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Summary In this paper, we demonstrate that standard central limit theorem (CLT) results
do not hold for means of non-parametric, conditional efficiency estimators, and we provide
new CLTs that permit applied researchers to make valid inference about mean conditional
efficiency or to compare mean efficiency across groups of producers. The new CLTs are
used to develop a test of the restrictive ‘separability’ condition that is necessary for second-
stage regressions of efficiency estimates on environmental variables. We show that if this
condition is violated, not only are second-stage regressions difficult to interpret and perhaps
meaningless, but also first-stage, unconditional efficiency estimates are misleading. As such,
the test developed here is of fundamental importance to applied researchers using non-
parametric methods for efficiency estimation. The test is shown to be consistent and its local
power is examined. Our simulation results indicate that our tests perform well both in terms of
size and power. We provide a real-world empirical example by re-examining the paper by Aly
et al. (1990, Review of Economics and Statistics 72, 211–18) and rejecting the separability
assumption implicitly assumed by Aly et al., calling into question results that appear in
hundreds of papers that have been published in recent years.

Keywords: Conditional efficiency, Data envelopment analysis (DEA), Free-disposal hull
(FDH), Separability, Technical efficiency, Two-stage estimation.

1. INTRODUCTION

Non-parametric efficiency estimators are widely used to benchmark the performance of firms
and other decision-making units. Unconditional versions of these estimators measure distance
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from a particular point in input–output space to an estimate of the boundary of the attainable set,
i.e., the set of feasible combinations of inputs and outputs. Farrell (1957) is the first empirical
example of such estimators, and relies on the convex hull of a set of observed input–output
combinations to estimate the attainable set. This method has been popularized by Charnes et al.
(1978) and is known in the literature as data envelopment analysis (DEA).1 Deprins et al. (1984)
relaxed the convexity assumption in the DEA estimator by using the free-disposal hull (FDH) of
a set of observed input–output combinations to estimate the attainable set. More recently, Daraio
and Simar (2005) have developed conditional measures of efficiency, allowing non-parametric
estimation of technical efficiency conditional on some explanatory, contextual, ‘environmental’
variables that are neither inputs nor outputs in the production process. Recent surveys of both the
unconditional and conditional estimators are provided by Simar and Wilson (2013, 2015).

Kneip et al. (2015) demonstrate that conventional central limit theorem (CLT) results do not
hold for sample means of unconditional DEA and FDH estimates, and they provide new CLTs
that enable inference about mean efficiency using asymptotic normal approximations. Kneip
et al. (2016) extend these results to provide tests of (a) differences in mean efficiency across
groups of producers, (b) convexity versus non-convexity of production sets, and (c) constant
versus variable returns to scale, but only in the absence of environmental variables. In this paper,
we show that conventional CLTs also do not hold for sample means of conditional DEA and
FDH estimators, and we provide new CLTs that enable applied researchers to make inferences
about mean conditional efficiency. On the surface, this extension parallels the development in
Kneip et al. (2015), but some additional complication arises due to the presence of a bandwidth
parameter in the conditional estimators. Because of the presence of bandwidths, new theoretical
results on moments, CLTs, etc., are needed and these are provided for conditional efficiency
estimators. In addition, we develop a statistical test of the restrictive ‘separability’ condition
described by Simar and Wilson (2007) that must be maintained when DEA or FDH efficiency
estimates are regressed on explanatory variables in a second-stage estimation exercise. Given
the restrictiveness of the separability condition as discussed below, the continued proliferation
of studies regressing DEA or FDH efficiency estimates on variables in a second stage, and the
lack, to date, of any test of the separability condition, the development here of such a test is an
important contribution. The test is shown to be consistent and its local power is examined.

The presence of environmental variables raises important questions for practitioners, such as
the question of precisely how the environmental variables might affect the production process.
Conceivably, the environmental variables might affect only the distribution of efficiency among
firms. However, environmental variables might affect the production possibilities of firms, or
environmental variables might affect both the distribution of efficiency as well as production
possibilities. The separability condition described by Simar and Wilson (2007) amounts to an
assumption that environmental variables only affect the distribution of efficiency and do not
affect production possibilities. If the separability condition does not hold, unconditional DEA
and FDH estimators have no useful interpretation; that is, not only are second-stage regressions
difficult to interpret and perhaps without meaning when the separability condition is violated, but
also the (unconditional) first-stage efficiency estimates do not estimate any meaningful model
feature.

In the next section, we establish notation and develop the statistical framework. The
requisite estimators are briefly discussed in Section 3. Our main theoretical results appear in

1 Banker et al. (1984) modified the Farrell (1957) estimator by using the conical hull of a set of observed input–output
combinations to estimate the attainable set, thereby imposing an assumption of constant returns to scale.
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Sections 4 and 5. In Section 4, we first derive results on asymptotic moments of conditional
efficiency estimators. We then use these results to show that standard CLTs (e.g., Lindeberg–
Feller) do not hold for means of conditional efficiency estimates, and to develop new CLTs
for means of conditional efficiency estimates. We also discuss in Section 4 the bias estimates
and subsampling methods needed for the new CLT results. Then, in Section 5, we use the
new CLTs to develop statistical tests of separability versus non-separability. In Section 6, we
revisit the empirical work of Aly et al. (1990) who estimate efficiency for a subsample of
US commercial banks, and then we regress the efficiency estimates on some environmental
variables. In particular, our tests provide strong evidence that the separability condition implicitly
assumed by Aly et al. (1990) does not hold, calling into question the results of their second-stage
regression. Conclusions are given in the final section.

Separately, the online Appendices contain additional details. Online Appendix A gives
technical assumptions used to derive results in Section 5, and proofs of lemmata and theorems
are given in online Appendix B. In online Appendix C, we discuss how one can handle discrete
environmental variables. The supplementary material mentioned in Section 5.6 appears in online
Appendix D. The results of Monte Carlo experiments providing evidence on the size and power
of the proposed tests, mentioned briefly in Section 5.7, appear in online Appendix E.

2. THE PRODUCTION PROCESS IN THE PRESENCE OF ENVIRONMENTAL
FACTORS

In this section, we formalize a statistical model of the production process along the lines of
the probability framework of Cazals et al. (2002). The production process generates random
variables (X, Y,Z) in an appropriate probability space, where X ∈ R

p
+ is the vector of input

quantities, Y ∈ R
q
+ is the vector of output quantities and Z ∈ R

r is a vector of variables
describing environmental factors. The elements in Z are neither inputs nor outputs and are
typically not under the control of the manager, but they may influence the production process in
different ways as explained below. Let fXYZ(x, y, z) denote the joint density of (X, Y,Z) which
has support P ⊂ R

p
+ × R

q
+ × R

r . This joint density can always be decomposed as

fXYZ(x, y, z) = fXY|Z(x, y | z)fZ(z). (2.1)

Let �z denote the conditional support of fXY |Z(x, y | z), i.e., the support of (x, y) given Z = z,
and let Z be the support of fZ(z). Then �z is the set of feasible combinations of inputs and
outputs for a firm facing the environmental conditions Z = z; i.e.,

�z = {(X, Y ) | X can produce Y when Z = z}. (2.2)

The environmental variables in Z can affect the production process in one of the following
ways: (a) only through �z, the support of (X, Y ); (b) only through the density fXY|Z(x, y | z),
thereby affecting the probability for a firm to be near its optimal boundary; (c) through both �z

and fXY|Z(x, y | z). Let

� =
⋃
z∈Z

�z. (2.3)

By construction, �z ⊆ � ∀ z ∈ Z , and clearly � ⊂ R
p+q
+ . However, whether � is useful for

benchmarking the performance of a firm producing output levels y from input levels x while

C© 2017 Royal Economic Society.
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facing levels z of the environmental variables depends on whether the separability condition
described by Simar and Wilson (2007) is satisfied. This condition requires that Z affect
production only through the conditional density fXY|Z(x, y | z) without affecting its support �z,
and is stated explicitly in Assumption 2.1.

