
Review Article

NAU2 c ext-Generation Metagenomics:
Methodological Challenges and Opportunities

AU3 c Ilaria Laudadio,* Valerio Fulci,* Laura Stronati, and Claudia Carissimi

Abstract

Metagenomics is not only one of the newest omics system science technologies but also one that has arguably the
broadest set of applications and impacts globally. Metagenomics has found vast utility not only in environmental
sciences, ecology, and public health but also in clinical medicine and looking into the future, in planetary health.
In line with the One Health concept, metagenomics solicits collaboration between molecular biologists, geneti-
cists, microbiologists, clinicians, computational biologists, plant biologists, veterinarians, and other health care
professionals. Almost every ecological niche of our planet hosts an extremely diverse community of organisms
that are still poorly characterized. Detailed characterization of the features of such communities is instrumental to
our comprehension of ecological, biological, and clinical complexity. This expert review article evaluates how
metagenomics is improving our knowledge of microbiota composition from environmental to human samples.
Furthermore, we offer an analysis of the common technical and methodological challenges and potential pitfalls
arising from metagenomics approaches, such as metagenomics study design, data processing, and interpretation.
All in all, at this critical juncture of further growth of the metagenomics field, it is time to critically reflect on the
lessons learned and the future prospects of next-generation metagenomics science, technology, and conceivable
applications, particularly from the standpoint of a metagenomics methodology perspective.

Keywords: metagenomics, one health, next-generation sequencing, ecology, environmental science, bio-
markers, microbial genomics

Introduction

During evolution, microorganisms have adapted to
an incredibly diverseAU4 c set of environments. Almost every

ecological niche of our planet hosts an extremely diverse
community of unicellular organisms that are still poorly
characterized. Detailed depiction of the features of such
communities is instrumental to our comprehension of eco-
logical, biological, and clinical issues. The study of the col-
lective genome of microorganisms from an environmental
sample is named metagenomics (Xia et al., 2018).

Metagenomic analyses of soil and marine ecosystems have
proven that a hitherto unappreciated genetic diversity exists.
Both soil (Daniel, 2005; Thompson et al., 2017) and oceanic
(AU5 c Bork et al., 2015; Rusch et al., 2007; Yooseph et al., 2007)
metagenomes were investigated through various global
sample collection efforts, unveiling unexpected diversities in
prokaryotic, unicellular eukaryotic (Carradec et al., 2018)
organisms and viruses (Schulz et al., 2018). These efforts
yielded a large amount of genetic data that can be explored for

ecological, biotechnology, and phylogenetic applications,
among others. Environmental metagenomics can be exploited
to assess the effects of contamination by different pollutants
on microbial communities (Ghosh and Das, 2018; Hemme
et al., 2015; Jung et al., 2016), thus suggesting possible bio-
remediation strategies. Metagenomics has also been har-
nessed so as to investigate the microbiomes associated with
agriculture and food (Liu et al., 2018; Orellana et al., 2018).

Mammals harbor complex communities of microorgan-
isms that live on the surface and inside the host (skin, mucosal
surfaces, gut, urogenital system, etc.). The mammalian mi-
crobiota includes all the domains of life (Archaea, Bacteria,
and Eukaryota) and is fundamental to the health of the host
(D’Argenio and Salvatore, 2015). Studies in mammals have
implicated the microbial communities present in the gastro-
intestinal tract (gut microbiota) in a range of physiologic
processes with a significant impact on food digestion, meta-
bolic processes, immunity, acquisition, and maintenance of
overall wellness of the host. Accordingly, mounting evidence
suggests a correlation between changes in composition of the
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gut microbiota and the pathophysiology of several disorders
such as depression, autism, allergies, and chronic inflamma-
tory diseases (Fazlollahi et al., 2018; Haberman et al., 2014;
Hsiao et al., 2013; Imhann et al., 2018; Savage et al., 2018;
Sekirov et al., 2010; Trompette et al., 2014).

