I(1Ω) and I(2Ω). We assume that every sample of these398

two sets has a probability greater than zero. We establish the center of each discrete probability399

distribution of all possible samples belonging to I(1Ω) and I(2Ω). We use these two centers in400

order to obtain the standardized normal distribution concerning 1Ω as well as that one concern-401

ing 2Ω. These two values are connected with a linear nature of P when we separately consider402

1Ω and 2Ω. We consequently divide all coherent previsions of Ω12 into two sets containing all403

coherent previsions of two marginal univariate random quantities. All coherent previsions of404

Ω12 always derive from all coherent previsions of two marginal univariate random quantities,405

1Ω and 2Ω. All coherent previsions of 1Ω are independent of all coherent previsions of 2Ω.406

When we separate possible data concerning Ω12 we are able to consider all possible values of407

1Ω and 2Ω on two orthogonal axes of a Cartesian coordinate system. This thing can always be408

made because all possible values of 1Ω are distinct as well as all possible values of 2Ω. We note409

that all coherent previsions of 1Ω and 2Ω geometrically identify two closed line segments on410

these two orthogonal axes. A point of each line segment can indifferently be viewed as a real411

number rather than a particular ordered pair of real numbers. Conversely, all coherent previsions412

of Ω12 geometrically identify a subset of a Cartesian plane. Such a subset is a two-dimensional413

convex set. Each coherent prevision of Ω12 can then be projected onto the two orthogonal axes414

of a Cartesian coordinate system. We are able to consider intervals of plausible values with415

respect to µ
1Ω and µ

2Ω . A point estimate is416

(25)


P(1Ω) = (1)θ

i

P(2Ω) = (2)θ
i

 .417

It is also418

(26)


‖(1)t‖

2
α = σ2

1Ω

‖(2)t‖
2
α = σ2

2Ω

 .419

However, within this context a point estimate is always an ordered pair of real numbers because420

we consider a two-dimensional parameter space. Two point estimates of a two-dimensional421
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parameter space are expressed by two ordered pairs of real numbers. A given decision-maker422

chooses “a priori” an ordered pair of possible alternatives. Every pair of possible alternatives is423

viewed as an ordered pair of coherent previsions of two marginal univariate random quantities.424

He chooses that pair of possible alternatives to which he subjectively assigns a larger probability.425

Therefore, he chooses those coherent probability distributions whose expected values coincide426

with this “a priori” possible pair of alternatives. Other two probability distributions must sep-427

arately be considered when a given decision-maker knows “a posteriori” the true parameter of428

the aggregate population denoted by Ω12. They are two particular but coherent probability dis-429

tributions. The first distribution is concerned with a marginal univariate random quantity. The430

second distribution is concerned with the other marginal univariate random quantity. All false431

alternatives whose elements are contained into I(1Ω) and I(2Ω) have then posterior probabil-432

ities equal to 0. The first component of every false alternative is contained into I(1Ω) while433

its second component is contained into I(2Ω). The true alternative whose element is contained434

into I(1Ω) and I(2Ω) has a posterior probability equal to 1. The first component of the true435

alternative is contained into I(1Ω) while its second component is contained into I(2Ω). If436

the true alternative verified “a posteriori” coincides with that one chosen “a priori” by a given437

decision-maker as an ordered pair of alternatives, then its posterior probability has increased438

with respect to the two starting probability distributions. Otherwise, it has decreased. We have439

used the Bayes’ rule within this context.440

6. A LARGER SPACE OF ALTERNATIVES CONNECTED WITH A TWO-DIMENSIONAL PA-441

RAMETER SPACE442

We deal with a set denoted by (2)S
(2)∧ whose elements are antisymmetric tensors of order 2.443

Nevertheless, we must underline a very important point connected with the notion of α-product444

of two antisymmetric tensors of order 2: it is not necessary to refer to the bivariate random445

quantity Ω12 in order to introduce that antisymmetric tensor whose covariant components are446

represented like into the expression (14). Therefore, it is also possible to consider a bivariate447

random quantity denoted by Ω34 as well as an antisymmetric tensor of order 2 denoted by 34 f448
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whose covariant components are expressed by449

