
Abstract
The application of geophysical monitoring technologies may offer an opportunity to understand the dynamic of slopes in response to factors 
triggering their instability. In this study, Ambient Noise Interferometry was used as a monitoring approach on a man-made reduced-scale 
vertical slope and on a natural-scale landslide in Sobradinho (Brazil), under the influence of mechanical stress and rainfall, respectively. 
For both experiments, we adopted similar data acquisition system and processing workflow. After preprocessing of ambient seismic noise, 
the time-lapse changes were determined in terms of relative velocity changes using the moving window cross spectral technique. For the 
vertical slope, terrestrial laser scanning was also performed to detect crack or fissure generation. The prototype experiment results showed a 
decreasing trend of relative velocity changes and reached a minimum value of -0.6% at the end of the experiment. No change was detected 
on the digital elevation model that was computed from terrestrial laser scanning images, due to the absence of centimeter scale superficial 
fissures. At natural scale (Sobradinho landslide), no significant variation in relative velocity changes was detected for the rainy and non-rainy 
days, mainly because of the inadequate change in the degree of saturation, which was found within a relatively short period of data acquisition.
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INTRODUCTION
Landslides may severely impact human lives and the 

environmental resources of the affected region. Shallow and 
rainfall-triggered sliding of clayey soils has a greater share in 
global terrestrial hazards. In Brazil, the events of 1967 and, 
more recently of, 2011 in Rio de Janeiro are a tragic reminder 
of the damage caused by soil mass movements (Hussain et al. 
2017). Such shallow and clay-rich landslides are usually trig-
gered by intense rainfalls (Ehrlich et al. 2018) that lead to pore 

water pressure build up, reduction in effective stress, and vari-
ations in elastic moduli and density of the subsurface material 
(Planès et al. 2015). Along with pore-pressure, the changes in 
rheology of landslide mass and in the properties of the involved 
materials can also trigger their reactivation. This has been ver-
ified in a laboratory-scaled experiment supported by monitor-
ing the transition from solid to liquid behavior (Mainsant et al. 
2012a). The same triggering mechanisms are associated with 
many other near-surface ground engineering processes, and 
their monitoring is an important step in mitigation of hazards 
(Planès et al. 2015).

For monitoring such hazardous processes and their prog-
ress towards failure, a continuous source of energy is required, 
which can be provided by ambient noise and vibrations due 
to human activities, i.e. not from earthquakes, by the action of 
wind or ocean waves. Based on frequency content, the ambient 
noise is composed of two typologies of sources: microtrem-
ors (> 1 Hz) and microseism (< 1 Hz) (Hussain et al. 2017). 
Landslide monitoring through ambient noise has many bene-
fits (Hussain et al. 2019), which can be summarized as follows: 
• it excludes source parameters, such as focal mechanism 

and source;
• it provides dense and continuous data availability that 

leads to high temporal coverage;
• it is non-destructive (D’Hour 2015). 

For monitoring purposes, ambient noise interferom-
etry (ANI) makes use of the noise wavefield at two sta-
tions (Sens-Schönfelder & Wegler 2006, Voisin et al. 2016, 
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Bièvre et al. 2018, Czarny et al. 2018, 2019). The interferom-
etry concept was applied to geophysics by Claerbout (1986), 
following earlier successful applications in Astronomy. 
In this technique, Green’s function and impulse-response 
are extracted from the ambient noise recorded at two sta-
tions, which accounts for the wave propagation between 
two sensors and provide information on the stress material 
state (Bièvre et al. 2018).

The ANI was applied in the past for monitoring stress 
changes with magma migration in active volcanoes (Obermann 
et al. 2013), active fault (Wegler & Sens-Schöonfelder 2007), 
gold and silver mining (Grêt et al. 2006), and in deep earth 
(Boué et al. 2013, Lin et al. 2013). It has also been used for 
monitoring civil and geotechnical structures, such as build-
ings (Snieder & Safak 2006, Nakata et al. 2013, Nakata & 
Snieder 2013) and landslide (Renalier et al. 2010, Mainsant 
et al. 2012b, Harba & Pilecki 2017, Milesi 2016, Bièvre et al. 
2018), as well as temporal changes in earthen embankments 
at a laboratory scale experiment (Planès et al. 2015) and tail-
ings dams (Olivier et al. 2017).

However, further applications of ANI are required to improve 
our understanding of the dynamic of slopes in response to dif-
ferent factors that trigger their instability. The present study 
applied ANI on two different field experiments (i.e. two dif-
ferent experimental sites), for examining the effect of rainfall 
and mechanical loading on slopes. The first experiment was 
conducted on an excavation under controlled conditions to 
represent a reduced-scale vertical slope (a man-made excava-
tion cut), while the second one was carried out under natu-
ral conditions at a selected landslide in Sobradinho (Brazil), 
representing many similar landslides in the region. In the first 
site test, the vertical load (as a possible landslide trigger) was 
applied on the top of the vertical slope (excavation). The slope 
was monitored by measuring the ambient vibrations propa-
gating in clayey deposits. The slope surface was monitored 
throughout the experiment with ANI and terrestrial laser 
scanner (TLS) in order to identify the emergence of fissures 
or cracks. In the second sites, the ANI was applied for moni-
toring the temporal changes in the rheology, related parameter 
values or any mechanism created in response to changes in the 
degree of saturation of Sobradinho landslide mass during rainy 
days. Based on experimental data, the relation between the 
applied load and the degree of saturation with relative veloc-
ity changes (dV/V) were analyzed and discussed.