ASSUMPTION 2.1. (SEPARABILITY CONDITION) �z = � for all z ∈ Z .

Clearly, when Assumption 2.1 holds, the joint support of (X, Y,Z) can be factorized as

P = � × Z, (2.4)

and � can be interpreted as the unconditional attainable set

� = {(X, Y ) | X can produce Y }. (2.5)

However, � has the interpretation in (2.5) if and only if (iff) Assumption 2.1 holds. The
separability condition is very strong and restrictive. Under Assumption 2.1, the environmental
factors influence neither the shape nor the level of the boundary of the attainable set, and
the potential effect of Z on the production process is only through the distribution of the
inefficiencies. If the separability condition holds, it is meaningful to measure the efficiency of
a particular production plan (x, y) by its distance to the boundary of �. For example, under
separability, the output-oriented Farrell efficiency score is given by

λ(x, y) = sup{λ > 0 | (x, λy) ∈ �}
= sup{λ > 0 | HXY (x, λy) > 0}, (2.6)

where HXY (x, y) = Pr(X ≤ x, Y ≥ y) is the probability of finding a firm dominating the
production unit operating at the level (x, y).2

In this case, it is meaningful to analyse the behaviour of λ(x, y) as a function of Z by using
an appropriate regression model; see Simar and Wilson (2007, 2011) for details.3

Alternatively, if the separability condition does not hold, then we have a more general
situation where Z may influence the level and the shape of the boundary of the attainable
sets (and may also influence the conditional density fXY|Z(x, y | z)). The following assumption
characterizes this situation explicitly.

ASSUMPTION 2.2. (NON-SEPARABILITY ASSUMPTION) �z 
= � for some z ∈ Z .

Note that Assumptions 2.1 and 2.2 are mutually exclusive; one and only one holds in a
given situation. Under Assumption 2.2, the efficiency measure in (2.6) is difficult to interpret; in
fact, it is economically meaningless because it does not measure the distance to the appropriate
boundary. If Assumption 2.2 holds, the set � can still be defined as in (2.3), but for benchmarking
production units, the boundary of � has little interest in this case because it may be unattainable
for some firms faced with unfavourable conditions represented described by z. In such cases, the
conditional measure

λ(x, y | z) = sup{λ > 0 | (x, λy) ∈ �z}
= sup{λ > 0 | HXY |Z(x, λy | z) > 0}, (2.7)

2 Note that, as usual, inequalities involving vectors are defined on an element-by-element basis.
3 We focus the presentation in this paper using output-oriented measures of efficiency such as the one in (2.6), but

of course efficiency can be measured in other directions as desired. See the recent surveys by Simar and Wilson (2013,
2015), and references therein, for details. All of the results here are easily generalized to input, hyperbolic, and directional
distance functions after straightforward (but perhaps tedious) changes in notation.

C© 2017 Royal Economic Society.
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introduced by Cazals et al. (2002) and Daraio and Simar (2005), where HXY|Z(x, y | z) =
Pr(X ≤ x, Y ≥ y | Z = z) is the probability of finding a firm dominating the production unit
operating at the level (x, y) and facing environmental conditions z and is the distribution function
corresponding to the conditional density fXY|Z(x, y | z) introduced earlier, gives a measure of
distance to the appropriate, relevant boundary (i.e., the boundary that is attainable by firms
operating under conditions described by z).

The distinction between Assumptions 2.1 and 2.2, and their implications for how
environmental variables in Z affect the production process, has often been neglected in the
literature where researchers analyse the effect of Z on λ(X, Y ) by estimating some regression of
λ(X, Y ) on Z. Typically, starting with a sample of observations {(Xi, Yi, Zi)}ni=1, DEA or FDH
estimators λ̂(Xi, Yi) computed in a first stage are regressed on Zi in a second-stage analysis. Even
if Assumption 2.1 holds, additional problems described in Simar and Wilson (2007) remain to
be solved in the second stage to obtain sensible inference. Theoretical results on how to make
inference in a second-stage linear regression, when appropriate, are described in detail by Kneip
et al. (2015). However, if Assumption 2.2 holds, the two-stage approach is almost certain to lead
to incorrect results and inferences about the effect of Z on the production process. This explains
why it is important, as noted by Simar and Wilson (2007), indeed essential, to test Assumption
2.1 against Assumption 2.2. If the test rejects separability in favour of Assumption 2.2, then only
a second-stage regression of the conditional measure λ(X, Y | Z) on Z can be meaningful, as
described for example in Bădin et al. (2012).

3. NON-PARAMETRIC EFFICIENCY ESTIMATORS

The literature on non-parametric statistical inference for efficiency scores is by now well
developed; see Simar and Wilson (2013, 2015) for recent surveys. Here, we summarize the
definitions and properties needed to test Assumption 2.1 versus Assumption 2.2. Consider a
sample of independent and identically distributed (i.i.d.) observations Sn = {(Xi, Yi, Zi) | i =
1, . . . , n}. Following Deprins et al. (1984), the FDH estimator λ̂FDH(x, y | Sn) of λ(x, y) is
obtained by replacing � in (2.6) with the FDH of Sn, or alternatively by replacing HXY (x, y)
with its empirical analogue

ĤXY (x, y) = n−1
n∑

i=1

I (Xi ≤ x, Yi ≥ y), (3.1)

where I (·) is the indicator function. Replacing � with the convex hull of the FDH of Sn in
(2.6) gives the DEA efficiency estimator λ̂DEA(x, y | Sn) of λ(x, y). Note that in both of these
unconditional estimators, the data on Zi are ignored; only the first (p + q) components of the
ordered (p + q + r)-tuples in Sn are used.

For the conditional efficiency scores we need to use a smoothed estimator of HXY|Z(x, y |
z) to plug in (2.7), which requires a vector of bandwidths for Z.4 Denoting this r-vector of

4 See Simar et al. (2016) to justify this approach.
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bandwidths by h, the conditional distribution function HXY|Z(x, y | z) is replaced by the estimator

ĤXY|Z(x, y | z) =
∑n

i=1 I (Xi ≤ x, Yi ≥ y)Kh(Zi − z)∑n
i=1 Kh(Zi − z)

, (3.2)

where Kh(·) = (h1, . . . , hr )−1K((Zi − z)/h) and the division between vectors is understood to
be component-wise. As explained in the literature (e.g., see Daraio and Simar, 2007b), the kernel
function K(·) must have bounded support (e.g., the Epanechnikov kernel). This provides the
conditional FDH estimator

λ̂FDH(x, y | z,Sn) = max
i∈IFDH(z,h)

(
min

j=1,...,p

(
Y

j

i

yj

))
, (3.3)

where IFDH(z, h) = {i | z − h ≤ Zi ≤ z + h ∩ Xi ≤ x}.
Alternatively, where one is willing to assume that the conditional attainable sets are convex,

Daraio and Simar (2007b) suggest a conditional DEA estimator of λ(x, y | z), namely

λ̂DEA(x, y | z,Sn) = max
λ,ω1,...,ωn

{
λ > 0 | λy ≤

∑
i∈IDEA(z,h)

ωiYi, x ≥
∑

i∈IDEA(z,h)

ωiXi,

for some ωi ≥ 0 such that
∑

i∈IDEA(z,h)

ωi = 1,
}

(3.4)

where IDEA = {i | z − h ≤ Zi ≤ z + h}. Note that the conditional estimators in (3.3) and (3.4)
are just localized versions of the unconditional FDH and DEA efficiency estimators, where
the degree of localization is controlled by the bandwidth in h. Practical aspects for choosing
bandwidths are discussed below in Section 5.5.