(27) 34 f(i1i2) =

∣∣∣∣∣∣∣∣∣∣
(3)θi1 (3)θi2

(4)θi1 (4)θi2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(3)θ

i2 pi2i1 (3)θ
i1 pi1i2

(4)θ
i2 pi2i1 (4)θ

i1 pi1i2

∣∣∣∣∣∣∣∣∣∣
.450

Thus, it is possible to extend to the antisymmetric tensors 12 f and 34 f the notion of α-product.451

We are evidently able to point out another very important point: the range of possibility can452

change at a given instant. It is not unchangeable. A space of alternatives containing all “a priori”453

possible data for a given decision-maker always depends on his information and knowledge at454

a certain instant. It is anyway objective ([12]). This means that a given decision-maker never455

expresses his subjective opinion in terms of probability on what is uncertain or possible for456

him. He makes explicit what he knows or what he does not know at a certain instant with457

a given set of information. The knowledge and the ignorance of a given decision-maker at a458

certain instant determine the extent of the range of the possible. This range could also become459

smaller when the knowledge increases or it could also become larger when the knowledge460

decreases at a later time. With regard to the problem that we are considering, there exists a461

larger number of possible alternatives with respect to the starting point. This means that current462

information and knowledge of a given decision-maker do not allow him of excluding some of463

them as impossible. Therefore, all alternatives that can logically be considered at present remain464

possible for him in the sense that they are not either certainly true or certainly false. Moreover,465

we suppose that Ω12 and Ω34 have at least a possible value that is the same. This common value466

is the true value to be verified “a posteriori”. Then, we have467

(28) 12 f (i1i2)� 34 f(i1i2) =
1
2

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(1)θ

i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(3)θi1 (3)θi2

(4)θi1 (4)θi2

∣∣∣∣∣∣∣∣∣∣
,468

where it appears 1
2 because we have always two permutations into the two determinants: one469

of these permutations is “good” when it turns out to be i1 < i2 with respect to (1)θ
i1
(2)θ

i2 and470

(3)θi1(4)θi2 , while the other is “bad” because it turns out to be i2 > i1 with respect to (1)θ
i2
(2)θ

i1471

and (3)θi2(4)θi1 . Hence, we are in need of returning to normality by means of 1
2 . Such a normality472
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is evidently represented by i1 < i2. We can also say that it appears 1
2!=2 because we deal with473

antisymmetric tensors of order 2. We need different affine tensors of order 2 in order to make474

that calculation expressed by (28). These tensors of the joint probabilities allow us of defining475

the bivariate random quantities Ω13, Ω14, Ω23 and Ω24 having at least a possible value that is476

the same. This common value is the true value to be verified “a posteriori”. Thus, we have477

(29) 12 f � 34 f =

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(3)θ

i2 p(13)
i2i1 (1)θ

i2
(4)θ

i1 p(14)
i1i2

(2)θ
i1
(3)θ

i2 p(23)
i2i1 (2)θ

i2
(4)θ

i1 p(24)
i1i2

∣∣∣∣∣∣∣∣∣∣
.478

In particular, the α-norm of the tensor 12 f is given by479

(30) ‖12 f ‖2
α = 12 f � 12 f = 12 f (i1i2)

12 f(i1i2),480

so it turns out to be481

(31) ‖12 f ‖2
α =

1
2

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(1)θ

i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(1)θi1 (1)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(1)θ

i1
(1)θ

i1 p(11)
i1i1 (1)θ

i2
(2)θ

i1 p(12)
i1i2

(2)θ
i1
(1)θ

i2 p(21)
i2i1 (2)θ

i2
(2)θ

i2 p(22)
i2i2

∣∣∣∣∣∣∣∣∣∣
.482

Anyway, it is always possible to write483

(32) 12 f � 34 f =

∣∣∣∣∣∣∣∣∣∣
(1)ω � (3)ω (1)ω � (4)ω

(2)ω � (3)ω (2)ω � (4)ω

∣∣∣∣∣∣∣∣∣∣
484

as well as485

(33) ‖12 f ‖2
α =

∣∣∣∣∣∣∣∣∣∣
‖(1)ω‖

2
α (1)ω � (2)ω

(2)ω � (1)ω ‖(2)ω‖
2
α

∣∣∣∣∣∣∣∣∣∣
.486

The α-norm of the tensor 12 f is strictly positive. It is equal to 0 when the components of 12 f487

are null. Nevertheless, this does not mean that the components of the two vectors founding the488
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tensor are null. Indeed, it suffices that one writes (1)ω = b(2)ω , with b ∈ R, in order to obtain489

