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Abstract

Language, in both the written and the oral forms, is the ground basis of living in society.

The same basic kinds of rules and representations are shared across all the languages. Under-

stand those rules is the objective of Natural Language Processing (NLP), the computerized

discipline responsible to analyze and generate language. Building complex computational

systems that mimic the human language and are capable to interact and collaborate with us is

the holy grail of Natural Language Processing. Semantic representations are the rock-solid

foundation on which many successful applications of NLP depend. Their main purpose is to

extract and highlight the most important semantic features of textual data. Whereas over

the years different approaches have been presented, lately, embeddings have become the

dominant paradigm on vectorial representation of items. Currently, many outstanding NLP

tasks rely on embeddings to achieve their performance. Embeddings are semantic spaces

that carry valuable syntactic and semantic information. The name groups a set of feature

learning techniques based on neural networks. Concretely, these techniques are capable

to learn semantic spaces that effectively represent words as low-dimensional continuous

vectors. They also maintain the structure of language by representing diverse lexical and se-

mantic relations by a relation-specific vector offset. With the increasing amount of available

text, as well as the increased computing power, techniques which take advantage of large

volumes of unstructured data, as word embeddings, have become the prevailing approach

of semantic representation of natural language. However, despite their enormous success,

common word-embeddings approaches came with two inherent flaws: these representations

are incapable to handle ambiguity, as senses of polysemous words are aggregated into

single vectors. In addition, most word embeddings rely only on statistical information of

word occurrences, leaving aside existing rich knowledge of structured data. To tackle the

problem of polysemy, a fundamental task of Natural Language Processing (NLP), Word

Sense Disambiguation (WSD), seems particularly suitable. The task, an open problem

in the discipline, aims at identifying the correct meaning of word based given its context.

Concretely, it links each word occurrence to a sense from a predefined inventory. Most

successful approaches for WSD combine the use of unstructured data, manually annotated

datasets and semantic resources.
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In the present thesis we address the issue of of ambiguity in semantic representations

from a multimodal perspective. Firstly, we introduce and investigate new neural-based ap-

proaches to build better word and sense embeddings relying on both statistical data and prior

semantic knowledge. We employ diverse techniques of WSD for linking word occurrences

to their correct meaning on large amounts of raw corpora. Then, we use the resulting data as

training input for learning the embeddings. We show the quality of these representations

by evaluating them on standard semantic similarity frameworks reporting state-of-the-art

performance on multiple datasets. Secondly, we show how these representations are capable

to create better WSD systems. We introduce a new way to leverage word representations

which outperforms current WSD approaches in both supervised and unsupervised configura-

tions. We show that our WSD framework, based solely on embeddings, is capable to surpass

WSD approaches based on standard features. Thirdly, we propose two new technique for

leveraging semantic-annotated data. We incorporate more semantic features resulting in

an increment in the performance compared with our initial approaches. We close the loop

by showing that our semantic representations enhanced with WSD are also suitable for

improving the task of WSD itself.
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Chapter 1

Introduction

"Our Language is very very important.

That’s us and makes us"

Jerry Wolfe

"... language circumscribes beauty,

confines it, limns, delineates, colours

and contains. Yet what is language but a

tool, a tool we use to dig up the beauty

that we take as our only and absolute

real"

"A Bit of Fry & Laurie" show

The main purpose of language is to share our thoughts and feelings. It allows us to

work collaboratively, to ask for help, to live in society. Language is part of our identity.

Nations are based, and named, by the language spoken by their citizens. We, as individuals

living in community, utilize spoken or written forms of language to organize each other

and share ideas. Language affects the way we take decisions. We tend to choose options

more emotionally when a question is formulated in our mother tongue while using a foreign

language reduces decision-making biases (Keysar et al., 2012). Some controversial theories

go even further and consider that language determines the structure of how the real world

is perceived by human beings, and that this structure is different from one language to
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another (Hoijer, 1954). Early ancestors of humanity used some kind of gestural language to

hunt in groups and organize the herd. Evidence suggests that around 200 thousand years

ago, Homo sapiens learned how to speak and to communicate via spoken language.

The irruption of writing, dated approximately around 5,000 years ago, is the most

important technology in human life (Powell, 2012). Written language allowed humans to

avoid depending upon memory of the messenger, since a statement could be left written to

be read by another person which was not present at the time of writing it. Also, Language

has been used, instead, to restrict the potential receiver of a message. Examples are Navajo,

a native American language used to communicate encrypted messages between allied troops

(Kawano, 1990); or Nüshu, an endangered language based on Chinese script known only by

women (Fasold and Connor-Linton, 2014).

Nowadays, there are around 7000 different languages, many of them spoken by only

a few people. Strong efforts are being made to understand them, to make them available

to other mother tongue speakers and to discover ancient ones. The scientific discipline

responsible to the study of language is known as linguistics. Started as a proper discipline

during early 20th century, mostly thanks to the contributions of Noah Chomsky (Chomsky,

1957, 1964), has been evolved during the years. The inclusion of statistical and comput-

erized analysis has created a new discipline which we name today as Natural Language

Processing (NLP), which was defined by Liddy (2001) as a theoretically motivated range

of computational techniques for analyzing and representing naturally occurring texts at

one or more levels of linguistic analysis for the purpose of achieving human-like language

processing.

1.1 Ambiguity

Ideas are abstract representations that live in human minds, therefore they cannot be ex-

pressed directly. Hence there is a mapping between meanings or thoughts and linguistic

forms that we call language. Likewise, language is not a static thing. Through time new

concepts grow, while others are deprecated and disappear. Words change their use, relations

between them evolve, changing between meanings and becoming more dominant senses

barely used in the past. This constant evolution makes it difficult to have a direct mapping
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between ideas and words or sentences. In addition, in spoken language, there is a limit in

the amount of different sounds or phonemes that we can produce and understand. Therefore,

we have opted to utilize a set of compositional rules to make the language grow. These rules

allow us to combine low-level units, such as phonemes or morphemes, into higher order

units, such as words or sentences. This idea is known in the literature with the name of

duality of patterning (Hockett and Hockett, 1960), and refers to the fact that the meaningful

units of language are made up of meaningless units whose only function is to distinguish the

meaningful units from one another.

Nonetheless, the mapping between ideas and language is not unequivocal. Single

concepts can be expressed with different words, which we call synonyms (like buy and

purchase), while individual words may represent a set of different meanings. If the meanings

are unrelated we identify such words as homonyms. An example of this is the word suit,

which refers both to a clothing and to a proceeding in a court of law. On the other hand, if

the word’s meanings are related or have a common origin, we call that word polyseme, such

as chicken, which refers to both the animal and the food, or camera, which refers both to

legislative chamber, and device for recording visual images, derived from camera obscura,

the precursor of photography.

This imperfect mapping between words and concepts constitutes the problem of lexical

ambiguity. But this ambiguity is not a flaw in the language and evidence suggests that

well-designed communication systems are inherently ambiguous. Ambiguity exists for

reasons of communicative efficiency (Piantadosi et al., 2012). At human level, ambiguity is

not a problem, since we use common knowledge to understand each other. In fact, some

studies have found little evidence for active use of ambiguity-avoidance strategies (Arnold

et al., 2004; Roland et al., 2006).

A system responsible to analyze and generate language should be able to determine the

meaning of an ambiguous word in particular context, just as we humans do.

1.2 Semantic Spaces

A fundamental piece of language understanding is the study concerned with the meaning of

a word. The branch of linguistics that deals with words and the concepts that they represent
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was named, in ancient times, semasiology, from Greek sēmasia ("meaning") and from

sēmaínō, ("signify"). Today, the discipline is known as semantics.

"A word is characterized by the company it keeps" it is what Firth claimed in 1957,

referring to the idea that the meaning of a given word is based on the context where the

word appears. The Distributional Hypothesis, claimed by Harris (1954), says that words that

are used and occur in the same contexts tend to purport similar meanings. Distributional

Semantics is the branch of semantics which has a fundamental base in the distributional

hypothesis which represents words as vectors derived from the statistical information of

their co-occurrence context in a large corpus. The set of vectors is commonly named as

Semantic Space. A Semantic Space is a space, often with a large number of dimensions, in

which words or concepts are represented by vectors; the position of each such point along

each axis is somehow related to the meaning of the word (Morris, 1958).

Semantic spaces are useful to examine the relationships between the words or concepts

within them because, once the space is built, relationships can be quantified by applying

distance metrics to those vectors. Semantic spaces were traditionally constructed by first

defining the meanings of a set of axes and then gathering information from human subjects

to determine where each word in question should fall on each axis. The continuous evolution

of languages fits perfectly in a Semantic Space which represents words and their meaning

as vectors, and their relations as transformations in the space. A proper representation of

meaning is fundamental for a complete understanding of language.

Many long-standing approaches are able to learn semantic spaces from text corpora.

Latent Semantic Analysis (Deerwester et al., 1990) takes advantage of implicit higher-order

structure in the association of terms with documents ("semantic structure") in order to

improve the detection of relevant documents on the basis of terms found in queries. This

approach, originally created for Information Retrieval (Latent Semantic Indexing), creates a

large term-to-document matrix, which, by using singular-value decomposition, shrinks the

matrix to around 100 features. Word vectors are created based on word occurrences through

documents. A newer approach, Hyperspace Analogue to Language (HAL), was introduced

by Lund and Burgess (1996). The basic premise of HAL is that words with similar meaning

repeatedly occur closely (namely co-occur). As an example in a large corpus of text one

could expect to see the words mouse, dog and cat appear often close to each other. The
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same might be true for Japan, Malaysia and Singapore. More recently, Latent Dirichlet

Allocation (Blei et al., 2003, LDA) presented a generative probabilistic model for collections

of discrete data such as text corpora. LDA, created originally for Topic Modelling, is a

three-level hierarchical Bayesian model, in which each item of a collection is modeled as a

finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite

mixture over an underlying set of topic probabilities.

The introduction of word2vec1 (Mikolov et al., 2013b) brought to a complete disruption

in NLP. The newly introduced tool was able to learn effective representations of words from

large amounts of text corpora. The representations learned from this kind of neural-based

models received the named of Word Embedding. Their great quality was noticed immediately.

The representations appear to project satisfactorily the inherent structure of language, as

lexical and semantic relations between words are represented with a relation-specific vector

offset. Word2vec introduced two different models, namely Continuous Bag-of-Words

(CBOW), and SkipGram, both based on a simple feed-forward neural language model.

CBOW is a two-layer network where the projection layer averages all the context words and

a log-linear classifier, on top of that, infers the word in the middle given its neighboring

words. The second architecture, Skip-Gram, instead, predicts the surrounding words given

the central one. Both architectures showed outstanding results in many NLP tasks.

1.3 Word Sense Disambiguation

Usual Semantic Spaces come with an inherent flaw: word-based representations are typi-

cally built by conflating all the senses of each word into a single vector. This compound

representation is extremely harmful to representing them, since related words of different

senses tend be similarly represented, hence related in terms of the semantic space. This is

evident in the case of the word bar. The common sense tend to associate bar mostly with

a commercial establishment where alcoholic drinks are served. But bar is also used for

naming an elongated piece of metal or wood. So a word-based representation will represent

with similar vectors beer, an alcoholic drink deeply related with the first sense of bar, and

also rod, a thin bar.

Word Sense Disambiguation (WSD), defined by Manning and Schütze (1999) in the
1http://code.google.com/p/word2vec/

http://code.google.com/p/word2vec/
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following way: "[t]he task of disambiguation is to determine which of the senses of an

ambiguous word is invoked in a particular use of the word. This is done by looking at the

context of the word’s use", is a fundamental task in computational lexical semantics (Navigli,

2009).

One of the open issues of WSD is to choose the right way to represent different meanings.

Most efforts represent word meanings with a link to sense inventory. Those approaches use,

as sense inventory, either a semantic network as WordNet or BabelNet (Patwardhan and

Pedersen, 2006; Guo and Diab, 2010; Ponzetto and Navigli, 2010; Miller et al., 2012; Agirre

et al., 2014; Chen et al., 2014) or a Thesaurus (Mohammad and Hirst, 2006; Agirre et al.,

2010). In addition, there are alternative ways to represent meanings. Substitution-based

approaches, proposed by McCarthy and Navigli (2007), explored the use of synonym or near-

synonym lexical substitutions to characterize the meaning of word occurrences. In contrast

to dictionary senses, substitutes are not taken to partition a word’s meaning into distinct

senses. Distributional approaches, instead, represent diverse meanings by dissembling the

word senses via clustering techniques that exploit co-occurrence with context features over

a large corpus (Reisinger and Mooney, 2010; Huang et al., 2012; Neelakantan et al., 2014;

Tian et al., 2014).

Since the final performance of NLP systems depends on the quality of their input

representations, a semantic space which represents not only individual words but also its

constituent meanings seems indispensable reaching the ultimate goal of NLP: a complete

understanding of natural language.

1.4 Semantic Networks

While WSD systems which utilize manually sense annotated data, the so-called supervised

approaches, are among the most accurate models, they generally fail with respect to coverage.

It’s very expensive and time-consuming to create an accurate sense-annotated corpus that

sacrifice least common words. To be able to handle large amount of different words, a large

sense inventory is fundamental and that is where Semantic Networks are the dominant in

WSD tasks.

As was defined by Lehmann (1992), "A semantic network is a graph of the structure
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of meaning". In general, a semantic network is a graph which represents knowledge in

patterns of interconnected nodes and arcs. Several efforts in NLP were done in order to

create larger and better semantic networks. The most widely used Semantic Networks is

WordNet (Miller, 1995). WordNet a manually curated lexical database of English, inspired

by psycholinguistic theories of human lexical memory. In WordNet, English nouns, verbs,

adjectives and adverbs are organized into synsets, sets of synonyms effectively representing

unique concepts. Each synset to which a word belong is a possible sense of that word.

For instance, the noun plane in WordNet 3.1 is linked to the synsets "plane, sheet" and

"aeroplane, plane, airplane" (among others), defining the two distinct senses of plane as an

abstract concept and a mean of transportation respectively. Synsets in WordNet have unique

identifiers, a plain text definition, and they are organized in a taxonomy according to the

relation of hypernymy.

Despite its size (version 3.1 counts over 117.000 synsets) and widespread usage, Word-

Net is hindered by a few limitations. In particular, it only covers the English language

and it does not support named entities such as people and locations. Freebase Bollacker

et al. (2008) was a large online collaborative knowledge base consisting of structured data

structured data from many sources. The objective of Freebase was to create a global resource

capable to offer more effective access to common information. It was developed by the

American software company Metaweb and ran publicly since March 2007. Freebase is now

deprecated and currently is part of Google’s Knowledge Graph.

Another well known resource is BabelNet (Navigli and Ponzetto, 2012), a multilingual

encyclopedic dictionary and semantic network, including approximately 14 million entries

for concepts and named entities linked by semantic relations. Like in WordNet, BabelNet

concepts are organized in synsets, each containing the words that express their concept

in a wide range of languages. BabelNet was originally created by merging WordNet and

Wikipedia2, thus augmenting the manually curated lexical knowledge of the former with

the large scale, collaboratively built general knowledge of the latter, and grew over time to

include several other resources such as Wiktionary3 and OmegaWiki4.

Semantic Networks are particularly useful to perform non-supervised WSD. Examples

2https://www.wikipedia.org/
3https://www.wiktionary.org/
4http://www.omegawiki.org/

https://www.wikipedia.org/
https://www.wiktionary.org/
http://www.omegawiki.org/
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of this were presented in Agirre and Soroa (2009), who propose a new graph-based method

which use the knowledge in WordNet to perform WSD by utilizing PageRank Brin and

Page (1998) on the whole graph. Another approach is Moro et al. (2014) who perform

Personalized PageRank (a variant of PageRank centered in a particular node) over the whole

graph of BabelNet.

1.5 Objectives

The main objectives of this thesis are:

• To create a complete semantic space of words and concepts, which leverage informa-

tion from semantic networks and surpass the current state of semantic representations.

• To leverage semantic spaces in order to create better WSD systems which outperform

state-of-the-art performance in standard benchmarks.

• To take advantage of diverse neural network architectures to create better semantic

representations aided with prior semantic knowledge.

• To make available the both the representations and the tools which we used to create

them and make exploitable by the research community.

1.6 Contributions and Published material

A wide portion of the ideas presented in this thesis has already been published in top NLP

conferences. In the following we list these publications. The content of some of these

publications represent the core of this thesis and are included at great extent in some chapters

and sections, and indicated accordingly below:

• Chapter 2 introduces the related work about semantic representation of items, putting

special emphasis in the polysemy issue and how was tackled by diverse approaches.

• In Chapter 3 and Chapter 4 we introduced two new models that leverage WSD models

for building rich semantic representations.
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In Chapter 3 we introduce SENSEMBED a neural approach which leverages seman-

tic knowledge to obtain continuous representations for individual word senses for

effective semantic similarity measurement. This chapter covers the publication of

Iacobacci et al. (2015) published as oral presentation in the Proceedings of the 53nd

Annual Meeting of the Association for the Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015).

The research described in this chapter was carried out in its entirely by myself. The

other authors in the publication acted as advisers.

In Chapter 4, we propose a model that jointly learns word and sense embeddings and

represents them in a unified vector space by exploiting large corpora and knowledge

obtained from semantic networks. The relevant publication of this chapter is Mancini

et al. (2017), published the proceedings of the 21st Conference on Computational

Natural Language Learning (CoNLL 2017). I acted as co-advisor in this research

paper and my contributions were mostly on the architecture of the introduced model.

The shallow disambiguation strategy (Section 4.2) and implementation details were

developed with the other authors.

• In Chapter 5, we go through the reverse path, by putting forward a model for WSD,

taking advantage of the semantic information carried by embeddings. The relevant

publication of this chapter is Iacobacci et al. (2016), published the proceedings of

the 54st Annual Meeting of the Association for the Computational Linguistics (ACL

2016).

• In the following Chapters 6 and 7 we extend further the approach of SENSEMBED

introduced in Chapter 3.

Chapter 6 introduces SENSEMBED+, a joint distributional and knowledge-based

approach for obtaining low-dimensional continuous representations for word, word

senses and synsets which leverages the learned representations and lexical-semantic

knowledge. We put forward a framework for many NLP tasks such as word, sense, and

relational similarity and Word Sense Disambiguation with state-of-the-art performance

on multiple datasets. Part of this chapter has been submitted to Computational

Linguistics as a journal paper and is still under review.
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Chapter 7 presents new way to learn embeddings utilizing a Recurrent Neural Network

(RNN) based on a bidirectional Long Short Term Memory (LSTM) for learning contin-

uous representations of word sense, taking into account word ordering. In addition we

present a new idea to enrich these representations with semantic knowledge from large

corpora and vocabularies. Part of this chapter has been submitted to the 2019 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT) and is still under review.

• Chapter 8 includes conclusions and closing remarks of the presented research.

The rest of the thesis contains novel, unpublished material which has been added to improve

the clarity of the presentation and strengthen the relationships between the parts.
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Chapter 2

Preliminaries: Semantic

Representation of items

"The unavoidable implication is that a

sense of "similarity" must be innate [..]

This "stimulus generalization" happens

automatically, without extra training,

and it entails an innate "similarity

space" [..] These subjective spacings of

stimuli are necessary for learning.."

Steven Pinker, 1994

Machine-interpretable representations of lexical and semantic items are key for a number

of NLP tasks, and therefore obtaining good representations is an important goal of the

research in NLP, as shown by the surge of recent work on this topic. A summary of

approaches to the representation of lexical and semantic items is given in this chapter.

2.1 Embeddings

In mathematical terms, given two structures A and B, A is said to be embedded in B if

there exists an injective function α : A → B which is structure preserving, according to

some property of the specific structures involved. The idea of embedding has been applied
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to NLP by defining the concept of word embedding, an embedding of the space of words

(that is, the vocabulary of natural language) into a continuous vector space. As such, a word

embedding model is a function that associates each word in a given language with a vector.

Most importantly, by being structure preserving, word embeddings encode syntactic and

semantic information, such as interesting regularities of the natural language, and represent

relationships between words, with geometric relations between their corresponding vectors.

2.2 Word Embeddings

Many long-standing approaches are able to learn real-valued vector representations from

text. Early models such as Latent Semantic Analysis (Deerwester et al., 1990, LSA),

Hyperspace Analogue to Language (Lund and Burgess, 1996, HAL) and Latent Dirichlet

Allocation (Blei et al., 2003, LDA), mentioned in Section 1.2, exploit information of word

co-occurrence, representing words as vectors of co-occurrences with documents, words and

topics respectively, to generate a Semantic Space where words with similar meanings are

represented in closer proximity.

Advances of Neural-based model for word representation began to attract the attention

of the NLP community. Actual word embeddings were first introduced by Bengio et al.

(2003). His initial model was based on a multilayer perceptron (MLP) with two hidden

layers: a shared non-linear and a regular hidden hyperbolic tangent one. The goal of this

network was learning the joint probability function of a sequence of words, i.e. statistical

language modeling, i.e. Further developments as the hierarchical log-bilinear model (Mnih

and Hinton, 2007, HLBL), a probabilistic linear neural model which aims to predict the

embedding of a word given the concatenation of the previous words; or Collobert and

Weston (2008), which deepened the original neural model by adding a convolutional layer

and an extra layer for modeling long-distance dependencies increased even more the efforts

in that direction.

The contribution made by Mikolov et al. (2013b) meant a groundbreaking event in the

discipline. The introduced model, called word2vec, simplified the original architecture

from Bengio et al. (2003) by removing the hyperbolic tangent layer and hence significantly

speeding up the training process. In addition, they showed that word representations learned
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with a neural network trained on raw text geometrically encode highly latent relationships.

The canonical example is the vector resulting from king −man + woman found to be

very close to the induced vector of queen. GloVe (Pennington et al., 2014), an alternative

approach trained on aggregated global word-word co-occurrences, obtained similar results.

This new efforts allowed the use of vast amounts of raw text as training data. These

approaches allowed the community to create denser and more effective representations.

On top of those, newer efforts were presented in order to improve the representations.

Some incorporated prior semantic knowledge to enrich embeddings both during learning,

such as Yu and Dredze (2014) who presented an alternative way to train word embed-

dings, based on word2vec, by using, in addition to common features, words having some

relation in a semantic resource, like PPDB1 or WordNet2. Faruqui et al. (2015)3, instead,

presented a technique applicable to pre-processed embeddings, in which vectors are updated

(“retrofitted”) in order to make them more similar to those which share a word type and

less similar to those which do not. The word types were extracted from diverse semantic

resources such as PPDB, WordNet and FrameNet4. Other approaches took a different path.

For instance the model from Mitchell and Steedman (2015), who decompose the word

embeddings based on the syntactic and semantic properties of their corresponding words, or

include linguistic information in the learning process such as the word’s part-of-speech and

its position like Qiu et al. (2014) and Liu et al. (2016). Press and Wolf (2017) introduced

another model based on word2vec, where the embeddings are extracted from the output

topmost weight matrix, instead of the input one, showing that those representations constitute

also a valid word embedding. Finally, two different which are worth mentioning Vilnis and

McCallum (2014), who modeled words as density in the vector space, rather than single

point, and the work of Nalisnick and Ravi (2017) who modeled instead embeddings with

arbitrary dimensionality.

While these embeddings are surprisingly good for monosemous words, they fail to

represent the non-dominant senses of words properly due to the pervasive sense skewness.

This makes that neighboring vectors of representations of ambiguous words are overwhelmed

by its dominant sense. As for the word plane, its close vicinity only has words related to the

1http://www.paraphrase.org/#/download
2https://wordnet.princeton.edu/
3https://github.com/mfaruqui/retrofitting
4https://framenet.icsi.berkeley.edu/

https://github.com/mfaruqui/retrofitting
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aircraft meaning, such as airplane, jet or flight, letting aside words related to the geometrical

meaning (unbounded two-dimensional shape) or spiritual meaning (a level of existence or

development). Since most commonly-used words have several meanings, a model which

attends to ambiguity is needed for an effective semantic representation.

2.3 Going to the Sense level

Recent advances in word representations, like those that we mentioned above, allowed the

community to create denser and more effective representations, where relations between

words are represented by an offset in the vector space. Nevertheless, word embeddings do

not explicitly distinguish between different meanings of a word since it conflates all of its

word senses in a single vector.

To address the polysemy issue, sense embeddings represent individual word senses as

separate vectors. Learning sense embeddings is a prolific research area with many efforts in

that direction. Two main approaches have been put forward in the literature:

• the unsupervised approach, in which meanings are acquired automatically as a result

of discriminating occurrences within text. The resulting vectors are usually referred

to as multi-prototype representations;

• the knowledge-based approach, which relies on existing sense inventories like Word-

Net, Freebase, Wikipedia or BabelNet, to name a few.

Below we introduce models corresponding to both both approaches.