The properties of non-parametric efficiency estimators have been examined in a number of
papers in recent years; again, see Simar and Wilson (2013, 2015) for summaries and references.
Under appropriate assumptions, both the unconditional FDH and DEA estimators are consistent
and converge to limiting distributions at rates nκ where κ = 1/(p + q) in the FDH case or
κ = 2/(p + q + 1) in the DEA case. Kneip et al. (2015) provide results on the moments of
both unconditional FDH and DEA estimators.5 In either case, inference on individual efficiency
scores requires bootstrap techniques. In the DEA case, Kneip et al. (2008) provide theoretical
results for both a smoothed bootstrap and for subsampling, while Kneip et al. (2011) and Simar
and Wilson (2011) provide details and methods for practical implementation. Subsampling can
also be used for inference in the FDH case; see Jeong and Simar (2006) and Simar and Wilson
(2011).

Jeong et al. (2010) show that the conditional versions of the FDH and DEA efficiency
estimators share properties similar to their unconditional counterparts whenever the elements
of Z are continuous.6 The sample size n is replaced by the effective sample size used to build
the estimates, which is of order nh1, . . . , hr , which we denote as nh. To simplify the notation,

5 Here and in the exposition that follows, we omit the subscripts ‘FDH’ and ‘DEA’ from the efficiency estimator in
order to describe results in a generic fashion, thereby conserving space.

6 We discuss in online Appendix C how discrete ‘environmental’ variables can be handled. Otherwise, except in online
Appendix C, we assume throughout that all elements of Z are continuous.
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and without loss of generality, we hereafter assume that all of the bandwidths hj = h are the
same, so that nh = nhr . For a fixed point (x, y) in the interior of �z, as n → ∞,

nκ
h (̂λ(x, y | z,Sn) − λ(x, y | z))

L→ Qxy|z(·) (3.5)

where again Qxy|z(·) is a regular, non-degenerate limiting distribution analogous to the
corresponding one for the unconditional case. The main argument in Jeong et al. (2010) relies
on regularity conditions discussed in the next section, but also on the property that there are
enough points in a neighbourhood of z, which is obtained with the additional assumption that
fZ(z) is bounded away from zero at z and that if the bandwidth is going to zero, it should not
go too fast (see Jeong et al., 2010, Proposition 1; if h → 0, h should be of order n−α with
α < 1/r).

4. NEW RESULTS ON CONDITIONAL EFFICIENCY ESTIMATORS

4.1. Asymptotic moments of conditional efficiency estimators

As noted by Kneip et al. (2015), availability of the asymptotic results for efficiency estimated
at a fixed point (x, y) is useful, but not sufficient for analysing the behaviour of statistics that
are functions of FDH or DEA estimators evaluated at random points (Xi, Yi). In the discussion
below, we denote the FDH and DEA efficiency estimators by λ̂(Xi, Yi | Sn) to stress the fact that
the estimator is to be evaluated at a random point (Xi, Yi).

Kneip et al. (2015) prove that for the unconditional FDH and DEA estimators, under some
regularity conditions (see Kneip et al., 2015 for details) and as n → ∞,

E[̂λ(Xi, Yi | Sn) − λ(Xi, Yi)] = Cn−κ + Rn,κ (4.1)

E[(̂λ(Xi, Yi | Sn) − λ(Xi, Yi))
2] = o(n−κ ), (4.2)

and

|Cov(̂λ(Xi, Yi | Sn) − λ(Xi, Yi), λ̂(Xj, Yj | Sn) − λ(Xj, Yj ))| = o(n−1) (4.3)

for all i, j ∈ {1, . . . , n}, i 
= j and where Rn,k = o(n−κ ). The values of the constant C, the rate
κ , and the remainder term Rn,κ depend on which estimator is used. For the DEA estimator, κ =
2/(p + q + 1) and Rn,κ = O(n−3κ/2(log n)α1 ); for the FDH estimator, κ = 1/(p + q) and Rn,κ =
O(n−2κ (log n)α2 ). The values of αj > 1, j = 1, 2 are given in Kneip et al. (2015). For purposes
of the results needed here, the log n factor contained in Rn,κ does not play a role and can be
ignored. The results outlined here are valid under a set of corresponding regularity assumptions;
see Theorems 3.1 and 3.3 in Kneip et al. (2015).

Similar results are needed for the asymptotic moments of the conditional efficiency
estimators. Following Jeong et al. (2010), note that for a given h, the conditional FDH and DEA
estimators in (3.3) and (3.4) do not target λ(x, y | z), but instead estimate

λh(x, y | z) = sup{λ > 0 | (x, λy) ∈ �z,h}, (4.4)

with the conditional attainable set given by

C© 2017 Royal Economic Society.



CLTs for conditional efficiency measures 177

�z,h = {(X, Y ) | X can produce Y, when |Z − z| ≤ h}
= {(x, y) ∈ R

p+q
+ | Hh

XY|Z(x, y | z) > 0}
= {(x, y) ∈ R

p+q
+ | f h

XY|Z(·, · | z) > 0}. (4.5)

Here, Hh
XY|Z(x, y | z) = Pr(X ≤ x, Y ≥ y | z − h ≤ Z ≤ z + h) gives the probability of finding

a firm dominating the production unit operating at the level (x, y) and facing environmental
conditions Z in an h-neighbourhood of z and f h

XY|Z(·, · | z) is the corresponding conditional
density of (X, Y ) given |Z − z| ≤ h implicitly defined by

Hh
XY|Z(x, y | z) =

∫ x

−∞

∫ ∞

y

f h
XY|Z(u, v | Z ∈ [z − h, z + h]) dv du. (4.6)

Alternatively, (4.4) can be written as

λh(x, y | z) = sup{λ > 0 | Hh
XY|Z(x, λy | z) > 0}. (4.7)

Moreover, it is clear that �z,h = ⋃
|̃z−z|≤h �z̃.

Consequently, for all points (x, y) in the support of fXY|Z(x, y | z), the error of estimation
can be decomposed as

λ̂(x, y | z) − λ(x, y | z) = λ̂(x, y | z) − λh(x, y | z)︸ ︷︷ ︸
=�1

+ λh(x, y | z) − λ(x, y | z)︸ ︷︷ ︸
=�2

, (4.8)

where the first difference (�1) is due to the estimation error in the localized problem and the
second difference (�2) is the non-random discrepancy (≤ 0) introduced by the localization.

Some assumptions are needed to define a statistical model. The next three assumptions are
conditional analogues of standard assumptions made by Shephard (1970), Färe (1988), Kneip
et al. (2015) and others.

ASSUMPTION 4.1. For all z ∈ Z , �z and �z,h are closed.

ASSUMPTION 4.2. For all z ∈ Z , both inputs and outputs are strongly disposable; i.e., for
any z ∈ Z , x̃ ≥ x and 0 ≤ ỹ ≤ y, if (x, y) ∈ �z then (̃x, y) ∈ �z and (x, ỹ) ∈ �z. Similarly, if
(x, y) ∈ �z,h then (̃x, y) ∈ �z,h and (x, ỹ) ∈ �z,h.

Assumption 4.2 corresponds to Assumption 1F in Jeong et al. (2010), and amounts to a
regularity condition on the conditional attainable sets justifying the use of the localized versions
of the FDH and DEA estimators. The assumption imposes weak monotonicity on the frontier in
the space of inputs and outputs for a given z ∈ Z , and is standard in micro-economic theory of
the firm.

The next assumption concerns the regularity of the density of Z and of the conditional density
of (X, Y ) given Z = z, as a function of z in particular near the efficient boundary of �z; see
Assumptions 3 and 5 in Jeong et al. (2010).

ASSUMPTION 4.3. Z has a continuous density fZ(·) such that for all z ∈ ZfZ(z) is bounded
away from zero. Moreover, the conditional density fXY|Z(·, · | z) is continuous in z and is strictly
positive in a neighbourhood of the frontier of �z.

ASSUMPTION 4.4. For all (x, y) in the support of (X, Y ), λh(x, y | z) − λ(x, y | z) = O(h) as
h → 0.

C© 2017 Royal Economic Society.
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Assumption 4.4 amounts to an assumption of continuity of λ(·, · | z) as a function of z, and
is analogous to Assumption 2 of Jeong et al. (2010).