MATERIAL AND METHODS

Reduced-scale experiment (vertical slope)
A two-meter wide and 1.5-meter deep excavation was 

dug in the experimental field of the Department of Civil and 
Environmental Engineering, University of Brasília, Brasília, 
Brazil. This excavation is a prototype experiment that is analo-
gous to a vertical slope in tropical clays, widely outcropping in 
the Brasília region. The seismic acquisition system consisted of 
three seismometers, Ref-Tek-130 data-loggers and GPS locks. 
Data were recorded at a sampling rate of 1,000 samples per 

second (SPS). The sensors were time synchronized through 
GPS locks. Recording took place on Wednesday night (February 
21st of 2018) between 10 pm and 2 am (local time) when no 
transients were present due to local human noise and traffic.

The experiment goal was to understand the seismic response 
of tropical clays (one of the most typical Brazilian soils) under 
different loading conditions. This was achieved by apply-
ing vertical load on a 1 × 1 m steel plate placed on the top of 
the vertical slope. The conventional choice of direct loading 
was excluded because it would make the loading mechanism 
unstable and risky. This problem was solved by the construc-
tion of reaction piles/shallow foundations. The design of the 
reaction piles was based on the calculation of soil parameters 
(e.g., Mota, 2003).

The following loading mechanism was set in place to con-
duct the test (Fig. 1): 

 • there were two reinforced concrete piles (reaction piles), 
0.8 m diameter and 12 m deep piles; 

 • vertical stress was applied on the top surface of each pile; 
 • on the top of the piles, two double T-shaped rigid steel 

beams were placed supported by concrete blocks stands 
restricting their movement; 

 • below the steel beam and in between the two consecutive 
piles, a soil area of 1 m2 was leveled; 

 • this formed the base for the installation of a hydraulic jack, 
which was in turn connected to a manually operated oil 
pump. By increasing the oil pressure, the hydraulic jack was 
pushed against the steel beam and the soil surface, thus 
increasing the load on the vertical slope crown; 

 • four extensometers were attached to the hydraulic jack 
and the steel beam for monitoring the vertical displace-
ment of the slope crown from four sides. All parts of the 
loading mechanism were leveled to ensure that the load 
was applied in the vertical position. This way (of loading 
mechanism) provided a healthy and hazard-free working 
environment (Yfantis et al. 2013).

The processing of the TLS data was divided into two 
phases: laser data preliminary treatment and point cloud 
analysis. The preliminary treatment constitutes noise reduc-
tion (filtering), point cloud generation and geo-referencing. 
This leads to noise-free point cloud that was used in the next 
stage of processing, in which triangulated irregular network 
(TIN) at each loading episode was generated from the point 
cloud used for such analysis.

Sobradinho landslide
The landslide slope chosen for the present study is located 

near a livestock farm close to Ribeirão Contagem river. 
The watershed of this river has an area of 146 km2 located 
in the northern part of the Federal District of Brazil in the 
Sobradinho administrative unit. Maranhão River is the main 
tributary of the watershed that flows in the north-northeast 
directions. The drainage and channel densities of the water-
shed are 5.7 km/km2 and 32.9 channels/km2, respectively 
(Ferreira & Uagoda 2015). The climate in the area is semi-hu-
mid tropical with rainy Summer and dry Winter. The mean 
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annual precipitation in the area is of 1,442.5 mm and it is 
mainly related to rainfalls.

The landslide is E-W trending roto-translational earth slide 
(Varnes 1978) and has a mass of approximately 150 m long 
and 70 m wide. Along with the main scarp at the top, there is 
a small scarp in the middle. Contagem River cuts the slope at 
its bottom. The engravement potential of this river is related 
to rainfall in the surrounding areas, which is high during the 
rainy season.

In order to detect the dynamic behavior of the most 
active portion of the landslide, a triangular array geometry 
of three seismometers along with the same acquisition sys-
tem as of the vertical slope was used. Data were recorded 
at 250 SPS in a continuous mode with two-time windows: 
dry (04-11-2017 to 08-11-2017) and saturated (10-12-2017 
to 17-12-2017) days (Fig. 2).

Geological and geomorphological settings
The Federal District covers the eastern part of the Tocantins 

Province. The Brasiliano orogenic event (end of Neoproterozoic, 
around 570 Ma) is divided into five deformational phases, con-
sidering the lithostructural changes that occurred in the past 
(Campos 2004). Towards San Francisco craton, this cycle is 
characterized as compressive tectonics, presenting the first 
of these four stages with folds and ductile-brittle faults that 
made both dome formation (the Brasília, the Pipiripau and 
Sobradinho domes) and also structural basin creation (Freitas-
Silva & Campos 1998). The geology of this area has been revised 
and updated in the form of a new geological map at 1: 100,000 
scale (Freitas-Silva & Campos 1998). In this new map, four 
lithological boundaries were distinguished: 

 • Paranoá (metasedimentary rocks), Canastra (phyllites); 
 • Araxá (schists); 

Figure 1. Experimental setup: (A) sketch showing the excavation dimension (vertical slope), reaction piles, positions of seismometers and 
loading mechanism presentation; (B) SPT-N profile of the area; (C) experiment photograph.
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 • Bambuí (clayed metasiltites rolled, clay and metasiltites banks); 
 • groups and soil or waste shallow colluvial deposits (ped-

imentary type). 

These lithological units are present in reverse successions, 
in which the younger lithostructural unit lies above the older 
ones. The geological setting of this succession is mainly related 
to thrust faulting (Freitas-Silva & Campos 1998).