2.3.1 Multi-prototype Embeddings

The unsupervised approach allows to create a complete unsupervised system. The discrim-

ination of senses relies on statistics based on co-occurrences from text corpora. Due to

the ability to be trained without any human intervention, this approach is ideal for being

implemented on neural-network-based end-to-end models. Numerous unsupervised efforts

have been presented so far: Reisinger and Mooney (2010), for instance, created a vector

space model of word meanings without using any sense inventory. Pointing out that a single

prototype is incapable of capturing homonymy and polysemy, they presented a method that
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Model Corpus Bilingual # Senses

Reisinger and Mooney (2010) Wikipedia & Gigaword Specified
Huang et al. (2012) Wikipedia Specified
Neelakantan et al. (2014) Wikipedia Determined by method
Tian et al. (2014) Wikipedia Specified

Guo et al. (2014)
LDC03E24, LDC04E12 &

X Specified
IWSLT 2008, PKU 863

Li and Jurafsky (2015) Wikipedia & Gigaword Determined by method
Wu and Giles (2015) Wikipedia Specified
Melamud et al. (2016) UKWAC Contextualized Word Embeddings
Lee and Chen (2017) Wikipedia Determined by method
Athiwaratkun and Wilson (2017) UKWAC & Wackypedia Specified

McCann et al. (2017)
Multi30k, WMT 2017

X Contextualized Word Embeddings
IWSLT 2016 MT Task

Peters et al. (2018) 1 Billion Word Benchmark5 Contextualized Word Embeddings

Table 2.1. Multi-prototype approaches

leverages clustering techniques to produce multiple "sense-specific" (they called like that)

vector for each word. In their learning process, word’s contexts are clustered to produce

groups of similar contexts vectors. An average prototype vector is computed for each

cluster producing a set of vectors for each word. The dimensions of the vectors represent

a co-occurrence between the word and other words present in the training corpus; Huang

et al. (2012) adopted a similar strategy by decomposing each word’s single-prototype repre-

sentation into multiple prototypes, denoting different senses of that word. To this end, they

first gathered the context for all occurrences of a word and then used spherical K-means to

cluster the contexts. Each cluster was taken as the context for a specific meaning of the word

and hence used to train embeddings for that specific meaning (i.e., word sense); Neelakantan

et al. (2014) presented an extension of the Skip-gram model of word2vec capable to learn

multiple embeddings for a single word. Moreover, the model has no assumption about

the number of prototypes, and all the representations are learned in a single step speeding

up the learning process. This approach comes in two flavors. The first one, Multi-Sense

Skip-gram (MSSG) which have a specific pre-defined number of prototypes per word, and

Non-parametric Multi-Sense Skip-gram (NP-MSSG) which, uses a threshold to induce a

new sense vector. Tian et al. (2014) exploited pre-trained embeddings and considered them

as learned from word occurrences generated by a mixture of a finite number of different

word senses. Their main idea was to combine the robustness of the Skip-gram model, with

just a few parameters to adjust and based on local context of raw text and the framework

that a mixture model provide, avoiding the extra step that a clustering needs. Guo et al.
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(2014) exploited parallel data to automatically generate sense-annotated data, based on

the fact that different senses of a word are usually translated to different words in another

language (Chan and Ng, 2005). The automatically-generated sense-annotated data was

later used for training sense-specific word embeddings; Wu and Giles (2015) introduced a

model called Sense-aware semantic analysis (SaSa), which takes into account the idea of

using the global context in order to distinguish meanings of the occurrences of the words by

producing "sense-specific" prototypes by clustering Wikipedia pages. Similarly to the work

of Reisinger and Mooney (2010), their vector features are explicit but instead of using word,

they used concepts, representing different Wikipedia articles. Li and Jurafsky (2015) used a

Chinese restaurant process as a way to induce new senses. For each new word occurrence

during the training the current word could either "sit" at one of the existing tables (corre-

sponding to one of the previously seen senses) or choose a new table (a new sense). The

decision is made by measuring semantic relatedness (based on local context information and

global document information) and the number of customers already sitting at that table (the

popularity of word senses). Lee and Chen (2017), an unsupervised approach that introduced

a modularized framework to create sense-level representation learned with linear-time sense

selection. Athiwaratkun and Wilson (2017), who, extending the word-based approach of

Vilnis and McCallum (2014), decomposed word vectors as a mixture of densities of their

constituent senses.

Alternative approaches exploited recurrent neural networks (RNN) architectures to their

learning process and created representations for both words and contexts. Melamud et al.

(2016) introduced context2vec, a model based on a bidirectional Long Short Term Memory

(LSTM), a particular type of RNN for learning sentence and word embeddings. They

use large raw text corpora to learn a neural model that embeds entire sentential contexts

and target words in the same low-dimensional space. McCann et al. (2017) presented

CoVe, an approach for transferring knowledge from an LSTM-based encoder pretrained on

machine translation. They used the outputs of the LSTM as context vectors and applied to a

variety of downstream NLP tasks. Peters et al. (2018) presented ELMo, a word-in-context

representation model based in a deep bidirectional language model. Just as CoVe, ELMo

has not a token dictionary, but each token is represented by three vector, two of which being

contextual. In Table 2.1 we highlight the salient features of each multi-prototype mentioned
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above.

Nevertheless, representations are not devoid of issues. Since the induced vectors are

discriminated based on statistics, low-frequency senses or uncertain contexts are generally

underrepresented, if they are represented at all. The resulting inventory tends to be coarser

than knowledge-based approaches and biased towards more frequent senses. In addition,

the fact that the representations are not linked to any sense inventory makes their evaluation

more difficult.

2.3.2 Sense Embeddings

Knowledge-based approaches, on the other hand, need some general-purpose human in-

tervention, typically for the creation of the meaning inventory and its structure, such as a

thesaurus, an ontology or a semantic network. One of the earliest works on knowledge-based

sense representations was the so-called Salient Semantic Analysis (Hassan and Mihalcea,

2011, SSA). SSA used Wikipedia pages as its sense inventory and exploited the hyperlinks

through other pages as a sense-annotated corpus. The representations where calculated as

an explicit vector of co-occurring Wikipedia pages.

As examples of efforts which rely on WordNet we can name the work of Chen et al.

(2014)6, who leveraged word embeddings in Word Sense Disambiguation and investigated

the possibility of retrofitting embeddings with the resulting disambiguated words. Chen et al.

(2015), presented a novel approach by the word sense embeddings through learning sentence-

level embeddings from WordNet glosses. Their approach is an extension of the Neelakantan

et al. (2014) model which initializes the multiprototype vectors of the MGGS with those

leared from the WordNet Glosses. Jauhar et al. (2015) introduced a multi-sense approach

based on expectation-maximization style algorithms for inferring word sense choices in the

training corpus and learning sense embeddings while incorporating ontological sources of

information such as WordNet. In AutoExtend7 (Rothe and Schütze, 2015), instead, sense

vectors are inferred in the same semantic space of pre-trained word embeddings. Their

approach learns embeddings for lexemes, senses and synsets from WordNet in a shared

space by inferring embeddings given the constraint that word representations are sums of

their lexeme representations and synset representations are sums of the representations of
6http://pan.baidu.com/s/1eQcPK8i
7http://cistern.cis.lmu.de/~sascha/AutoExtend/

http://pan.baidu.com/s/1eQcPK8i
http://cistern.cis.lmu.de/~sascha/AutoExtend/
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Model Inventory Annotated Corpus

Hassan and Mihalcea (2011) Wikipedia X Wikipedia
Bordes et al. (2013) FreeBase -
Chen et al. (2014) WordNet Wikipedia
Wang et al. (2014b) Freebase -
Wang et al. (2014a) Freebase -
Chen et al. (2015) WordNet X WordNet Glosses
Jauhar et al. (2015) WordNet WMT-2011 English
Rothe and Schütze (2015) WordNet Google News
Flekova and Gurevych (2016) WordNet Supersenses X Wikipedia
Lin et al. (2015) Freebase -
Pilehvar and Collier (2016) WordNet Google News
Camacho-Collados et al. (2016) BabelNet X Wikipedia
Nickel et al. (2016) Freebase -

Table 2.2. Sense Embeddings approaches.

the lexemes they contain. Flekova and Gurevych (2016) presented a distributional joint

model of words and supersenses. Supersenses are coarse-grained semantic categories

defined in WordNet in which all the items of the inventory fall. The defined categories

contain 26 labels (such as ANIMAL, PERSON or FEELING) for nouns and 15 labels for

verbs (such as COMMUNICATION, MOTION or COGNITION). DeConf8 (Pilehvar and

Collier, 2016), also linked to WordNet, presented a model where sense vectors are inferred

in the same semantic space of pre-trained word embeddings by decomposing the given

word representation into its constituent senses. Further, Camacho-Collados et al. (2016)

introduced NASARI9, an approach which similarly, exploited Wikipedia for the creation

semantic vector representations but instead used as its sense inventory the corresponding

BabelNet synsets and Wikipedia pages in several languages. Finally, several approaches

aimed to create a semantic space without relying on distributional information, such as

Bordes et al. (2013), Wang et al. (2014b), Wang et al. (2014a), Lin et al. (2015) and Nickel

et al. (2016) among others. These approaches created a semantic space by leveraging the

graph structure of Freebase. Table 2.2 shows the nature of each sense embeddings approach

mentioned, the training corpus and the sense inventory used.

None of these approaches fully exploit both distributional and structured information

(e.g., by covering both named entities and common nouns together with verbs, adjectives

and adverbs while taking advantage of large amounts of raw text). Since both WordNet and

8https://pilehvar.github.io/deconf/
9http://lcl.uniroma1.it/nasari/

https://pilehvar.github.io/deconf/
http://lcl.uniroma1.it/nasari/
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Wikipedia are contained in BabelNet, an approach linked to that resource, and where lexical

and semantic items are represented together, is desirable. In the following chapters we will

introduce several approaches of semantic representation of items. We show that by taking

advance of Word Sense Disambiguation, while leveraging a powerful knowledge resource

as BabelNet, and large amounts of text corpora, we can build better and more informative

embeddings, which, in turn, can be leveraged for the task of WSD. We perform several

experiments reaching state-of-the-art performance in several standard benchmarks.
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Chapter 3

SENSEMBED: Learning Sense

Embeddings for Word and

Relational Similarity

"...if [..] one can see not only the central

word in question, but also say N words

on either side, then, if N is large enough

one can unambiguously decide the

meaning of the central word"

Warren Weaver, 1949

3.1 Summary

Word embeddings have recently gained considerable popularity for modeling words in dif-

ferent Natural Language Processing (NLP) tasks including semantic similarity measurement.

However, notwithstanding their success, word embeddings are by their very nature unable to

capture polysemy, as different meanings of a word are conflated into a single representation.

In addition, their learning process usually relies on massive corpora only, preventing them

from taking advantage of structured knowledge. We address both issues by proposing a

multi-faceted approach that transforms word embeddings to the sense level and leverages
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knowledge from a large semantic network for effective semantic similarity measurement.

We evaluate our approach on word similarity and relational similarity frameworks, reporting

state-of-the-art performance on multiple datasets.

3.2 Introduction

The much celebrated word embeddings represent a new branch of corpus-based distributional

semantic model which leverages neural networks to model the context in which a word

is expected to appear. Thanks to their high coverage and their ability to capture both

syntactic and semantic information, word embeddings have been successfully applied to

a variety of NLP tasks, such as Word Sense Disambiguation (Chen et al., 2014), Machine

Translation (Mikolov et al., 2013b), Relational Similarity (Mikolov et al., 2013c), Semantic

Relatedness (Baroni et al., 2014) and Knowledge Representation (Bordes et al., 2013).

However, as we mentioned in Chapter 2.2, word embeddings inherit two important

limitations from their antecedent corpus-based distributional models: (1) they are unable

to model distinct meanings of a word as they conflate the contextual evidence of different

meanings of a word into a single vector; and (2) they base their representations solely on the

distributional statistics obtained from corpora, ignoring the wealth of information provided

by existing semantic resources.

Several research works have tried to address these problems. For instance, basing their

work on the original sense discrimination approach of Reisinger and Mooney (2010), Huang

et al. (2012) applied K-means clustering to decompose word embeddings into multiple

prototypes, each denoting a distinct meaning of the target word. However, the sense

representations obtained are not linked to any sense inventory, a mapping that consequently

has to be carried out either manually, or with the help of sense-annotated data. Another line

of research investigates the possibility of taking advantage of existing semantic resources

in word embeddings. A good example is the Relation Constrained Model (Yu and Dredze,

2014). When computing word embeddings, this model replaces the original co-occurrence

clues from text corpora with the relationship information derived from The Paragraph

Database (Ganitkevitch et al., 2013, PPDB).

However, none of these techniques have simultaneously solved both above-mentioned
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bankn1 bankn2 numbern4 numbern3 hoodn1 hoodn12

(geographical) (financial) (phone) (acting) (gang) (convertible car)

upstreamr
1 commercial_bankn1 callsn1 appearingv6 torturesn5 taillightsn1

downstreamr
1 financial_institutionn1 dialedv1 minor_rolesn1 vengeancen1 grillen2

runsv6 national_bankn1 operatorn20 stage_productionn1 badguyn1 bumpern2

confluencen1 trust_companyn1 telephone_networkn1 supporting_rolesn1 brutala1 fascian2

rivern1 savings_bankn1 telephonyn1 leading_rolesn1 executionn1 rear_windown
1

streamn
1 bankingn1 subscribern2 stage_showsn1 murdersn1 headlightsn1

Table 3.1. Closest senses to two senses of three ambiguous nouns: bank, number, and hood

issues, i.e., inability to model polysemy and reliance on text corpora as the only source

of knowledge. We propose a novel approach, called SENSEMBED, which addresses both

drawbacks by exploiting semantic knowledge for modeling arbitrary word senses in a large

sense inventory. We evaluate our representation on multiple datasets in two standard tasks:

word-level semantic similarity and relational similarity. Experimental results show that

moving from words to senses, while making use of lexical-semantic knowledge bases, makes

embeddings significantly more powerful, resulting in consistent performance improvement

across tasks. Our contributions are twofold: (1) we propose a knowledge-based approach

for obtaining continuous representations for individual word senses; and (2) by leveraging

these representations and lexical-semantic knowledge, we put forward a semantic similarity

measure with state-of-the-art performance on multiple datasets.

3.3 Sense Embeddings

Word embeddings are a vector space models (VSM) that represent words as real-valued

vectors in a low-dimensional (relative to the size of the vocabulary) semantic space, usually

referred to as the continuous space language model. In contrast to word embeddings, which

obtain a single vector for potentially ambiguous words, sense embeddings are continuous

representations of individual word senses.

In order to be able to apply word embeddings techniques to obtain representations for

individual word senses, large sense-annotated corpora have to be available. However, manual

sense annotation is a difficult and time-consuming process, i.e., the so-called knowledge

acquisition bottleneck. In fact, the largest existing manually sense annotated dataset is the
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SemCor corpus (Miller et al., 1993), whose creation dates back to more than two decades

ago. In order to alleviate this issue, we leveraged a state-of-the-art WSD algorithm to

automatically generate large amounts of sense-annotated corpora.

The chapter continues as follows: in Section3.3.1, we describe the sense inventory used

for SENSEMBED. Section 3.3.2 introduces the corpus and the disambiguation procedure

used to sense annotate this corpus. Finally in Section 3.3.3 we discuss how we leverage the

automatically sense-tagged dataset for the training of sense embeddings.

3.3.1 Underlying sense inventory

We selected BabelNet (cf. Section 1.4) as our underlying sense inventory. The resource is a

merger of WordNet with multiple other lexical resources, the most prominent of which is

Wikipedia. As a result, the manually-curated information in WordNet is augmented with

the complementary knowledge from collaboratively-constructed resources, providing a high

coverage of domain-specific terms and named entities and a rich set of relations. The usage

of BabelNet as our underlying sense inventory provides us with the advantage of having our

sense embeddings readily applicable to multiple sense inventories.

3.3.2 Generating a sense-annotated corpus

As our corpus we used the September-2014 dump of the English Wikipedia.1 This corpus

comprises texts from various domains and topics and provides a suitable word coverage.

The unprocessed text of the corpus includes approximately three billion tokens and more

than three million unique words. We only consider tokens with at least five occurrences.

As our WSD system, we opted for Babelfy2 (Moro et al., 2014), a state-of-the-art WSD

and Entity Linking algorithm based on BabelNet’s semantic network. Babelfy first models

each concept in the network through its corresponding “semantic signature" by leveraging

a graph random walk algorithm. Given an input text, the algorithm uses the generated

semantic signatures to construct a subgraph of the semantic network representing the input

text. Babelfy then searches this subgraph for the intended sense of each content word

using an iterative process and a dense subgraph heuristic. Thanks to its use of BabelNet,

1http://dumps.wikimedia.org/enwiki/
2http://www.babelfy.org/

http://dumps.wikimedia.org/enwiki/
http://www.babelfy.org/
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Figure 3.1. The SensEmbed architecture.

Babelfy inherently features multilinguality; hence, our representation approach is equally

applicable to languages other than English. In order to guarantee high accuracy and to avoid

bias towards more frequent senses, we do not consider those judgements made by Babelfy

while backing off to the most frequent sense, a case that happens when a certain confidence

threshold is not met by the algorithm. The disambiguated items with high confidence

correspond to more than 50% of all the content words. As a result of the disambiguation

step, we obtain sense-annotated data comprising around one billion tagged words with at

least five occurrences and 2.5 million unique word senses.

3.3.3 Learning sense embeddings

The disambiguated text is processed with the word2vec (Mikolov et al., 2013a) toolkit.

We applied word2vec to produce continuous representations of word senses based on the

distributional information obtained from the annotated corpus. For each target word sense,

a representation is computed by maximizing the log likelihood of the word sense with

respect to its context. We opted for the Continuous Bag of Words (CBOW) architecture,

the objective of which is to predict a single word (word sense in our case) given its context.
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Synset Description Synonymous senses

hoodn1 rough or violent youth hoodlumn
1 , goonn2 , thugn1

hoodn4 photography equipment lens_hoodn1

hoodn9 automotive body parts bonnetn2 , cowln1 , cowlingn1

hoodn12 car with retractable top convertiblen1
Table 3.2. Sample initial senses of the noun hood (leftmost column) and their synonym expansion.

The context is defined by a window, typically with the size of five words on each side with

the paragraph ending barrier. We used hierarchical softmax as our training algorithm. The

dimensionality of the vectors were set to 400 and the sub-sampling of frequent words to

10−3.

As a result of the learning process, we obtain vector-based semantic representations for

each of the word senses in the automatically-annotated corpus. We show in Table 3.1 some

of the closest senses to six sample word senses: the geographical and financial senses of

river, the performance and phone number senses of number, and the gang and car senses

of hood.3 As can be seen, sense embeddings can capture effectively the clear distinctions

between different senses of a word. Additionally, the closest senses are not necessarily

constrained to the same part of speech. For instance, the river sense of bank has the adverbs

upstream and downstream and the “move along, of liquid" sense of the verb run among its

closest senses.

3.4 Similarity Measurement

This Section describes how we leverage the generated sense embeddings for the computation

of word similarity and relational similarity. We start the Section by explaining how we

associate a word with its set of corresponding senses and how we compare pairs of senses in

Sections 3.4.1 and 3.4.2, respectively. We then illustrate our approach for measuring word

similarity, together with its knowledge-based enhancement, in Section 3.4.3, and relational

3We follow Navigli (2009) and show the nth sense of the word with part of speech x as wordx
n.
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similarity in Section 3.4.4. Hereafter, we refer to our similarity measurement approach as

SENSEMBED.

3.4.1 Associating senses with words

In order to be able to utilize our sense embeddings for a word-level task such as word

similarity measurement, we need to associate each word with its set of relevant senses, each

modeled by its corresponding vector. Let Sw be the set of senses associated with the word w.

Our objective is to cover as many senses as can be associated with the word w. To this end

we first initialize the set Sw by the word senses of the word w and all its synonymous word

senses, as defined in the BabelNet sense inventory. We show in Table 3.2 some of the senses

of the noun hood and the synonym expansion for these senses. We further expand the set

Sw by repeating the same process for the lemma of word w (if not already in lemma form).

3.4.2 Vector comparison

To compare vectors, we use the Tanimoto distance. The measure is a generalization of

Jaccard similarity for real-valued vectors in [-1, 1]:

T ( ~w1, ~w2) = ~w1 · ~w2
‖ ~w1‖2 + ‖ ~w2‖2 − ~w1 · ~w2

(3.1)

where ~w1 · ~w2 is the dot product of the vectors ~w1 and ~w2, and ‖ ~wi‖ is the Euclidean norm

of ~wi. Rink and Harabagiu (2013) reported consistent improvements when using vector

space metrics, in particular the Tanimoto distance, on the SemEval-2012 task on relational

similarity (Jurgens et al., 2012) in comparison to several other measures that are designed

for probability distributions, such as Jensen-Shannon divergence and Hellinger distance.

3.4.3 Word similarity

We show in Algorithm 1 our procedure for measuring the semantic similarity of a pair of

input words w1 and w2. The algorithm also takes as its inputs the similarity strategy and

the weighted similarity parameter α (Section 3.4.3) along with a graph vicinity factor flag

(Section 3.4.3).
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Similarity measurement strategy

We take two strategies for calculating the similarity of the given words w1 and w2. Let Sw1

and Sw2 be the sets of senses associated with the two respective input words w1 and w2, and

let ~si be the sense embedding vector of the sense si. In the first strategy, which we refer to as

closest, we follow the conventional approach of Budanitsky and Hirst (2006) and measure

the similarity of the two words as the similarity of their closest senses, i.e.:

Simclosest (w1, w2) = max
s1∈Sw1
s2∈Sw2

T (~s1, ~s2) (3.2)

However, taking the similarity of the closest senses of two words as their overall

similarity ignores the fact that the other senses can also contribute to the process of similarity

judgement. In fact, psychological studies suggest that humans, while judging semantic

similarity of a pair of words, consider different meanings of the two words and not only the

closest ones (Tversky, 1977; Markman and Gentner, 1993). For instance, the WordSim-353

dataset (Finkelstein et al., 2002) contains the word pair brother-monk. Despite having the

religious devotee sense in common, the two words are assigned the similarity judgement of

6.27, which is slightly above the middle point in the similarity scale [0,10] of the dataset.

This clearly indicates that other non-synonymous, yet still related, senses of the two words

have also played a role in the similarity judgement. Additionally, the relatively low score

reflects the fact that the religious devotee sense is not a dominant meaning of the word

brother.

We therefore put forward another similarity measurement strategy, called weighted, in

which different senses of the two words contribute to their similarity computation, but the

contributions are scaled according to their relative importance. To this end, we first leverage

sense occurrence frequencies in order to estimate the dominance of each specific word sense.

For each word w, we first compute the dominance of its sense s ∈ Sw by dividing the

frequency of s by the overall frequency of all senses associated with w, i.e., Sw:

d(s) = freq(s)∑
s′∈Sw

freq(s′) (3.3)

We further recognize that the importance of a specific sense of a word can also be
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Algorithm 1 Word Similarity

Input: Two words w1 and w2
Str, the similarity strategy
Vic, the graph vicinity factor flag
α parameter for the weighted strategy

Output: The similarity between w1 and w2

1: Sw1 ← getSenses(w1)
2: Sw2 ← getSenses(w2)
3: if Str is closest then
4: sim← -1
5: else
6: sim← 0
7: end if
8: for each s1 ∈ Sw1 and s2 ∈ Sw2 do
9: if Vic is true then

10: tmp← T ∗(~s1,~s2)
11: else
12: tmp← T (~s1,~s2)
13: end if
14: if Str is closest then
15: sim← max (sim, tmp)
16: else
17: sim← sim + tmpα × d(s1) × d(s2)
18: end if
19: end for

triggered by the word it is being compared with. We model this by biasing the similarity

computation towards closer senses, by increasing the contribution of closer senses through a

power function with parameter α. The similarity of a pair of words w1 and w2 according to

the weighted strategy is computed as:

Simweighted (w1, w2) =∑
s1∈Sw1

∑
s2∈Sw2

d(s1) d(s2) T (~s1, ~s2)α
(3.4)

where the α parameter is a real-valued constant greater than one. We show in Section 3.5.1

how we tune the value of this parameter.
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Figure 3.2. Portion of BabelNet graph including the pair orthodontist-dentist and close related
synsets

Enhancing similarity accuracy

Our similarity measurement approach takes advantage of lexical knowledge at two different

levels. First, as we described in Sections 3.3.2 and 3.3.3, we use a knowledge-based disam-

biguation approach, i.e., Babelfy, which exploits BabelNet’s semantic network. Second, we

put forward a methodology that leverages the relations in BabelNet’s graph for enhancing

the accuracy of similarity judgements, to be discussed next.

As a distributional vector representation technique, our sense embeddings can potentially

suffer from inaccurate modeling of less frequent word senses. In contrast, our underlying

sense inventory provides a full coverage of all its concepts, with relations that are taken from

WordNet and Wikipedia. In order to make use of the complementary information provided by

our lexical knowledge base and to obtain more accurate similarity judgements, we introduce

a graph vicinity factor, that combines the structural knowledge from BabelNet’s semantic

network and the distributional representation of sense embeddings. To this end, for a given

sense pair, we scale the similarity judgement obtained by comparing their corresponding

sense embeddings, based on their placement in the network. Let E be the set of all sense-

to-sense relations provided by BabelNet’s semantic network, i.e., E = {(si, sj) : si − sj}.