(34) ‖12 fb‖2
α =

1
2

∣∣∣∣∣∣∣∣∣∣
b(2)θ

i1 b(2)θ
i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
b(2)θi1 b(2)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
b2‖(2)ω‖

2
α b‖(2)ω‖

2
α

b‖(2)ω‖
2
α ‖(2)ω‖

2
α

∣∣∣∣∣∣∣∣∣∣
= 0.490

The α-norm of the tensor 12 f evidently implies that Ω12 and Ω12 have all “a priori” possible491

values that are the same. One and only one of these possible values will be the true value to be492

verified “a posteriori”. We define a tensor f as a linear combination of 12 f and 34 f such that we493

can write f = 12 f +b34 f , with b ∈ R. Then, the Schwarz’s α-generalized inequality becomes494

(35) |12 f � 34 f | ≤ ‖12 f ‖α‖34 f ‖α ,495

the α-triangle inequality becomes496

(36) ‖12 f + 34 f ‖α ≤ ‖12 f ‖α +‖34 f ‖α ,497

while the cosine of the angle γ becomes498

(37) cosγ = 12 f � 34 f
‖12 f ‖α‖34 f ‖α

.499

It is possible to consider two univariate transformed random quantities that are respectively
1Ω

t500

and
2Ω

t . They are represented by (1)t and (2)t whose contravariant components are given by501

(1)t
i = (1)θ

i− (1)ω̄
i and (2)t

i = (2)θ
i− (2)ω̄

i. Therefore, it is possible to introduce an antisym-502

metric tensor of order 2 denoted by 12t characterizing a bivariate transformed random quantity503

denoted by
Ω12

t . Then, the contravariant components of this tensor are given by504

(38) 12t(i1i2) =

∣∣∣∣∣∣∣∣∣∣
(1)t

i1
(1)t

i2

(2)t
i1

(2)t
i2

∣∣∣∣∣∣∣∣∣∣
.505

Its covariant components are given by506

(39) 12t(i1i2) =

∣∣∣∣∣∣∣∣∣∣
(1)ti1 (1)ti2

(2)ti1 (2)ti2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(1)t

i2 pi2i1 (1)t
i1 pi1i2

(2)t
i2 pi2i1 (2)t

i1 pi1i2

∣∣∣∣∣∣∣∣∣∣
.507
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The α-product of the two tensors 12t and 34t is given by508

(40) 12t � 34t =

∣∣∣∣∣∣∣∣∣∣
(1)t� (3)t (1)t� (4)t

(2)t� (3)t (2)t� (4)t

∣∣∣∣∣∣∣∣∣∣
.509

The α-norm of the tensor 12t is given by510

(41) ‖12t‖2
α =

∣∣∣∣∣∣∣∣∣∣
‖(1)t‖

2
α (1)t� (2)t

(2)t� (1)t ‖(2)t‖
2
α

∣∣∣∣∣∣∣∣∣∣
.511

The cosine of the angle γ is given by512

(42) cosγ = 12t � 34t
‖12t‖α‖34t‖α

.513

All these metric expressions are based on different affine tensors of order 2 characterizing Ω13,514

Ω14, Ω23 and Ω24. Such expressions are useful in order to characterize meaningful quantita-515

tive relationships between multivariate random quantities. We need them when we consider516

different joint probability distributions of different bivariate random quantities generated by a517

larger space of alternatives connected with a two-dimensional parameter space. Our mathemat-518

ical model allows us of separating into parts every quantitative and metric relationship between519

multivariate random quantities. We are then able to consider all coherent previsions of 1Ω and520

3Ω when 1Ω and 3Ω are the univariate components of Ω13. We consider all coherent previ-521

sions of 1Ω and 4Ω when 1Ω and 4Ω are the univariate components of Ω14. We consider all522

coherent previsions of 2Ω and 3Ω when 2Ω and 3Ω are the univariate components of Ω23. We523

study all coherent previsions of 2Ω and 4Ω when 2Ω and 4Ω are the univariate components of524