The studied area is geologically composed of meta-sedi-
mentary rocks of Proterozoic age that were deformed during 
the Brasiliano Cycle (650 My), covered by a thick weather-
ing mantle (Zoby 1999). The Sobradinho Unit, of Votorantim 
Cimentos Brazil, is in the Ribeirão Contagem Basin, in which 
low-grade metamorphic sediments of the Paranoá and Canastra 
groups occur. The Federal District, more specifically its 

north-central portion, is in the domain of the Tocantins 
Structural Province, in the Brasília Dobramentos Range. 
In there, rocks are attributed to the Canastra, Paranoá, Araxá 
and Bambuí groups of Proterozoic ages (Canastra and Paranoá 
groups ~1,100 million years old and Araxá and Bambuí groups 
~700 million years old). The geology of the area consists of 
Paranoá group (metasedimentary rocks).

On the slope of the study area, a small portion of the car-
bonate sandy pelite unit emerges with the carbonate pellet 
(Fig. 3A). The rocks that make up this unit are strongly influ-
enced by background paleogeography, marking the final depo-
sition of the Paranoá Basin. The weathering of these deposits 
occurred when they came in contact with environmental agents, 
as shown in Fig. 3B. Figures 3A and 3B are photos taken on the 
drainage margin, showing the contact between the alluvial and 

Figure 2. (A) Location of Brazil in the South American map, in which the red rectangle is the Federal District location; (B) lithological units 
of Contagem basin, in which the white rectangle is the landslide position; (C) zoomed landslide image with triangular array used for time-
lapse monitoring. The red dashed ellipse is the landslide approximate boundary.

A C

B

Figure 3. Geology of the area of Sobradinho landslide: (A) outcrops of low degree weathered rocks in the highest elevation areas; (B) saprolite 
with fragments of quartzite including micaceous minerals; and (C) profile photo with alluvial deposit superimposed on the coarse-grained material.
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colluvial materials. The alluvial with lateral continuity ranging 
from 30 to 100 m from the drainage bed detailed can found at 
Braga et al. (2018). The deposits in the channel of the Contagem 
River are distinguished by the following materials: 

 • landslide debris due to recent rotational failure mechanism;
 • fluvial deposits on recent riverbanks;
 • alluvial fan deposits;
 • colluvium;
 • alluvium.

Rainfall-induced dynamics of landslides
Water pore-pressure increase in a porous medium leads 

to a reduction of the shear strength by counteracting normal 
stress (Saar & Manga 2003, Shapiro et al. 2005, Hamza & 
Bellis 2008), and the Mohr circle moves closer to the Mohr-
Coulomb failure envelope. A small increase in the effective 
stress above a critical value may cause failure (Saar & Manga 
2003, Hainzl et al. 2006). Many seismic-based precursors of 
hydrodynamic phenomena (hydroseismicity) have been dis-
cussed in several previous studies, such as aftershock series 
(Nur & Booker 1972, Miller et al. 2004), reservoir induced and 
fluid injection-induced earthquakes (Talwani 1997, Zoback 
& Harjes 1997), micro-seismicity related to seasonal changes 
in groundwater flow or stream discharge (Roth et al. 1992, 
Saar & Manga 2003), and earthquakes following periods of 
intense rainfall (Hainzl et al. 2006). Therefore, hydroseis-
micity can be an effective precursor to provide information 
of the stress state and hydraulic properties of the medium 
(Husen et al. 2007).

The degree of saturation and co-related changes of the 
mass physical and mechanical properties of the landslide 
can also alter the seismic wave properties. Regarding rain-
fall, the cracks and pores are filled with water compared to 

cracks with air, so the velocities are expected to be altered. 
The S waves do not pass through fluids, while the velocity of 
P waves increased when traveling through water. These flu-
id-dependent variations in both S and P waves velocities alter 
the velocity of surface waves and can, hence, be an indicator 
of landslide dynamics (landslide precursor). The effects of 
rainfall-induced pore-pressure and stiffness variation on the 
dynamics of landslides have been considered in many previ-
ous studies with an emitted signal-based method or an ambi-
ent noise-based method. In the emitted signal-based method 
(e.g., Walter et al. 2011, Vouillamoz et al. 2018), microearth-
quakes associated with the hydrodynamics are localized and 
characterized using nanoseimic monitoring ( Joswig 2008), 
while in the ambient noise-based method, changes in seismic 
velocities are measured using ANI. The prominent ambient 
noise studies are from Mainsant et al. (2012b), Voisin et al. 
(2016), Harba & Pilecki (2017), Fores et al. (2018) and 
Bièvre et al. (2018).

Data processing
The processing workflows of ANI vary depending on its 

application. However, most commonly adopted processing 
schemes (after the preprocessing stage) are autocorrelation, 
cross-correlation or deconvolution, which retrieves Green’s 
functions from ambient seismic noise at a variety of temporal 
resolution (Czarny et al. 2016). The ambient noise analysis is 
carried out in two stages: before the cross-correlation (pre-
processing) and computation of cross-correlation.

The following processing steps were conducted during 
preprocessing (Fig. 4): mean and trends were removed from 
the data. The data were high-pass filtered. Spectral whiten-
ing (flattening) was applied to reduce the effects of highly 
energetic frequencies in the records. In order to reduce the 

Figure 4. Ambient noise processing workflow starts from raw data and outputs an estimation of changes of relative velocity (dV/V), with 
NCFs or Empirical Green Function.
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contribution of high energy arrivals that could obscure the 
lower amplitude ambient noise signal, “one-bit” normalization 
was applied (Stehly et al. 2007). In this application, each data 
point was replaced with either a 1 or a -1 value depending on 
its sign, thereby removing amplitude information completely 
from the records. One-bit normalization was achieved by divid-
ing each 24-hour record by their absolute value ( Jonsdottir 
2018). Signals were analyzed in the frequency bands of 2-24 
and 2-148 Hz for Sobradinho landslide and for the man-made 
vertical slope experiment, respectively. A small segment of raw 
and preprocessed data is shown in Fig. 5.