Then, the similarity of a pair of words with the graph vicinity factor in formulas 3.2 and 3.4



3.4 Similarity Measurement 31

is computed by replacing T with T ∗, defined as:

T ∗(~s1, ~s2) =


T (~s1, ~s2)× β, if (s1, s2) ∈ E

T (~s1, ~s2)× β−1, otherwise
(3.5)

We show in Section 3.5.1 how we tune the parameter β. This procedure is particularly helpful

for the case of less frequent word senses that do not have enough contextual information

to allow an effective representation. For instance, the SimLex-999 dataset (Hill et al.,

2015), which we use as our tuning dataset (see Section 3.5.1), contains the highly-related

pair orthodontist-dentist, which is also connected in the BabelNet graph (Figure 3.2). We

observed that the intended sense of the noun orthodontist occurs only 70 times in our

annotated corpus. As a result, the obtained representation was not accurate, resulting in a

low similarity score for the pair. The two respective senses are, however, directly connected

in the BabelNet graph. Hence, the graph vicinity factor scales up the computed similarity

value for the word pair.

3.4.4 Relational similarity

Relational similarity evaluates the correspondence between relations (Medin et al., 1990).

The task can be viewed as an analogy problem in which, given two pairs of words (wa, wb)

and (wc, wd), the goal is to compute the extent to which the relations of wa to wb and wc to

wd are similar. Sense embeddings are suitable candidates for measuring this type of similar-

ity, as they represent relations between senses as linear transformations. Given this property,

the relation between a pair of words can be obtained by subtracting their corresponding

normalized embeddings. Following Zhila et al. (2013), the relational similarity between two

pairs of word (wa, wb) and (wc, wd) is accordingly calculated as:

ANALOGY( ~wa, ~wb, ~wc, ~wd) = T ( ~wb − ~wa, ~wd − ~wc) (3.6)

We show the procedure for measuring the relational similarity in Algorithm 2. The algorithm

first finds the closest senses across the two word pairs: s∗a and s∗b for the first pair and s∗c

and s∗d for the second. The analogy vector representations are accordingly computed as the

difference between the sense embeddings of the corresponding closest senses. Finally, the
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Algorithm 2 Relational Similarity

Input: Two pairs of words wa, wb and wc, wd
Output: The degree of analogy between the two pairs

1: Swa ← getSenses(wa), Swb
← getSenses(wb)

2: (s∗a, s∗b )← argmaxsa∈Swa
sb∈Swb

T (~sa, ~sb)

3: Swc ← getSenses(wc), Swd
← getSenses(wd)

4: (s∗c , s
∗
d)← argmaxsc∈Swc

sd∈Swd

T (~sc, ~sd)

5: return: T (~sb∗ − ~sa
∗ , ~sd∗ − ~sc

∗)

relational similarity is computed as the similarity of the analogy vectors of the two pairs.

3.5 Experiments

We evaluate our sense-enhanced semantic representation on multiple word similarity and

relatedness datasets (Section 3.5.1), as well as the relational similarity framework (Section

3.5.2).

3.5.1 Word similarity experiment

Word similarity measurement is one of the most popular evaluation methods in lexical

semantics, and semantic similarity in particular, with numerous evaluation benchmarks and

datasets. Given a set of word pairs, a system’s task is to provide similarity judgments for

each pair, and these judgments should ideally be as close as possible to those given by

humans.

Datasets

We evaluate SENSEMBED on standard word similarity and relatedness datasets: the RG-

65 (Rubenstein and Goodenough, 1965) and the WordSim-353 (Finkelstein et al., 2002,

WS-353) datasets. Agirre et al. (2009) suggested that the original WS-353 dataset conflates

similarity and relatedness and divided the dataset into two subsets, each containing pairs for

just one type of association measure: similarity (the WS-Sim dataset) and relatedness (the

WS-Rel dataset).
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Measure
Dataset

RG-65 WS-Sim WS-Rel YP-130 MEN Avg

Pilehvar et al. (2013) 0.868 0.677 0.457 0.710 0.690 0.677
Zesch et al. (2008) 0.820 — — 0.710 — —
Collobert and Weston (2008) 0.480 0.610 0.380 — 0.570 —
word2vec (Baroni et al., 2014) 0.840 0.800 0.700 — 0.800 —
GloVe 0.769 0.666 0.559 0.577 0.763 0.737
ESA 0.749 — — — — —
PMI-SVD 0.738 0.659 0.523 0.337 0.726 0.695

word2vec 0.732 0.707 0.476 0.343 0.665 0.644
SENSEMBEDclosest 0.894 0.756 0.645 0.734 0.779 0.769
SENSEMBEDweighted 0.871 0.812 0.703 0.639 0.805 0.794

Table 3.3. Spearman correlation performance on five word similarity and relatedness datasets.

We also evaluate our approach on the YP-130 dataset, which was created by Yang

and Powers (2005) specifically for measuring verb similarity, and also on the Stanford’s

Contextual Word Similarities (SCWS), a dataset for measuring word-in-context similarity

(Huang et al., 2012). In the SCWS dataset each word is provided with the sentence containing

it, which helps in pointing out the intended sense of the corresponding target word.

Finally, we also report results on the MEN dataset which was recently introduced by

Bruni et al. (2014). MEN contains two sets of English word pairs, together with human-

assigned similarity judgments, obtained by crowdsourcing using Amazon Mechanical Turk.

Comparison systems

We compare the performance of our similarity measure against twelve other approaches.

As regards traditional distributional models, we report the best results computed by Baroni

et al. (2014) for PMI-SVD, a system based on Pointwise Mutual Information (PMI) and

SVD-based dimensionality reduction. For word embeddings, we report the results of GloVe

(Pennington et al., 2014) and Collobert and Weston (2008). GloVe is an alternative way

for learning embeddings, in which vector dimensions are made explicit, as opposed to the

opaque meaning of the vector dimensions in word2vec. The approach of Collobert and

Weston (2008) is an embeddings model with a deeper architecture, designed to preserve

more complex knowledge as distant relations. We also show results for the word embeddings
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trained by Baroni et al. (2014). The authors first constructed a massive corpus by combining

several large corpora. Then, they trained dozens of different word2vec models by varying

the system’s training parameters and reported the best performance obtained on each dataset.

As representatives for graph-based similarity techniques, we report results for the

state-of-the-art approach of Pilehvar et al. (2013) which is based on random walks on

WordNet’s semantic network. Moreover, we present results for the graph-based approach

of Zesch et al. (2008), which compares a pair of words based on the path lengths on

Wiktionary’s semantic network. We also compare our word similarity measure against

the multi-prototype models of Reisinger and Mooney (2010) and Huang et al. (2012), and

against the approaches of Yu and Dredze (2014) and Chen et al. (2014), which enhance

word embeddings with semantic knowledge derived from The Paragraph Database (PPDB)

and WordNet, respectively. Finally, we report results for word embeddings, as our baseline,

obtained using the word2vec toolkit on the same corpus that was annotated and used for

learning our sense embeddings (cf. Section 3.3.3).

Parameter tuning

Recall from Sections 3.4.3 and 3.4.3 that our algorithm has two parameters: the α parameter

for the weighted strategy and the β parameter for the graph vicinity factor. We tuned these

two parameters on the SimLex-999 dataset (Hill et al., 2015). We picked SimLex-999 since

there are not many comparison systems in the literature that report results on the dataset.

We found the optimal values for α and β to be 8 and 1.6, respectively.

Results

Table 3.3 shows the experimental results on five different word similarity and relatedness

datasets. We report the Spearman correlation performance for the two strategies of our

approach as well as eight other comparison systems. SENSEMBED proves to be highly

reliable on both similarity and relatedness measurement tasks, obtaining the best performance

on most datasets. In addition, our approach shows itself to be equally suitable for verb

similarity, as indicated by the results on YP-130.

The rightmost column in the Table shows the average performance weighted by dataset

size. Between the two similarity measurement strategies, weighted proves to be the more
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Measure WS-353 SCWS

Huang et al. (2012) 0.713 0.628
Reisinger and Mooney (2010) 0.770 –
Chen et al. (2014) – 0.662
Yu and Dredze (2014) 0.537 –

word2vec 0.694 0.642
SENSEMBEDclosest 0.714 0.589
SENSEMBEDweighted 0.779 0.624

Table 3.4. Spearman correlation performance of the multi-prototype and semantically-enhanced
approaches on the WordSim-353 and the Stanford’s Contextual Word Similarities datasets.

suitable, achieving the best overall performance on three datasets and the best mean perfor-

mance of 0.794 across the two strategies. This indicates that our assumption of considering

all senses of a word in similarity computation was beneficial.

We report in Table 3.4 the Spearman correlation performance of four approaches that

are similar to SENSEMBED: the multi-prototype models of Reisinger and Mooney (2010)

and Huang et al. (2012), and the semantically enhanced models of Yu and Dredze (2014)

and Chen et al. (2014). We provide results only on WS-353 and SCWS, since the above-

mentioned approaches do not report their performance on other datasets. As we can see

from the Table, SENSEMBED outperforms the other approaches on the WS-353 dataset.

However, our approach lags behind on SCWS, highlighting the negative impact of taking

the closest senses as the intended meanings. In fact, on this dataset, SENSEMBEDweighted

provides better performance owing to its taking into account other senses as well. The better

performance of the multi-prototype systems can be attributed to their coarse-grained sense

inventories which are automatically constructed by means of Word Sense Induction.

3.5.2 Relational similarity experiment

Dataset and evaluation. We take as our benchmark the SemEval-2012 task on Measuring

Degrees of Relational Similarity (Jurgens et al., 2012). The task provides a dataset compris-

ing 79 graded word relations, 10 of which are used for training and the rest for test. The task

evaluated the participating systems in terms of the Spearman correlation and the MaxDiff

score (Louviere, 1991).
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Measure MaxDiff Spearman

Com 45.2 0.353
PairDirection 45.2 —
RNN-1600 41.8 0.275
UTD-LDA — 0.334
UTD-NB 39.4 0.229
UTD-SVM 34.7 0.116
PMI baseline 33.9 0.112

word2vec 43.2 0.288
SENSEMBEDclosest 45.9 0.358

Table 3.5. Spearman correlation performance of different systems on the SemEval-2012 Task on
Relational Similarity.

Comparison systems. We compare our results against six other systems and the PMI

baseline provided by the task organizers. As for systems that use word embeddings for

measuring relational similarity, we report results for RNN-1600 (Mikolov et al., 2013c)

and PairDirection (Levy and Goldberg, 2014). We also report results for UTD-NB and

UTD-SVM (Rink and Harabagiu, 2012), which rely on lexical pattern classification based

on Naïve Bayes and Support Vector Machine classifiers, respectively. UTD-LDA (Rink and

Harabagiu, 2013) is another system presented by the same authors that casts the task as a

selectional preferences one. Finally, we show the performance of Com (Zhila et al., 2013), a

system that combines word2vec, lexical patterns, and knowledge base information. Similarly

to the word similarity experiments, we also report a baseline based on word embeddings

(word2vec) trained on the same corpus and with the same settings as SENSEMBED.

Results. Table 3.5 shows the performance of different systems in the task of relational

similarity in terms of the Spearman correlation and MaxDiff score. A comparison of the

results for word2vec and SENSEMBED shows the advantage gained by moving from the word

to the sense level. Among the comparison systems, Com attains the closest performance.

However, we note that the system is a combination of several methods, whereas SENSEMBED

is based on a single approach.
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Model Setting Dataset

Strategy Vicinity Expansion RG-65 WS-Sim WS-Rel YP-130 MEN Average

word2vec – – 0.732 0.707 0.476 0.343 0.665 0.644
word2vecexp – – X 0.700 0.665 0.326 0.621 0.655 0.632

SENSEMBED

closest
0.825 0.693 0.488 0.492 0.712 0.690

X 0.844 0.714 0.562 0.681 0.743 0.728
X X 0.894 0.756 0.645 0.734 0.779 0.769

weighted
0.877 0.776 0.639 0.446 0.783 0.762

X 0.864 0.783 0.665 0.591 0.773 0.761
X X 0.871 0.812 0.703 0.639 0.805 0.794

Table 3.6. Spearman correlation performance of word embeddings (word2vec) and SENSEMBED on
different semantic similarity and relatedness datasets.

3.5.3 Analysis

In order to analyze the impact of the different components of our similarity measure, we

carried out a series of experiments on our word similarity datasets. We show in Table 3.6

the experimental results in terms of Spearman correlation. Performance is reported for the

two similarity measurement strategies, i.e., closest and weighted, and for different system

settings with and without the expansion procedure (cf. Section 3.4.1) and graph vicinity

factor (cf. Section 3.4.3). As our comparison baseline, we also report results for word

embeddings, obtained using the word2vec toolkit on the same corpus and with the same

configuration (cf. Section 3.3.3) used for learning the sense embeddings (word2vec in

the Table). The rightmost column in the Table reports the mean performance weighted by

dataset size. word2vecexp is the word embeddings system in which the similarity of the two

words is determined in terms of the closest word embeddings among all the corresponding

synonyms obtained with the expansion procedure (cf. Section 3.4.1).

A comparison of word and sense embeddings in the vanilla setting (with neither the

expansion procedure nor graph vicinity factor) indicates the consistent advantage gained by

moving from word to sense level, irrespective of the dataset and the similarity measurement

strategy. The consistent improvement shows that the semantic information provided more

than compensates for the inherently imperfect disambiguation. Moreover, the results indicate

the consistent benefit gained by introducing the graph vicinity factor, highlighting the

fact that our combination of the complementary knowledge from sense embeddings and

information derived from a semantic network is beneficial. Finally, note that the expansion
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procedure leads to performance improvement in most cases for sense embeddings. In direct

contrast, the step proves harmful in the case of word embeddings, mainly due to their

inability to distinguish individual word senses.

3.6 Conclusions

We propose an approach for obtaining continuous representations of individual word senses,

referred to as sense embeddings. Based on the proposed sense embeddings and the knowl-

edge obtained from a large-scale lexical resource, i.e., BabelNet, we put forward an effective

technique, called SENSEMBED, for measuring semantic similarity. We evaluated our ap-

proach on multiple datasets in the tasks of word and relational similarity. Two conclusions

can be drawn on the basis of the experimental results: (1) moving from word to sense

embeddings can significantly improve the effectiveness and accuracy of the representations;

and (2) a meaningful combination of sense embeddings and knowledge from a semantic

network can further enhance the similarity judgements.



39

Chapter 4

Embedding Words and Senses

Together via Joint

Knowledge-Enhanced

Training

"There is no more striking general fact

about language than its universality "

Edward Sapir, 1921

Word embeddings are widely used in Natural Language Processing (NLP), mainly

due to their success in capturing semantic information from massive corpora. However,

their creation process does not allow the different meanings of a word to be automatically

separated, as it conflates them into a single vector. We address this issue by proposing a new

model which learns word and sense embeddings jointly. Our model exploits large corpora

and knowledge from semantic networks in order to produce a unified vector space of word

and sense embeddings. We evaluate the main features of our approach both qualitatively

and quantitatively in a variety of tasks, highlighting the advantages of the proposed method

in comparison to state-of-the-art word- and sense-based models.
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4.1 Introduction

Recently, approaches based on neural networks which embed words into low-dimensional

vector spaces from text corpora (i.e. word embeddings) have become increasingly popular

(Mikolov et al., 2013a; Pennington et al., 2014). Word embeddings have proved to be

beneficial in many Natural Language Processing (NLP) tasks, such as Machine Translation

(Zou et al., 2013), syntactic parsing (Weiss et al., 2015), and Question Answering (Bordes

et al., 2014), to name a few. Despite their success in capturing semantic properties of words,

these representations are generally hampered by an important limitation: the inability to

discriminate among different meanings of the same word.

Previous works have addressed this limitation by automatically inducing word senses

from monolingual corpora (Schütze, 1998; Reisinger and Mooney, 2010; Huang et al., 2012;

Neelakantan et al., 2014; Tian et al., 2014; Li and Jurafsky, 2015; Vu and Parker, 2016; Qiu

et al., 2016), or bilingual parallel data (Guo et al., 2014; Ettinger et al., 2016; Šuster et al.,

2016). However, these approaches learn solely on the basis of statistics extracted from text

corpora and do not exploit knowledge from semantic networks. Additionally, their induced

senses are neither readily interpretable (Panchenko et al., 2017) nor easily mappable to

lexical resources, which limits their application. Recent approaches have utilized semantic

networks to inject knowledge into existing word representations (Yu and Dredze, 2014;

Faruqui et al., 2015; Goikoetxea et al., 2015; Speer and Lowry-Duda, 2017; Mrksic et al.,

2017), but without solving the meaning conflation issue.

In order to obtain a representation for each sense of a word, a number of approaches

have leveraged lexical resources to learn sense embeddings as a result of post-processing

conventional word embeddings (Chen et al., 2014; Johansson and Nieto Piña, 2015; Jauhar

et al., 2015; Rothe and Schütze, 2015; Pilehvar and Collier, 2016; Camacho-Collados et al.,

2016).

Instead, we propose SW2V (Senses and Words to Vectors), a neural model that exploits

knowledge from both text corpora and semantic networks in order to simultaneously learn

embeddings for both words and senses. Moreover, our model provides three additional key

features: (1) both word and sense embeddings are represented in the same vector space, (2)

it is flexible, as it can be applied to different predictive models, and (3) it is scalable for very

large semantic networks and text corpora.



4.2 Connecting words and senses in context 41

4.2 Connecting words and senses in context

In order to jointly produce embeddings for words and senses, SW2V needs as input a corpus

where words are connected to senses1 in each given context. One option for obtaining

such connections could be to take a sense-annotated corpus as input. However, manually

annotating large amounts of data is extremely expensive and therefore impractical in normal

settings. Obtaining sense-annotated data from current off-the-shelf disambiguation and

entity linking systems is possible, but generally suffers from two major problems. First,

supervised systems are hampered by the very same problem of needing large amounts of

sense-annotated data. Second, the relatively slow speed of current disambiguation systems,

such as graph-based approaches (Hoffart et al., 2012; Agirre et al., 2014; Moro et al., 2014),

or word-expert supervised systems (Zhong and Ng, 2010; Iacobacci et al., 2016; Melamud

et al., 2016), could become an obstacle when applied to large corpora.

This is the reason why we propose a simple yet effective unsupervised shallow word-

sense connectivity algorithm, which can be applied to virtually any given semantic network

and is linear on the corpus size. The main idea of the algorithm is to exploit the connections

of a semantic network by associating words with the senses that are most connected within

the sentence, according to the underlying network.

Shallow word-sense connectivity algorithm. Formally, a corpus and a semantic net-

work are taken as input and a set of connected words and senses is produced as output. We

define a semantic network as a graph (S,E) where the set S contains synsets (nodes) and E

represents a set of semantically connected synset pairs (edges). Algorithm 3 describes how

to connect words and senses in a given text (sentence or paragraph) T . First, we gather in a

set ST all candidate synsets of the words (including multiwords up to trigrams) in T (lines 1

to 20). Second, for each candidate synset s we calculate the number of synsets which are

connected with s in the semantic network and are included in ST , excluding connections of

synsets which only appear as candidates of the same word (lines 6 to 11). Finally, each word

is associated with its top candidate synset(s) according to its/their number of connections

in context, provided that its/their number of connections exceeds a threshold θ = |ST |+|T |
2 δ

(lines 12 to 22).2 This parameter aims to retain relevant connectivity across senses, as only

1In this chapter we focus on senses but other items connected to words may be used (e.g. supersenses or
images).

2As mentioned above, all unigrams, bigrams and trigrams present in the semantic network are considered. In
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Algorithm 3 Shallow word-sense connectivity

Input: Semantic network (S,E) and text T represented as a bag of words
Output: Set of connected words and senses T ∗ ⊂ T × S

1: Set of synsets ST ← ∅
2: for each word w ∈ T do
3: ST ← ST ∪ Sw (Sw: set of candidate synsets of w)
4: end for
5: Minimum connections threshold θ ← |ST |+|T |

2 δ
6: Output set of connections T ∗ ← ∅
7: for each w ∈ T do
8: Relative maximum connections max = 0
9: Set of senses associated with w, Cw ← ∅

10: for each candidate synset s ∈ Sw do
11: Number of edges n = |s′ ∈ ST : (s, s′) ∈ E &
∃w′ ∈ T : w′ 6= w & s′ ∈ Sw′ |

12: if n ≥ max & n ≥ θ then
13: if n > max then
14: Cw ← {(w, s)}
15: max← n
16: else
17: Cw ← Cw ∪ {(w, s)}
18: end if
19: end if
20: end for
21: T ∗ ← T ∗ ∪ Cw
22: end for
23: return Output set of connected words and senses T ∗

senses above the threshold will be connected to words in the output corpus. θ is proportional

to the reciprocal of a parameter δ,3 and directly proportional to the average text length and

number of candidate synsets within the text.

The complexity of the proposed algorithm is N + (N × α), where N is the number of

words of the training corpus and α is the average polysemy degree of a word in the corpus

according to the input semantic network. Considering that non-content words are not taken

into account (i.e. polysemy degree 0) and that the average polysemy degree of words in

current lexical resources (e.g. WordNet or BabelNet) does not exceed a small constant (3) in

the case of overlapping instances, the selection of the final instance is performed in this order: mention whose
synset is more connected (i.e. n is higher), longer mention and from left to right.

3Higher values of δ lead to higher recall, while lower values of δ increase precision but lower the recall. We
set the value of δ to 100, as it was shown to produce a fine balance between precision and recall. This parameter
may also be tuned on downstream tasks.
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Figure 4.1. The SW2V architecture

any language, we can safely assume that the algorithm is linear in the size of the training

corpus. Hence, the training time is not significantly increased in comparison to training

words only, irrespective of the corpus size. This enables a fast training on large amounts of

text corpora, in contrast to current unsupervised disambiguation algorithms. Additionally,

as we will show in Section 4.4.2, this algorithm does not only speed up significantly the

training phase, but also leads to more accurate results.

Note that with our algorithm a word is allowed to have more than one sense associated.

In fact, current lexical resources like WordNet (Miller, 1995) or BabelNet (Navigli and

Ponzetto, 2012) are hampered by the high granularity of their sense inventories (Hovy et al.,

2013). In Section 4.5.2 we show how our sense embeddings are particularly suited to deal

with this issue.

4.3 Joint training of words and senses

The goal of our approach is to obtain a shared vector space of words and senses. To

this end, our model extends conventional word embedding models by integrating explicit

knowledge into its architecture. While we will focus on the Continuous Bag Of Words
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(CBOW) architecture of word2vec (Mikolov et al., 2013a), our extension can easily be

applied similarly to Skip-Gram, or to other predictive approaches based on neural networks.

The CBOW architecture is based on the feedforward neural network language model (Bengio

et al., 2003) and aims at predicting the current word using its surrounding context. The

architecture consists of input, hidden and output layers. The input layer has the size of the

word vocabulary and encodes the context as a combination of one-hot vector representations

of surrounding words of a given target word. The output layer has the same size as the input

layer and contains a one-hot vector of the target word during the training phase.

Our model extends the input and output layers of the neural network with word senses4

by exploiting the intrinsic relationship between words and senses. The leading principle is

that, since a word is the surface form of an underlying sense, updating the embedding of

the word should produce a consequent update to the embedding representing that particular

sense, and vice-versa. As a consequence of the algorithm described in the previous section,

each word in the corpus may be connected with zero, one or more senses. We refer to the

set of senses connected to a given word within the specific context as its associated senses.

Formally, we define a training instance as a sequence of wordsW = wt−n, ..., wt, ..., wt+n

(being wt the target word) and S = St−n, ..., St, ...., St+n, where Si = s1
i , ..., s

ki
i is the

sequence of all associated senses in context of wi ∈ W . Note that Si might be empty if

the word wi does not have any associated sense. In our model each target word takes as

context both its surrounding words and all the senses associated with them. In contrast to

the original CBOW architecture, where the training criterion is to correctly classify wt, our

approach aims to predict the word wt and its set St of associated senses. This is equivalent

to minimizing the following loss function:

E = − log(p(wt|W t, St))−
∑
s∈St

log(p(s|W t, St))

where W t = wt−n, ..., wt−1, wt+1, ..., wt+n and St = St−n, ..., St−1, St+1, ..., St+n. Fig-

ure 4.1 shows the organization of the input and the output layers on a sample training

instance. In what follows we present a set of variants of the model on the output and the

input layers.

4Our model can also produce a space of words and synset embeddings as output: the only difference is that
all synonym senses would be considered to be the same item, i.e. a synset.
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4.3.1 Output layer alternatives

Both words and senses. This is the default case explained above. If a word has one or

more associated senses, these senses are also used as target on a separate output layer.

Only words. In this case we exclude senses as target. There is a single output layer with

the size of the word vocabulary as in the original CBOW model.

Only senses. In contrast, this alternative excludes words, using only senses as target. In this

case, if a word does not have any associated sense, it is not used as target instance.

4.3.2 Input layer alternatives

Both words and senses. Words and their associated senses are included in the input layer

and contribute to the hidden state. Both words and senses are updated as a consequence

of the backpropagation algorithm.