A number of additional assumptions are needed to complete the statistical model and to
permit statistical analysis of the conditional estimators that have been introduced above as well
as the test statistics introduced below. These assumptions are given in online Appendix A.
Depending on the estimators that are used in a particular situation (i.e., either DEA or FDH),
only a subset of the assumptions listed in online Appendix A are required.

Note that if Z is separable and has no effect on the frontier, then Assumption 4.4 is trivially
satisfied for all h. As noted in Bădin et al. (2017), it is easy to show that if h ∝ n−γ with
1/r > γ > 1/(r + κ−1), the difference in Assumption 4.4 will be o(n−κ

h ). We need γ < r−1

to ensure there are enough observations in the h-neighbourhood of z; see Proposition 1 in Jeong
et al. (2010). As we cannot find an explicit expression for the second component �2 in (4.8),
and as the Weibull distribution linked to the first component �1 contains unknown parameters,
the best that can be done is to determine the order of an optimal bandwidth by balancing the
order of the two error terms, which leads to h ∝ n−1/(r+κ−1), and then, as is usual in non-
parametric smoothing techniques, to take a smaller bandwidth to eliminate the bias term due
to the localization, as suggested in Assumption 2 of Jeong et al. (2010). As expected, the order of
the optimal bandwidth depends on the dimensions of Z as well as of X and Y . In Section 5.5, we
show how to select bandwidths h of appropriate order in applied work (see also the discussions
in Bădin et al., 2017).

The following result provides moments for the conditional efficiency estimators.

THEOREM 4.1. Suppose Assumptions 4.1, 4.2, 4.3, A.1, A.2 and A.4 hold. Then, under
Assumption A.5 for the FDH case, or under Assumptions A.3 and A.6 for the DEA case, as
n → ∞,

E
[̂
λ(Xi, Yi | Zi,Sn) − λh(Xi, Yi | Zi)

] = Ccn
−κ
h + Rc,nh,κ , (4.9)

where Rc,nh,κ = o(n−κ
h ),

E
[
(̂λ(Xi, Yi | Zi,Sn) − λh(Xi, Yi | Zi))

2
] = o(n−κ

h ), (4.10)

and

|Cov(̂λ(Xi, Yi | Zi,Sn) − λh(Xi, Yi | Zi), λ̂(Xj, Yj | Zj ,Sn) − λh(Xj, Yj | Zj ))| = o
(
n−1

h

)
(4.11)

for all i, j ∈ {1, . . . , n}, i 
= j . In addition, for the conditional DEA estimator Rc,nh,κ =
O(n−3κ/2

h (log nh)α1 ) and for the conditional FDH estimator Rc,nh,κ = O(n−2κ
h (log nh)α2 ).

The role of the bandwidths required for the conditional estimators becomes apparent in
Theorem 4.1. In particular, the bandwidths reduce the effective number of observations used
to estimate the moments as the rates nκ for the unconditional estimators are reduced to nκ

h =
nκ/(κr+1) for the conditional estimators. As will be seen, the log(nh) factors appearing in the
expressions for Rc,nh,κ do not play a role in the results that are derived below.
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4.2. Central limit theorems for conditional efficiency estimators

Consider the sample means

μ̂n = n−1
n∑

i=1

λ̂(Xi, Yi | Sn) (4.12)

and

μ̂c,n = n−1
n∑

i=1

λ̂(Xi, Yi | Zi,Sn) (4.13)

of unconditional and conditional efficiency estimators. The efficiency estimators in (4.12) and
(4.13) could be either FDH or DEA estimators; differences between the two are noted below
when relevant. In this subsection, we use the properties of moments of the conditional efficiency
estimators derived in Section 4.1 to develop CLTs for means of conditional efficiency estimators.

For the case of means of unconditional efficiency estimators, Theorem 4.1 of Kneip et al.
(2015) establishes that

√
n(μ̂n − μ − Cn−κ − Rn,κ )

L→ N (0, σ 2) (4.14)

as n → ∞, where μ = E[λ(X, Y )] and σ 2 = Var(λ(X, Y )). The theorem also establishes that
σ̂ 2 = n−1 ∑n

i=1(̂λ(Xi, Yi | Sn) − μ̂n)2 is a consistent estimator of σ 2. Conventional CLTs (e.g.,
the Lindeberg–Feller CLT) do not account for the bias term Cn−κ , and hence are invalid for
means of unconditional efficiency estimators unless κ > 1/2. In the case of FDH estimators,
κ > 1/2 iff (p + q) ≤ 1; in the case of DEA estimators, κ > 1/2 iff (p + q) ≤ 2. If κ = 1/2,
then the bias is stable as n → ∞, but if κ < 1/2, the bias explodes asymptotically. Kneip et al.
(2015) solve this problem by incorporating a generalized jackknife estimate of the bias and
considering, when needed, test statistics based on averages over a subsample of observations. We
use a similar approach below, although with the conditional efficiency estimators, the problem is
more complicated than the one in Kneip et al. (2015) due to the localization in the conditional
efficiency estimators.

Define

μh
c = E[λh(X, Y | Z)] =

∫
P

λh(x, y | z)fXYZ(x, y, z) dx dy dz (4.15)

and

σ 2,h
c = Var(λh(X, Y | Z)) =

∫
P

(
λh(x, y | z) − μh

c

)2
fXYZ(x, y, z) dx dy dz, (4.16)

where P is defined just before (2.1). These are the localized analogues of μ and σ 2. Next, let
μc,n = n−1 ∑n

i=1 λh(Xi, Yi | Zi). Although μc,n is not observed, by the Lindeberg–Feller CLT
√

n(μc,n − μh
c )√

σ
2,h
c

L→ N (0, 1) (4.17)

under mild assumptions.
An obvious solution might be to estimate μh

c by μ̂c,n, but this proves to be problematic.
To see this, define ζn = μ̂c,n − μc,n. It is clear that E[ζn] = Ccn

−κ
h + Rc,nh,κ by (4.9), and
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Var(ζn) = o(n−1
h ) due to (4.10) and (4.11). It follows that ζn − E[ζn] = op(n−1/2

h ). Now define
μ̃c,n = E[μ̂c,n]. Then

μ̃c,n = μh
c + Ccn

−κ
h + Rc,nh,κ , (4.18)

and it follows that

μ̂c,n − μ̃c,n = μc,n − μh
c + ζn − E[ζn],

= μc,n − μh
c + op(n−1/2

h ). (4.19)

Clearly,
√

n(μ̂c,n − μ̃c,n)/
√

σ
2,h
c diverges as n → ∞ because, although

√
n(μc,n − μh

c ) = Op(1),

n1/2op(n−1/2
h ) diverges as nh = n1−γ r with 1/(r + κ−1) < γ < 1/r . Changing the scaling and

considering na(μ̂c,n − μ̃c,n) for some a such that 0 < a < (1 − γ r)/2 < 1/2 does not work
because the limiting distribution collapses to a point mass at zero in this case. Consequently, it
seems there is no way to develop a CLT for means of conditional efficiency estimators analogous
to the one in (4.14) for means of unconditional efficiency estimators.

The following result is useful for the results developed below.

LEMMA 4.1. Under the assumptions of Theorem 4.1, for κ = 1/(p + q) in the case of the FDH
estimator and for κ = 2/(p + q + 1) in the case of the DEA estimator,

E[̂λ(Xi, Yi | Zi,Sn)] = μh
c + Ccn

−κ
h + Rc,nh,κ (4.20)

and

Var(̂λ(Xi, Yi | Zi,Sn)) = σ 2,h
c + o(n−κ/2

h ), (4.21)

where Rc,nh,κ = o(n−κ
h ).

Next, consider a random subsample S∗
nh

from Sn of size nh where, for simplicity, we use the
optimal rates for the bandwidths so that nh = O(n1/(κr+1)). Define

μc,nh
= 1

nh

∑
(Xi,Yi ,Zi )∈S∗

nh

λh(Xi, Yi | Zi), (4.22)

μ̂c,nh
= 1

nh

∑
{(Xi,Yi ,Zi )∈S∗

nh
}
λ̂(Xi, Yi | Zi,Sn), (4.23)

and let μ̃c,nh
= E[μ̂c,nh

]. Note that the estimators on the right-hand side of (4.23) are computed
relative to the full sample Sn, but the summation is over elements of the subsample S∗

nh
.