Computation of cross-correlation functions
The cross-correlation functions (CCFs) of continuous 

ambient noise waveforms are called correlograms. The coda 
of the correlograms are sensitive to velocity changes and 
can, therefore, be used to detect small velocity changes in 
response to stress changes or other changes of the material 
state (e.g., Clarke et al. 2011). The cross-correlation of the 
random wavefield recorded at different positions in free space 
theoretically synthesizes the seismic energy at one location 
if there had been an impulsive source present at other loca-
tion. This mechanism is true for any medium, and response 
is given in terms of Green’s function. It provides the medium 
effects (between two sensors) on impulsive source using trav-
el-time and waveform information of all the phases (Wapenaar 
2004, Planès et al. 2015). It measures the wave similarity at 
different locations using travel time lag (τ) between the sen-
sors. The cross-correlation of two signals ‘a’ and ‘b’, ‘Ca,b’, 
is a function of time lag that is commonly defined as it is 
expressed in Equation 1:

Ca,b(τ) = ∫ u(t, a) u(t-τ, b) dt (1)

In which: 
integration = performed over the length of records; 
u = the amplitude of a signal as a function of time. 

From Equation 1, ‘Ca,b’ is maximum when the sum of the 
products ‘u(t, a) × u(t-τ, b)’ is maximum, meaning that ‘a’ and 
‘b’ are more similar when ‘b’ is shifted by that amount relative 
to ‘a’ ( Jonsdottir 2018).

ANI cross-correlation is a central step that provides the travel 
times of seismic phases between two sensors. The recorded 
signals represent the same wavefield shifted in the time taken 
to reach from one sensor to the second. Therefore, the CCF 
contains a peak that corresponds to the wavefield travel time 
between sensors.

Following the preprocessing stage, the records were 
cross-correlated over an appropriate window length, and results 
are stacked (Tab. 1). This computational step has paramount 
importance in ANI. In order to retrieve Rayleigh wave, whose 
particle motion is confined in the vertical-radial plane, the 
cross-correlation at vertical (Z) component is computed first. 
The cross-correlation of all pairs of stations (DF01 to DF02) 
for ZZ (vertical component), RR (radial component) and 
TT (transverse component) was obtained (Fig. 6). In the TT 
direction, we expect the Love wave contribution. The reverse 
interstation paths are not computed so that the cross-correla-
tion order DF01-DF02 is performed and DF02-DF01 is not, 
allowing a total of three station pairs for the three stations used.

Moving-window cross-spectral technique
The moving-window cross-spectral (MWCS) was pro-

posed by Poupinet et al. (1984) and was applied for the calcu-
lation of crustal velocities from microearthquakes. The detailed 
description of the method can be found in Clarke et al. (2011). 
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Figure 5. (A) One-hour record of ambient noise; (B) a 3-second segment around a transient event; (C) unprocessed one-hour trace displayed 
after normalization; (D) a 30-second segment around a transient event after normalization. Units in the figure are arbitrary.
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It is the most adopted method for the calculation of veloc-
ity changes in the frequency domain. The MWCS is used for 
the preprocessed reference (long-term) and current CCFs 
(short-term), which are divided into small window segments 
at different lag times. These segments are cosine tapered and 
mean-adjusted and are Fourier transformed for the calculation 
in the frequency domain.

The phase differences between the two waveforms are 
used to estimate the time delays (dt) between the two win-
dowed cross-correlations. The seismic propagation velocity is 
assumed perturbed uniformly in the area; thus, the time shift 
becomes constant and phases of cross-spectrum will be linear 
(Clarke et al. 2011). The weighted linear regression is applied 
to the best fit individual measurements, and local time shift 
of cross-correlations (CCFref and CCFcur) is calculated from 
the slope. The CCFs coherences are the factor of weights in 

regression. The points of similarity in CCFs weigh more in the 
delay time computation than the points where the similarity 
of two functions is lower ( Jonsdottir 2018).

RESULTS AND DISCUSSION

Cross-correlation function
We computed the cross-correlation functions for all station 

pairs. The pattern of cross-correlation was complex and noisy 
at the natural scale experiment, and the correlation functions 
were also not stable with time, which was a possible reason 
for the results obtained from Sobradinho landslide. However, at 
the prototype reduced-scale experiment, the cross-correla-
tion was good and less noisy (Fig. 6). The stability of CCF 
over the recorded length showed much greater coherence and 

Im
agem

 em
 baixa resolução

7

Braz. J. Geol. (2019), 49(2): e20180085

Table 1. The parameters used for relative velocity changes (dV/V) estimation at the vertical slope as well as at landslide experiments.

Parameter name Description Normal slope Sobradinho landslide

analysis_duration Duration of the analysis [s] 3 HRS UNTIL DAYS

cc_sampling_rate Sampling rate for the cross-correlation [s] (DELTA = 0.001) (DELTA = 1.600000e-02)

resampling_method Resampling method SAC command SAC command

preprocess_lowpass Preprocessing low-pass value [Hz] 80–112 2-24 Hz

preprocess_highpass Preprocessing high-pass value [Hz] 112–150 Hz 2-24 Hz

maxlag Maximum lag time [s] 0.6 s 0.5 s

corr_duration Data windows to correlate [s] STACK 2 s windows  
each 300 s (5 min)

STACK 10s windows  
each 1800s (30 min)

overlap Amount of overlap between data windows 0 0

windsorizing Windsorizing at N times RMS None None

whitening Whiten traces before cross-correlation Yes Yes

stack_method Stacking method Simple, SAC Simple, SAC

components_to_compute Components ZZ, RR and TT Z

Figure 6. Cross-correlation traces of the prototype vertical slope experiment: ZZ (vertical-vertical), RR (radial-radial) and TT 
(transverse-transverse) filtered between 6 and 16 Hz.



symmetry, which is an important quality for reliable velocity 
change estimation. At first glance, we did not observe signifi-
cant differences in the waveform for the different components.