Only words. In this alternative only the surrounding words contribute to the hidden state,

i.e. the target word/sense (depending on the alternative of the output layer) is predicted

only from word features. The update of an input word is propagated to the embeddings

of its associated senses, if any. In other words, despite not being included in the input

layer, senses still receive the same gradient of the associated input word, through

a virtual connection. This configuration, coupled with the only-words output layer

configuration, corresponds exactly to the default CBOW architecture of word2vec

with the only addition of the update step for senses.

Only senses. Words are excluded from the input layer and the target is predicted only from

the senses associated with the surrounding words. The weights of the words are

updated through the updates of the associated senses, in contrast to the only-words

alternative.

4.4 Analysis of Model Components

In this section we analyze the different components of SW2V, including the nine model

configurations (Section 4.4.1) and the algorithm which generates the connections between
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Output
Words Senses Both

WS-Sim RG-65 WS-Sim RG-65 WS-Sim RG-65
r ρ r ρ r ρ r ρ r ρ r ρ

In
pu

t Words 0.49 0.48 0.65 0.66 0.56 0.56 0.67 0.67 0.54 0.53 0.66 0.65
Senses 0.69 0.69 0.70 0.71 0.69 0.70 0.70 0.74 0.72 0.71 0.71 0.74
Both 0.60 0.65 0.67 0.70 0.62 0.65 0.66 0.67 0.65 0.71 0.68 0.70

Table 4.1. Pearson (r) and Spearman (ρ) correlation performance of the nine configurations of
SW2V

words and senses in context (Section 4.4.2). In what follows we describe the common

analysis setting:

• Training model and hyperparameters. For evaluation purposes, we use the CBOW

model of word2vec with standard hyperparameters: the dimensionality of the vectors is

set to 300 and the window size to 8, and hierarchical softmax is used for normalization.

These hyperparameter values are set across all experiments.

• Corpus and semantic network. We use a 300M-words corpus from the UMBC

project (Han et al., 2013), which contains English paragraphs extracted from the web.5

As semantic network we use BabelNet (cf. Section 1.4), a large multilingual semantic

network with over 350 million semantic connections, integrating resources such as

Wikipedia and WordNet. We chose BabelNet owing to its wide coverage of named

entities and lexicographic knowledge.

• Benchmark. Word similarity has been one of the most popular benchmarks for

in-vitro evaluation of vector space models (Pennington et al., 2014; Levy et al., 2015).

For the analysis we use two word similarity datasets: the similarity portion (Agirre

et al., 2009, WS-Sim) of the WordSim-353 dataset (Finkelstein et al., 2002) and

RG-65 (Rubenstein and Goodenough, 1965). In order to compute the similarity of

two words using our sense embeddings, we apply the standard closest senses strategy

(Resnik, 1995; Budanitsky and Hirst, 2006; Camacho-Collados et al., 2015a), using

cosine similarity (cos) as comparison measure between senses:

sim(w1, w2) = max
s∈Sw1 ,s

′∈Sw2
cos(~s1, ~s2) (4.1)

5http://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/

http://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
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where Swi represents the set of all candidate senses of wi and ~si refers to the sense

vector representation of the sense si.

4.4.1 Model configurations

In this section we analyze the different configurations of our model in respect of the input

and the output layer on a word similarity experiment. Recall from Section 4.3 that our model

could have words, senses or both in either the input and output layers. Table 4.1 shows the

results of all nine configurations on the WS-Sim and RG-65 datasets.

As shown in Table 4.1, the best configuration according to both Spearman and Pearson

correlation measures is the configuration which has only senses in the input layer and both

words and senses in the output layer.6 In fact, taking only senses as input seems to be

consistently the best alternative for the input layer. Our hunch is that the knowledge learned

from both the co-occurrence information and the semantic network is more balanced with

this input setting. For instance, in the case of including both words and senses in the input

layer, the co-occurrence information learned by the network would be duplicated for both

words and senses.

4.4.2 Disambiguation / Shallow word-sense connectivity algorithm

In this section we evaluate the impact of our shallow word-sense connectivity algorithm

(Section 4.2) by testing our model directly taking a pre-disambiguated text as input. In this

case the network exploits the connections between each word and its disambiguated sense

in context. For this comparison we used Babelfy7 (Moro et al., 2014), a state-of-the-art

graph-based disambiguation and entity linking system based on BabelNet. We compare to

both the default Babelfy system which uses the Most Frequent Sense (MFS) heuristic as a

back-off strategy and, following the work done in SensEmbed (cf. Chapter 3.3), we also

include a version in which only instances above the Babelfy default confidence threshold

are disambiguated (i.e. the MFS back-off strategy is disabled). We will refer to this latter

6In this analysis we used the word similarity task for optimizing the sense embeddings, without caring
about the performance of word embeddings or their interconnectivity. Therefore, this configuration may not
be optimal for word embeddings and may be further tuned on specific applications. More information about
different configurations in the documentation of the source code.

7http://babelfy.org

http://babelfy.org
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Model
WS-Sim RG-65

r ρ r ρ

Babelfy 0.65 0.63 0.69 0.70

Babelfy+MFS 0.63 0.61 0.65 0.64

Shallow 0.72 0.71 0.71 0.74

Table 4.2. Pearson (r) and Spearman (ρ) correlation performance of SW2V integrating our shallow
word-sense connectivity algorithm (default),Babelfy and Babelfy+MFS.

version as Babelfy+MFS and report the best configuration of each strategy according to our

analysis.

Table 4.2 shows the results of our model using the three different strategies on RG-65

and WS-Sim. Our shallow word-sense connectivity algorithm achieves the best overall

results. We believe that these results are due to the semantic connectivity ensured by our

algorithm and to the possibility of associating words with more than one sense, which seems

beneficial for training, making it more robust to possible disambiguation errors and to the

sense granularity issue (Erk et al., 2013). The results are especially significant considering

that our algorithm took a tenth of the time needed by Babelfy to process the corpus.

4.5 Evaluation

We perform a qualitative and quantitative evaluation of important features of SW2V in three

different tasks. First, in order to compare our model against standard word-based approaches,

we evaluate our system in the word similarity task (Section 4.5.1). Second, we measure the

quality of our sense embeddings in a sense-specific application: sense clustering (Section

4.5.2). Finally, we evaluate the coherence of our unified vector space by measuring the

interconnectivity of word and sense embeddings (Section 4.5.3).

Experimental setting. Throughout all the experiments we use the same standard

hyperparameters mentioned in Section 4.4 for both the original word2vec implementation

and our proposed model SW2V. For SW2V we use the same optimal configuration according

to the analysis of the previous section (only senses as input, and both words and senses

as output) for all tasks. As training corpus we take the full 3B-words UMBC webbase
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Type Model Corpus

Dataset

SimLex-999 MEN

r ρ r ρ

Senses

SW2VBN UMBC 0.49 0.47 0.75 0.75

SW2VWN UMBC 0.46 0.45 0.76 0.76

AutoExtend UMBC 0.47 0.45 0.74 0.75

AutoExtend Google-News 0.46 0.46 0.68 0.70

SW2VBN Wikipedia 0.47 0.43 0.71 0.73

SW2VWN Wikipedia 0.47 0.43 0.71 0.72

SensEmbed Wikipedia 0.43 0.39 0.65 0.70

Chen et al. (2014) Wikipedia 0.46 0.43 0.62 0.62

Words

word2vec UMBC 0.39 0.39 0.75 0.75

RetrofittingBN UMBC 0.47 0.46 0.75 0.76

RetrofittingWN UMBC 0.47 0.46 0.76 0.76

word2vec Wikipedia 0.39 0.38 0.71 0.72

RetrofittingBN Wikipedia 0.35 0.32 0.66 0.66

RetrofittingWN Wikipedia 0.47 0.44 0.73 0.73

Table 4.3. Pearson (r) and Spearman (ρ) correlation performance on the SimLex-999 and MEN
word similarity datasets.

corpus and the Wikipedia (Wikipedia dump of November 2014), used by three of the

comparison systems. We use BabelNet 3.0 (SW2VBN) and WordNet 3.0 (SW2VWN) as

semantic networks.

Comparison systems. We compare with the publicly available pre-trained sense embed-

dings of four state-of-the-art models: Chen et al. (2014) and AutoExtend (Rothe and Schütze,

2015) based on WordNet, and SensEmbed (cf. Chapter 3.3) and NASARI (Camacho-

Collados et al., 2016) based on BabelNet.
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4.5.1 Word Similarity

In this section we evaluate our sense representations on the standard SimLex-999 (Hill

et al., 2015) and MEN (Bruni et al., 2014) word similarity datasets8. SimLex and MEN

contain 999 and 3000 word pairs, respectively, which constitute, to our knowledge, the two

largest similarity datasets comprising a balanced set of noun, verb and adjective instances.

As explained in Section 4.4, we use the closest sense strategy for the word similarity

measurement of our model and all sense-based comparison systems. As regards the word

embedding models, words are directly compared by using cosine similarity. We also include

a retrofitted version of the original word2vec word vectors (Faruqui et al., 2015, Retrofitting)

using WordNet (RetrofittingWN) and BabelNet (RetrofittingBN) as lexical resources.

Table 4.3 shows the results of SW2V and all comparison models in SimLex and MEN.

SW2V consistently outperforms all sense-based comparison systems using the same cor-

pus, and clearly performs better than the original word2vec trained on the same corpus.

Retrofitting decreases the performance of the original word2vec on the Wikipedia corpus

using BabelNet as lexical resource, but significantly improves the original word vectors

on the UMBC corpus, obtaining comparable results to our approach. However, while our

approach provides a shared space of words and senses, Retrofitting still conflates different

meanings of a word into the same vector.

Additionally, we noticed that most of the score divergences between our system and

the gold standard scores in SimLex-999 were produced on antonym pairs, which are over-

represented in this dataset: 38 word pairs hold a clear antonymy relation (e.g. encourage-

discourage or long-short), while 41 additional pairs hold some degree of antonymy (e.g.

new-ancient or man-woman).9 In contrast to the consistently low gold similarity scores given

to antonym pairs, our system varies its similarity scores depending on the specific nature

of the pair10. Recent works have managed to obtain significant improvements by tweaking

usual word embedding approaches into providing low similarity scores for antonym pairs

(Pham et al., 2015; Schwartz et al., 2015; Nguyen et al., 2016; Mrksic et al., 2017), but this

8To enable a fair comparison we did not perform experiments on the small datasets used in Section 4.4 for
validation.

9Two annotators decided the degree of antonymy between word pairs: clear antonyms, weak antonyms or
neither.

10For instance, the pairs sunset-sunrise and day-night are given, respectively, 1.88 and 2.47 gold scores in the
0-10 scale, while our model gives them a higher similarity score. In fact, both pairs appear as coordinate synsets
in WordNet.
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is outside the scope of this chapter.

4.5.2 Sense Clustering

Current lexical resources tend to suffer from the high granularity of their sense inventories

(Palmer et al., 2007). In fact, a meaningful clustering of their senses may lead to improve-

ments on downstream tasks (Hovy et al., 2013; Flekova and Gurevych, 2016; Pilehvar

et al., 2017). In this section we evaluate our synset representations on the Wikipedia sense

clustering task. For a fair comparison with respect to the BabelNet-based comparison

systems that use the Wikipedia corpus for training, in this experiment we report the results

of our model trained on the Wikipedia corpus and using BabelNet as lexical resource only.

For the evaluation we consider the two Wikipedia sense clustering datasets (500-pair and

SemEval) created by Dandala et al. (2013). In these datasets sense clustering is viewed as

a binary classification task in which, given a pair of Wikipedia pages, the system has to

decide whether to cluster them into a single instance or not. To this end, we use our synset

embeddings and cluster Wikipedia pages11 together if their similarity exceeds a threshold

γ. In order to set the optimal value of γ, we follow Dandala et al. (2013) and use the first

500-pairs sense clustering dataset for tuning. We set the threshold γ to 0.35, which is the

value leading to the highest F-Measure among all values from 0 to 1 with a 0.05 step size on

the 500-pair dataset. Likewise, we set a threshold for NASARI (0.7) and SensEmbed (0.3)

comparison systems.

Finally, we evaluate our approach on the SemEval sense clustering test set. This test set

consists of 925 pairs which were obtained from a set of highly ambiguous words gathered

from past SemEval tasks. For comparison, we also include the supervised approach of

Dandala et al. (2013) based on a multi-feature Support Vector Machine classifier trained

on an automatically-labeled dataset of the English Wikipedia (Mono-SVM) and Wikipedia

in four different languages (Multi-SVM). As naive baseline we include the system which

would cluster all given pairs.

Table 4.4 shows the F-Measure and accuracy results on the SemEval sense clustering

dataset. SW2V outperforms all comparison systems according to both measures, including

the sense representations of NASARI and SensEmbed using the same setup and the same
11Since Wikipedia is a resource included in BabelNet, our synset representations are expandable to Wikipedia

pages.
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Model Accuracy F-Measure

Baseline 17.5 29.8

SensEmbed 82.7 40.3

NASARI 87.0 62.5

Multi-SVM 85.5 -

Mono-SVM 83.5 -

SW2V 87.8 63.9

Table 4.4. Accuracy and F-Measure percentages of different systems on the SemEval Wikipedia
sense clustering dataset.

underlying lexical resource. This confirms the capability of our system to accurately capture

the semantics of word senses on this sense-specific task.

4.5.3 Word and sense interconnectivity

In the previous experiments we evaluated the effectiveness of the sense embeddings. In

contrast, this experiment aims at testing the interconnectivity between word and sense

embeddings in the vector space. As explained in Section 2, there have been previous

approaches building a shared space of word and sense embeddings (Chen et al., 2014; Rothe

and Schütze, 2015), but to date little research has focused on testing the semantic coherence

of the vector space. To this end, we evaluate our model on a Word Sense Disambiguation

(WSD) task, using our shared vector space of words and senses to obtain a Most Common

Sense (MCS) baseline. The insight behind this experiment is that a semantically coherent

shared space of words and senses should be able to build a relatively strong baseline for

the task, as the MCS of a given word should be closer to the word vector than any other

sense. The MCS baseline is generally integrated into the pipeline of state-of-the-art WSD

and Entity Linking systems as a back-off strategy (Navigli, 2009; Jin et al., 2009; Zhong and

Ng, 2010; Moro et al., 2014; Raganato et al., 2017) and is used in various NLP applications

(Bennett et al., 2016). Therefore, a system which automatically identifies the MCS of words

from non-annotated text may be quite valuable, especially for resource-poor languages

or large knowledge resources for which obtaining sense-annotated corpora is extremely
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Model SemEval-07 SemEval-13

Baseline 24.8 34.9
AutoExtend 17.6 31.0

SW2V 39.9 54.0

Table 4.5. F-Measure percentage of different MCS strategies on the SemEval-2007 and SemEval-
2013 WSD datasets.

expensive. Moreover, even in a resource like WordNet for which sense-annotated data

is available (Miller et al., 1993, SemCor), 61% of its polysemous lemmas have no sense

annotations (Bennett et al., 2016).

Given an input word w, we compute the cosine similarity between w and all its candidate

senses, picking the sense leading to the highest similarity: where cos(~w,~s) refers to the

cosine similarity between the embeddings of w and s. In order to assess the reliability of

SW2V against previous models using WordNet as sense inventory, we test our model on the

all-words SemEval-2007 task 17 (Pradhan et al., 2007) and SemEval-2013 task 12 (Navigli

et al., 2013) WSD datasets. Note that our model using BabelNet as semantic network has

a far larger coverage than just WordNet and may additionally be used for Wikification

(Mihalcea and Csomai, 2007) and Entity Linking tasks. Since the versions of WordNet vary

across datasets and comparison systems, we decided to evaluate the systems on the portion

of the datasets covered by all comparison systems.

Table 4.5 shows the results of our system and AutoExtend on the SemEval-2007 and

SemEval-2013 WSD datasets. SW2V provides the best MCS results in both datasets. In

general, AutoExtend does not accurately capture the predominant sense of a word and

performs worse than a baseline that selects the intended sense randomly from the set of all

possible senses of the target word.

In fact, AutoExtend tends to create clusters which include a word and all its possible

senses. As an example, Table 4.6 shows the closest word and sense12 embeddings of our

SW2V model and AutoExtend to the military and fish senses of, respectively, company and

school. AutoExtend creates clusters with all the senses of company and school and their

related instances, even if they belong to different domains (e.g., firm2
n or business1

n clearly

12Following Navigli (2009), wordp
n is the nth sense of word with part of speech p (using WordNet 3.0).
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company2
n (military unit) school7n (group of fish)

AutoExtend SW2V AutoExtend SW2V

company9
n battalion1

n school schools7
n

company battalion school4n sharks1
n

company8
n regiment1n school6n sharks

company6
n detachment4n school1v shoals3

n

company7
n platoon1

n school3n fish1
n

company1
v brigade1

n elementary dolphins1
n

firm regiment schools pods3
n

business1
n corps1

n elementary3
a eels

firm2
n brigade school5n dolphins

company1
n platoon elementary1

a whales2
n

Table 4.6. Ten closest word and sense embeddings to the senses company2
n (military unit) and

school7n (group of fish).

concern the business sense of company). Instead, SW2V creates a semantic cluster of word

and sense embeddings which are semantically close to the corresponding company2
n and

school7n senses.

4.6 Conclusions

In this chapter we propose SW2V (Senses and Words to Vectors), a neural model which

learns vector representations for words and senses in a joint training phase by exploiting

both text corpora and knowledge from semantic networks. Data (including the preprocessed

corpora and pre-trained embeddings used in the evaluation) and source code to apply our

extension of the word2vec architecture to learn word and sense embeddings from any

preprocessed corpus are freely available at http://lcl.uniroma1.it/sw2v. Unlike

previous sense-based models which require post-processing steps and use WordNet as sense

inventory, our model achieves a semantically coherent vector space of both words and senses

as an emerging feature of a single training phase and is easily scalable to larger semantic

networks like BabelNet. Finally, we showed, both quantitatively and qualitatively, some

of the advantages of using our approach as against previous state-of-the-art word- and

sense-based models in various tasks, and highlighted interesting semantic properties of the

resulting unified vector space of word and sense embeddings.

http://lcl.uniroma1.it/sw2v
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Chapter 5

Embeddings for Word Sense

Disambiguation

"... the complete meaning of a word is

always contextual, and no study of

meaning apart from a complete context

can be taken seriously"

John Rupert Firth, 1935

Recent years have seen a dramatic growth in the popularity of word embeddings mainly

owing to their ability to capture semantic information from massive amounts of textual

content. As a result, many tasks in NLP have tried to take advantage of the potential of

these distributional models. While in the previous chapterw we show how Word Sense

Disambiguation can be leveraged to learn better embeddings, going from words to senses,

in this chapter we study how word embeddings can be leveraged to build better models for

WSD. We propose different methods through which word embeddings can be leveraged

for performing WSD, and perform a deep analysis of how different parameters affect

performance. We show how a WSD system that makes use of word embeddings alone, if

designed properly, can provide significant performance improvement over a state-of-the-art

WSD system that incorporates several standard WSD features.
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5.1 Introduction

Embeddings represent words, or concepts in a low-dimensional continuous space. These

vectors capture useful syntactic and semantic information, such as regularities in language,

where relationships are characterized by a relation-specific vector offset. The ability of

embeddings to capture knowledge has been exploited in several tasks, such as Machine

Translation (Mikolov et al., 2013b, MT), Sentiment Analysis (Socher et al., 2013), Word

Sense Disambiguation (Chen et al., 2014, WSD) and Language Understanding (Mesnil et al.,

2013). Supervised WSD is based on the hypothesis that contextual information provides

a good approximation to word meaning, as suggested by Miller and Charles Miller and

Charles (1991): semantically similar words tend to have similar contextual distributions.

Recently, there have been efforts on leveraging embeddings for improving supervised

WSD systems. Taghipour and Ng (2015b) showed that the performance of conventional

supervised WSD systems can be increased by taking advantage of embeddings as new

features. In the same direction, Rothe and Schütze (2015) trained embeddings by mixing

words, lexemes and synsets, and introducing a set of features based on calculations on the

resulting representations. However, none of these techniques takes full advantage of the

semantic information contained in embeddings. As a result, they generally fail in providing

substantial improvements in WSD performance.

In this chapter, we provide a study of different techniques for taking advantage of the

combination of embeddings with standard WSD features. We also propose an effective

approach for leveraging embeddings in WSD, and show that this can provide significant

improvement on multiple standard benchmarks.

5.2 Word Embeddings

An embedding is a representation of a topological object, such as a manifold, graph, or field,

in a certain space in such a way that its connectivity or algebraic properties are preserved

(Insall et al., 2015). Presented originally by Bengio et al. (2003), word embeddings aim at

representing, i.e., embedding, the ideal semantic space of words in a real-valued continuous

vector space. In contrast to traditional distributional techniques, such as Latent Semantic

Analysis (LSA) (Landauer and Dutnais, 1997) and Latent Dirichlet Allocation (LDA) (Blei
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et al., 2003), Bengio et al. (2003) designed a feed-forward neural network capable of

predicting a word given the words preceding (i.e., leading up to) that word. Collobert

and Weston (2008) presented a much deeper model consisting of several layers for feature

extraction, with the objective of building a general architecture for NLP tasks. A major

breakthrough occurred when Mikolov et al. (2013b) put forward an efficient algorithm for

training embeddings, known as word2vec. A similar model to word2vec was presented by

Pennington et al. (2014), GloVe, but instead of using latent features for representing words,

it makes an explicit representation produced from statistical calculation on word countings.

In the following section we discuss how embeddings can be integrated into an important

lexical semantic task, i.e., Word Sense Disambiguation.

5.3 Word Sense Disambiguation

Natural language is inherently ambiguous. Most commonly-used words have several mean-

ings. In order to identify the intended meaning of a word one has to analyze the context in

which it appears by directly exploiting information from raw texts. The task of automatically

assigning predefined meanings to words in contexts, known as Word Sense Disambiguation,

is a fundamental task in computational lexical semantics, as we mentioned earlier in this

Thesis (cf. Section 1.3).

5.3.1 Standard WSD features

As was analyzed by Lee and Ng (2002), conventional WSD systems usually make use

of a fixed set of features to model the context of a word. The first feature is based on

the words in the surroundings of the target word. The feature usually represents the local

context as a binary array, where each position represents the occurrence of a particular word.

Part-of-speech (POS) tags of the neighboring words have also been used extensively as a

WSD feature. Local collocations represent another standard feature that captures the ordered

sequences of words which tend to appear around the target word (Firth, 1957). Though

not very popular, syntactic relations have also been studied as a possible feature in WSD

(Stetina et al., 1998).

More sophisticated features have also been studied. Examples are distributional semantic
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models, such as Latent Semantic Analysis (Van de Cruys and Apidianaki, 2011) and Latent

Dirichlet Allocation (Cai et al., 2007). Inasmuch as they are the dominant distributional

semantic model, word embeddings have also been applied as features to WSD systems. In

this chapter we study different methods through which word embeddings can be used as

WSD features.

5.3.2 Word Embeddings as WSD features

Word embeddings have become a prominent technique in distributional semantics. These

methods leverage neural networks in order to model the contexts in which a word is expected

to appear. Thanks to their ability in efficiently learning the semantics of words, word

embeddings have been applied to a wide range of NLP applications. Several studies have also

investigated their integration into the Word Sense Disambiguation setting. These include the

works of Zhong and Ng (2010); Taghipour and Ng (2015b); Rothe and Schütze (2015); Chen

et al. (2014), which leverage embeddings for supervised (the former three) and knowledge-

based (the latter) WSD. However, to our knowledge, no previous work has investigated

methods for integrating word embeddings in WSD and the role that different training

parameters can play. In this chapter, we put forward a framework for a comprehensive

evaluation of different methods of leveraging word embeddings as WSD features in a

supervised WSD system. We provide an analysis of the impact of different parameters in the

training of embeddings on the WSD performance. We consider four different strategies for

integrating a pre-trained word embedding in a supervised WSD system, discussed in what

follows.

Concatenation

Concatenation is our first strategy, which is inspired by the model of Bengio et al. (2003).

This method consists of concatenating the vectors of the words surrounding a target word

into a larger vector that has a size equal to the aggregated dimensions of all the individual

embeddings. Let wij be the weight associated with the ith dimension of the vector of the jth

word in the sentence, let D be the dimensionality of this vector, and W be the window size

which is defined as the number of words on a single side. We are interested in representing

the context of the Ith word in the sentence. The ith dimension of the concatenation feature
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vector, which has a size of 2WD, is computed as follows:

ei =


wi mod D, I−W+b i

D
c if b iDc < W

wi mod D, I−W+1+b i
D
c otherwise

(5.1)

where mod is the modulo operation, i.e., the remainder after division.