The next result provides our first CLT for means of conditional efficiency estimators.

THEOREM 4.2. Under the assumptions of Theorem 4.1, the following conditions hold as
n → ∞ with κ = 1/(p + q) for the FDH case and κ = 2/(p + q + 1) for the DEA case:
(a) μ̃c,nh

= μh
c + Ccn

−κ
h + Rc,nh,κ ; (b) μ̂c,nh

− μ̃c,nh
= μc,nh

− μh
c + op(n−1/2

h ); (c)
√

nh(μ̂c,nh
−

μh
c − Ccn

−κ
h − Rc,nh,κ )/

√
σ

2,h
c

L→ N (0, 1); (d) for σ̂ 2,h
c,n = n−1 ∑n

i=1(̂λ(Xi, Yi | Zi,Sn) − μ̂c,n)2,

σ̂ 2,h
c,n /σ 2,h

c

p→ 1.

There are no cases where standard CLTs with rate
√

n can be used with means of conditional
efficiency estimators, unless Z is irrelevant with respect to the support of (X, Y ) (i.e., unless
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Assumption 2.1 holds). Theorem 4.2 provides a CLT for means of conditional efficiency
estimators, but the convergence rate is

√
nh as opposed to

√
n, and the result is of practical

use only if κ > 1/2. If κ = 1/2, then the bias term Ccn
−κ
h does not vanish, and if κ < 1/2, the

bias term explodes as n → ∞. These cases are addressed below.

4.3. Bias corrections and subsample averaging

For the unconditional case, all necessary details can be found in Theorems 4.3 and 4.4 of Kneip
et al. (2015). Here, we derive corresponding results for conditional efficiency estimators. Assume
that the observations in Sn are randomly ordered, and to simplify notation, assume that n is even.
Let S (1)

n/2 denote the set of the first n/2 observations from Sn, and let S (2)
n/2 denote the set of

remaining n/2 observations from Sn.7 Next, for j ∈ {1, 2} define

μ̂
j

c,n/2 = (n/2)−1
∑

(Xi,Yi ,Zi )∈S (j )
n/2

λ̂(Xi, Yi | Zi,S (j )
n/2). (4.24)

Let μ̃c,n/2 = E[μ̂1
c,n/2] = E[μ̂2

c,n/2] and define

μ
j

c,n/2 = 2

n

∑
(Xi,Yi ,Zi )∈S (j )

n/2

λh(Xi, Yi | Zi). (4.25)

By (4.19),

μ̂
j

c,n/2 − μ̃c,n/2 = μ
j

c,n/2 − μh
c + op(n−1/2

h ) (4.26)

for j ∈ {1, 2}. Now define μ̂∗
c,n/2 = (μ̂1

c,n/2 + μ̂2
c,n/2)/2. Clearly,

μ̂∗
c,n/2 − μ̃c,n/2 = μc,n − μh

c + op(n−1/2
h ). (4.27)

Subtracting (4.19) from (4.27) and rearranging terms yields

μ̂∗
c,n/2 − μ̂c,n = μ̃c,n/2 − μ̃c,n + op(n−1/2

h ). (4.28)

From (4.18) we have μ̃c,n/2 − μ̃c,n = Cc(2κ − 1)n−κ
h + R∗

c,nh,κ
where R∗

c,nh,κ
= Rc,nh/2,κ −

Rc,nh,κ , yielding an estimator

B̃c
κ,nh

= (2κ − 1)−1(μ̂∗
c,n/2 − μ̂c,n) = Ccn

−κ
h + R∗

c,nh,κ
+ op(n−1/2

h ) (4.29)

of the leading bias term Ccn
−κ
h in Theorem 4.2(c). Note that the remainder R∗

c,nh,κ
has the same

order o(n−κ
h ) as Rc,nh,κ and hence can be neglected.

Of course, for n even there are ( n

n/2 ) possible splits of the sample Sn. As noted by Kneip

et al. (2016), the variation in B̃c
κ,nh

can be reduced by repeating the above steps K � ( n

n/2 ) times,

7 If n is odd, then S(1)
n/2 can contain the first �n/2� observations and S(2)

n/2 can contain the remaining n − �n/2�
observations from Sn. The fact that S(2)

n/2 contains one more observation than S(1)
n/2 makes no difference asymptotically.
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shuffling the observations before each split of Sn, and then averaging the bias estimates. This
yields a generalized jackknife estimate

B̂c
κ,nh

= K−1
K∑

k=1

B̃c
κ,nh,k

, (4.30)

where B̃c
κ,nh,k

represents the value computed from (4.29) using the kth sample split.
Combining results yields the following.

THEOREM 4.3. Under the Assumptions of Theorem 4.1, with κ = 1/(p + q) ≥ 1/3 in the FDH
case or κ = 2/(p + q + 1) ≥ 2/5 in the DEA case,

√
nh

(
μ̂c,nh

− μh
c − B̂c

κ,nh
− R∗

c,nh,κ

)
√

σ
2,h
c

L→ N (0, 1) (4.31)

as n → ∞.

If κ < 1/3 in the FDH case, or κ < 2/5 in the DEA case, the remainder term does not vanish
fast enough and

√
nhR

∗
c,nh,κ

→ ∞ as n → ∞. In such cases, efficiency scores must be averaged
over a subsample of smaller size as in Kneip et al. (2015).

Define nh,κ = �n2κ
h � so that

√
nh,κ < n

1/2
h when κ < 1/2. Then define

μ̂c,nh,κ
= 1

nh,κ

∑
(Xi,Yi ,Zi )∈S∗∗

nh,κ

λ̂(Xi, Yi | Zi,Sn) (4.32)

where S∗∗
nh,κ

is a random subsample of size nh,κ from Sn.

THEOREM 4.4. Under the Assumptions of Theorem 4.1, with κ = 1/(p + q) in the FDH case or
κ = 2/(p + q + 1) in the DEA case,

√
nh,κ (μ̂c,nh,κ

− μh
c − B̂c

κ,nh
− R∗

c,nh,κ
)√

σ
2,h
c

L→ N (0, 1), (4.33)

as n → ∞ whenever κ < 1/2.

REMARK 4.1. Kneip et al. (2015) note that for selected values of p + q, two different CLTs are
available for means of unconditional efficiency estimators. The same is true for the conditional
cases. With the DEA estimator when p + q = 4 (so that κ = 2/5), using Theorem 4.3 neglects
a term

√
nhR

∗
c,nh,κ

= O(n−1/10
h ), whereas using Theorem 4.4, and an average over a subsample

we neglect a term
√

nh,κR
∗
c,nh,κ

= O(n−1/5
h ) and we might expect a better approximation. For the

conditional FDH estimator when p + q = 3 (and hence κ = 1/3), using Theorem 4.3 implies
an error of order O(n−1/6

h ), and using an average over a subsample implies, by Theorem 4.4, an
error of the smaller order O(n−1/3

h ).
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5. TESTING SEPARABILITY

5.1. Basic ideas

The goal is to test the null hypothesis of separability (Assumption 2.1) against its complement
(Assumption 2.2). The idea for building a test statistic is to compare the conditional and
unconditional efficiency scores using relevant statistics that are functions of λ̂(Xi, Yi | Sn) and
λ̂(Xi, Yi | Zi,Sn) for i = 1, . . . , n. Note that under Assumption 2.1, λ(X, Y ) = λ(X, Y | Z) with
probability one, even if Z may influence the distribution of the inefficiencies inside the attainable
set, and the two estimators converge to the same object. However, under Assumption 2.2, the
conditional attainable sets �z are different and the two estimators converge to different objects.
Moreover, under Assumption 2.2, λ(X, Y ) ≥ λ(X, Y | Z) with strict inequality holding for some
(X, Y,Z) ∈ P .