Reduced-scaled experiment 
Results of the plate loading test (vertical slope) are shown 

in Figure 7 and were taken at a causal window interval time 
of 0.1 second, around 0.15 seconds. In the frequency band of 
89-148 Hz (after 1,5 hour of loading), the deformational 
degree effects are evident. This decrease in the seismic veloc-
ity at high frequency is consistent with the rise in the applied 
load. In response to the applied load, an increase in soil dis-
placement was observed in the extensometers. This displace-
ment is the result of soil micro-fracturing in the vertical slope. 
These microfractures might have propagated by joining the 
adjacent microfractures as it usually occurs in the activation 
or reactivation of landslides. These propagating microfrac-
tures lead to a reduction in the seismic velocity as observed 
in the form of dV/V. The other effects of the load increase are 
cracks in the soil that resulted in a decrease in seismic velocity 
(Hotovec-Ellis et al. 2014, Jonsdottir 2018). The sensitivity of 
seismic with surface loads has also been demonstrated in var-
ious previous studies (Mordret et al. 2016, Taira & Brenguier 
2016, Mainsant et al. 2012b). Results of the present study are 
consistent with the previous findings; however, the amount of 
applied load in the present study is much higher.

The digital elevation model (DEM) of each loading interval 
is shown in Figure 8. Contrary to the ANI results, no observable 
changes were detected on DEMs from the beginning to end, 
mainly because of the absence of centimeter scale fractures on 
the slope surface. These are also supported by the visual obser-
vations during the experiment. There was only an internal soil 
failure, and changes occurred because of the microfractures 

developed along the shear surfaces. For future studies, bet-
ter-planned experiments are recommended, in which all the 
three stages of slope deformation, i.e. before, during and after 
the collapse of the vertical slope, can be monitored.

Sobradinho landslide
In theory, the potential effects of rainfall infiltration are 

the decrease in dV/V, which may possibly be related to the 
rise in pore-pressure and change in rheology of the landslide 
mass. The infiltrated water can reduce the shear wave veloc-
ity through an increase in the degree of saturation; therefore, 
reducing the soil stiffness and leading to landslide reactivation 
process. However, in the present study of Sobradinho landslide, 
there were no clear changes in dV/V at a frequency band of 
2-24 Hz in response to the degree of saturation, because the 
rainfall amounts during the recording period were very small. 
The lack of dynamic evidence of the landslide site is probably 
associated with the following shortcomings: 

 • significant ambient disturbances because of the short time 
period records; 

 • not representative meteorological conditions in the con-
sidered time-period; 

 • insignificant time-changing landslide dynamic. 

The soil of the regions is highly porous (55%), and a 
large amount of water is required to change the soil state. 
In these conditions, the water would quickly move through 
the soil and the low elevated part would get saturated first. 
Nevertheless, very small changes over the dry period were 
observed (Fig. 9). They might have been produced by the 
action of river or because of uneven distributions of noise 
sources around the sensors. An interesting result was that 
dV/V decreased at the end of the day, possibly as a periodic 
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Figure 7. Relative velocity changes between stations PL01-PL02 at RR (top) and TT (middle) and ZZ (bottom) components that represent 
different stages of plate loading test. The color bar represents relative velocity changes (dV/V) values.



effect of the river action. For future studies, longer term 
acquisition of the field data is recommended in order to 
overcome the problems of inadequate change soil saturation 
and ambient noise disturbances. Along with longer ambi-
ent noise records, the acquisition of a long and complete 
time series of the rainfall, pore water pressure, water table 
fluctuation, soil temperature, moisture measurements at 
different depths and continuous measurements of the land-
slide surface (in order to monitor the possible emergence 
or propagation of fracture) are required for a comprehen-
sive monitoring strategy (Bièvre et al. 2018).

CONCLUSIONS
The aim of this study was to use the ANI on two field 

experiments to examine the dynamic of slopes (with clayey 
formations) in response to different triggering factors (rain-
fall and mechanical loading). The ambient noise measure-
ments were conducted on an existing landslide in Sobradinho, 
before and during rainy seasons. The same approach was 
carried out on a prototype vertical slope (reduced-scale 
experiment) subjected to an increasing mechanical load. 
The following conclusions can be derived from the per-
formed experiments:
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Figure 8. Digital elevation models (DEMs) of the vertical slope surface at 5-minute temporal delays from the beginning (00) to 25 minutes later (05).

Figure 9. Relative velocity changes between stations DF01-DF02 at ZZ component that represent dry (above) and the wet (below) conditions 
recorded during the two experimental time windows. The color bar represents relative velocity changes (dV/V) values.



Bièvre G., Franz M., Larose E., Carrière S., Jongmans D., Jaboyedoff M. 2018. 
Influence of environmental parameters on the seismic velocity changes in 
a clayey mudflow (Pont-Bourquin Landslide, Switzerland). Engineering 
Geology, 245:248-257. https://dx.doi.org/10.1016/j.enggeo.2018.08.013

Boué P., Poli P., Campillo M., Pedersen H., Briand X., Roux P. 2013. 
Teleseismic correlations of ambient seismic noise for deep global imaging of 
the earth. Geophysical Journal International, 194(2):844-848.