Ω24. We consider the variance of all the univariate random quantities under consideration. We525

also consider the covariance of 1Ω and 2Ω as well as the covariance of 3Ω and 4Ω. We obtain526

different point estimates of a two-dimensional parameter space in this way. They are expressed527

by different ordered pairs of real numbers. Anyway, we always separate all “a priori” possible528

data relative to each bivariate random quantity under consideration in order to study single fi-529

nite populations. We obtain sets containing all “a priori” possible alternatives of every marginal530
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univariate random quantity of a given bivariate random quantity. Every possible alternative of a531

given set of possible alternatives is viewed as a possible sample whose size is equal to 1 selected532

from a finite population. Such a finite population coincides with those coherent previsions of533

a univariate random quantity representing all possible alternatives considered “a priori”. We534

consider different discrete probability distributions of all possible samples. We assume that535

every sample belonging to a given set of possible samples has a probability greater than zero.536

We establish the center of each discrete probability distribution of all possible samples. We use537

these centers in order to obtain standardized normal distributions. We are then able to consider538

different interval estimates.539

7. METRIC PROPERTIES OF A ESTIMATOR CONNECTED WITH A TWO-DIMENSIONAL540

PARAMETER SPACE541

We study metric properties of P into a two-dimensional parameter space. The notion of α-542

product depends on three elements that are two vectors of Em, (1)ω and (2)ω , and one affine543

tensor p = (pi1i2) of order 2 belonging to E(2)
m = Em⊗Em. Given any ordered pair of vectors,544

p is uniquely determined as a geometric object. This implies that each covariant component545

of p is always a coherent subjective probability ([15]). It is possible that all reasonable peo-546

ple share each covariant component of p with regard to some problem that may be considered.547

Nevertheless, an opinion in terms of probability shared by many people always remains a sub-548

jective opinion. It is meaningless to say that it is objectively exact. Indeed, a sum of many549

subjective opinions in terms of probability can never lead to an objectively correct conclusion550

([14]). Thus, given a bivariate random quantity Ω12 ≡ {1Ω,2Ω}, its coherent prevision P(Ω12)551

is an α-product (1)ω � (2)ω whose metric properties remain unchanged by extending them to552

P. Therefore, P is an α-commutative prevision because it is possible to write553

(43) P(1Ω 2Ω) = P(2Ω 1Ω),554

P is an α-associative prevision because it is possible to write555

(44) P[(b 1Ω)2Ω] = P[1Ω(b 2Ω)] = bP(1Ω 2Ω), ∀b ∈ R,556
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P is an α-distributive prevision because it is possible to write557

(45) P[(1Ω+2Ω)3Ω] = P(1Ω 3Ω)+P(2Ω 3Ω).558

Moreover, when one writes559

(46) P(1Ω 2Ω) = P(2Ω 1Ω) = 0,560

one says that 1Ω and 2Ω are α-orthogonal univariate random quantities. We exclude that all561

possible values of 1Ω and 2Ω are null. In particular, one observes that the α-distributive prop-562

erty of prevision implies that the covariant components of the affine tensor p(13) are equal to563

the ones of the affine tensor p(23). Moreover, the covariant components of the affine tensor con-564

nected with the two univariate random quantities 1Ω+2Ω and 3Ω are the same of the ones of565

p(13) and p(23). By considering the joint probabilities of a bivariate random quantity one finally566

says that its coherent prevision denoted by P is bilinear. It is separately linear with respect to567

each marginal univariate random quantity of the bivariate random quantity under consideration.568

It is then possible to rewrite (32) and (33) in order to obtain569

(47) 12 f � 34 f =

∣∣∣∣∣∣∣∣∣∣
P(1Ω 3Ω) P(1Ω 4Ω)

P(2Ω 3Ω) P(2Ω 4Ω)

∣∣∣∣∣∣∣∣∣∣
570

as well as571

(48) ‖12 f ‖2
α =

∣∣∣∣∣∣∣∣∣∣
P(1Ω 1Ω) P(1Ω 2Ω)

P(2Ω 1Ω) P(2Ω 2Ω)

∣∣∣∣∣∣∣∣∣∣
.572

If the possible values of the two univariate random quantities of Ω12 ≡ {1Ω,2Ω} are corre-573

spondingly equal and the covariant components of the tensor p = (pi1i2) having different nu-574

merical values as indices are null, then P(Ω12) = P(1Ω 2Ω) = P(2Ω 1Ω) coincides with the575