The approach developed here is similar to those developed in Kneip et al. (2016) for testing
constant versus variable returns to scale or for testing convexity versus non-convexity of the
attainable set. Recall the sample means in (4.12) and (4.13), where the efficiency estimators on
the right-hand side of (4.12) and (4.13) could be either FDH or DEA estimators. For purposes
of the following discussion, suppose the same type of estimators (FDH or DEA) are used in
both (4.12) and (4.13). By construction (μ̂n − μ̂c,n) ≥ 0, and the null hypothesis of separability
should be rejected if this difference is too big. However, several problems remain to be solved,
requiring some preliminary steps to adapt the existing results to the set-up here. We demonstrate
in online Appendix E that the procedure works well in practice with finite sample sizes.

5.2. Test statistics

Let μ = E[λ(X, Y )], μc = E[λ(X, Y | Z)], and ξ = μ − μc. In addition, let ξh = μ − μh
c

where μh
c is defined in (4.15). Note that because for all h, μ ≥ μh

c ≥ μc and hence ξ ≥ ξh ≥ 0.
Moreover, under the null ξh = ξ = 0 for all h. As noted above, in order to test the hypothesis
that Z is separable, i.e., to test H0 : Assumption 2.1 holds versus H1 : Assumption 2.2 holds, one
might consider the difference between estimators μ and μh

c , which under the null estimate the
same quantity. When the null is true, λ(X, Y ) ≡ λh(X, Y |Z) with probability one, for all values of
h. Under the null, the two estimators μ̂n and μ̂c,nh

have (when appropriately rescaled, depending
on the value of κ), an asymptotic normal distribution with mean μ = μh

c and variance σ 2 = σ 2,h
c

for all h, and so both are consistent estimators of the common μ. As explained in the preceding
section, we can also, in both cases, correct for the inherent bias of the estimators. Clearly, the test
can be stated equivalently in terms of H0 : ξ = 0 versus H1 : ξ > 0 for the reasons discussed in
Section 5.1, indicating that a one-sided test is appropriate.

However, the properties of (μ̂n − μ̂c,nh
) (and their bias-corrected versions) are complicated

because of the covariance between the two estimators, and this covariance is hard to estimate.
Even in the limiting case where h is big enough so that nh = n, it is clear that under the null, the
asymptotic distribution of (μ̂n − μ̂c,nh

) will be degenerate with mass one at zero.8

The solution used here is analogous to the method used in the test for convexity of
� described by Kneip et al. (2016). In particular, the sample Sn can be split into two

8 As observed by Hall et al. (2004), if Z is irrelevant in the production process (independent of (X, Y )), the optimal
value of the bandwidth is infinity. This limiting case is more restrictive that the hypothesis to be tested here, but may
arise in practice.
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independent, parts, S1,n1 and S2,n2 , such that n1 = �n/2�, n2 = n − n1, S1,n1

⋃S2,n2 = Sn, and
S1,n1

⋂S2,n2 = ∅. The n1 observations in S1,n1 are used for the unconditional estimates, while
the n2 observations in S2,n2 are used for the conditional estimates.9

After splitting the sample, compute the estimators

μ̂n1 = n−1
1

∑
(Xi,Yi )∈S1,n1

λ̂(Xi, Yi | S1,n1 ) (5.1)

and

μ̂c,n2,h
= n−1

2,h

∑
(Xi,Yi ,Zi )∈S∗

2,n2,h

λ̂(Xi, Yi | Zi,S2,n2 ), (5.2)

where, as in Section 4.2, S∗
2,n2,h

in (5.2) is a random subsample from S2,n2 of size n2,h =
min(n2, n2h

r ). Consistent estimators of the variances are given in the two independent samples
by

σ̂ 2
n1

= n−1
1

∑
(Xi,Yi )∈S1,n1

(̂λ(Xi, Yi | S1,n1 ) − μ̂n1 )2 (5.3)

and

σ̂ 2,h
c,n2

= n−1
2

∑
(Xi,Yi ,Zi )∈S2,n2

(̂λ(Xi, Yi | Zi,S2,n2 ) − μ̂c,n2 )2 (5.4)

(respectively), where the full (sub)samples are used to estimate the variances.
The estimators of bias corresponding to (4.29) for a single split of each subsample for the

unconditional and conditional cases are given by

B̃κ,n1 = (2κ − 1)−1(μ̂∗
n1/2 − μ̂n1 ) (5.5)

and

B̃c
κ,n2,h

= (2κ − 1)−1(μ̂∗
c,n2/2 − μ̂c,n2 ). (5.6)

For the unconditional case in (5.5), μ̂∗
n1/2 = (μ̂1

n1/2 + μ̂2
n1/2)/2, and for j ∈ {1, 2}, μ̂

j

n1/2 =
(n1/2)−1 ∑

(Xi,Yi ,Zi )∈S (j )
n1/2

λ̂(Xi, Yi | S (j )
n1/2), where S (j )

n1/2 is the j th part of a random split of the

full (sub)sample Sn1 . Details are given in Kneip et al. (2015). For the conditional case in (5.6),
μ̂∗

c,n2/2 = (μ̂1
c,n2/2 + μ̂2

c,n2/2)/2, and for j ∈ {1, 2}, μ̂
j

c,n2/2 = (n2/2)−1 ∑
(Xi,Yi ,Zi )∈S (j )

n2/2
λ̂(Xi, Yi |

Zi,S (j )
n2/2), where S (j )

n2/2 is the j th part of a random split of the full (sub)sample Sn2 . The bias

9 Kneip et al. (2016) proposed splitting the sample unevenly to account for the difference in the convergence rates
between the (unconditional) DEA and FDH estimators used in their convexity test, giving more observations to the
subsample used to compute FDH estimates than to the subsample used to compute DEA estimates. Recall that the
unconditional efficiency estimators converge at rate nκ , while the conditional efficiency estimators converge at rate nκ

h.
The optimal bandwidths are of the order of n−κ/(rκ+1), giving a rate of nκ/(rκ+1) for the conditional efficiency estimators.
Using the logic of Kneip et al. (2016), the full sample Sn can be split so that the estimators in the two subsamples achieve
the same rate of convergence by setting nκ

1 = n
κ/(rκ+1)
2 . This gives n1 = n

1/(rκ+1)
2 . Values of n1 and n2 are obtained by

finding the root η0 in n − η − η1/(rκ+1) = 0 and setting n2 = �η0� and n1 = n − n2. However, this will often result in
too few observations in the first subsample to obtain meaningful results. For example, if p = q = r = 1 and n = 200,
following the reasoning above would lead to n1 = 22 and n2 = 178.
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estimates in (5.5)–(5.6) can then be averaged over K random splits of the two subsamples Sn1

and Sn2 to obtain bias estimates B̂κ,n1 for the unconditional case and B̂c
κ,n2,h

for the conditional
case.

For small values of (p + q) such that κ ≥ 1/3 in the FDH case or κ ≥ 2/5 when DEA
estimators are used, Theorem 4.3 and Theorem 4.3 of Kneip et al. (2015) can be used to
construct an asymptotically normal test statistic for testing the null hypothesis of separability. In
particular, because our bias-corrected sample means are independent due to splitting the original
sample into independent parts, and because two sequences of independent variables, each with
normal limiting distributions, have a joint bivariate normal limiting distribution with independent
marginals, if follows that for the values of (p + q) given above

T1,n = (μ̂n1 − μ̂c,n2,h
) − (B̂κ,n1 − B̂c

κ,n2,h
)√

(̂σ 2
n1

/n1) + (̂σ 2,h
c,n2/n2,h)

L→ N (0, 1) (5.7)

under the null. Alternatively, for κ < 1/2, similar reasoning with Theorem 4.4 and Theorem 4.4
of Kneip et al. (2015) leads to

T2,n = (μ̂n1,κ
− μ̂c,n2,h,κ

) − (B̂κ,n1 − B̂c
κ,n2,h

)√
(̂σ 2

n1
/n1,κ ) + (̂σ 2,h

c,n2/n2,h,κ )

L→ N (0, 1) (5.8)

under the null, where n1,κ = �n2κ
1 � with μ̂n1,κ

= n−1
1,κ

∑
(Xi,Yi )∈S∗

n1,κ

λ̂(Xi, Yi | Sn1 ), and S∗
n1,κ

is

a random subsample of size n1,κ taken from Sn1 ; see Kneip et al. (2015) for details. For the
conditional part, we have similarly, and as described in the preceding section, n2,h,κ = �n2κ

2,h�,

with μ̂c,n2,h,κ
= n−1

2,h,κ

∑
(Xi,Yi ,Zi )∈S∗

n2,h,κ

λ̂(Xi, Yi | Zi,Sn2 ) where S∗
n2,h,κ

is a random subsample of

size n2,h,κ from Sn2 .
Given a random sample Sn, we can compute values T̂1,n or T̂2,n depending on the value of

(p + q). The null should be rejected whenever 1 − (T̂1,n) or 1 − (T̂2,n) is less than the desired
test size, e.g., 0.1, 0.05, or 0.01, where (·) denotes the standard normal distribution function.