Average

As its name indicates, the average strategy computes the centroid of the embeddings of all

the surrounding words. The formula divides each dimension by 2W since the number of

context words is twice the window size:

ei =
I+W∑
j=I−W
j 6=I

wij
2W (5.2)

Fractional decay

Our third strategy for constructing a feature vector on the basis of the context word em-

beddings is inspired by the way word2vec combines the words in the context. Here, the

importance of a word for our representation is assumed to be inversely proportional to

its distance from the target word. Hence, surrounding words are weighted based on their

distance from the target word:

ei =
I+W∑
j=I−W
j 6=I

wij
W − |I − j|

W
(5.3)

Exponential decay

Exponential decay functions similarly to the fractional decay, which gives more importance

to the close context, but in this case the weighting in the former is performed exponentially:

ei =
I+W∑
j=I−W
j 6=I

wij(1− α)|I−j|−1 (5.4)
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where α = 1− 0.1(W−1)−1
is the decay parameter. We choose the parameter in such a way

that the immediate surrounding words contribute 10 times more than the last words on both

sides of the window.

5.4 WSD Framework

In the following we describe two models for performing supervised and unsupervised Word

Sense Disambiguation.

5.4.1 Supervised WSD System

With this models our goal is to experiment with state-of-the-art conventional supervised

WSD system and a varied set of word embedding techniques. We selected IMS (Zhong and

Ng, 2010) as our underlying framework for supervised WSD. IMS provides an extensible

and flexible platform for supervised WSD by allowing the verification of different WSD

features and classification techniques. By default, IMS makes use of three sets of features:

(1) POS tags of the surrounding words, with a window of three words on each side, restricted

by the sentence boundary, (2) the set of words that appear in the context of the target word

after stopword removal, and (3) local collocations which consist of 11 features around the

target word. IMS uses a linear support vector machine (SVM) as its classifier. We take the

real-valued word embeddings as new features of IMS and introduce them into the system

without performing any further modifications.

Embedding Features. We carried out experiments with three different embeddings:

• word2vec Mikolov et al. (2013b): We used the word2vec toolkit to learn 400 di-

mensional vectors on the September-2014 dump of the English Wikipedia which

comprises around three billion tokens. We chose the Skip-gram architecture with the

negative sampling set to 10. The sub-sampling of frequent words was set to 10−3 and

the window size to 10 words.

• C&W Collobert and Weston (2008): These 50 dimensional embeddings were learnt

using a neural network model, consisting of several layers for feature extraction. The
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vectors were trained on a subset of the English Wikipedia.1

• Retrofitting: Finally, we used the approach of Faruqui et al. (2015) to retrofit our

word2vec vectors. We used the Paraphrase Database (Ganitkevitch et al., 2013, PPDB)

as external knowledge base for retrofitting and set the number of iterations to 10.

5.4.2 Unsupervised WSD System

We present also an alternative model for performing Substitution-based WSD. Our model,

namely LexSubEmbed, creates a vector which represent the meaning of the word in context

by making a weighed sum of its surrounding. The strategy for constructing a feature vector

on the basis of the context word embeddings is inspired in the way in which word2vec

combines the surroundings words of the context. Here, the contribution of a word in our

representation is assumed to be inversely proportional to its distance from the target word.

Hence, surrounding words are weighted based on their distance from the target word. In our

case, the weighting in the former is performed utilizing the Exponential decay strategy (cf.

5.4). For as embeddings, we use the Retrofitting configuration, which was our best model

using only embeddings as features. (cf. 5.5.1).

5.5 Experiments

We evaluated the performance of our embedding-based WSD system on three standard tasks:

lexical sample, all-words WSD and lexical substitution. In all the experiments in this section

we used the exponential decay strategy (cf. Section 5.3.2) and a window size of ten words

on each side of the target word.

5.5.1 Lexical Sample WSD Experiment

The lexical sample WSD tasks provide training datasets in which different occurrences of

a small set of words are sense annotated. The goal is for a WSD system to analyze the

contexts of the individual senses of these words and to capture clues that can be used for

distinguishing different senses of a word from each other at the test phase.

1http://ronan.collobert.com/senna/
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Task
Training Test

noun verb adjective noun verb adjective

Senseval-2 (SE2) 4851 3566 755 1740 1806 375

Senseval-3 (SE3) 3593 3953 314 1807 1978 159

SemEval-07 (SE7) 13287 8987 − 2559 2292 −
Table 5.1. The number of sentences per part of speech in the datasets of the English lexical sample

tasks we considered for our experiments.

Datasets. As our benchmark for the lexical sample WSD, we chose the Senseval-2 (Ed-

monds and Cotton, 2001), Senseval-3 (Mihalcea et al., 2004), and SemEval-2007 (Pradhan

et al., 2007) English Lexical Sample WSD tasks. The former two cover nouns, verbs and

adjectives in their datasets whereas the latter task focuses on nouns and verbs only. Table

5.1 shows the number of sentences per part of speech for the training and test datasets of

each of these tasks.

Comparison systems. In addition to the vanilla IMS system in its default setting we

compared our system against two recent approaches that also modify the IMS system so that

it can benefit from the additional knowledge derived from word embeddings for improved

WSD performance: (1) the system of Taghipour and Ng (2015b), which combines word

embeddings of Collobert and Weston (2008) using the concatenation strategy (cf. Section

5.3.2) and introduces the combined embeddings as a new feature in addition to the standard

WSD features in IMS; and (2) AutoExtend (Rothe and Schütze, 2015), which constructs a

whole new set of features based on vectors made from words, senses and synsets of WordNet

and incorporates them in IMS.

Lexical sample WSD results

Table 5.2 shows the F1 performance of the different systems on the three lexical sample

datasets. As can be seen, the IMS + word2vec system improves over all comparison systems

including those that combine standard WSD and embedding features (i.e., the system of

Taghipour and Ng, and AutoExtend) across all the datasets. This shows that our proposed

strategy for introducing word embeddings into the IMS system on the basis of exponential
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System SE2 SE3 SE7

IMS (Zhong and Ng, 2010) 65.3 72.9 87.9

Taghipour and Ng (2015b) 66.2 73.4 −

AutoExtend (Rothe and Schütze, 2015) 66.5 73.6 −

IMS + C&W 64.3 70.1 88.0

IMS + word2vec 69.9 75.2 89.4

IMS + Retrofitting 65.9 72.8 88.3

C&W feature only 55.0 61.6 83.4

word2vec feature only 65.6 69.4 87.0

Retrofitting feature only 67.2 72.7 88.0

Table 5.2. F1 performance on the three English lexical sample datasets. IMS + X denotes the
improved IMS system when the X set of word representations were used as additional features.
We also show in the last three rows the results for the IMS system when word representations
were used as the only features.

decay was beneficial. In the last three rows of the table, we also report the performance

of the WSD systems that leverage only word embeddings as their features and do not

incorporate any standard WSD feature. It can be seen that word embeddings, in isolation,

provide competitive performance, which proves their capability in obtaining the information

captured by standard WSD features. Among different embeddings, the retrofitted vectors

provide the best performance when used in isolation.

5.5.2 All-Words WSD Experiments

The goal in this task is to disambiguate all the content words in a given text. In order to learn

models for disambiguating a large set of content words, a high-coverage sense-annotated

corpus is required. Since all-words tasks do not usually provide any training data, the

challenge here is not only to learn accurate disambiguation models from the training data, as

is the case in the lexical sample task, but also to gather high-coverage training data and to

learn disambiguation models for as many words as possible.



64 5. Embeddings for Word Sense Disambiguation

Training corpus. As our training corpus we opted for two available resources: SemCor

and OMSTI. SemCor (Miller et al., 1994) is a manually sense-tagged corpus created by the

WordNet project team at Princeton University. The dataset is a subset of the English Brown

Corpus and comprises around 360,000 words, providing annotations for more than 200K

content words.2 OMSTI3 (Taghipour and Ng, 2015a) (One Million Sense-Tagged for Word

Sense Disambiguation and Induction) was constructed based on the DSO corpus (Ng and

Lee, 1996) and provides annotations for around 42K different nouns, verbs, adjectives, and

adverbs.

Datasets. As benchmark for this experiment, we considered the Senseval-2 (Edmonds

and Cotton, 2001), Senseval-3 (Snyder and Palmer, 2004), and SemEval-2007 (Pradhan

et al., 2007) English all-words tasks. There are 2474, 2041, and 465 words for which at

least one of the occurrences has been sense annotated in the Senseval-2, Senseval-3 and

SemEval-2007 datasets, respectively.

Experimental setup. Similarly to the lexical sample experiment, in the all-words setting

we used the exponential decay strategy (cf. Section. 5.4.1) in order to incorporate word

embeddings as new features in IMS. For this experiment, we only report the results for the

best-performing word embeddings in the lexical sample experiment, i.e., word2vec (see

Table 5.2).

Comparison systems. We benchmarked the performance of our system against five other

systems. Similarly to our lexical sample experiment, we compared against the vanilla IMS

system and the work of Taghipour and Ng (2015b). In addition, we performed experiments on

the nouns subsets of the datasets in order to be able to provide comparisons against two other

WSD approaches: Babelfy (Moro et al., 2014) and Muffin (Camacho-Collados et al., 2015a).

Babelfy is a multilingual knowledge-based WSD and Entity Linking algorithm based on the

semantic network of BabelNet. Muffin is a multilingual sense representation technique that

combines the structural knowledge derived from semantic networks with the distributional

statistics obtained from text corpora. The system uses sense-based representations for

2We used automatic mappings to WordNet 3.0 provided in web.eecs.umich.edu/∼mihalcea/downloads.html.
3www.comp.nus.edu.sg/~nlp/corpora.html

www.comp.nus.edu.sg/~nlp/corpora.html
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performing WSD. (Camacho-Collados et al., 2015a) also proposed a hybrid system that

averages the disambiguation scores of IMS with theirs (shown as “Muffin + IMS" in

our tables). We also report the results for UKB w2w (Agirre and Soroa, 2009), another

knowledge-based WSD approach based on Personalized PageRank (Haveliwala, 2002, PPR).

Finally, we also carried out experiments with the pre-trained models4 that are provided

with the IMS toolkit, as well as IMS trained on our two training corpora, i.e., SemCor and

OMSTI.

All-words WSD results

Tables 5.3 and 5.4 list the performance of different systems on, respectively, the whole and

the noun-subset datasets of the three all-words WSD tasks. Similarly to our lexical sample

experiment, the IMS + word2vec system provided the best performance across datasets

and benchmarks. The coupling of word2vec embeddings to the IMS system proved to be

consistently helpful. Among the two training corpora, as expected, OMSTI provided a better

performance owing to its considerably larger size and higher coverage. Another point to

be noted here is the difference between results of the IMS with the pre-trained models and

those trained on the OMSTI corpus. Since we used the same system configuration across

the two runs, we conclude that the OMSTI corpus is either substantially smaller or less

representative than the corpus used by Zhong and Ng (2010) for building the pre-trained

models of IMS. Despite this fact, the IMS + word2vec system can consistently improve

the performance of IMS (pre-trained models) across the three datasets. This shows that a

proper introduction of word embeddings into a supervised WSD system can compensate the

negative effect of using lower quality training data.

5.5.3 Lexical Substitution Experiment

Finding alternative words that can occur in given contexts constitutes the main objective

of the lexical substitution task. We chose the dataset used in the original SemEval-2007

shared task (McCarthy and Navigli, 2007), which consists of 201 words manually chosen to

exhibit polysemy, with 10 sentences per target. For a given target in a particular context,

five annotators were asked to propose up to 3 substitutes. As all our experiments are

4www.comp.nus.edu.sg/~nlp/sw/models.tar.gz

www.comp.nus.edu.sg/~nlp/sw/models.tar.gz
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System SE2 SE3 SE7

MFS baseline 60.1 62.3 51.4

IMS (Zhong and Ng, 2010) 68.2 67.6 58.3

Taghipour and Ng (2015b) − 68.2 −

IMS (pre-trained models) 67.7 67.5 58.0

IMS (SemCor) 62.5 65.0 56.5

IMS (OMSTI) 67.0 66.4 57.6

IMS + word2vec (SemCor) 63.4 65.3 57.8

IMS + word2vec (OMSTI) 68.3 68.2 59.1

Table 5.3. F1 performance on different English all-words WSD datasets.

System SE2 SE3 SE7

MFS baseline 71.6 70.3 65.8

Babelfy − 68.3 62.7

Muffin − − 66.0

Muffin + IMS − − 68.5

UBK w2w − 65.3 56.0

IMS (pre-trained models) 77.5 74.0 66.5

IMS (SemCor) 73.0 70.8 64.2

IMS (OMSTI) 76.6 73.3 67.7

IMS + word2vec (SemCor) 74.2 70.1 68.6

IMS + word2vec (OMSTI) 77.7 74.1 71.5

Table 5.4. F1 performance in the nouns subsets of different all-words WSD datasets.

unsupervised, we always evaluate over the entire data set, rather than the original held-out

test set. Table 5.5 shows the number of sentences per part of speech.

Comparison systems. We compared our approach with other system, some of which

where participants in the SemEval task. KU (Yuret, 2007) introduced a WSD model which
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uses a statistical language model combined with substitutes candidates from WordNet and the

Roget Thesaurus (Thesaurus.com, 2007). University of North Texas SUBFINDER (Hassan

et al., 2007, UNT), a model specially created for this task which extract possible substitutes

from a variety of knowledge source and provided a list of candidates based on a weighted

combination of a set of common ranking methods as MFS, Language Modelling, Latent

Semantic Analysis (LSA), Information Retrieval (IR), and Word Sense Disambiguation

(WSD). IRST2 is one of two models introduced by Giuliano et al. (2007) for the same task.

The complete names IRST1-lsa and IRST2-syn exploit the fact that lexical substitution

can be seen as a subtask of lexical entailment. To this end the author use two rankings for

choosing the candidates extracted from WordNet and Oxford dictionary: Domain Proximity,

based on LSA, and Syntagmatic Coherence, by querying target sentence in a large corpus.

(Van de Cruys et al., 2011, NMF) presented a new method for computating word meaning

in context which uses a factorization model in which words, together with their window-

based context words and their dependency relations, are linked to latent dimensions. Next,

Melamud et al. (2015b) utilized the context embeddings from Skip-gram, those which are

normally discarded, and used them for measuring ranking the substitutes and in Melamud

et al. (2015a) they extended the approach by proposing a new distributional model for

representing word meaning in context, based on this context representation. Finally, Hintz

and Biemann (2016) introduced an approach for effective lexical for lexical substitution able

to perform transfer learning across languages, in particular English, Italian and German.

Lexical substitution results

Table 5.6 shows the performance of the different systems on the SemEval-2007 task for

Lexical Substitution. We include the four measurements of the task, best, best-mode, oot

and oot-mode. best measures the precision as first answer, while oot measures the ordering

of the ten first guesses. The mode takes the first (or out of ten) guess and compare against

Task Test

noun adjective verb adverb Total

SemEval-07 Task 10 500 470 440 300 2010
Table 5.5. The number of sentences per part of speech in the Lexical Substitution task .
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System Cand. best best-mode oot oot-mode

KU (Yuret, 2007) WN 12.90 20.65 46.15 61.30

UNT (Hassan et al., 2007) WN 12.77 20.73 49.19 66.26

IRST2 (Giuliano et al., 2007) U 6.94 20.33 68.96 58.54

NMF (Van de Cruys et al., 2011) U 8.96 - 29.26 -

DelexFeat (Szarvas et al., 2013) Gold 15.94 - - -

Simple (Melamud et al., 2015b) U 8.14 13.41 27.42 39.11

Pin1000 (Melamud et al., 2015a) U 12.72 21.71 36.37 52.03

Hintz and Biemann (2016) Gold 16.63 - 48.16 -

LexSubEmbed
WN 13.99 23.90 33.90 43.01

Gold 17.88 26.63 72.31 83.02

Table 5.6. Performance of different systems for the four measurements included on the SemEval-
2007 English Lexical Substitution Task.

the mode of the annotators. Our approach, LexSubEmbed, uses two strategies for choosing

the candidates, both of which outperforms models using the same resource both on best and

oot results.

5.6 Analysis

We carried out a series of experiments in order to check the impact of different system

parameters on the final WSD performance. We were particularly interested in observing the

role that various training parameters of embeddings as well as WSD features have in the

WSD performance. We used the Senseval-2 English Lexical Sample task as our benchmark

for this analysis.

5.6.1 The effect of different parameters

Table 5.7 shows F1 performance of different configurations of our system on the task’s

dataset. We studied five different parameters: the type (i.e., w2v or Retrofitting) and di-

mensionality (200, 400, or 800) of the embeddings, combination strategy (concatenation,

average, fractional or exponential decay), window size (5, 10, 20 and words), and WSD
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features (collocations, POS tags, surrounding words, all of these or none). All the embed-

dings in this experiment were trained on the same training data and, unless specified, with

the same configuration as described in Section 5.4.1. As baseline we show in the table the

performance of the vanilla WSD system, i.e., IMS. For better readability, we report the

differences between the performances of our system and the baseline.

Collocations X X X

POS X X X

Surroundings X X X

Dimensionality 200 400 800 200 400 800 200 400 800 200 400 800 200 400 800

Sys
tem

Stra
teg

y

W
ind

ow

IMS 62.4 63.7 62.0 65.2 −

+ w2v Con
5 +0.1 +0.4 +0.1 -0.1 +0.3 +0.2 +0.1 +0.5 +0.1 -0.2 +0.1 +0.1 46.9 48.7 44.2
10 -0.1 +0.5 +0.3 -0.1 +0.5 0.0 +0.6 +1.0 +0.5 -0.1 +0.1 -0.1 48.6 51.1 49.7
20 -0.2 +0.4 — -0.3 +0.3 — +0.7 +1.5 — -0.5 +0.4 — 52.5 54.1 —

+ w2v Avg
5 +0.8 +1.0 +1.0 +1.3 +1.3 +1.4 +3.9 +4.2 +4.1 +1.7 +1.4 +1.6 58.3 59.9 61.3
10 +0.8 +0.9 +0.9 +0.6 +0.7 +0.8 +3.6 +3.7 +3.9 +0.6 +0.6 +0.7 63.7 64.1 64.7
20 +0.3 +0.3 +0.3 +0.5 +0.3 +0.4 +2.4 +2.3 +2.3 +0.2 +0.2 +0.2 62.7 63.1 63.5

+ w2v Frac
5 +3.9 +4.9 +5.2 +4.2 +4.6 +5.3 +6.3 +6.6 +6.8 +3.0 +3.6 +3.8 61.2 63.1 64.8
10 +4.9 +5.8 +5.7 +4.6 +5.2 +5.1 +5.9 +7.0 +7.4 +3.6 +4.3 +4.0 61.3 63.8 65.2
20 +4.4 +4.5 +4.7 +3.7 +4.0 +4.3 +4.8 +6.1 +5.4 +3.2 +3.3 +3.4 61.2 63.4 63.9

+ w2v Exp
5 +4.1 +5.0 +5.2 +4.1 +4.7 +5.0 +6.1 +6.1 +6.4 +2.9 +3.5 +3.7 62.3 64.7 64.9
10 +5.4 +6.6 +6.4 +4.9 +5.8 +6.0 +7.2 +7.7 +8.2 +4.1 +4.7 +4.6 63.2 65.6 66.9
20 +5.2 +5.6 +5.9 +4.4 +5.1 +4.9 +6.1 +7.0 +6.8 +3.9 +4.3 +4.2 61.9 64.4 65.2

+ Ret Con
5 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 +0.1 +0.1 -0.1 -0.1 +0.1 +0.1 50.7 53.5 50.9
10 +0.1 0.0 0.0 -0.3 0.0 0.0 +0.1 +0.2 +0.1 0.0 0.0 0.0 52.1 54.2 53.4
20 0.0 0.0 — -0.2 0.0 — +0.7 +0.3 — 0.0 -0.1 — 53.7 54.8 —

+ Ret Avg
5 +0.1 0.0 -0.1 +0.1 0.0 -0.1 +0.8 +0.8 +0.7 +0.1 0.0 +0.1 60.7 60.3 60.5
10 -0.2 -0.1 0.0 -0.2 -0.3 0.0 +0.7 +0.7 +0.5 0.0 +0.1 +0.1 58.9 58.4 58.2
20 -0.1 +0.1 +0.1 -0.2 -0.2 -0.2 +0.5 +0.4 +0.4 0.0 0.0 0.0 56.5 56.0 55.5

+ Ret Frac
5 +1.4 +1.3 +1.2 +1.2 +1.0 +0.9 +3.3 +3.1 +2.9 +0.5 +0.3 +0.3 66.5 67.3 67.7
10 +1.7 +1.4 +1.2 +1.5 +1.4 +1.2 +5.2 +4.7 +4.5 +0.7 +0.8 +0.6 64.4 66.2 66.1
20 +2.2 +2.2 +1.8 +2.2 +1.8 +2.0 +6.7 +6.4 +5.9 +1.3 +1.2 +1.0 64.0 64.2 64.7

+ Ret Exp
5 +1.1 +1.1 +1.1 +0.8 +0.8 +0.7 +2.7 +2.6 +2.2 +0.3 +0.3 +0.3 66.8 67.7 68.0
10 +1.5 +1.3 +1.0 +1.2 +1.1 +1.0 +4.4 +4.2 +3.8 +0.7 +0.7 +0.3 65.9 67.2 67.5
20 +1.8 +1.7 +1.5 +1.7 +1.5 +1.5 +6.3 +5.9 +5.4 +1.1 +0.8 +0.7 65.1 65.8 66.5

Table 5.7. F1 performance of different models on the Senseval-2 English Lexical Sample task. We
show results for varied dimensionality (200, 400, and 800), window size (5, 10 and 20 words)
and combination strategy, i.e., Concatenation (Con), Averaging (Avg), Fractional decay (Frac),
and Exponential decay (Exp). To make the table easier to read, we highlight each cell according
to the relative performance gain in comparison to the IMS baseline (top row in the table).

We observe that the addition of word2vec word embeddings to IMS (+w2v in the table)
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was beneficial in all settings. Among combination strategies, concatenation and average

produced the smallest gain and did not benefit from embeddings of higher dimensionality.

However, the other two strategies, i.e., fractional and exponential decay, showed improved

performance with the increase in the size of the employed embeddings, irrespective of

the WSD features. The window size showed a peak of performance when 10 words were

taken in the case of standard word embeddings. For retrofitting, a larger window seems to

have been beneficial, except when no standard WSD features were taken. Another point to

note here is that, among the three WSD features, POS proved to be the most effective one

while due to the nature of the embeddings, the exclusion of the Surroundings features in

addition to the inclusion of the embeddings was largely beneficial in all the configurations.

Furthermore, we found that the best configurations for this task were the ones that excluded

Surroundings, and included w2v embeddings with a window of 10 and 800 dimensions with

exponential decay strategy (70.2% of F1 performance) as well as the configuration used in

our experiments, with all the standard features, and w2v embeddings with 400 dimensions,

a window of 10 and exponential decay strategy (69.9% of F1 performance).

The retrofitted embeddings provided lower performance improvement when added on

top of standard WSD features. However, when they were used in isolation (shown in the

right-most column), the retrofitted embeddings interestingly provided the best performance,

improving the vanilla WSD system with standard features by 2.8 percentage points (window

size 5, dimensionality 800). In fact, the standard features had a destructive role in this setting

as the overall performance was reduced when they were combined with the retrofitted em-

beddings. Finally, we point out the missing values in the configuration with 800 dimensions

and a window size of 20. Due to the nature of the concatenation strategy, this configuration

greatly increased the number of features from embeddings only, reaching 32000 (800 x 2

x 20) features. Not only was the concatenation strategy unable to take advantage of the

increased dimensionality, but also it was not able to scale.

These results show that a state-of-the-art supervised WSD system can be constructed

without incorporating any of the conventional WSD features, which in turn demonstrates

the potential of retrofitted word embeddings for WSD. This finding is interesting, because

it provides the basis for further studies on how synonymy-based semantic knowledge

introduced by retrofitting might play a role in effective WSD, and how retrofitting might be
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optimized for improved WSD. Indeed, such studies may provide the basis for re-designing

the standard WSD features.

5.6.2 Comparison of embedding types

We were also interested in comparing different types of embeddings in our WSD frame-

work. We tested for seven sets of embeddings with different dimensionalities and learning

techniques: word2vec embeddings trained on Wikipedia, with the Skip-gram model for

dimensionalities 50, 300 and 500 (for comparison reasons) and CBOW with 300 dimensions,

word2vec trained on the Google News corpus with 300 dimensions and the Skip-gram model,

the 300 dimensional embeddings of GloVe, and the 50 dimensional C&W embeddings.

Additionally we include experiments on a non-embedding model, a PMI-SVD vector space

model trained by Baroni et al. (2014).

Table 5.8 lists the performance of our system with different word representations in

vector space on the Senseval-2 English Lexical Sample task. The results corroborate the

findings of Levy et al. (2015) that Skip-gram is more efficient in capturing the semantics than

CBOW and GloVe. Additionally, the use of embeddings with decay fares well, independently

of the type of embedding. The only exception is the C&W embeddings, for which the average

strategy works best. We attribute this behavior to the nature of these embeddings, rather than

to their dimensionality. This is shown in our comparison against the 50-dimensional Skip-

gram embeddings trained on the Wikipedia corpus (bottom of Table 5.8), which performs

well with both decay strategies, outperforming C&W embeddings.