α-norm of (1)ω = (2)ω . Given a bivariate transformed random quantity
Ω12

t ≡ {
1Ω

t ,
2Ω

t}, its576

coherent prevision P(
Ω12

t) is an α-product (1)t� (2)t whose metric properties remain unchanged577
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by extending them to P. By rewriting (40) and (41) we have then578

(49) 12t � 34t =

∣∣∣∣∣∣∣∣∣∣
P(

Ω13
t) P(

Ω14
t)

P(
Ω23

t) P(
Ω24

t)

∣∣∣∣∣∣∣∣∣∣
579

as well as580

(50) ‖12t‖2
α =

∣∣∣∣∣∣∣∣∣∣
P(

Ω11
t) P(

Ω12
t)

P(
Ω21

t) P(
Ω22

t)

∣∣∣∣∣∣∣∣∣∣
.581

In particular, when it turns out to be pi1i2 = pi1 pi2 , ∀i1, i2 ∈ Im, with Im ≡ {1,2, . . . ,m}, one582

observes that a stochastic independence exists. Hence, one obtains P(
Ω12

t) = 0, that is to say,583

(1)t and (2)t are α-orthogonal. One equivalently says that the covariance of 1Ω and 2Ω is equal584

to 0.585

8. POSSIBLE DATA OF A THREE-DIMENSIONAL PARAMETER SPACE586

A three-dimensional parameter space contains all possible parameters viewed as ordered587

triples of real numbers. They are “a priori” possible data. Only one of them will be true “a588

posteriori”. A three-dimensional parameter space Ω ⊆ R3 can be represented by a trivariate589

random quantity denoted by Ω123 ≡ {1Ω,2Ω,3Ω}. It belongs to the set (3)S
(3) of trivariate ran-590

dom quantities ([3]). A trivariate random quantity has always three marginal univariate random591

quantities as its components. Each of them represents a partition of incompatible and exhaus-592

tive events. We consider three univariate random quantities, 1Ω, 2Ω and 3Ω, in a joint fashion593

when we study a trivariate random quantity denoted by Ω123. We denote by (1Ω,2Ω,3Ω) an594

ordered triple of univariate random quantities that are the components of Ω123. Each trivariate595

random quantity is represented by an affine tensor of order 3 denoted by T ∈ (3)S
(3). It turns596

out to be (3)S
(3) ⊂ E(3)

m = Em⊗Em⊗Em, where m represents the number of the distinct possible597

values of every univariate random quantity of Ω123. Given an orthonormal basis of E(3)
m , {e j},598

j = 1, . . . ,m, every trivariate random quantity belonging to the set (3)S
(3) is expressed by599

(51) T = (1)ω ⊗ (2)ω ⊗ (3)ω = (1)θ
i1
(2)θ

i2
(3)θ

i3ei1⊗ ei2⊗ ei3.600
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We have obtained (51) by considering (1Ω,2Ω,3Ω) as a possible ordered triple of univariate601

random quantities. All possible ordered triples of univariate random quantities are six. It turns602

out to be 3! = 6. Thus, if one wants to leave out of consideration the six possible permutations603

of (1Ω,2Ω,3Ω) then one has to consider an antisymmetric tensor of order 3 denoted by 123 f .604

Its contravariant components are given by605

(52) 123 f (i1i2i3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θ
i1

(1)θ
i2

(1)θ
i3

(2)θ
i1

(2)θ
i2

(2)θ
i3

(3)θ
i1

(3)θ
i2

(3)θ
i3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.606

We denote by (3)S
(3)∧ ⊂ E(3)∧

m the vector space of the antisymmetric tensors of order 3 repre-607

senting trivariate random quantities. Given the tensor of the joint probabilities p(123) = (p(123)
i1i2i3 ),608

we should use a trilinear form when we want to know how far the possible values of Ω123 are609

spread out from its coherent prevision P(Ω123) = (1)θ
i1
(2)θ

i2
(3)θ

i3 pi1i2i3 . Nevertheless, we in-610

troduce the notion of a trivariate random quantity divided into three bivariate random quantities,611