5.3. Consistency of the test

It is easy to show that tests based on T1,n or T2,n (as appropriate, depending on the value of κ)
are consistent. Let �n,h denote the denominator in (5.7) and let �n,h,κ denote the denominator

in (5.8). The same reasoning leading to (5.7) can be used to show that T1,n
L→ N ((ξh/�n,h), 1)

under either H0 or H1. Recall from Section 5.2 that under H0 : ξ = 0, it is clear that ξ = ξh.
Now let cα denote a critical value from N (0, 1) for a test of size α such that for ν ∼ N (0, 1),

Pr(ν > cα) = 1 − (cα) (e.g., if α = 0.05, then cα ≈ 1.96). Then

lim
n→∞ Pr(T1,n > cα) = lim

n→∞ Pr
(
ν + ξh

�n,h

> cα

)

= 1 − lim
n→∞ 

(
cα − ξh

�n,h

)

= 1 − lim
n→∞ 

(
cα − ξ + O(h)

�n,h

)
(5.9)
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because, by Assumption 4.4, ξ − ξh = O(h) when h → 0. Then for any ξ > 0 and any sequence
h → 0, this probability approaches 1 as n → ∞ because �n,h → 0 as n → ∞ and therefore
tests based on T1,n are consistent. Similar reasoning leads to limn→∞ Pr(T2,n > cα) = 1 −
limn→∞ (cα − (ξ + O(h))/�n,h,κ ), and hence tests based on T2,n are also consistent.

5.4. Power against asymptotic local alternatives

In Section 5.3, the power of the tests tends to 1 as n → ∞ for any fixed ξ > 0. While this is
perhaps not surprising, additional insight is gained by considering the power of the tests (based
on either T1,n or T2,n) under a sequence of local alternatives H1 : ξn = an−ρ for some a, ρ > 0
and finding values of ρ such that the tests remain consistent.

Consider, first, the test based on T1,n (for appropriately small values of p + q). Because
n1 = nc1 and n2,h = nhrc2 for constants c1, c2 > 0 (typically, c1 = c2 = 0.5), it is easy to show
that

�n,h = n
−1/2
h

√
hr (c2/c1)̂σ 2

n1
+ σ̂

2,h
c,n2 ,

where the square-root term converges in probability to σc as n → ∞ and h → 0. From this, it
can be seen that for a sequence of alternatives with ξn = an

−1/2
n nε for some ε > 0, the power

in (5.9) still converges to 1 as n → ∞. If the optimal order is used for h, then this gives the
sequence ξn = an−ρ and the test remains consistent provided ρ < (1/2(κr + 1)).

For larger values of p + q when the test statistic T2,n must be used, similar reasoning
provides

�n,h,κ = n−κ
h

√
hrκ (c2/c1)̂σ 2

n1
+ σ̂

2,h
c,n2 ,

where again the square-root term converges in probability to σc when n → ∞ and h → 0. Unlike
the previous case, here the sequence of alternatives must depend also on κ . Writing ξn = ah−κ

h nε

for some ε > 0, it can be seen that using the optimal order for h provides the sequence of
alternatives ξn = an−ρ , and the test remains consistent provided ρ < κ/(κr + 1).

In either case (i.e., where either T1,n or T2,n must be used), the results here demonstrate that
the asymptotic local power of the test depends on the dimensionality of the problem through both
r and p + q. This is seen in the simulation results presented in online Appendix E.

5.5. Bandwidth optimization

As noted above, explicit expressions for the two components �1 and �2 of the estimation error
in (4.8) are not available. Consequently, the best that can be done is to determine the order
of optimal bandwidths by balancing the order of the two error terms yielding h ∝ n−1/(r+κ−1)

as explained earlier. Although the order by itself is of little help in applications, following the
suggestion of Jeong et al. (2010) we can select optimal bandwidths for estimating the conditional
distribution HXY|Z(x, y | z) by ĤXY|Z(x, y | z) given in (3.2). This can be accomplished using the
least-squares cross-validation (LSCV) procedure described by Li et al. (2013), smoothing only
on the r conditioning variables in Z, and not the dependent variables (X, Y ). Note that, as proved
by Hall et al. (2004), if one component of Z is irrelevant, then the corresponding bandwidth
obtained by LSCV will converge to infinity as n → ∞; but for relevant components of Z, LSCV
gives a bandwidth with optimal rate h ∝ n−1/(r+4) for estimating HXY|Z(x, y | z).
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Recall that if Z is relevant, the optimal bandwidths for estimating λ(x, y | z) have a
different order (h ∝ n−1/(r+κ−1), as opposed to h ∝ n−1/(r+4)) because of the presence of the
noise due to localizing represented by �2 in (4.8). In practice, it is possible to optimize
bandwidths using LSCV, and then to correct the resulting bandwidths by multiplying by the
scaling factor n1/(r+4)n−1/(r+κ−1) = n(κ−1−4)/((r+4)(r+κ−1) to obtain bandwidths h with optimal
order for estimating λ(x, y | z). To avoid numerical difficulties, for the j th element Z

j

i of Zi ,
j = 1, . . . , r , i = 1, . . . , n, one should, in practice, bound the LSCV search between a small
factor (i.e., 0.01) times the normal reference rule bandwidth (i.e., 0.01 × 1.06σ̂j n

1/5, where σ̂j is
the sample standard deviation of the observations Z

j

i , j = 1, . . . , n) and two times the difference
(maxi(Z

j

i ) − mini(Z
j

i )). If Z
j

i is irrelevant, LSCV will drive the j th element hj of h to its upper
bound; using a bounded kernel (e.g., the Epanechnikov kernel), no smoothing will be done in the
j th dimension of Z when this happens. In such cases, there is no need to apply the scaling factor
above to hj .10

5.6. Replicability

It is important to note that tests based on the statistics defined in (5.7) and (5.8) are valid for any
split of a given sample of size n into mutually exclusive, collectively exhaustive subsamples of
sizes n1 and n2. However, there are n!/((n1!)(n2!)) possible splits (e.g., for n = 100 and n1 =
�n1�, n2 = n − n2 there are more than 1025 possible splits), and results can vary over these
splits. This means that two researchers using the same data might reach different results by using
different splits of the sample. Worse, a naı̈ve or dishonest researcher might be tempted to split
the sample repeatedly until the desired result is obtained.

It does not appear to be possible to combine information across many splits of a given sample
and to obtain meaningful results. One might split the sample randomly (i.e., 100 or 1,000 times)
and then average the resulting values of the test statistic from (5.7) or (5.8), but the values are not
independent across the different sample splits, and the covariance is of complicated and unknown
form.

In order to make results of our tests repeatable and verifiable, we propose a deterministic
algorithm to randomly split n observations on (p + q + r) variables. The rule is described and
implemented in the R programming language in online Appendix D, where some examples
illustrating usage are also presented.