5.7 Conclusions

In this chapter we study different ways of taking advantage of the semantic knowledge

of word embeddings for performing WSD. We carried out a deep analysis of different

parameters and strategies across several WSD tasks. We draw three main findings. First,

word embeddings can be used as features to improve both supervised and unsupervised

WSD systems. Second, utilizing embeddings on the basis of an exponential decay strategy

proves to be more consistent in producing high performance than the other conventional

strategies, such as vector concatenation and centroid. Third, the retrofitted embeddings that
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Word representations Dim.
Combination strategy

Concatenation Average Fractional Exponential

Skip-gram - GoogleNews 300 65.5 65.5 69.4 69.6
GloVe 300 61.7 66.3 66.7 68.3
CBOW - Wiki 300 65.1 65.4 68.9 68.8

Skip-gram - Wiki 300 65.2 65.6 68.9 69.7

PMI - SVD - Wiki 500 65.5 65.3 67.3 66.8

Skip-gram - Wiki 500 65.1 65.6 69.1 69.9

Collobert & Weston 50 58.6 67.3 62.9 64.3

Skip-gram - Wiki 50 65.0 65.7 68.3 68.6
Table 5.8. F1 percentage performance on the Senseval-2 English Lexical Sample dataset with differ-

ent word representations models, vector dimensionalities (Dim.) and combination strategies.

take advantage of the knowledge derived from semi-structured resources, when used as the

only feature for WSD can outperform state-of-the-art supervised models which use standard

WSD features. However, the best performance is obtained when standard WSD features are

augmented with the additional knowledge from word2vec vectors on the basis of a decay

function strategy. We release at https://github.com/iiacobac/ims_wsd_emb

all the codes and resources used in our experiments in order to provide a framework for

research on the evaluation of new VSM models in the WSD framework.

https://github.com/iiacobac/ims_wsd_emb
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Chapter 6

SENSEMBED+: A

"Meaningful" Vector Space

Model

"Purpose requires an understanding of

intent. Which means we have to find out

if they make conscious choices or if

their motivation is so instinctive they

don’t understand a "why" question at all,

We need to have enough vocabulary

with them so we understand their

answer."

ARRIVAL Movie Screenplay

Current mainstream Natural Language Processing approaches are enabled by continuous

vector representations of words. However, the most popular representations conflate the

various senses of polysemous words in a single vector, which limits their use to predominant

meanings. To address this issue, we present SENSEMBED+, a joint model for effective

word, sense and synset representation in a common semantic vector space, which brings

together the knowledge available in existing lexical-semantic resources and the distributional

information obtained from large amounts of raw corpora. We evaluate our model on various
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tasks achieving state-of-the-art performance in several standard benchmarks and applications,

including word, sense, and relational similarity, and Word Sense Disambiguation.

6.1 Introduction

In recent years, word embeddings have represented one of the most promising breakthroughs

in Natural Language Processing (Goldberg, 2017). In a nutshell, they are computational

models where each word is represented by a vector in a low-dimensional space, typically

computed by a neural network trained on a large text corpus (Collobert and Weston, 2008;

Mnih and Hinton, 2009; Turian et al., 2010; Mikolov et al., 2013b; Pennington et al., 2014).

Word vectors are functions of the contexts in which the words are observed in the corpus

(hence the naming embedding), therefore the resulting models instantiate the principle of

distributional semantics: words that share similar contexts are related in meaning (Har-

ris, 1954; Firth, 1957). In the vector space, this translates to the interesting property of

semantically related words being represented by vectors with a short distance to each other.

Moreover, semantic relations such as hypernymy and analogy can be modeled in a word

vector space as geometric transformations (Baroni and Zamparelli, 2010; Wang et al., 2014b).

As such, word embeddings have been successfully used to tackle a large number of NLP

tasks involving lexical semantics and the relations between the meaning of words, such as

semantic word similarity, word sense disambiguation, text classification, and so on.

Despite their success, word embedding models are not devoid of limitations. Word

embeddings are solely trained with large amounts of raw data, neglecting existing semantic

resources such as knowledge bases, ontologies, thesauri and semantic networks. While in a

pure distributional approach a pair of synonyms, for instance the verbs buy and purchase,

is inferred based on their vectorial proximity induced by their mutual word cooccurrences,

in lexical-semantic resources like WordNet (Miller, 1995) this information is structured

and verified manually, with synonymous words grouped into unordered sets called synsets.

For instance, the word senses buy1
v and purchase1

v belong to the same synset1. Another

important issue is that distributional approaches conflate the senses of a word into a single

vector, therefore hindering a correct representation of polysemy. This is an issue for most

tasks dealing with semantic relatedness, as, for instance, the closest words in a word
1We follow Navigli (2009) and show the nth sense of the word with part of speech p as wordn

p .
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embedding model to rock could include words such as stone and earth, but also music and

band.

To overcome such limitations, several embedding models have been recently proposed.

Neelakantan et al. (2014) and Tian et al. (2014) propose purely distributional approaches

where word senses are induced by clustering the word vectors to learn multi-prototype

embeddings. Yu and Dredze (2014) and Faruqui et al. (2015) include semantic knowledge

from existing knowledge resources to improve the word embeddings. Hassan and Mihalcea

(2011), Wu and Giles (2015) and Camacho-Collados et al. (2016) exploited Wikipedia as a

sense-annotated corpus using its hyperlinks. Other non-distributional approaches leveraged

semantic networks to create representations solely based on the graph structure (Bordes

et al., 2013; Wang et al., 2014b,a; Lin et al., 2015; Nickel et al., 2016). Finally, Rothe and

Schütze (2015) and Pilehvar and Collier (2016) link existing word embeddings to lexical

semantic resources to induce sense embeddings as a post-processing step.

None of these approaches, however, has created a joint semantic space of both lexical

and semantic items starting from raw text while leveraging rich semantic resources. In

this work we present SENSEMBED+, an approach which takes advantage equally from

distributional information extracted from large amounts of raw data and existing knowledge

from lexical semantic resources to jointly learn effective representations of words, word

senses and synsets in the same semantic vector space.

Our contributions are threefold: (1) we propose a joint distributional and knowledge-

based approach for obtaining low-dimensional continuous representations for word, word

senses and synsets; (2) by leveraging the learned representations and lexical-semantic

knowledge, we put forward a framework for many NLP tasks such as word, sense, and

relational similarity and Word Sense Disambiguation with state-of-the-art performance on

multiple datasets; (3) as a result, we also provide a wide comparison against alternatives to

sense embedding representations.

6.1.1 SensEmbed+

In Chapter 3, we introduced SENSEMBED, a knowledge-based approach to create represen-

tations for individual word senses. By exploiting BabelNet (cf. Section 1.4), a multilingual

encyclopedic dictionary and semantic network, SENSEMBED is capable of providing con-
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tinuous vector representations of senses and offers an effective technique for measuring

semantic similarity, showing the advantage gained by moving from the word to the sense

level. SENSEMBED was created by disambiguating a large text corpus automatically by

means of a knowledge-based WSD algorithm, and subsequently learning vector representa-

tions of the contexts of the words and senses in the corpus. Despite employing state-of-the-art

disambiguation methods the WSD step came with an inherent limit: disambiguated words

or collocations were replaced by their respective senses, losing the information of their

occurrence. In Chapter 4 we introduced Senses and Words to Vectors (SW2V). a neural

model which which speeded up the disambiguation step made by SENSEMBED while learn-

ing embeddings of both word a senses in the same vector space as an emerging feature.

While SW2V did include both words and senses, their representations were of low quality

compared to SENSEMBED. In addition, no synset embeddings were learned.

In order to alleviate these critical aspect of both previous approaches, we propose an

extension which is able to produce a complete unified vector space model of meaning, with

a consistent quality for words, senses and synsets. We also improve the supervised learning

model of SENSEMBED by including more informative linguistic features from raw text. Our

enhanced approach, that we call SENSEMBED+, is the main contribution presented in this

paper, along with a long series of experiments to test the effectiveness of the SENSEMBED+

embeddings in solving a number of NLP tasks.

6.2 Model

We introduce SENSEMBED+, a method to automatically build a joint lexical and semantic

space from a corpus of natural language text and a large-scale semantic network. The

building method comprises two steps, namely collecting and disambiguating a text corpus,

and computing the word, sense and synset vectors that represent the words in the corpus and

their meaning.

6.2.1 Automatic Generation of a Sense-labeled Corpus

In order to learn reliable sense and synset embeddings we need a large corpus annotated

with senses with a high degree of reliability. The assumption behind this step is that a corpus
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disambiguated with a tolerable amount of errors will offer enough information to learn

high-quality semantic embeddings.

We apply a Word Sense Disambiguation algorithm (see Section 6.4 for details) to output,

for each content word present in the input text, a sense from the inventory used for that

word. We employ BabelNet as our sense inventory thanks to its richness in concepts and

named entities across languages. For each sense prediction, we expect the disambiguation

algorithm to also return a disambiguation score, i.e., a value in [0, 1] indicating the degree of

confidence that the algorithm had when disambiguating the target word. When dealing with

multiword expressions such as “fire extinguisher” or named entity mentions such as “United

Nations”, we let the disambiguation algorithm disambiguate both the expression as a whole

(if it has a recognized meaning), and its components. Consider for example the following

sentence: “The United Nations Children’s Fund is a United Nations (UN) program that

provides humanitarian assistance to children and mothers in developing countries.” The

multiword expression United Nations Children’s Fund is recognized as an entity (UNICEF),

together with United Nations (the UN organization). Furthermore, children and fund are

linked to the synsets representing their meaning. For the process of building our annotated

corpus, in the case of disambiguated multiword expressions we consider only the longest

sequences, discarding shorter fragments covered by them, again in line with the principle of

building a high-precision resource.

Lexical and Semantic Sampling In the original version of SENSEMBED, after the WSD

step, word occurrences which were properly disambiguated were replaced with their cor-

responding sense. This allows SENSEMBED to represent word senses at the expense of

representing the original words. Only those word occurrences which were not disambiguated,

due to uncertain context, were used as training instances for learning the corresponding

word representation, therefore producing low-quality vectors. This unwelcome effect caused

a loss of information that, instead, could be beneficial for a joint embedding model. To

address this issue, SENSEMBED+ applies lexical and semantic sampling, thereby replacing

multiple times each disambiguated word in the corpus with either the word itself, the chosen

word sense or the corresponding synset ID with uniform probability. As a result, compared

to the original SensEmbed, a richer input context is provided to the learning algorithm, with
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Original Disambiguated Sampling examples
In In In In
mathematics mathematics_bn:00053823n mathematics_bn:00053823n bn:00053823n
, , , ,
a a a a
plane plane_bn:00062766n plane plane_bn:00062766n
is is is is
a a a a
flat flat_bn:00103058a bn:00103058a flat
two-dimensional two-dimensional_bn:00108654a bn:00108654a two-dimensional
surface surface_bn:00075373n surface_bn:00075373n surface

Table 6.1. From raw text to sense-annotated corpus. The bn:<ID> notation is used to encode the
synset ID, whereas a sense of a word w is expressed as w_bn:<ID>.

a balanced distribution of words, senses and synsets across the corpus. The procedure is

described in Algorithm 4, while examples of sampling steps are shown in Table 6.1 (in the

two rightmost columns in the Table).

6.3 Learning the Semantic Vector Space Model

Once we have obtained a large corpus of text disambiguated with high precision, we employ

it to learn a joint space of words, senses and synsets. We use the word2vec toolkit, an

efficient neural network-based toolkit for learning high-quality vector representations of

words that capture a large number of syntactic and semantic relations from the contexts in

which the words occur. In the case of SENSEMBED+, we feed the neural network with the

dataset produced as a result of the lexical and semantic sampling procedure explained in

the previous section. For each target item (word, sense or synset label), a representation is

computed by maximizing the log-likelihood of that item with respect to its context. We use

the Continuous Bag of Words (CBOW) version of word2vec, where the training objective is

to learn good representations that predict individual words given their context. Formally,

given a sequence of items s1, s2, . . . , sT , either words, senses or synsets, the objective of

the model is to maximize the average log probability of the central item:

1
T

T∑
t=1

∑
−W≤i≤W

i 6=0

logP (st|st+i) (6.1)

where W is the size of the window defining the context to the left and right of the target
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Algorithm 4 Lexical and Semantic Sampling algorithm
Input: sense-annotated corpus C
Output: sense-annotated corpus with sampling S

1: S ← ∅
2: i← 4
3: repeat
4: for each token ∈ C do
5: if isSense(token) then
6: rand← a pseudo-random value between 0 and 1
7: if rand < 0.33 then
8: S ← S ∪ {token}
9: else if rand < 0.66 then

10: S ← S ∪ {wordOf(token)}
11: else
12: S ← S ∪ {synsetOf(token)}
13: end if
14: else
15: S ← S ∪ {token}
16: end if
17: end for
18: i← i− 1
19: until i = 0
20: return S

word, typically in the range of five to ten words on each side. The result of the learning

process is a set of vector-based semantic representations for each of the words, word senses

and synsets in the sense-annotated corpus. An experimental justification of the use of CBOW

compared to alternative tools for learning embeddings is provided in Section 6.4.3.

6.3.1 Measuring Word Similarity

The various techniques for computing vector representations are regularly tested against a

series of evaluation benchmarks. Among these, tasks such as semantic relatedness and word

similarity are consistently employed as means of evaluating word and sense embeddings. For

word embeddings, the evaluation is usually straightforward: human judgments of relatedness

between pairs of words are compared to a calculation given by a distance metric between the

corresponding vectors, e.g., cosine similarity. This follows directly from the distributional

hypothesis, which states that words related in meanings have similar representations in the

distributional space (Rubenstein and Goodenough, 1965).
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Algorithm 5 Expansion algorithm

Input: word w
Output: Set of related words, senses and synsets Sw

1: L ← lemmasOf(w) ∪ {w}
2: Sw ← L
3: for each l ∈ L do
4: for each syn ∈ getSynsets(l) do
5: for each sen ∈ getSenses(syn) do
6: Sw ← Sw ∪ {sen}
7: Sw ← Sw ∪ {wordOf(sen)}
8: end for
9: Sw ← Sw ∪ {syn}

10: end for
11: end for
12: return Sw

Associating senses with words In order to compute a similarity score between words

that leverages the richer information contained in a joint word, sense and synset embedding

model, we need an additional step to include also semantic vectors in the process. We call

this step expansion, i.e., the process of associating a word with a set of vectors that represent

words, senses or synsets. Expansion is done in four steps: (1) given a word, the vector of

that word is obtained along with the vectors of all the senses of that word; (2) the word

is lemmatized and the first step is repeated on the lemma; (3) we include all the synsets

associated with either the word or the lemma in the BabelNet semantic network; (4) for each

synset extracted in the previous step, all the word vectors of the English lexicalizations are

considered as well. The full procedure is summarized in Algorithm 5.

For a given pair of words, we can now calculate a similarity score based on the vectors

associated with them and with the additional vectors obtained with the expansion step. We

follow the approach of Resnik (1999), who computes the similarity of words based on their

senses by comparing the similarity of their closest senses among all possibilities. We extend

this idea by including all the lemmas, inflected forms and synsets obtained by expanding the

input words:

Sim (w1, w2) = max
s1∈Sw1
s2∈Sw2

cos (~s1, ~s2) (6.2)
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where Swi is the set of words, senses and synsets associated to the word wi resulting

from Algorithm 5. The similarity score between vectors is then computed as their cosine

similarity:

cos (~s1, ~s2) = ~s1 · ~s2
||~s1||2 ||~s2||2

(6.3)

Beyond distributional-based similarity A factor to consider when measuring semantic

similarity with word embeddings computed from word co-occurrences is the possibility to

get inaccurate results when low-frequency words are involved. Words that are observed

only a few times are typically associated with less reliable vector representations, due to the

lack of contextual information in the corpus. This in turn could affect the word similarity

measure computed on the embeddings as in Formula 6.3. In order to mitigate this issue,

we introduce semantic relatedness information about pairs of synsets from the BabelNet

semantic network. Given a pair of synsets s1 and s2 and the set of synset relations provided

by BabelNet E = {(si, sj) : si is semantically related to sj}, we extend the similarity

measure in Formula 6.2 to account for the presence of semantic relations between synsets

associated with the input word pair as follows:

Sim∗(w1, w2) =


maxs1∈Sw1

s2∈Sw2

cos (~s1, ~s2)× β, if (s1, s2) ∈ E

maxs1∈Sw1
s2∈Sw2

cos (~s1, ~s2)× β−1, otherwise
(6.4)

where β ∈ [0, 1] is a parameter, which we call Vicinity, that controls the extent to which the

new similarity measure leans on the BabelNet semantic network. By including the extra

information from the semantic network, we are able to capture more accurate similarities

between pairs of less frequent words. For example, the word pair orthodontist-dentist (taken

from the SimLex-999 dataset of word pair similarity Hill et al. (2015)) is given a low score by

the embedding-based similarity measure in Formula 6.2, despite common sense suggesting

otherwise. However, the respective closest senses, orthodontist_bn:00026279n

and dentist_bn:00026279n are connected in BabelNet by a hypernymy relation edge,

therefore the updated similarity measure in Formula 6.4 results in a much higher score.
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Figure 6.1. Precision of Babelfy on the Senseval-2 WSD Lexical Sample dataset when varying its
confidence threshold over [0,1].

6.4 Experimental Setup

In this section, we describe the experimental setup of SENSEMBED+, including motivations

for our choices, parameter tuning and comparison systems.

6.4.1 Disambiguation algorithm and tuning

To create a sense-annotated corpus, we utilized Babelfy (Moro et al., 2014), a state-of-the-art

graph-based Word Sense Disambiguation (WSD) algorithm that performs WSD and entity

linking jointly by leveraging the BabelNet semantic network. Babelfy works by modeling

each concept in the semantic network according to its “semantic signature”, i.e., the set of the

relevant vertices related to the concept, by applying a random walk algorithm on the graph.

Given an input text in any of the languages supported by BabelNet, Babelfy constructs a

semantic representation as a sub-graph of the semantic network using the signatures. Finally,

an iterative process involving dense sub-graph heuristics computes the most likely sense

of each word in the input text from its semantic representation. Note that each step in the

disambiguation algorithm is inherently language independent, thus our approach can be

easily ported to languages other than English.

We perform an additional step of fine-tuning the disambiguation algorithm by leveraging

the confidence score returned by Babelfy for each disambiguated token. By using a reference
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corpus, we are able to test different values to cut off the less confident predictions and thus

improving the overall accuracy of the disambiguation. More precisely, we test the precision

of Babelfy on the Senseval 2 WSD Lexical Sample dataset (Edmonds and Cotton, 2001), a

standard benchmark in WSD, varying the threshold value imposed on the confidence score

to produce a sense label. As a result of this experiment, summarized in Figure 6.1, we

observe a peak of precision in the range between 0.6 and 0.8, which justifies the use of a 0.7

threshold for the confidence score (which is, indeed, the default disambiguation threshold

set in Babelfy). Since there is no statistical significance across the segment we kept the

default value for the confidence score.

6.4.2 Corpus and Parameters

For building SENSEMBED+, we started from the September-2014 dump of the English

Wikipedia, the same used in SENSEMBED, for comparison reasons. This edition of

Wikipedia has approximately 4.6 million articles and contains roughly three billion words.

As is shown in Algorithm 4, we performed the Lexical and Semantic Sampling four times on

the resulting disambiguated corpus. By only including the sense labels predicted by Babelfy

on the Wikipedia corpus that have a confidence score above the threshold, we obtained a

sense-annotated dataset containing 12 million unique tokens with at least 5 occurrences,

including 2.6 million word senses and 1.8 million synsets. We ran word2vec with the CBOW

architecture, using a window size of 5 tokens and the remaining parameters as chosen in the

original SENSEMBED: hierarchical softmax as our training algorithm, dimensionality set on

400 and the subsampling of frequent words set on 10−3.

6.4.3 Choice of the embeddings training approach

In this Section, we motivate our choice of CBOW word2vec for building SENSEMBED+ by

comparing it against alternative, commonly-used approaches to learning word embeddings.

• word2vec: the introduction of word2vec (Mikolov et al., 2013b) popularized word

embeddings in Natural Language Processing. The tool, based on a simple feedforward

neural network, is able to learn from large amounts of text corpora. Word2vec

introduced two different models, namely Continuous Bag-of-Words (CBOW), and

SkipGram. CBOW is based on a simple feedforward Neural Language Model, where
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Model RG65 MC30 WS353 WSSim WSRel SimLex MEN YP130 SimVerb Avg

word2vec
CBOW 0.829 0.867 0.629 0.724 0.487 0.471 0.674 0.703 0.468 0.650

SkipGram 0.810 0.876 0.613 0.708 0.446 0.466 0.677 0.723 0.465 0.643

fastText
[SkipGram] 0.771 0.686 0.632 0.660 0.551 0.489 0.719 0.701 0.415 0.625

CBOW 0.654 0.636 0.441 0.466 0.393 0.458 0.541 0.600 0.432 0.513

GloVe 0.745 0.745 0.574 0.643 0.451 0.475 0.607 0.723 0.427 0.599

context2vec 0.531 0.696 0.526 0.632 0.347 0.395 0.570 0.614 0.356 0.519

Table 6.2. Performance of approaches for learning embeddings, in terms of Spearman correlation on
nine standard word similarity datasets.

the projection layer averages all the context words. A log-linear classifier infers the

word in the middle given its neighboring words. The second architecture. SkipGram

is very similar to CBOW, but instead of predicting the word in the middle, it aims to

infer the surrounding words given the central one.

• GloVe: the approach introduced by Pennington et al. (2014) provides a similar model

to word2vec but, instead of using latent representations, it derives an explicit represen-

tation produced from statistical calculation directly from co-occurrence probabilities.

• fastText: introduced by Bojanowski et al. (2017), fastText can be seen as a natural

extension of the SkipGram architecture of word2vec where character n-grams are

learned and words are represented as the sum of the vectors of their constituents

n-grams. The toolkit also includes an analogous extension for the CBOW architecture.

• Context2vec: finally, we consider the approach of Melamud et al. (2016), a model

based on a biLSTM which learns both representations for word and sentences. It is

based on the CBOW architecture of word2vec but instead of averaging the surrounding

words for calculating the hidden state, two LSTMs, one on each side, are used to

calculate the representation of the word context.

We evaluated the approaches using the same training corpus (cf. Section 6.4.2) on

nine standard datasets for measuring word similarity and relatedness: RG65 introduced by

Rubenstein and Goodenough (1965) made by word pairs of any POS; the WordSim-353

(Finkelstein et al., 2002, WS353), with its subsets proposed by Agirre and Soroa (2009)
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who divided WS353 in pairs that measure the degree of similarity (WSSim) and pairs that

measure the degree of relatedness (WSRel); MC30 (Miller and Charles, 1991), a subset of

30 pairs from RG65 composed only by nouns; SimLex-999 (Hill et al., 2015), with 999

pairs, which puts special focus on representing antonyms as completely unrelated words;

the MEN dataset introduced by Bruni et al. (2014) composed by 3000 pairs; two datasets

especially made for analyzing verb similarity: YP130, created by Yang and Powers (2005),

based on the WordNet taxonomy, and SimVerb-3500 (Gerz et al., 2016), a newer and much

larger dataset extracted from the USF norms dataset2 (Nelson et al., 2004) and VerbNet3

(Kipper et al., 2008).

In Table 6.2 we present a comparison of the above embedding approaches on several

datasets for word similarity, where Spearman correlation is calculated. fastText and CBOW

show the best performance across datasets. Expectedly, default fastText, based on Skip-

Gram, performs better than its CBOW alternative. An interesting result is the behavior of

context2vec, in principle the most sophisticated model. Due to its configuration and the

large amount of parameters learned at training time, it was impossible to learn embeddings

with a large vocabulary, making this approach less competitive than its alternatives. Since

the performance between CBOW and fastText is not significantly different across datasets,

and on average CBOW is better, we chose CBOW for its simplicity and speed.

6.4.4 Comparison systems

In addition to the original SENSEMBED, we compare our enhanced SENSEMBED+ against

five sense embedding models:

• AutoExtend (Rothe and Schütze, 2015): a system that combines word embeddings

with semantic resources by learning embeddings of lexemes, senses and synsets from

WordNet in a shared space. The embeddings are learned given the constraint that

words are sums of their lexemes and synsets are sums of their lexemes. AutoExtend

is based on an auto-encoder, a network that mimics the input vector at output layer.

• A Unified Model for Word Sense Representation and Disambiguation (Chen

et al., 2014, UMWSRD) : a single model that uses WSD to inform the word sense

2http://w3.usf.edu/FreeAssociation/
3http://verbs.colorado.edu/verb-index

http://w3.usf.edu/FreeAssociation/
http://verbs.colorado.edu/verb-index


86 6. SENSEMBED+: A "Meaningful" Vector Space Model

representations, and vice versa in a feedback loop. This approach exploits the structure

of the sense inventory of WordNet.

• Senses and Words to Vectors4 introduced in Chapter 4: A model which simultane-

ously learns embeddings for words and senses as an emerging feature, rather than

via constraints, by exploiting knowledge from text corpora and BabelNet’s semantic

networks in a joint training phase.

