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Abstract: The natriuretic peptides (NPs) family includes a class of hormones and their receptors
needed for the physiological control of cardiovascular functions. The discovery of NPs provided a
fundamental contribution into our understanding of the physiological regulation of blood pressure,
and of heart and kidney functions. NPs have also been implicated in the pathogenesis of several
cardiovascular diseases (CVDs), including hypertension, atherosclerosis, heart failure, and stroke.
A fine comprehension of the molecular mechanisms dependent from NPs and underlying the
promotion of cardiovascular damage has contributed to improve our understanding of the molecular
basis of all major CVDs. Finally, the opportunity to target NPs in order to develop new therapeutic
tools for a better treatment of CVDs has been developed over the years. The current Special Issue of
the Journal covers all major aspects of the molecular implications of NPs in physiology and pathology
of the cardiovascular system, including NP-based therapeutic approaches.
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The natriuretic peptides (NPs) family includes a class of hormones [atrial (ANP), B-type (BNP)
and C-type (CNP)] and their receptors [natriuretic peptide receptor-A (NPRA), receptor-B (NPRB), and
receptor-C (NPRC)] needed for the physiological control of cardiovascular functions. First, the discovery
of NPs provided a fundamental contribution for the understanding of the physiological regulation of
blood pressure (BP) and of cardiovascular and renal functions [1]. Subsequently, abnormalities of the
NPs physiological properties were implicated in the pathogenesis of major cardiovascular diseases
(CVDs), such as hypertension and heart failure (HF) [2,3]. Finally, a more thorough comprehension of
the molecular mechanisms linked to NPs actions through their distinct receptors has contributed to
improve our understanding of key molecular mechanisms of cardiovascular homeostasis, as well as
the progression of several CVDs [3,4].

As a matter of fact, the NPs system has provided over time a continuous, attractive source of new
knowledge and discoveries regarding the pathogenesis, diagnosis, prognosis, and therapy of CVDs.
In particular, the opportunity to target NPs in order to design new therapeutic tools for a more effective
treatment of CVDs has been developed, ultimately culminating in the introduction of a new class of
drugs for the management of HF, the angiotensin receptor neprilysin inhibitor (ARNi) [5,6].

The continuous interest in this field of biomedical research is documented by accumulating data
produced from several expert scientific groups. This issue of the Journal collects some original and
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review articles on the molecular and biomedical aspects concerning NPs, with a discussion of their
current clinical and therapeutic applications.

The cellular effects of NPs include the regulation of cell proliferation, angiogenesis, apoptosis,
fibrosis, and inflammation [3]. Their anti-proliferative, anti-fibrotic, and anti-hypertrophic effects,
including the underlying signaling pathways, were largely documented at both cardiac and vascular
levels [3]. In this issue, a review of the literature presented by Forte M. et al. summarizes the current
knowledge on the cardiovascular pleiotropic effects of NPs and highlights the most relevant findings
that underscore the NPs system as a key player in the cardiovascular remodeling process [7]. A major
strength of this aspect of NPs function was initially provided by genetically modified animal models
showing that lack of either the ANP (Nppa) or NPRA gene (Npr-1) led to hypertension and marked
cardiac hypertrophy, the latter being independent from high blood pressure levels [7]. In particular, as
outlined in the article by Pandey K.N. [8], the gene-targeted (gene-knockout and gene-duplication)
mouse models demonstrated the key roles of guanylyl cyclase/NPRA in cardiovascular disease states.
Above all, we learned that lack of Npr-1 led to salt-sensitive increases in BP whereas Npr-1 gene
duplication lowered BP and protected against high dietary salt concentrations [8]. The findings
obtained in animal models were subsequently translated to the human disease [3,8]. In fact, both
genetic and clinical studies could demonstrate the significant associations of variant alleles at Nppa,
BNP gene (Nppb), and Npr-1 with cardiovascular disorders in humans [3,8,9].