Ω12, Ω13 and Ω23, in order to avoid this thing. Therefore, a generic trivariate random quantity612

divided into three bivariate random quantities is exclusively characterized by three affine tensors613

of the joint probabilities that are respectively p(12) = (p(12)
i1i2 ), p(13) = (p(13)

i1i3 ) and p(23) = (p(23)
i2i3 ).614

The covariant components of 123 f are expressed by615

(53) 123 f(i1i2i3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θi1 (1)θi2 (1)θi3

(2)θi1 (2)θi2 (2)θi3

(3)θi1 (3)θi2 (3)θi3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.616

When the covariant indices to right-hand side of (53) vary over all their possible values one617

finally obtains three sequences of values representing those marginal probabilities connected618

with the possible values of each marginal univariate random quantity of Ω123. Hence, the619

vector space of the random quantities that are the components of Ω123 is denoted by (2)S
(1).620
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We consequently denote by (2)S
(3)∧ ⊂ E(3)∧

m the vector space of the antisymmetric tensors of621

order 3 representing trivariate random quantities divided into three bivariate random quantities.622

9. A LARGER SPACE OF ALTERNATIVES CONNECTED WITH A THREE-DIMENSIONAL623

PARAMETER SPACE624

It is possible to extend to the antisymmetric tensors 123 f and 456 f the notion of α-product625

into (2)S
(3)∧. This means that information and knowledge at a certain instant of a given decision-626

maker make the range of possibility more extensive. We suppose that Ω123 and Ω456 have at627

least a possible value that is the same. This common value is the true value to be verified “a628

posteriori”. Thus, one has629

(54) 123 f (i1i2i3)� 456 f(i1i2i3) =
1
3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θ
i1

(1)θ
i2

(1)θ
i3

(2)θ
i1

(2)θ
i2

(2)θ
i3

(3)θ
i1

(3)θ
i2

(3)θ
i3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4)θi1 (4)θi2 (4)θi3

(5)θi1 (5)θi2 (5)θi3

(6)θi1 (6)θi2 (6)θi3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.630

It is always possible to write631

(55) 123 f � 456 f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)ω � (4)ω (1)ω � (5)ω (1)ω � (6)ω

(2)ω � (4)ω (2)ω � (5)ω (2)ω � (6)ω

(3)ω � (4)ω (3)ω � (5)ω (3)ω � (6)ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,632

that is to say, one obtains633

(56) 123 f � 456 f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P(1Ω4Ω) P(1Ω5Ω) P(1Ω6Ω)

P(2Ω4Ω) P(2Ω5Ω) P(2Ω6Ω)

P(3Ω4Ω) P(3Ω5Ω) P(3Ω6Ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.634
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In particular, when the two tensors of (54) are the same one has635

(57) ‖123 f ‖2
α =

1
3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θ
i1

(1)θ
i2

(1)θ
i3

(2)θ
i1

(2)θ
i2

(2)θ
i3

(3)θ
i1

(3)θ
i2

(3)θ
i3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)θi1 (1)θi2 (1)θi3

(2)θi1 (2)θi2 (2)θi3

(3)θi1 (3)θi2 (3)θi3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.636

One has operationally637

(58) ‖123 f ‖2
α =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖(1)ω‖
2
α (1)ω � (2)ω (1)ω � (3)ω

(2)ω � (1)ω ‖(2)ω‖
2
α (2)ω � (3)ω

(3)ω � (1)ω (3)ω � (2)ω ‖(3)ω‖
2
α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,638

that is to say, it is always possible to write639

(59) ‖123 f ‖2
α =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P(1Ω1Ω) P(1Ω2Ω) P(1Ω3Ω)

P(2Ω1Ω) P(2Ω2Ω) P(2Ω3Ω)

P(3Ω1Ω) P(3Ω2Ω) P(3Ω3Ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.640

It is evident that the notion of a coherent prevision of different bivariate random quantities char-641

acterizes a metric structure of trivariate random quantities divided into three bivariate random642

quantities. Hence, it is made clear which is the role of the notion of coherence into funda-643

mental metric expressions characterizing trivariate random quantities. Such a notion is always644

connected with the joint probabilities of the bivariate random quantities under consideration.645

When one has (1)ω = b(2)ω , with b ∈ R, it follows that (58) is equal to 0. It is possible to646

define the tensor f as a linear combination of 123 f and 456 f into (2)S
(3)∧ such that one can write647

f = 123 f +b456 f , with b ∈ R. Then, the Schwarz’s α-generalized inequality becomes648