5.7. Performance of the tests

Online Appendix E presents results from three sets of Monte Carlo experiments that provide
evidence on the performance of the tests of separability proposed above for a variety of sample
sizes and dimensionalities. The results of the experiments indicate that in most applied settings,
one can reasonably expect the tests to give sizes close to nominal sizes, and with the power of the
tests increasing with increasing departures from the null. The curse of dimensionality is present,
of course, but as shown in the next section dimension-reduction methods can be used to help
mitigate the effects of large dimensions.

10 Theorem 2.2 of Li et al. (2013) establishes asymptotic equivalence of our data-driven bandwidths selected by cross-
validation and the optimal, non-stochastic bandwidths. Consequently, the results described in Theorems 4.2–4.4 remain
valid when optimal bandwidths are replaced with our cross-validated bandwidths.
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6. EMPIRICAL ILLUSTRATION

As a final exercise, we revisit the empirical examples provided by Simar and Wilson (2007),
where the estimated efficiency of US banks is regressed on some explanatory variables in a
second-stage analysis. We start with the same data used by Simar and Wilson (2007), and we
consider both the subsample of 322 banks as well as the full sample of 6,955 banks examined
by Simar and Wilson (2007). The data include observations on three inputs (purchased funds,
core deposits and labour) and four outputs (consumer loans, business loans, real estate loans and
securities held). The data also include observations for two continuous explanatory variables used
by Simar and Wilson (2007): SIZE (i.e., the log of total assets, reflecting the sizes of the banks)
and DIVERSE (i.e., a measure of the diversity of banks’ loan portfolios). Specific definitions of
variables and other data details are given in Simar and Wilson (2007).

Our empirical examples here and in Simar and Wilson (2007) are motivated by Aly et al.
(1990). They similarly estimate efficiency for a sample of 322 US banks operating during
the fourth quarter of 1986. Then they attempt to explain variation in the first-stage efficiency
estimates in a second-stage regression by regressing estimated efficiency on continuous variables
reflecting bank size and loan-type diversity, as well as binary dummy variables reflecting
membership in a multi-bank holding company and presence in a metropolitan statistical area.
Whereas Aly et al. (1990) used the second-stage regression in an attempt to better understand
the performance of US banks’ operations, Simar and Wilson (2007) carefully note that
their second-stage regressions are only for purposes of illustrating the bootstrap methods for
inference developed in their paper. As discussed above, and as noted by Simar and Wilson
(2007), such second-stage regressions can only be meaningful if the separability condition
in Assumption 2.1 holds. Simar and Wilson (2007) also noted that this condition should
be tested before employing a second-stage regression, but until now no such test has been
available.

It is well known that the distribution of US bank sizes is heavily skewed to the right; in
fact, the distribution of total assets of US banks is roughly log–log-normal; see, e.g., Wheelock
and Wilson (2001) for a discussion. In order to use global bandwidths, as opposed to adaptive
bandwidths (which would increase computational burden), we first eliminate very large banks
and other outliers from the subsample of 322 observations as described by Florens et al. (2014)
(who used the same data in an empirical illustration), leaving 303 observations for analysis.
Similarly, we omit the largest 5% of banks from the full sample of 6,955 observations, leaving
6,607 observations. To further reduce computational burden, we exploit multicollinearity among
the input and output variables by aggregating inputs into a single measure; we also aggregate
outputs into a single measure using eigensystem techniques employed by Florens et al. (2014)
in their analysis of the subsample of our data and as described by Daraio and Simar (2007a,
pp. 148–50). Because of the high degrees of correlation among the original input and output
variables, little information is lost by this aggregation, while dimensionality is reduced from
(p + q) = 7 to 2.

We test the separability condition (Assumption 2.1) using both the subsample of 303
observations and the full sample of 6,607 observations using DEA estimators in both input
and output directions, with bandwidths optimized by least-squares cross-validation and then
adjusted to obtain the optimal order as discussed above. We first test separability marginally by
considering only SIZE, and then by considering only DIVERSE so that r = 1. We also perform
joint tests (r = 2) considering both SIZE and DIVERSE.
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In all cases, we reject the null hypothesis (i.e., Assumption 2.1) in favour of the alternative
hypothesis (i.e., Assumption 2.2) with p-values much less than 0.00005. In the individual tests
where r = 1, we reject with SIZE more strongly than with DIVERSE. With the joint tests where
r = 2, the values of the test statistics are between those where we test only with SIZE and only
with DIVERSE, as one would expect.

The rejection of separability with respect to SIZE is hardly surprising given that larger banks
necessarily can produce more output than smaller banks. Of course, SIZE is highly correlated
with banks’ inputs and outputs. Nonetheless, this variable is used by by Aly et al. (1990) in their
second-stage regression, and one must assume separability in order to believe the second-stage
estimation makes any sense at all. Moreover, Aly et al. (1990) are not the only ones to use such
variables in second-stage regressions. The rejection with respect to DIVERSE is less obvious a
priori, and suggests that conditional efficiency estimators should be used to analyse efficiency
among banks.11

7. CONCLUSIONS

We have provided CLTs for conditional efficiency estimators, allowing researchers to estimate
confidence intervals for mean conditional efficiency or to compare mean conditional efficiency
across groups of producers analogous to the test of equivalent mean unconditional efficiency
developed in Kneip et al. (2016). We have also provided a test of the restrictive separability
condition described by Simar and Wilson (2007) on which many papers that regress estimated
efficiency scores on some environmental variables depend. We prove consistency of the test and
examine its local power. Now the assumption of separability can be tested empirically. In our
empirical example in Section 6, patterned after the application by Aly et al. (1990), we easily
reject separability suggesting that the results of their second-stage regression are meaningless,
or at best very difficult to interpret. Furthermore, it raises the question of whether separability
would similarly be rejected in the hundreds or thousands of papers that have regressed estimated
efficiencies on environmental variables in a second-stage regression. It is perhaps too much
to expect that all of these studies be re-examined, but now that an easily implemented test of
separability has been made available, researchers should employ the test before proceeding to a
second-stage regression. Moreover, whenever the test rejects separability, the researcher should
use conditional efficiency estimators instead of unconditional estimators in order to estimate
distance to the frontier of �z instead of the frontier of �, which has no particular economic
meaning when separability does not hold. Whenever separability is rejected, the new CLT results
will be useful tools for empirical researchers.

Of course, failure to reject the null hypothesis of separability does not by itself imply that
separability holds. As is always the case, our test can do only one of two things: it can either
reject or fail to reject the null hypothesis. Failure to reject might be due to other factors, such as
insufficient data, or too many dimensions. In the latter case, we show in the empirical example
of Section 6 how dimensionality can be reduced before testing separability.

11 Note that the second-stage regression in Simar and Wilson (2007) was used only to illustrate how one might apply the
bootstrap methods proposed there. However, results from the second-stage regression in Aly et al. (1990), and those from
similar exercises in other papers that have regressed estimates of bank efficiency on total assets, are rendered dubious
and likely meaningless by the results obtained here.
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It should be remembered, as noted in Section 3, that the conditional efficiency estimators
provide consistent estimates regardless of whether separability holds, but the unconditional
efficiency estimators provide meaningfully consistent estimates if and only if separability
holds. Of course, if separability holds, the unconditional estimators converge faster than their
conditional counterparts. However, when testing separability, these points argue in favour of
a conservative test. Whereas one might ordinarily test a null hypothesis at the 10%, 5%, or
1% level, here one might want to test at a 20%, 30%, 40%, or even larger, level. The cost
of a type-I error is slower convergence due to subsequent use of the conditional efficiency
estimators, whereas the cost of a type-II error is loss of any statistical or economic meaning
due to subsequent inappropriate use of unconditional efficiency estimators. The cost of a type-II
error here is arguably greater than the cost of a type-I error, which is the reverse of the usual
situation in hypothesis testing. Here, however, reversing things by testing a null hypothesis
of non-separability versus an alternative hypothesis of separability would result in a test with
poor size and power properties, as separability is a much more restrictive condition than
non-separability.
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