Interestingly, NPs control the lipid metabolism through an anti-lipolytic effect [10]. Of note, they
promote mitochondria biogenesis in adipocytes and the process of “browning” of white adipocytes to
increase energy expenditure [11]. Herein, a novel original mechanism underlying the anti-lipolytic effect
of ANP is presented by Bordicchia M. et al. [12]. This mechanism, supported by experimental in vitro
evidence, refers to the inhibition by ANP of Proprotein convertase subtilisin/kexin type 9 (PCSK9), the
enzyme responsible for Low Density Lipoprotein (LDL) receptor (LDLr) degradation [13]. Specifically,
the original work by Bordicchia M. et al. demonstrates that ANP inhibits PCSK9 expression in human
adipocytes, therefore reducing LDLr degradation [12]. It is known that the inhibition of PCSK9,
through a specific antibody, allows the accumulation of LDLr and the decrease of LDL cholesterol level
in the blood [13]. This strategy has represented a breakthrough of the current therapeutic approaches
to treat hypercholesterolemia [14]. By blocking PCSK9 induction, ANP appears to mimick, although to
a much lower extent, the action of PCSK9 inhibitors, evolocumab and alirocumab [15,16]. It will be
interesting in the future to test LDL cholesterol levels in patients undertaking ARNi and presenting
with higher ANP circulating levels [17].

Both the hemodynamic and cellular effects of NPs explain the pathogenetic involvement of NPs
in hypertension and related target organ damage. In particular, as discussed in this issue of the
Journal, the comprehension of the fine molecular mechanisms underlying hypertension has been
largely improved through the dissection of the molecular genetics of the NPs system [18]. Nowadays,
genetic variations of Nppa, Nppb, CNP gene (Nppc), Npr-1, NPRC gene (Nprc), Corin, and Proprotein
convertase subtilisin/kexin type 6 gene (PCSK6) are known contributors to hypertension development
in experimental models as well as in humans through a decreased function of the system and of its
impact on BP regulation [18]. Furthermore, by dissecting molecular alterations of the NPs system
components, we have been able to understand, at least in part, the pathogenesis of cardiovascular
damage in hypertension. Most importantly, a harmful variant of human Nppa (the T2238C/ANP,
rs5065), that is frequently encountered in the general population (14% frequency of the allele variant),
has shown functional deleterious properties that completely diverge from those of the wild type
form, which makes this molecular variant a significant contributor to cardiovascular acute events
such as stroke and myocardial infarction [19]. On the other hand, a protective Nppa variant (rs5068)
is able to reduce the cardiometabolic risk by increasing the circulating ANP level and its beneficial
cardiovascular and metabolic properties [20]. Furthermore, a less frequent Nppa variant (rs5063) was
associated to reduced left ventricular mass in hypertension [21]. Overall, the experience gained from
several research groups with the studies on molecular variants of Nppa support the existence of genetic
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predictors of cardiovascular risk that contribute to the individual risk profile (as part of the emerging
field of predictive medicine).

NPs represent today well established and useful diagnostic biomarkers in HF, being of particular
help for the differential diagnosis of dyspnea in the emergency room [22]. The increase of amino-terminal
(NT)-proBNP/BNP levels reflects the ventricular dysfunction characterizing the condition of HF
with reduced ejection fraction (HFrEF), whereas their decrease reliably reflects functional cardiac
improvement due to the therapeutic interventions [23]. ANP behaves in a similar manner, although it
is not routinely used in clinical practice mainly due to its shorter half-life and lability. The mid-regional
amino-terminal ANP (MR-proANP), detected through an immunoassay toward the segment including
aminoacids 53-90 of the ANP amino-terminal portion, is a more stable form and offers more
specific useful applications [24,25]. Both ANP and BNP also play a prognostic role in HF [26,27].
The accumulation of NPs is not sufficient to maintain a proper hemodynamic balance in cardiac
failure, particularly with the progression of the disease. In fact, a state of “resistance to NPs” is
described in HF patients, raising the need to increase further their plasma levels in order to achieve
a better circulatory homeostasis in cardiac failure [28]. In this issue of the Journal, the role of NPs
is discussed in the condition of HF with preserved ejection fraction (HFpEF) [29]. Although with
some controversies, lower levels of BNP are found by the majority of the studies in HFpEF [29,30].
Of interest, the significance of MR-proANP in the context of HFpEF is growing as a more specific and
more informative marker that parallels the trend of BNP [24]. Therefore, raising the NPs levels is
expected to allow an improved hemodynamic profile in HFpEF as well. The upcoming results of the
PARAGON trial (that tested the potential benefits of ARNi in HFpEF patients) could soon clarify this
important question [31].

HF is often associated to atrial fibrillation (AF), a condition that on its own presents with higher
BNP levels [32,33]. This combination raises the need to interpret correctly the level of NPs for both
diagnostic and prognostic purposes. The BNP level may not differ between HF patients with AF and
HF patients without AF [34]. In fact, higher cut-off levels of BNP need to be taken into consideration to
improve the specificity and likelihood of correct diagnosis of HF in the presence of AF [35]. Moreover,
as discussed in this issue, the role of NPs in the screening for the new onset of incident AF and for the
prediction of AF recurrence after cardioversion and pulmonary vein isolation may reveal useful in the
clinical setting [33,36,37].