• NASARI (Camacho-Collados et al., 2015b, 2016): a high-coverage multilingual

vector representation which includes concepts and named entities from BabelNet. It

exploits the multilingual semantic network and word2vec in order to learn representa-

tions of linguistic items in a unified space.

• DeConf (De-conflated Semantic Representations), introduced by Pilehvar and Collier

(2016), is a technique which, based on an optimization function, decomposes a given

set of pre-trained word representations into its constituent sense representations. The

resulting sense embeddings appear near words closely related in the semantic network

of WordNet.

6.5 Experimental Results

In this Section we report the experimental results obtained on a wide range of tasks such as

word and relational similarity, word in context similarity, word-to-sense similarity, identifi-

cation of linguistic properties, outlier detection and word sense disambiguation.

6.5.1 Word Similarity

Word similarity is the most widely used task for the evaluation of the representational power

of word and sense embeddings. A dataset is given, composed of pairs of words associated

with a numeric score produced by human judges indicating the extent to which the meaning

of the two words is related. We test the embedding models listed in the previous section on

the same datasets of word similarity in Section 6.4.3. The results, presented in Table 6.3,

4We used the 300-dimensional pre-trained word and sense embeddings from http://lcl.uniroma1.
it/sw2v

http://lcl.uniroma1.it/sw2v
http://lcl.uniroma1.it/sw2v
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Model RG65 MC30 WS353 WSSim WSRel SimLex MEN YP130 SimVerb Avg

AutoExtend 0.862 0.894 0.569 0.737 0.407 0.562 0.765 0.700 0.529 0.669

UMWSRD 0.869 0.897 0.545 0.691 0.389 0.465 0.650 0.724 0.472 0.634

SW2V 0.843 0.787 0.524 0.709 0.379 0.335 0.734 0.486 0.223 0.558

NASARI 0.799 0.726 0.502 0.623 0.317 0.234 0.541 0.280 0.154 0.464

DeConf 0.871 0.826 0.651 0.769 0.541 0.523 0.746 0.738 0.509 0.686

SENSEMBED 0.865 0.851 0.682 0.731 0.555 0.404 0.763 0.573 0.389 0.646

SENSEMBED+ 0.908 0.866 0.712 0.786 0.615 0.513 0.780 0.728 0.516 0.714

Table 6.3. Performance of sense embeddings approaches, in terms of Spearman correlation on the
task of word similiarity.

are given in terms of Spearman correlation between the relatedness scores predicted by the

models and the human judgments, as done in most works.

SENSEMBED+ obtains the best performance on this benchmark, significantly improving

upon the previous version of the model, thanks to a richer and therefore more accurate

encoding of the embeddings.

6.5.2 Word-to-Sense Similarity

While word pair similarity is a popular task, it is suboptimal for assessing the full potential

of a joint model of lexical and semantic items. Here we consider the alternative task of

word-to-sense similarity, which requires to output a relatedness score between a word and a

sense from the WordNet inventory. Word and sense embedding models can be applied to this

task in a straightforward fashion, since word vectors and sense vectors are represented in the

same space, and thus they are directly comparable by means of a geometric distance metric.

Jurgens et al. (2014, CLSS) introduced word-to-sense similarity as one of the tasks of their

Cross-Level Semantic Similarity, an effort to test semantic similarity systems that are able

to compare different types of text. The CLSS word-to-sense similarity dataset comprises

500 instances of words, each paired with a short list of candidate senses from WordNet

with human ratings for their word-sense relatedness. Following the measures used for the

task, the results are given as correlation scores (Pearson and Spearman), in Table 6.4. The

performance of SENSEMBED+ is higher than most systems, and on par with the other best

performing model, AutoExtend.
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Model r ρ

AutoExtend 0.362 0.364
UMWSRD 0.311 0.308
SW2V 0.130 0.146
NASARI 0.244 0.220
DeConf 0.211 0.250

SENSEMBED 0.316 0.333
SENSEMBED+ 0.355 0.369

Table 6.4. Results of the evaluation on the word-to-sense similarity task in terms of Pearson (r) and
Spearman (ρ) correlations.

6.5.3 Outlier Detection

The outlier detection task is a variation on the standard word similarity task. In this setting,

a small set of words is given and the system must identify the one that does not belong to

the group. Humans typically achieve almost perfect scores on this task while, interestingly,

it is still a somewhat open problem for computers. For this experiment, we used the dataset

provided with the 8-8-8 outlier detection task organized by Camacho-Collados and Navigli

(2016), which comprises 8 groups of 8 words, each associated with 8 candidate outliers,

ranked from the most to the least related to the original set. The evaluation script accepts

vector representations for the input words and calculates the ranking of the candidate

outliers based on their pairwise cosine similarity. We modified the script in order to accept

multiple vectors for each word, according to the expansion procedure, and compute the

word similarity considering the word senses as described in Section 6.3.1.

In the results on this task, presented in Table 6.5, we can see that SENSEMBED+ achieves

a perfect score, in terms of both measures defined in the task (accuracy, and outlier position

percentage, which considers the position of the outlier according to the proximity of the

semantic cluster) matching the performance of the human annotators. This excellent result

suggests that our joint word and sense embedding model is capable of representing more

complex semantic relationships beyond pairwise relatedness.

6.5.4 Relational Similarity

Given two pairs of words (wi,1, wi,2) and (wj,1, wj,2), the degree of relatedness of the

relation between wi,1 and wi,2 to the relation between wj,1 and wj,2 is called their relational
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Model OPP score Accuracy

AutoExtend 82.8 37.5

UMWSRD 85.9 75.0

SW2V 48.4 37.5

NASARI 94.0 76.3

DeConf 93.8 62.5

SENSEMBED 98.0 95.3

SENSEMBED+ 100.0 100.0

Table 6.5. Results of the evaluation on the outlier detection task (percentages).

similarity (Medin et al., 1990). The SemEval 2012 task on Measuring Degrees of Relational

Similarity (Jurgens et al., 2012) provides a benchmark to evaluate systems that compute

relational similarity, comprising 79 pairs of word relations, graded by human annotators. We

test the word and sense embedding models against this gold standard dataset by computing

a measure of relational similarity based on the cosine similarity of sense vectors Zhila et al.

(2013):

Analogy(wi1, wi2, wj1, wj2) = max
si1∈Swi1
si2∈Swi2
sj1∈Swj1
sj2∈Swj2

Sim( ~si1 − ~si2, ~sj1 − ~sj2) (6.5)

where Sw is the set of senses associated with the word w. The results of the evaluation,

shown in Table 6.6, are given in terms of MaxDiff score (Louviere, 1991) and Spearman

correlation between the relational similarity scores predicted by the models and the human

judgments. On this task, SenseEmbed+ outperforms all other competitors in terms of

Spearman correlation, while attaining results on a par with DeConf when using the MaxDiff

score.

6.5.5 Word in Context Similarity

While the word similarity benchmarks presented in the previous sections are widespread

and useful tools to measure degrees of semantic relatedness, they are all hindered by the
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Model MaxDiff ρ

AutoExtend 0.429 0.299

UMWSRD 0.462 0.379

SW2V 0.475 0.407

NASARI 0.443 0.306

DeConf 0.506 0.455

SENSEMBED 0.471 0.394

SENSEMBED+ 0.507 0.463

Table 6.6. Results of the evaluation on the relational similarity task.

same issue, i.e., the words under consideration are isolated from their context, and thus they

carry some degree of ambiguity that is not always straightforward to resolve. To overcome

this issue, Huang et al. (2012) have proposed a dataset called Stanford Contextual Word

Similarities, consisting of 2003 word pairs and their sentential contexts, with pairwise

relatedness scores given by human judges. In this framework, we compute a similarity score

for a pair of words in input based on the average similarity of their senses, with an additional

weighting factor to take the contextual information into account:

avgSimC (w1, w2) = 1
|Sw1 ||Sw2 |

∑
s1∈Sw1

∑
s2∈Sw2

Sim (~s1, ~s2)× P (s1|Cw1)× P (s2|Cw2)

(6.6)

where Cwi represents the context where the word wi appears. For computing the vector we

utilize a decay giving more weight to nearby words. Following Iacobacci et al. (2016) we

use the exponential decay, based on the following formula:

~Cwi =
I+W∑
j=I−W
j 6=I

(1− α)|I−j|−1 ~wj (6.7)

where W is the context window taken into account, which we set to 30, I is the relative

position of wi in the sentence and α = 1− 0.1(W−1)−1
is the decay parameter. We choose
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Model MaxSim AvgSim AvgSimC

AutoExtend 0.594 0.645 0.653

UMWSRD 0.550 0.651 0.664

SW2V 0.519 0.626 0.448

NASARI 0.389 0.655 0.663

DeConf 0.579 0.655 0.664

SENSEMBED 0.567 0.639 0.688

SENSEMBED+ 0.575 0.659 0.703

Table 6.7. Evaluation on the Stanford Contextual Word Similarity dataset in terms of Spearman.

the parameter in such a way that the immediate surrounding words contribute 10 times more

than the last words on both sides of the window.

For comparison, we also compute two alternative word similarity measures that do not

take context into account, as a means of evaluating the impact of the additional information

on the task performance:

maxSim (w1, w2) = max
s1∈Sw1
s2∈Sw2

Sim (~s1, ~s2) (6.8)

avgSim (w1, w2) = 1
|Sw1 ||Sw2 |

∑
s1∈Sw1

∑
s2∈Sw2

Sim (~s1, ~s2) (6.9)

The results are given in Table 6.7. We comment on two main findings in this experiment.

Despite being the main way to utilize sense embeddings for word similarity, the MaxSim

(cf. Equation 6.8) similarity, introduced by Reisinger and Mooney (2010), performs lower

than AvgSim (cf. Equation 6.9) similarity. Finally, as expected, AvgSimC (cf. Equation 6.6),

which calculates a weighted average of all the sense vectors by taking into account the

surrounding context, provides higher results than MaxSim and AvgSim in all configurations,

with the exception of SW2V. Our approach reaches the best overall performance with the

AvgSimC and ranks first in the AvgSim configuration.
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6.5.6 Linguistic Properties

In order to gain a better insight into the nature of the embeddings introduced in this work, we

performed an experiment aimed at measuring some of their intrinsic properties, as opposed

to the task-based evaluations proposed in the previous sections. The QVEC evaluation

framework (Tsvetkov et al., 2015) aims at measuring the quality of word embeddings by

mapping the dimensions of the vector space to a manually constructed set of vectors whose

dimensions represent specific linguistic properties based on WordNet. QVEC performs

a one-to-many alignment of the components of the two vector spaces and computes an

aggregated correlation score:

QVEC = max
A|
∑

j
aij≤1

D∑
i=1

P∑
j=1

r(xi, sj)× aij (6.10)

where A ∈ {0, 1}D×P is the matrix of alignments, D is the word vector dimensionality,

P is the amount of linguistic properties, aij = 1 iff xi is aligned to sj (0 otherwise), and

r(xi, sj) is the Pearson’s correlation.

Model QVEC

AutoExtend 0.511

UMWSRD 0.443

SW2V 0.463

NASARI 0.524

DeConf 0.511

SENSEMBED 0.504

SENSEMBED+ 0.537

Table 6.8. QVEC score in the linguistic properties task.

We test the word and sense embedding models against QVEC and report the results

in Table 6.8. While SENSEMBED performs quite well compared to the other models,

SENSEMBED+ comes out as the embedding model that best aligns with linguistically

interpretable dimensions.
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6.5.7 Word Sense Disambiguation

Finally, we carried out experiments on Word Sense Disambiguation (WSD), a key task in

lexical semantics. WSD is the task of assigning to each word in a given text a label indicating

its sense (Navigli, 2009). We tested our models on two tasks, namely the prediction of the

most frequent sense of a word, and the disambiguation of all the words in a text.

Most Frequent Sense Induction In the first experiment, we employ the word and sense

embeddings to induce the most frequent sense (MFS) of the input words. This is a hard-to-

beat baseline in WSD, typically computed by counting the word-sense pairs in an annotated

corpus such as SemCor (Miller et al., 1993), which are limited in coverage, especially

for languages other than English. In this experiment, we use the embeddings from a

certain vector space model to determine the dominant sense of a target word as the closest

sense vector in terms of cosine similarity to the vector of the target word, similarly to the

computation of word-to-sense similarity in Section 6.5.2. The assumption here is that the

more frequent a word sense, the more contextual information about that sense will be shared

with the corresponding word embedding.

The test set was created by collecting all the words in SemCor with a minimum of five

sense annotations (3731 words in total). We evaluated the MFS based on such annotations

against induced dominant sense from the various sense embeddings approaches. We report

the results in terms of precision @ K, i.e. when comparing the induced sense against

the first K senses from WordNet (K = 1, 3, 5). The results, presented in Table 6.9, show

how SENSEMBED+ is the best model to induce the dominant senses, although the overall

performance of the models indicates that this is a hard problem.

All-Words Word Sense Disambiguation In a second experiment, we performed all-

words WSD, i.e. a task whose goal is that of disambiguating all the content words in a

given text. In order to learn models for disambiguating a large set of content words, a

high-coverage sense-annotated corpus is required. Since all-words tasks do not usually

provide any training data, the challenge here is not only to learn accurate disambiguation

models from the training data, as is the case in the lexical sample task, but also to gather

high-coverage training data and learn disambiguation models for as many words as possible.
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Model P@1 P@3 P@5

AutoExtend 22.8 52.0 56.6

UMWSRD 41.0 62.1 68.2

SW2V 39.7 60.3 67.5

NASARI 27.4 40.2 44.6

DeConf 30.1 55.8 64.3

SensEmbed 38.4 56.1 63.0

SensEmbed+ 42.7 63.4 70.2

Table 6.9. Precision on the MFS task (percentages).

Precision F1

AutoExtend 0.667 0.726

UMWSRD 0.708 0.727

SW2V 0.625 0.486

NASARI 0.881 0.818

DeConf 0.592 0.637

SensEmbed 0.821 0.795

SensEmbed+ 0.902 0.805

Table 6.10. Precision and F1 score in the SemEval 2007 Task 7: All-Words coarse-grained WSD.

We perform the WSD task with embeddings by 1) creating a context vector as a result of

averaging the embedding vectors of the words surrounding the target word, 2) by choosing

the most suitable sense for a target word which is most similar to the context vector:

sense(w, C) = arg max
s∈Sw

Sim
(
~s, ~C

)
(6.11)

where Sw is the set of senses associated with the target word w, and Sim is the similarity

defined in Formula (6.2). We choose 0.2 as threshold following the NASARI parameter

tuning (Camacho-Collados et al., 2016). We only output an answer when the confidence of

the frameworks is larger than the threshold, without using any back-off strategy.
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As our testing dataset we choose the SemEval-2007 English All-Words Coarse-Grained

Word Sense Disambiguation Task (Navigli et al., 2007). The task consists of 2269 annotated

words, 1108 nouns, 591 verbs, 362 adjectives and 208 adverbs. We report results in terms

of Precision and and F1. We chose a coarse-grained dataset because a fine-grained WSD

evaluation would not fit our purpose, due to our framework based on Formula 6.11 not being

suitable for detecting subtle sense distinctions.

As shown in Table 6.10, SENSEMBED+ performs best together with the NASARI

embedded vectors, with the former having higher precision and the latter showing slightly

higher F1. All other sense-aware models deliver considerably lower performance on the

task.

6.6 Analysis

We now analyse several aspects of SENSEMBED+ not covered in the experiment section.

Comparison against the Wikipedia 2018 corpus We first assess the impact that different

versions of Wikipedia can have on SENSEMBED+, given the increase in size and richness

over time. Therefore, in addition to the vectors introduced in the experimentation section,

which were trained with the September 2014 dump of the English Wikipedia, we also trained

a new set of vectors with the sense-annotated version of an up-to-date version of Wikipedia

(May 2018) but with the same hyperparameter values mentioned in Section 6.4.

In Table 6.11 we show comparative statistics of the two corpora. Having up to 36%

more unique tokens, the 2018 dump contains almost twice word senses and almost 50%

more synsets. The sense coverage across parts of speech is considerably higher, especially

in adverbs where coverage was increased by more than seven times.

Year Tokens Senses Synsets Nouns Verbs Adjectives Adverbs Total

2014 12331016 2642706 1838011 4357222 75765 41178 6552 7.6B

2018 16782882 4439069 2647036 6798698 141841 96697 48869 19.7B

Table 6.11. Statistics of the two sense-annotated corpora used to learn the SENSEMBED+ vectors,
from September 2014 and May 2018 English Wikipedia dumps.
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Year
WS353 Word2Sense SCWS

ρ r ρ AvgSimC

2014 0.712 0.355 0.369 0.703

2018 0.738 0.333 0.336 0.657

Table 6.12. Comparison of performance on tasks with significant differences when Wikipedia 2014
and 2018 dumps are used for learning sense embeddings.

We performed experiments for comparing the performance between the new set of

vectors and the version used in Section 6.4. We only found significant differences in a few

experiments, which we report in Table 6.12. It seems the cost of having a larger lexical and

semantic vocabulary causes a decrease in performance in some NLP tasks. This behavior

could be due to the saturation of the vectors used to represented the embeddings. As

was claimed by Erk and Padó (2008), a single vector "can only encode a fixed amount of

structural information if its dimensionality is fixed".

The effect of Expansion and Vicinity In order to analyze the impact of the different

components of our similarity measure introduced in Section 6.3.1, we carried out an experi-

ment on the RG65 word similarity dataset (similar findings were obtained on all other word

similarity datasets). In addition to the previously used models we included word embeddings

vectors of GoogleNews5, a set of word embeddings trained with word2vec, from a corpus of

newspaper articles.

In Table 6.13 we show three different configurations for performing the word similarity

task, namely Unique, Expansion and Expansion+Vicinity. The first configuration treats

shared embeddings solely as word embeddings, by taking into account only the similarity

between word vectors. Most of approaches reach highest performance by using this con-

figuration. It is important to remark that both DeConf and AutoExtend start from word

embeddings to induce sense embeddings in the same semantic space. We now move to the

Expansion configuration. This configuration, when considered alone, seems harmful but it

is needed for taking word senses into account for measuring similarity: this step enables

the use of the Vicinity strategy, which requires the use of sense embeddings. The third

5https://goo.gl/p4RXac

https://goo.gl/p4RXac
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Model

Rubenstein & Goodenough 65

Unique Expansion
Expansion

+Vicinity

Word2vec 0.674 0.673 0.673

AutoExtend 0.763 0.871 0.862

UMWSRD 0.746 0.819 0.869

SW2V 0.779 0.832 0.843

NASARI 0.710 0.702 0.799

DeConf 0.763 0.846 0.871

SENSEMBED 0.667 0.853 0.865

SENSEMBED+ 0.801 0.879 0.908

Table 6.13. Spearman correlation on RG65 with different strategies.

configuration indeed shows better performance across all the models with the exception of

AutoExtend, which justifies our use of Expansion+Vicinity in SENSEMBED+.

Closest Senses Finally, we performed a qualitative analysis of SENSEMBED+ vectors,

aimed at assessing how well the semantic vector space separates the various meanings

(senses and synsets) of ambiguous words. We show in Table 6.14 some of the closest words,

senses and synsets to two ambiguous words: bar and race. For bar we include the two

dominant senses: the meaning related to pub, defined by WordNet as a room or establishment

where alcoholic drinks are served over a counter and the meaning of rod or stick, defined

as a rigid piece of metal or wood; usually used as a fastening or obstruction or weapon.

For the first sense, we see that the closest vector to the sense bar (bar_bn:00008462n)

is the synset vector of bar (bn:00008462n). The next vectors in terms of proximity are

bn:00014557n and cafe_bn:00014557n, which represent the synset and the sense of coffee

bar, respectively, a concept deeply related with the concept of bar and, next, the sense and

the synset of eating place, defined as a building where people go to eat. As we can see,

SENSEMBED+ meaningfully represents lexical and semantic items in a shared space.
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barn1 barn3 racen3 racen3 racen1
(pub) (piece of metal) (biology) (acting) (convertible car)

bar_bn:00008462n bar_bn:00008464n race_bn:00065800n race_bn:00065798n race_bn:00065799n

bn:00008462n bn:00008464n bn:00065800n bn:00050342n bn:00065799n

bn:00014557n bn:00062446n ethnicity bn:00060837n race

cafe_bn:00014557n flange_bn:00035022n gender_bn:00037634n primaries_bn:00064361n event

restaurant bn:00011315n bn:00031727n bn:00066592n bronze_medal_bn:00013330n

restaurant_bn:00029545n hinge_bn:00035192n ethnicity_bn:00031727n programs_bn:00062899n 3,000_m_steeplechase_bn:00074144n

bn:00029545n bn:00007536n gender doer_bn:00001177n races_bn:00065799n

café_bn:00014557n bn:00035192n national_origin_bn:00019285n u.s._senatorial_bn:00070459n bn:00071626n

cafe bn:00035022n bn:00037634n exit_polls_bn:00032244n bn:00078199n

bar axle social_class open_primary marathon_race_bn:00053333n

coffee_shop bn:00017487n races_bn:00065800n primary_election_bn:00064361n grand_prix_bn:00041339n

lounge pulley_bn:00011315n religion_bn:00032770n bn:00064361n heats_bn:00043415n

coffee_shop_bn:00014557n shaft social_class_bn:00019478n recounts_bn:00066592n bronze_medal

bistro coil bn:00056964n bn:00109704a silver_medal

grill bn:00023491n religion bn:00080384n bn:00040935n

nightclub bn:00062898n race united_state_senate_bn:00070459n silver_medal_bn:00071626n

bn:00010725n bn:00050864n sexuality bn:00103826a sprint_event_bn:00025286n

nightclub_bn:00014419n screw_bn:00069865n ethnic_background_bn:00031722n republican gold_medal

bn:00014419n dowel_bn:00028463n skin_color_bn:00021378n bn:00059193n bn:00043419n

bn:00008206n beam_bn:00009314n sexuality_bn:00037634n challenger gold_medal_bn:00040935n

Table 6.14. The closest items (words, senses and synsets) to two ambiguous nouns: bar and race.

6.7 Conclusions

In this chapter we present SENSEMBED+, an approach which addresses the meaning

conflation of word embedding representations and obtains continuous representations of

both lexical items (i.e., words) and semantic items (i.e., word senses and synsets) in the

same semantic space by leveraging distributional information from large amounts raw data

and a vast multilingual encyclopedic dictionary and semantic network, i.e., BabelNet.

We evaluated our approach on several tasks including Word Similarity, Relational

Similarity, Word Similarity In Context, Outlier Detection Linguistic Properties and Word

Sense Disambiguation. SENSEMBED+ consistently achieves the best results or is in the

same ballpark as the top-ranking approach. In addition we have shown the cohesion between

our lexical and semantic embeddings by measuring word-in-context similarity, word-to-

sense similarity, frequent sense induction and word sense disambiguation, all tasks which

need explicit semantic information to be considered and therefore cannot be performed

straightforwardly with vanilla word embeddings. We carried out evaluations against widely

known sense representations and showing the advantages of our approach in various tasks

with respect to state-of-the-art sense-based models.
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Three conclusions can be drawn from the experimental results: (1) including words,

senses and synsets in the joint space can significantly improve the effectiveness and accuracy

of the resulting representations; (2) compared to the original SENSEMBED, by applying

lexical and semantic sampling we obtain more accurate word embeddings in the same space

as sense and synset embeddings; (3) SENSEMBED+ is not only an effective approach for

similarity judgements but also particularly suitable for several other tasks which need the

ability to discriminate word senses in effective way.

The SENSEMBED+ embeddings created with the Wikipedia 2014 and 2018 dumps are

available at http://lcl.uniroma1.it/sensembed_plus.

http://lcl.uniroma1.it/sensembed_plus
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Chapter 7

Joint BiLSTM-based Learning

of Word and Sense

Representations

"whatever it is [an idea] that the mind

can be employed about in thinking [..]

is any immediate object of perception,

thought, or understanding"

John Locke, 1689

"only in the context of a proposition [..]

words have any meaning."

Gottlob Frege, 1884

While word embeddings are now a de facto standard representation of words in most

Natural Language Processing (NLP) tasks, recently the attention is shifting towards vector

representations which capture the different meanings, i.e., senses, of words. While in the

previous chapters all the models were based, or leveraged, feed-forward neural networks,

in this chapter we explore the capabilities of a bidirectional Long Short Term Memory

(LSTM) model to learn representations of word senses from order-aware contexts, while at
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the same time leveraging knowledge from existing semantic resources. We test our approach

on various standard benchmarks for evaluating semantic representations, showing that our

model achieves state-of-the-art performance across tasks, including the SemEval-2014

word-to-sense similarity task.

7.1 Introduction

Natural Language is inherently ambiguous, for reasons of communicative efficiency (Pi-

antadosi et al., 2012). For us humans, ambiguity is not a problem, since we use common

knowledge to understand each other. Therefore, a computational model suited to work side

by side with humans without any supervision should deal with ambiguity to a certain extent.

A necessary step to create such computer systems is to build formal representations of words

and their meaning, either in the form of large repositories of knowledge, e.g., semantic

networks, or as vectors in a geometric space.