Braga L.M., Caldeira D., da Silva Nunes J.G., Hussain Y., Carvajal H.M., 
Uagoda R. 2018. Caracterização geomorfológica e dinâmica erosivo-
deposicional de encostas no vale fluvial do Ribeirão Contagem-DF, Brasil. 
Anuário do Instituto de Geociências – UFRJ, 41(2):51-65.

Campos J.E.G. 2004. Hidrogeologia do Distrito Federal: Bases para a 
Gestão dos Recursos hídricos Subterrâneos. Revista Brasileira de Geociências, 
34(1):41-48.

Claerbout J.F. 1986. Imaging the Earth’s interior. Geophysical Journal of 
the Royal Astronomical Society, 86(1):217-217. https://doi.org/10.1111/
j.1365-246X.1986.tb01086.x

Clarke D., Zaccarelli L., Shapiro N.M., Brenguier F. 2011. Assessment of 
resolution and accuracy of the Moving Window Cross Spectral technique 
for monitoring crustal temporal variations using ambient seismic 
noise. Geophysical Journal International, 186(2):867-882. https://doi.
org/10.1111/j.1365-246X.2011.05074.x

Czarny R., Marcak H., Nakata N., Pilecki Z., Isakow Z. 2016. Monitoring 
Velocity Changes Caused By Underground Coal Mining Using Seismic 
Noise. Pure and Applied Geophysics, 173(2016):1907-1916. https://doi.
org/10.1007/s00024-015-1234-3

Czarny R., Pilecki Z., Drzewińska D. 2018. The application of seismic 
interferometry for estimating a 1D S-wave velocity model with the use of 
mining induced seismicity. Journal of Sustainable Mining, 17(4):209-214. 
https://doi.org/10.1016/j.jsm.2018.09.001

Czarny R., Pilecki Z., Nakata N., Pilecka E., Krawiec K., Harba P., Barnaś, 
M. 2019. 3D S-wave velocity imaging of a subsurface disturbed by mining 
using ambient seismic noise. Engineering Geology. 251:115-127. https://doi.
org/10.1016/j.enggeo.2019.01.017

REFERENCES

D’Hour V. 2015. Medium change monitoring using ambient seismic noise and 
coda wave interferometry: examples from intraplate NE Brazil and the Mid-
Atlantic Ridge. Doctoral Thesis, Programa de Pós-Graduação em Geodinâmica 
e Geofísica, Universidade Federal do Rio Grande do Norte, 133 p.

Ehrlich M., da Costa D.P., Silva R.C. 2018. Behavior of a colluvial slope 
located in Southeastern Brazil. Landslides, 15(8):1595-1613. http://dx.doi.
org/10.1007/s10346-018-0964-6

Ferreira R.S. & Uagoda R. 2015. Morphometric study of controls to 
Erosional Features and identification of areas susceptible to Mass Movement 
Hazards in the Contagem Watershed, Distrito Federal. Espaço & Geografia, 
18(1):187-216.

Fores B., Champollion C., Mainsant G., Albaric J., Fort A. 2018. Monitoring 
Saturation Changes with Ambient Seismic Noise and Gravimetry in a Karst 
Environment. Vadose Zone Journal, 17(1). http://dx.doi.org/10.2136/
vzj2017.09.0163

Freitas-Silva F.H. & Campos J.E.G. 1998. Geologia do Distrito Federal. In: 
IEMA/SEMATEC/UnB. Inventário Hidrogeológico e dos Recursos Hídricos 
Superficiais do Distrito Federal. Brasília, IEMA/SEMATEC/UnB, v. 1, Part I. P86.

Grêt A., Snieder R., Özbay U. 2006. Monitoring in situ stress 
changes in a mining environment with coda wave interferometry. 
Geophysical Journal International, 167(2):504-508. https://doi.
org/10.1111/j.1365-246X.2006.03097.x

Hainzl S., Kraft T., Wassermann J., Igel H., Schmedes E. 2006. Evidence for 
rainfall-triggered earthquake activity. Geophysical Research Letters, 33(19). 
https://doi.org/10.1029/2006GL027642

Hamza O. & Bellis A. 2008. Gault Clay embankment slopes on the A14–
Case studies of shallow and deep instability. In: Advances in Transportation 
Geotechnics. Proceedings…, UK, CRC Press, 307 p.

Harba P. & Pilecki Z. 2017. Assessment of time–spatial changes of shear 
wave velocities of flysch formation prone to mass movements by seismic 
interferometry with the use of ambient noise. Landslides, 14(3):1225-1233. 
https://doi.org/10.1007/s10346-016-0779-2

 • the relative changes in velocity (dV/V) decreased with the 
increase of load in the reduced-scale experiment, reaching 
the absolute value of -0.6% at the end of the experiment;

 • no change at the surface of the vertical slope was detected by 
TLS analysis, which may imply that no centimeter scale fis-
sures were developed on the slope surface during the loading;

 • no change in the landslide mass was detected in the 
Sobradinho slope because the rainfall amounts were 
not enough for the high porosity soil to reach the satu-
ration condition;

 • the pattern of cross-correlation was found to be complex 
and noisy at the natural scale experiment (Sobradinho land-
slide), and the correlation functions were also not stable 
with time. However, night effect appeared after 8 Hz and 
increased after 16 Hz, as a reflection of the river flow effect.

Future studies on man-made slopes can be beneficial from 
an improved experimental plan, in which all three stages of slope 
load-deformation (i.e., before, during and after the collapse) can 

be monitored. For future studies conducted on a natural-scale 
landslide, longer-term acquisition of the field data is recommended 
in order to overcome the problems of inadequate change in soil 
saturation and ambient noise disturbances. Along with longer 
ambient noise records, the acquisition of a long and complete 
time series of rainfall, pore water pressure, water table fluctu-
ation, soil temperature, moisture measurements at different 
depths and continuous measurements of the landslide surface 
(in order to monitor the possible emergence or propagation of 
fracture) are required for a comprehensive monitoring strategy.