In the context of HF, a renal dysfunction often develops (cardiorenal syndrome). As reviewed
in this issue by Okamoto R. et al. [38], BNP is a major player in the heart–kidney connection and
it plays important protective roles within the kidneys mainly through its inhibitory effect on the
renin-angiotensin system and the sympathetic nervous system. Thus, by promoting diuresis, natriuresis,
and vasorelaxation, it counteracts not only HF but also chronic kidney disease (CKD) development.
In fact, BNP and NT-proBNP levels are higher in acute HF patients with renal dysfunction as compared
to patients with normal renal function [39]. Importantly, it has been shown that BNP infusion may
contribute to prevent development of CKD in HF [40].

The strength of the relevance of NPs in HF is reinforced by an interesting review article of this
Special issue. Specifically, the article by Cao Z. et al. focuses on the role of NT-proBNP/BNP as
valuable diagnostic biomarkers of cardiac dysfunction in deceased individuals [41]. This original
observation extends the application of these HF biomarkers to forensic medicine apart from the
standardized use in clinical practice. No other biomarker has ever been reported to diagnose cardiac
dysfunction postmortem.

An important component of the NPs system is represented by CNP, which acts through either the
NPRB or NPRC receptors. CNP is mainly synthetized by endothelial cells and also by cardiomyocytes
and fibroblasts. It circulates in the blood at very low amounts, offering a clear example of an
autocrine/paracrine mediator within the cardiovascular system [42]. The most recent discoveries
regarding CNP functions have been reported in the review article by Moyes A. et al. [43]. These authors
underscore novel functions of CNP, such as control of inflammation, angiogenesis, cell proliferation,
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and anti-atherosclerotic effect in the blood vessel; control of cardiomyocyte contractility, fibrosis,
hypertrophy and even of electrophysiological activity of the heart [43]. These multiple functions
make CNP a multifaceted paracrine regulator within the cardiovascular system. In the presence of a
dysregulation of CNP, the development of CVDs is favored. For instance, since CNP controls BP levels
through a potent vasodilation within the microvasculature, abnormalities of CNP function contribute
to hypertension development [44]. CNP increases in HF, in parallel to ANP and BNP and to its receptor
NPRC, and it correlates to disease severity and outcome [45]. In fact, these observations have focused
the attention to CNP as a potential therapeutic target in both hypertension and HF.

Among the recent discoveries regarding the NPs system, the one that deserves particular
attention is the potential involvement of NPRC signaling in the pathogenesis of pulmonary arterial
hypertension [46]. The article by Egom E. provides a revision of the literature supporting the link
between abnormalities of NPRC signaling and pulmonary vascular remodeling, pulmonary fibrosis,
and chronic obstructive pulmonary disease [47]. The latter are explained by the disruption of the
anti-proliferative effects of NPRC via the Gqα/mitogen-activated protein (MAP) kinase signaling
pathway [48].

The main therapeutic approaches to treat CVDs involving the NPs system are based on either
the development of peptide analogs or the blockade of peptides catabolism [3,4]. In this issue,
Cannone V. et al. describe one of the most promising ANP analog, the MANP, a 40 amino acid peptide
with a 12 amino acid extension to the carboxyl-terminus of ANP [49]. This peptide analog, that is
more resistant to degradation, is progressively gaining more interest for its future application in
clinical practice. In fact, it has been tested in both experimental and clinical settings with evidence of a
significant prolonged anti-hypertensive effect. Its cardiometabolic protective properties are also being
currently investigated in humans [49].

An overview of the strategies aimed at blocking the NPs catabolism through a NPRC blockade,
and particularly through NEP inhibition, is presented by Volpe M. et al. [50]. The approach based on
NEP inhibition led to the recent development of a new class of drug called ARNi, which currently
represents a valuable therapeutic tool for the treatment of HRrEF and may become, in the near future,
an essential tool for the treatment strategy toward many other CVDs, possibly also hypertension [5,50].
So far, the only available compound is sacubitril/valsartan.

Overall, the comprehension of the multiple functional roles of NPs, gained over the last 35 years,
makes this hormonal system an essential contributor to the maintenance of the cardiovascular health.
On the other hand, a deeper understanding of the complex molecular mechanisms underlying the
functionality of NPs has opened a new way to relevant therapeutic innovations. Future years, through
the continuous efforts of several research groups, will certainly reveal more insights on this multifaceted
cardiovascular hormonal system.
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