In fact, representation learning has been a major research area in NLP in the past years,

and latent vector-based representations, called embeddings, seem to be a good candidate to

cope with ambiguity. Embeddings represent lexical and semantic items in a low-dimensional

continuous space. These vector representations capture useful syntactic and semantic infor-

mation of words and senses, such as regularities in the natural language, and relationships

between them, in the form of relation-specific vector offsets. Recent approaches, such as

word2vec (Mikolov et al., 2013a), and GloVe (Pennington et al., 2014), are capable of learn-

ing efficient word embeddings from large unannotated corpora. While word embeddings

have paved the way to improvements in a countless number of NLP tasks Goldberg (2017),

they still conflate the various meanings of each word and let its predominant sense prevail

over the others in the resulting representation.

A strand of work aimed at tackling the lexical polysemy issue has proposed the creation

of sense embeddings, i.e. embeddings which separate the various senses of each word in

the vocabulary like in Huang et al. (2012); Chen et al. (2014) and in our work presented in

Chapter 3, Chapter 4 and Chapter 6. One of the weaknesses of these approaches, however,

is that they do not take word ordering into account during the learning process. On the

other hand, word-based approaches based on RNNs that consider sequence information have
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Figure 7.1. An example joint space where
word vectors (squares) and sense vectors
(dots and crosses) appear separated.

Figure 7.2. A shared space of words
(squares) distributed across the space and
two sense clusters (dots and crosses).

been presented but they are not competitive in terms of speed or quality of the embeddings

(Mikolov et al., 2010; Mikolov and Zweig, 2012; Mesnil et al., 2013).

For example, in Figure 7.1 we show an excerpt of a tSNE projection of word and sense

embeddings in the literature: as can be seen, first, the ambiguous word bank is located close

to words which co-occur with it (squares in the Figure) and, second, the closest senses of

bank (dots for the financial institution meaning and crosses for its geographical meaning)

appear clustered in two separated regions without a clear correlation with (potentially

ambiguous) words which are relevant to them. A more accurate representation would be

to have word vectors distributed across all the space with defined clusters for each set of

vectors related to each sense of a target word (Figure 7.2).

Recently, the much celebrated Long-Short Term Memory (LSTM) neural network model

has emerged as a successful model to learn representations of sequences, thus providing an

ideal solution for many Natural Language Processing tasks whose input is sequence-based,

e.g., sentences and phrases (Hill et al., 2016; Melamud et al., 2016). However, to date

LSTMs have not been applied to the effective creation of sense embeddings linked to an

explicit inventory.

In this work, we address the open issues of current models that learn sense embeddings

from sense-labeled corpora, by exploiting the capabilities of LSTMs, and present four main

contributions:

• We introduce LSTMEmbed, an RNN model based on a bidirectional LSTM for
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learning word and sense embeddings in the same semantic space, which takes into

account word ordering.

• We present an innovative idea for taking advantage of pre-existing embeddings using

them as an objective during training.

• We show that LSTM-based models are suitable for learning not only contextual

information, as is usually done, but also representations of individual words and

senses.

• By linking our representations to a knowledge resource, we take advantage of the

preexisting semantic information.

7.2 LSTMEmbed

Many approaches for learning embeddings are based on feed-forward neural networks

(Section 2.2). However, recently LSTMs gained popularity in the NLP community as a

new de facto standard model to represent natural language, by virtue of their context and

word-order awareness. In this section we introduce LSTMEmbed, a novel method to learn

word and sense embeddings jointly based on the LSTM architecture.

7.2.1 Model Overview

At the core of LSTMEmbed is a bidirectional Long Short Term Memory (BiLSTM), a

kind of recurrent neural network (RNN), which uses a set of gates especially designed for

handling long-range dependencies.

The bidirectional LSTM (BiLSTM) is a variant of the original LSTM (Hochreiter and

Schmidhuber, 1997) particularly suited for temporal problems when access to the complete

context is needed. In our case, we use an architecture similar to Kawakami and Dyer (2016),

Kågebäck and Salomonsson (2016) and Melamud et al. (2016) where the state at each time

step in the BiLSTM consists of the states of two LSTMs, centered in a particular timestep,

accepting the input from previous timesteps in one LSTM, and the future timesteps in

another LSTM. This is particularly suitable when the output corresponds to the analyzed

timestep and not to the whole context.
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Figure 7.3. The LSTMEmbed architecture.

Figure 7.3 illustrates our model architecture. In marked contrast to the other LSTM-

based approaches in the literature, we use sense-tagged text to provide input contexts of the

kind si−W , . . . , si (the preceding context) and si, . . . , si+W (the posterior context), where

sj (j ∈ [i−W, . . . , i+W ]) is either a word or a sense tag from an existing inventory (see

Section 7.3.1 for details). Each token is represented by its corresponding embedding vector

v(sj) ∈ Rn, given by a shared look-up table, which allows to learn representations taking

into account the contextual information on both sides of the sentence. Next, the BiLSTM

reads both sequences, i.e., the preceding context, from left to right, and the posterior context,

from right to left:

ol = lstml(v(si−W ), ...,v(si−1))

or = lstmr(v(si+1), ...,v(si+W ))
(7.1)

The model has one extra layer. The concatenation of the output of both LSTMs is projected

linearly via a dense layer:
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outLSTMEmbed = Wo(ol ⊕ or) (7.2)

where Wo ∈ R2m×m is the weights matrix of the dense layer with m being the dimension

of the LSTM.

Then, the model compares outLSTMEmbed with emb(si), where emb(si) is a pre-

trained embedding vector of the target token (see Section 7.3.1 for an illustration of the

pretrained embeddings that we use in our experiments). At training time, the weights of

the network are modified in order to maximize the similarity between outLSTMEmbed and

emb(si). The loss function is calculated in terms of cosine similarity:

loss = 1− S(~v1, ~v2) = 1− ~v1 · ~v2
‖~v1‖‖~v2‖

(7.3)

Once the training is over, we obtain latent semantic representations of words and senses

jointly in the same vector space from the look-up table, i.e., the embedding matrix between

the input and the LSTM, with the embedding vector of an item s given by v(s).

With respect to a standard BiLSTM, the novelties of LSTMEmbed can be summarized

as follows:

• Using a sense-annotated corpus which includes both words and senses for learning

the embeddings.

• A single look-up table, shared between both left and right LSTM, learned in the same

architecture that represents both words and senses.

• A new learning method, which uses a set of pretrained embeddings as the objective

for injecting semantic information.

7.3 Evaluation

We now present an experimental evaluation of the representations learned with LSTMEmbed.

We first provide implementation details (Section 7.3.1), and then, to show the effectiveness

of our model on a broad range of tasks, report on two sets of experiments: those involving

sense-level tasks (Section 7.3.2) and those concerned with the word level (Section 7.3.3).



7.3 Evaluation 107

7.3.1 Implementation Details

Training data. We chose BabelNet (cf. Section 1.4) as our sense inventory. BabelNet is a

large multilingual encyclopedic dictionary and semantic network, including approximately

16 million entries for concepts and named entities linked by semantic relations. As training

corpus we used the English portion of BabelWiki1, a multilingual corpus comprising the

English Wikipedia. The corpus was automatically annotated with named entities and

concepts using Babelfy (Moro et al., 2014), a state-of-the-art disambiguation and entity

linking system, based on the BabelNet semantic network. The English section of BabelWiki

contains 3 billion tokens and around 3 million unique tokens.

Learning embeddings. LSTMEmbed was built with the Keras2 library using Theano3 as

backend. We trained our models with a Nvidia Titan X Pascal GPU. We set the dimension-

ality of the look-up table to 200 due to memory constraints. We discarded the 1,000 most

frequent tokens and set the batch size to 2048. The training was performed for one epoch.

As optimizer function we used Adaptive Moment Estimation or Adam4.

As regards the objective embeddings emb(si) used for training (see Section 7.4.1), as a

result of comparison against alternative approaches (reported in the analysis section below),

we chose 400-dimension sense embeddings trained with word2vec’s SkipGram architecture

with negative sampling on the BabelWiki corpus with recommended parameters for the

SkipGram architecture: window size of 10, negative sampling set on 10, sub-sampling of

frequent words set to 10−3.

7.3.2 Sense-based Evaluation

Our first set of experiments aims at showing the impact of our joint word and sense model

in tasks where semantic, and not just lexical, relatedness is needed, namely Cross-Level

Semantic Similarity and Most Frequent Sense Induction.

Comparison systems. We compare the performance of LSTMEmbed against alternative

approaches to sense embeddings: SensEmbed (cf. Chapter 3), which obtained semantic
1http://lcl.uniroma1.it/babelfied-wikipedia/
2https://keras.io
3https://goo.gl/RxRn5M
4https://goo.gl/fWWHBn

http://lcl.uniroma1.it/babelfied-wikipedia/
https://keras.io
https://goo.gl/RxRn5M
https://goo.gl/fWWHBn
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Model Pearson Spearman

MeerkatMafia 0.389 0.380
SemantiKLU 0.314 0.327
SimCompass 0.356 0.344

AutoExtend 0.362 0.364
SensEmbed 0.316 0.333
Nasari 0.244 0.220
DeConf 0.349 0.356

LSTMEmbed 0.380 0.400
Table 7.1. Pearson and Spearman correlations on the CLSS word-to-sense similarity task.

representations by applying word2vec to the English Wikipedia disambiguated with Babelfy;

Nasari (Camacho-Collados et al., 2015b, 2016), a technique for rich semantic representation

of arbitrary concepts present in WordNet and Wikipedia pages; AutoExtend (Rothe and

Schütze, 2015) which, starting from the word2vec word embeddings learned from Google-

News5, infers the representation of senses and synsets from WordNet; DeConf, an approach

introduced by Pilehvar and Collier (2016) that decomposes a given word representation into

its constituent sense representations by exploiting WordNet.

Experiment 1: Cross-Level Semantic Similarity. To best evaluate the ability of embed-

dings to discriminate between the various senses of a word, we opted for the SemEval-2014

task on Cross-Level Semantic Similarity (Jurgens et al., 2014, CLSS), which includes

word-to-sense similarity as one of its sub-tasks. The CLSS word-to-sense similarity dataset

comprises 500 instances of words, each paired with a short list of candidate senses from

WordNet with human ratings for their word-sense relatedness. We include not only alter-

native sense-based representations but also the best performing approaches on this task:

MeerkatMafia (Kashyap et al., 2014), which uses Latent Semantic Analysis (Deerwester

et al., 1990) and WordNet glosses to get word-sense similarity measurements; SemantiKLU

(Proisl et al., 2014), an approach based on a distributional semantic model trained on a large

Web corpus from different sources; SimCompass (Banea et al., 2014), which combines

word2vec with information from WordNet.

The results are given as Pearson and Spearman correlation scores in Table 7.1. LST-

5https://goo.gl/p4RXac

https://goo.gl/p4RXac
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Model P@1 P@3 P@5

AutoExtend 22.8 52.0 56.6
SensEmbed 38.4 56.1 63.0
Nasari 27.4 40.2 44.6
DeConf 30.1 55.8 64.3

LSTMEmbed 39.0 59.2 66.0
Table 7.2. Precision on the MFS task (percentages).

MEmbed achieves the state of the art by surpassing alternative sense embedding approaches

as well as the best systems built specifically for the CLSS word-to-sense similarity task.

Experiment 2: Most Frequent Sense Induction. In a second experiment, we employed

our representations to induce the most frequent sense (MFS) of the input words, which

is known to be a hard-to-beat baseline for Word Sense Disambiguation (WSD) systems

(Navigli, 2009). The MFS is typically computed by counting the word sense pairs in an

annotated corpus such as SemCor (Miller et al., 1994).

To induce a MFS using sense embeddings, we identify – among all the sense embeddings

of an ambiguous word – the sense which is closest to the word in terms of cosine similarity

in the vector space. We evaluated all the sense embedding approaches on this task by

comparing the induced most frequent senses against the MFS computed for all those words

in SemCor which have a minimum number of 5 sense annotations (3731 words in total, that

we release with the paper), so as to exclude words with insufficient gold-standard data for

the estimates. Table 7.2 shows that LSTMEmbed fares better than alternative approaches in

this task.

7.3.3 Word-based Evaluation

While our primary goal was to show the effectiveness of LSTMEmbed on tasks in need of

sense information, we also carried out a second set of experiments focused on word-based

evaluations with the objective of demonstrating the ability of our joint word and sense

embedding model to tackle tasks traditionally approached with word-based models.
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Model Accuracy
TOEFL-80 ESL-50

Jauhar et al. (2015) 80.00 73.33
MSSG 78.26 57.14
Li and Jurafsky (2015) 82.61 50.00
MUSE 88.41 64.29

LSTMEmbed 92.50 72.00
Table 7.3. Synonym Recognition: accuracy (percentages).

Experiment 3: Synonym Recognition. We first experimented with synonym recognition:

given a target word and a set of alternative words, the objective of this task is to select the

member from the set which is most similar in meaning to the target word. The most likely

synonym for a word w given the set of candidates Aw is calculated as:

Syn (w,Aw) = arg max
v∈Aw

Sim (w, v) (7.4)

where Sim is the pairwise word similarity:

Sim (w1, w2) = max
s1∈Sw1
s2∈Sw2

cosine (~s1, ~s2) (7.5)

where Swi is the set of words and senses associated with the word wi. We consider all the

inflected forms of every word, with and without all its possible senses.

In order to evaluate the performance of LSTMEmbed on this task, we carried out experiments

on two datasets. The first one, introduced by Landauer and Dutnais (1997), is extracted

directly from the synonym questions of the TOEFL (Test of English as a Foreign Language)

questionnaire. The test is composed by 80 multiple-choice synonym questions with four

choices per question. The second one, introduced by Turney (2001), provides a set of

questions extracted from the synonym questions of the ESL test (English as a Second

Language). Similarly to TOEFL, it is composed by 50 multiple-choice synonym questions

with four choices per question.

Several related efforts used this kind of metric to evaluate their representations. We

compare our approach with the following:



7.3 Evaluation 111

• Multi-Sense Skip-gram (Neelakantan et al., 2014, MGGS), an extension of the Skip-

gram model of word2vec capable to learn multiple embeddings for a single word. The

model makes no assumption about the number of prototypes.

• Li and Jurafsky (2015), a multi-sense embeddings model based on the Chinese

Restaurant Process.

• Jauhar et al. (2015), a multi-sense approach based on expectation-maximization style

algorithms for inferring word sense choices in the training corpus and learning sense

embeddings while incorporating ontological sources of information.

• Modularizing Unsupervised Sense Embeddings (Lee and Chen, 2017, MUSE), an

unsupervised approach that introduces a modularized framework to create sense-level

representation learned with linear-time sense selection.

In Table 7.3 we report the performance of LSTMEmbed together with the alternative ap-

proaches (the latter obtained from the respective publications). We can see that LSTMEmbed

outperforms all other approaches on this task.

Experiment 4: Outlier detection. Our second word-based evaluation is focused on

outlier detection, a task intended to test the capability of the learned embeddings to create

semantic clusters, that is, to test the assumption that the representation of related words

should be closer than the representations of unrelated ones. We tested our model on the

8-8-8 dataset introduced by Camacho-Collados and Navigli (2016), containing eight clusters,

each with eight words and eight possible outliers. In our case, we extended the similarity

function used in the evaluation to consider both the words in the dataset and their senses,

similarly to what we did in the synonym recognition task (cf. Equation 7.5). We can see

in Table 7.4 that LSTMEmbed ranks second below SensEmbed in terms of both measures

defined in the task (accuracy, and outlier position percentage, which considers the position

of the outlier according to the proximity of the semantic cluster), with both approaches

outperforming all other word-based and sense-based approaches.
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Model Corpus Sense
8-8-8

OPP Acc.

word2vec*
UMBC - 92.6 73.4
Wikipedia - 93.8 70.3
GoogleNews - 94.7 70.3

GloVe* UMBC - 81.6 40.6
Wikipedia - 91.8 56.3

AutoExtend GoogleNews X 82.8 37.5
SensEmbed Wikipedia X 98.0 95.3
Nasari Wikipedia X 94.0 76.3
DeConf GoogleNews X 93.8 62.5

LSTMEmbed Wikipedia X 96.1 78.1
Table 7.4. Outlier detection task (* reported in

Camacho-Collados and Navigli (2016)).

7.4 Analysis

We now report on two kinds of analyses to, first, check if the use of pretrained embeddings

is aiding to get better semantic representations and, second, to study the latent features from

the embeddings learned by LSTMEmbed in terms of linguistic meaning.

7.4.1 Impact of Meaningful Objective Embeddings

The objective embedding emb we used in our work uses pretrained sense embeddings ob-

tained from word2vec trained on BabelWiki, as explained in Section 7.3.1. Our assumption

is that training with richer and meaningful objective embeddings enhances the representation

delivered by our model in comparison to using word-based models. We put this hypothesis

to test by comparing the performance of LSTMEmbed equipped with five sets of pretrained

embeddings on a word similarity task. We used the WordSim-353 (Finkelstein et al., 2002,

WS353) dataset, which comprises 353 word pairs annotated by human subjects with a pair-

wise relatedness score. We computed the performance of LSTMEmbed with the different

pretrained embeddings in terms of Spearman correlation between the cosine similarities of

the LSTMEmbed word vectors and the WordSim-353 scores.

The first set of pretrained embeddings is a 50-dimension word space model, trained with

word2vec Skip-gram with the default configuration. The second set consists of the same
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Model Objective Dim. WS353

word2vec - - 0.488
GloVe - - 0.557

LSTMEmbed

random (baseline) 50 0.161
word2vec 50 0.573
word2vec + retro 50 0.569
GoogleNews 300 0.574
GloVe.6B 300 0.577
SensEmbed 400 0.612

Table 7.5. Spearman correlation on the Word Similarity Task.

vectors, retrofitted with PPDB using the default configuration. The third is the GoogleNews

set of pretrained embeddings. The fourth is the GloVe.6B word space model. Finally, we

tested our model with the pretrained embeddings of SensEmbed. As baseline we include a set

of normalized random vectors. As is shown in Table 7.5, using richer pretrained embeddings

improves the resulting representations given by our model. All the representations obtain

better results compared to word2vec and GloVe trained on the same corpus, with the sense

embeddings from SensEmbed, a priori the richest set of pretrained embeddings, attaining

the best performance.

7.4.2 Linguistic Properties

A second analysis is focused on assessing the quality of word embeddings by performing an

intrinsic evaluation with the goal of discovering if the coordinates of the vectors representing

a word have a linguistic meaning. To evaluate linguistic properties, we used the QVEC test

introduced by Tsvetkov et al. (2015). QVEC uses a set of manually constructed word vectors

whose components represent explicit linguistic properties. This task, shown to correlate

strongly with performance in downstream tasks, evaluates each dimension of the vectors

individually, instead of evaluating the quality of the model as a whole. In particular, QVEC

maps each latent feature to at most one linguistic dimension.

The evaluation is based on component-wise correlations with the constructed set. QVEC

aligns dimensions in a distributional word vector model with the linguistic dimension vectors

to maximize the cumulative correlation of the aligned dimensions. The final score is the
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Model Dimensions
50 100 200 400 800

word2vec 0.257 0.309 0.361 0.427 0.532
GloVe 0.249 0.306 0.362 0.435 0.533

LSTMEmbed 0.269 0.325 0.382 0.444 0.551
Table 7.6. Progression of QVEC score over dimensionality for different word representations

algorithms.

sum of the correlations of the aligned dimensions:

QV EC = max
A:
∑

j
aij≤1

D∑
i=1

P∑
j=1

r(xi, sj)× aij (7.6)

where A ∈ {0, 1}D×P is the matrix of alignments, D the word vector dimensionality, P the

amount of linguistic properties, aij = 1 iff xi is aligned to sj and r(xi, sj) is the Pearson’s

correlation.

We performed this experiment over a range between 50 and 800 dimensions. QVEC

is very dependent on dimensionality so we only compare same-dimension embeddings.

Table 7.6 shows the progression of the QVEC score on embeddings of different dimensions

trained with word2vec and GloVe, compared to LSTMEmbed. Overall, LSTMEmbed

performs better than the word space models in this test. We observe that the gap between

QVEC scores grows as the dimensionality increases, indicating a gain in the representational

power of our model.

7.5 Conclusions

In this Chapter we present LSTMEmbed, a new model based on a bidirectional LSTM

for learning embeddings of words and senses jointly which is able to learn semantic rep-

resentations on par with or better than state-of-the-art approaches. We draw three main

findings. Firstly, we have shown that our semantic representations are capable to represent

properly the similarity between word and sense representations, showing state-of-the-art

performance in the sense-aware tasks of word-to-sense similarity and most frequent sense

induction. Secondly, our approach is also able to get good performance in standard word-

based semantic evaluations, namely synonym recognition and outlier detection. Finally, the
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introduction of an output layer which predicts pretrained embeddings allows us to inject

semantic information which improves the representations provided by LSTMEmbed.

We release the word and sense embeddings at the following URL: http://cort.

as/-A4wa.

http://cort.as/-A4wa
http://cort.as/-A4wa




117

Chapter 8

Conclusions

In this thesis we highlight the importance of language in human society and how fundamental

is its study. We emphasize the significance of natural language processing, which has, as its

very first priority, to build efficient systems for analyzing and understanding human made

text. We show that ambiguity is an inherent part of natural language enforcing the fact that

autonomous systems capable to work together and interact with us should be able to handle

ambiguity just as we do.

We highlight the importance of semantic representations which are fundamental for any

NLP system. We introduce a set of models able to learn effective representation of lexical

and semantic items. In addition, we show that those representations are perfectly suited

to be used in many tasks and we have introduced a new way to take advantage of word

embeddings to create better disambiguation tools.

In Chapter 3, we introduce SENSEMBED, a distributional model of semantic represen-

tations of word senses for effective word and relational similarity. We create a large and

precise sense-annotated corpus by utilizing an out-of-the-box tool for Word Sense Disam-

biguation (WSD). We leverage the accurate corpus with a tool capable to learn embeddings

and, by levering semantic knowledge from BabelNet, we create model capable to reach

state-of-the-art performance on several semantic similarity tasks.

In Chapter 4, we introduce SW2V, a new model which by leveraging the semantic

knowledge of BabelNet and large text corpora learns jointly word and sense embeddings in

the same semantic space as an emerging feature, without constraining the representations.
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In Chapter 5, we perform a deep analysis on several techniques to taking advantage of the

semantic knowledge carried in word embeddings for improving Word Sense Disambiguation

systems. We introduce four different strategies to combine standard features for WSD with

embeddings trained with diverse strategies. We perform experiments on most commonly

used benchmarks as Senseval-2, 3 and SemEval-2007 for Lexical Sample and All-words

tasks, and in SemEval-2007 Lexical Substitution task reaching state-of-the-art performance.

Further, we present SENSEMBED+, a natural extension of our model presented in

Chapter 3, which leverages a sense-annotated data in order to create effective representations

of words, senses and synsets in the same semantic space. In Chapter 7, we go one step

forward in semantic representation and demostrate the capabilities of Long Short Term

Memory (LSTM) to learn effective representations of word senses. In contrast with the

models introduced in Chapters 3, 4 and 6, this model, while training, takes into word ordering.

In addition, this model put forward an innovative way to inject semantic knowledge by

utilizing a set of pre-trained embeddings as objective of its training. Finally we show that

model introduced in 6 and 7 built with the aid of WSD, are, at the same time, capable to

perform the WSD task, closing the loop, showing that both, semantic representations and

Word Sense Disambiguation are can mutually improve each other.

To summarize, our research provides a deeper insight to the vast field of distributional

semantics by introducing several semantic representation approaches for many NLP tasks

and, in particular, for the task of Word Sense Disambiguation. Our hope is that this work

will contribute to the ultimate goal of NLP: a complete understanding of natural language.
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Resources

Below we provide the set of resources developed during the PhD course.

Embeddings

SensEmbed Pretrained sense embeddings, trained with the 2014 dump of English Wikipedia,

introduced in this thesis in Chapter 3. Formatted as plain text:

http://lcl.uniroma1.it/sensembed/

SW2V Pretrained word and sense embeddings and code used to build them, belonging to

the work done in Chapter 4

http://lcl.uniroma1.it/sw2v/

SensEmbed+ Pretrained lexical and semantic embeddings, introduced in this thesis in

Chapter 6. Formatted as plain text:

http://lcl.uniroma1.it/sensembed_plus/

Open source software

IMS Embed Java source code and runnable files from IMSEmbed, an extension of IMS

(It Makes Sense) developed by Zhong and Ng (2010). The software corresponds to the work

introduced in Chapter 5

https://github.com/iiacobac/ims_wsd_emb

http://lcl.uniroma1.it/sensembed/
http://lcl.uniroma1.it/sw2v/
http://lcl.uniroma1.it/sensembed_plus/
https://github.com/iiacobac/ims_wsd_emb
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LSTMEmbed Python source code used to build the models of LSTMEmbed. The soft-

ware corresponds to the work introduced in Chapter 7

https://bit.ly/2QhcwKO

https://bit.ly/2QhcwKO
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