ACKNOWLEDGEMENTS
The authors acknowledge the support of the following agencies: 

the Brazilian Council for Scientific and Technological Development 
(CNPq), the Support Research of the Federal District Foundation 
(FAP-DF), the Universidade de Brasília, and the Pool of Brazilian 
Equipment (PegBr), Rio de Janeiro. This paper has been partially 
supported by UNAM projects: PAPIIT (IN117217).

ARTICLE INFORMATION
Manuscript ID: 20180066. Received on: 06/07/2018. Approved on: 01/06/2019.
Y.H. conceived the experiments and acquired the data. Y.H. and M.C.-S. analyzed the data and plotted the figures. O.H., S.M., H.M.-C., J.F.R., 
R.U. provided reviews and suggestions. Y.H. wrote the paper.
Competing interests: The authors declare no competing interests.

10

Braz. J. Geol. (2019), 49(2): e20180085



Hotovec-Ellis A.J., Gomberg J., Vidale J.E., Creager K.C. 2014. A continuous 
record of intereruption velocity change at Mount St. Helens from coda wave 
interferometry. Journal of Geophysical Research: Solid Earth, 119(3):2199-
2214. https://doi.org/10.1002/2013JB010742

Husen S., Bachmann C., Giardini D. 2007. Locally triggered seismicity 
in the central Swiss Alps following the large rainfall event of August 
2005. Geophysical Journal International, 171(3):1126-1134. https://doi.
org/10.1111/j.1365-246X.2007.03561.x

Hussain Y., Martinez-Carvajal H., Cárdenas-Soto M., Uagoda R., Martino S., 
Hussain B.M. 2017. Microtremor response of a mass movement in Federal 
District of Brazil. Anuário do Instituto de Geociências, 40(3):212-221.

Hussain Y., Martinez-Carvajal H., Condori C., Uagoda R., Cárdenas-
Soto M., Cavalcante A.L.B., Cunha L.S. da, Martino S. 2019. Ambient 
Seismic Noise: A Continuous Source for the Dynamic Monitoring of 
Landslides. Terrae Didatica, 15(1):103-107. https://doi.org/10.20396/
td.v15i1.8652455

Jonsdottir F. 2018. Estimation of Relative Seismic Velocity Changes Around 
Katla Volcano, Using Coda in Ambient Seismic Noise. Thesis, Department of 
Earth Sciences, Uppsala University, Uppsala, 72 p.

Joswig M. 2008. Nanoseismic monitoring fills the gap between microseismic 
networks and passive seismic. First Break, 26(6):117-124.

Lin F.C., Tsai V.C., Schmandt B., Duputel Z., Zhan Z. 2013. Extracting 
seismic core phases with array interferometry. Geophysical Research Letters, 
40(6):1049-1053.

Mainsant G., Jongmans D., Chambon G., Larose E., Baillet L. (2012a). 
Shear-wave velocity as an indicator for rheological changes in clay materials: 
Lessons from laboratory experiments. Geophysical Research Letters, 39(19). 
https://doi.org/10.1029/2012GL053159

Mainsant G., Larose E., Brönnimann C., Jongmans D., Michoud C., 
Jaboyedoff M. (2012b). Ambient seismic noise monitoring of a clay 
landslide: Toward failure prediction. Journal of Geophysical Research: Earth 
Surface, 117(F1). https://doi.org/10.1029/2011JF002159

Milesi V. 2016. Potential of ambient seismic noise cross-correlation to characterise 
the hydrogeology of a clayey landslide: application to Mas D’Avignonet landslide 
in Trieves region (France). Thesis, School of Civil, Environmental and 
Terrestrial Engineering, Politecnico Di Milano, Milan, 78 p.

Miller S.A., Collettini C., Chiaraluce L., Cocco M., Barchi M., Kaus B.J.P. 
2004. Aftershocks driven by a high-pressure CO 2 source at depth. Nature, 
427(6976):724-727. https://doi.org/10.1038/nature02251

Mordret A., Mikesell T.D., Harig C., Lipovsky B.P., Prieto G.A. 2016. 
Monitoring southwest Greenland’s ice sheet melt with ambient seismic 
noise. Science Advances, 2(5):e1501538. https://doi.org/10.1126/
sciadv.1501538

Mota N.M.B. 2003. Ensaios Avançados de Campo na Argila Porosa Não 
Saturada de Brasília: Interpretação e Aplicação em Projetos de Fundação. 
Thesis, Departamento de Engenharia Civil e Ambiental, Universidade de 
Brasília, Brasília, 335 p. 