(60) |123 f � 456 f | ≤ ‖123 f ‖α‖456 f ‖α ,649
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the α-triangle inequality becomes650

(61) ‖123 f + 456 f ‖α ≤ ‖123 f ‖α +‖456 f ‖α ,651

while the cosine of the angle γ becomes652

(62) cosγ = 123 f � 456 f
‖123 f ‖α‖456 f ‖α

.653

Now, we consider three transformed univariate random quantities that are respectively
1Ω

t ,
2Ω

t654

and
3Ω

t . They are represented by the vectors (1)t, (2)t and (3)t whose contravariant components655

are given by (1)t
i = (1)θ

i− (1)ω̄
i, (2)t

i = (2)θ
i− (2)ω̄

i and (3)t
i = (3)θ

i− (3)ω̄
i. We are therefore656

able to consider an antisymmetric tensor of order 3 denoted by 123t characterizing the trans-657

formed trivariate random quantity expressed by
Ω123

t . Then, the contravariant components of658

this tensor are given by659

(63) 123t(i1i2i3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)t
i1

(1)t
i2

(1)t
i3

(2)t
i1

(2)t
i2

(2)t
i3

(3)t
i1

(3)t
i2

(3)t
i3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.660

Its covariant components are given by661

(64) 123t(i1i2i3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)ti1 (1)ti2 (1)ti3

(2)ti1 (2)ti2 (2)ti3

(3)ti1 (3)ti2 (3)ti3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.662

The α-product of the two tensors 123t and 456t is given by663

(65) 123t � 456t =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)t� (4)t (1)t� (5)t (1)t� (6)t

(2)t� (4)t (2)t� (5)t (2)t� (6)t

(3)t� (4)t (3)t� (5)t (3)t� (6)t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.664
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The α-norm of the tensor 123t is given by665

(66) ‖123t‖2
α =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖(1)t‖
2
α (1)t� (2)t (1)t� (3)t

(2)t� (1)t ‖(2)t‖
2
α (2)t� (3)t

(3)t� (1)t (3)t� (2)t ‖(3)t‖
2
α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.666

Different point estimates of a three-dimensional parameter space are evidently expressed by667

different ordered triples of real numbers. We have then668

(67)



P(1Ω) = (1)θ
i

P(2Ω) = (2)θ
i

P(3Ω) = (3)θ
i


669

as well as670

(68)



‖(1)t‖
2
α = σ2

1Ω

‖(2)t‖
2
α = σ2

2Ω

‖(3)t‖
2
α = σ2

3Ω


.671

We have to separate all “a priori” possible data relative to each bivariate random quantity under672

consideration in order to study single finite populations.673

10. CONCLUSIONS674

We have studied different parameter spaces geometrically represented by different random675

quantities. We have accepted the principles of the theory of concordance into the domain of676

subjective probability. We did not consider random variables viewed as measurable functions677

into a probability space characterized by a σ -algebra. Nevertheless, we have considered pa-678

rameter spaces always provided with a metric structure. This metric structure is useful in order679



30 PIERPAOLO ANGELINI

to obtain different quantitative measures that allow us of considering meaningful relationships680

between multivariate random quantities. We have introduced antisymmetric tensors satisfying681

simplification and compression reasons with respect to these random quantities into this metric682

structure. A set of possible alternatives has always been viewed as a set of all possible samples683

whose size is equal to 1 selected from a finite population. Such a finite population coincides684

with those coherent previsions of a univariate random quantity representing all possible alterna-685

tives considered “a priori”. Thus, all coherent previsions of a given bivariate random quantity686

have been divided into all coherent previsions of its two marginal univariate random quanti-687

ties. A given decision-maker chooses “a priori” an ordered pair of possible alternatives. Every688

pair of possible alternatives is viewed as an ordered pair of coherent previsions of two mar-689

ginal univariate random quantities. He chooses that pair of possible alternatives to which he690

subjectively assigns a larger probability. In other words, he chooses those coherent probability691

distributions whose expected values coincide with this “a priori” possible pair of alternatives.692

Other two probability distributions must separately be considered when he knows “a posteriori”693

the true parameter of the aggregate population. They are two particular but coherent proba-694

bility distributions. An analogous reasoning holds when we consider an one-dimensional or a695

three-dimensional parameter space.696
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