Nakata N., Snieder R., Kuroda S., Ito S., Aizawa T., Kunimi T. 2013. 
Monitoring a building using deconvolution interferometry. I: Earthquake‐
data analysis. Bulletin of the Seismological Society of America, 103(3):1662-
1678. https://doi.org/10.1785/0120120291

Nur A. & Booker J.R. 1972. Aftershocks caused by pore fluid-flow. Science, 
175(4024):885-887. https://doi.org/10.1126/science.175.4024.885

Obermann A., Planès T., Larose E., Campillo M. 2013. Imaging pre-eruptive 
and co-eruptive structural and mechanical changes of a volcano with 
ambient seismic noise. Journal of Geophysical Research, 118(12):6285-6294. 
https://doi.org/10.1002/2013JB010399

Olivier G., Brenguier F., de Wit T., Lynch R. 2017. Monitoring the stability 
of tailings dam walls with ambient seismic noise. The Leading Edge, 
36(4):350a1-350a6. https://doi.org/10.1190/tle36040350a1.1

Planès T., Mooney M.A., Rittgers J.B.R., Parekh M.L., Behm M., Snieder R. 
2015. Time-lapse monitoring of internal erosion in earthen dams and levees 
using ambient seismic noise. Geotechnique, 66(4):301-312. http://dx.doi.
org/10.1680/jgeot.14.P.268

Poupinet G., Ellsworth W.L., Frechet J. 1984. Monitoring velocity variations 
in the crust using earthquake doublets: An application to the Calaveras 

Fault, California. Journal of Geophysical Research: Solid Earth, 89(B7):5719-
5731. https://doi.org/10.1029/JB089iB07p05719

Renalier F., Jongmans D., Campillo M., Bard P.Y. 2010. Shear wave velocity 
imaging of the Avignonet landslide (France) using ambient noise cross 
correlation. Journal of Geophysical Research: Earth Surface, 115(F3). https://
doi.org/10.1029/2009JF001538

Roth P., Pavoni N. Deichmann, N. 1992. Seismotectonics of the 
Eastern Swiss Alps and evidence for precipitation-induced variations 
of seismic activity. Tectonophysics, 207(1-2):183-197. https://doi.
org/10.1016/0040-1951(92)90477-N

Saar M.O. & Manga M. 2003. Seismicity induced by seasonal groundwater 
recharge at Mt. Hood, Oregon, Earth Planet. Science Letters, 214(3-4):605-
618. http://dx.doi.org/10.1016/S0012-821X(03)00418-7

Sens-Schönfelder C. & Wegler U. 2006. Passive image interferometry 
and seasonal variations of seismic velocities at Merapi Volcano, 
Indonesia. Geophysical Research Letters, 33(21):L21302. https://doi.
org/10.1029/2006GL027797

Shapiro S.A., Rentsch S., Rothert E. 2005. Fluid-induced 
seismicity: theory, modeling, and applications. Journal of 
Engineering Mechanics, 131(9):947-952. https://doi.org/10.1061/
(ASCE)0733-9399(2005)131:9(947)

Snieder R. & Safak E. 2006. Extracting the building response using seismic 
interferometry: Theory and application to the millikan library in Pasadena, 
California. Bulletin of the Seismological Society of America, 96(2):586-598. 
https://doi.org/10.1785/0120050109

Stehly L., Campillo M., Shapiro N.M. 2007. Traveltime measurements 
from noise correlation: stability and detection of instrumental time 
shifts. Geophysical Journal International, 171(1):223-230. https://doi.
org/10.1111/j.1365-246X.2007.03492.x

Taira T. & Brenguier F. 2016. Response of hydrothermal system to stress 
transients at Lassen Volcanic Center, California, inferred from seismic 
interferometry with ambient noise. Earth, Planets and Space, 68(1):162. 
https://doi.org/10.1186/s40623-016-0538-6

Talwani P. 1997. On the nature of reservoir-induced seismicity. 
In: Talebi S. (Ed.), Seismicity associated with mines, reservoirs 
and fluid injections. Basel: Birkhäuser, p. 473-492. https://doi.
org/10.1007/978-3-0348-8814-1_8

Varnes D.J. 1978. Slope movement types and processes. In: Schuster RL, 
Krizek RJ (Eds.), Landslides: analysis and control. Spec rep 176. Washington, 
D.C.: Transportation Research Board, National Research Council, p. 11-33.

Voisin C., Garambois S., Massey C., Brossier R. 2016. Seismic 
noise monitoring of the water table in a deep-seated, slow-moving 
landslide. Interpretation, 4(3):SJ67-SJ76. https://doi.org/10.1190/
INT-2016-0010.1

Vouillamoz N., Rothmund S., Joswig M. 2018. Characterizing the 
complexity of microseismic signals at slow-moving clay-rich debris 
slides: the Super-Sauze (southeastern France) and Pechgraben (Upper 
Austria) case studies. Earth Surface Dynamics, 6(2):525-550. https://doi.
org/10.5194/esurf-6-525-2018

Walter M., Walser M., Joswig M. 2011. Mapping rainfall-triggered slidequakes 
and seismic landslide-volume estimation at Heumoes slope. Vadose Zone 
Journal, 10(2):487-495. https://doi.org/10.2136/vzj2009.0147

Wapenaar K. 2004. Retrieving the elastodynamic Green’s function of an 
arbitrary inhomogeneous medium by cross correlation. Physical Review 
Letters, 93(25). https://doi.org/10.1103/PhysRevLett.93.254301

Wegler U. & Sens-Schönfelder C. 2007. Fault zone monitoring with passive 
image interferometry. Geophysical Journal International, 168:1029-1033.

Yfantis G., Martinez Carvajal H.E., Pytharouli S., Lunn R. 2013. 
Microseismic Monitoring of Induced Slope Failures at Field Scale. In: EGU 
General Assembly Conference. Abstracts, 15: 511.

Zoback M.D. & Harjes H.P. 1997. Injection-induced earthquakes and 
crustal stress at 9 km depth at the KTB deep drilling site, Germany. Journal 
of Geophysical Research-Solid Earth, 102(B8):18477-18491. https://doi.
org/10.1029/96JB02814

Zoby J.L.G. 1999. Hidrogeologia de Brasilia–DF, Bacia do Ribeirão Sobradinho. 
Mastering dissertation, Programa de Pós-graduação em Geociências, 
Universidade de São Paulo, 178 p.

11

Braz. J. Geol. (2019), 49(2): e20180085