Metagenomics is likely to have transformative and possibly
game-changing impacts in clinical practice as well. On one
hand, a microbial dysbiosis could be causally linked to a dis-
ease, suggesting targets of new therapeutic interventions aim-
ing at dysbiosis correction and restoration of the so-called
eubiosis. On the other hand, metagenomic profile could also
represent a noninvasive, cost-effective, and rapid biomarker
useful for diagnosis and/or prognosis. In infectious diseases,
prediction of antimicrobial resistance adds a further layer of
relevant information that can be retrieved from clinical speci-
mens (Wilson et al., 2014). Furthermore, these approaches also
impact public health with applications such as monitoring an-
timicrobial resistance in food supply by bacterial whole-genome
sequencing (Chiu and Miller, 2019; Oniciuc et al., 2018).

Despite its relatively brief history, the study of microbial life
through next-generation sequencing (NGS) technologies and
computational biology is defining a new era in microbiology.
Up to now, two main NGS-based strategies have been im-
plemented for whole microbial genome analysis: 16S ribo-
somal DNA (rDNA) sequencing and shotgun metagenomics.
The former relies on PCR amplification of hypervariable re-
gions of bacterial 16S rDNA through the use of degenerated
primers followed by amplicon deep sequencing. Intrinsic
limits of this approach are the exclusion of eukaryotic organ-
isms and viruses from the analysis and the possible primer
biases toward specific taxa (Tremblay et al., 2015). Since 16S
amplicon sequencing focuses on the analysis of a tiny region
of prokaryotic DNA, it is not formally defined as metage-
nomics (Xia et al., 2018). Differently, shotgun metagenomics
(or simply metagenomics) relies instead on sequencing of
randomly sampled DNA fragments isolated from a microor-
ganism community. Metagenomics allows the characterization
of complex communities of microorganisms of specific envi-
ronments, including human body sites, at unprecedented res-
olution, without the need of any a priori knowledge and
without prior culturing (Escobar-Zepeda et al., 2015; Schloss
and Handelsman, 2005; Tringe et al., 2005).

Several reports compared the performance of the two tech-
niques. Comparison of 16S rDNA sequencing and metage-
nomics has been performed using a single sample on Solid
(Mitra et al., 2013) and Illumina platforms (Ranjan et al., 2016).
The use of synthetic samples has also been exploited to compare
the two approaches (Jovel et al., 2016). Such comparisons
showed that the 16S rDNA amplicon sequencing approach
yields quantitatively and qualitatively different results com-
pared to metagenomics. In a recent article, we compared the
performance of metagenomics and 16S amplicon sequencing
using Illumina platform by using DNA isolated from human
fecal samples, showing that metagenomics outperforms 16S
rDNA amplicon sequencing (Laudadio et al., 2018).

This expert review article evaluates how metagenomics is
improving our knowledge of microbiota composition from
environmental to human samples. Furthermore, we offer an
analysis of the common technical and methodological chal-
lenges and potential pitfalls arising from metagenomics ap-
proaches, such as metagenomics study design, data processing,
and interpretation.

Current Approaches and Future Challenges
in Metagenomics

From experimental design to genome assembly

A major bottleneck of metagenomics NGS is the ability to
translate the data into relevant information, to obtain clini-
cally actionable results. A professional biostatistician needs
to be consulted at the time of study design (before samples
collection) to programmatically assess statistical power to be
achieved and which metadata should be collected and in-
cluded in the analysis ( b F1Fig. 1). Overlooking the relevance of
this step will invariably lead to difficulties in the subsequent
analysis of data and negatively affect the relevance of any
finding. Furthermore, confounding factors such as diet, en-
vironment, and social behavior, which may affect human
microbiota, have to be considered. To avoid biases due to
cultural or social issues, it is recommended that broad cohorts
of patients (and controls) are analyzed, possibly through large

FIG. 1. Typical metagenomic study workflow: key choi-
ces and critical parameters.
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consortia, allowing to integrate in a single study cohort of
patients from different continents.

One of the most relevant constraints of metagenomics lies
in the limited annotation of bacterial genomes. Human gut
microbiome metagenomics took advantage of seminal stud-
ies, which allowed a very deep coverage on hundreds to
thousands of samples and resulted in comprehensive cover-
age and extensive annotation of human gut bacterial genomes
(Li et al., 2014; Pasolli et al., 2019; The Integrative Human
Microbiome Project, 2014). On the other hand, metagenomes
from poorly exploited environmental niche are still inade-
quately characterized (Uritskiy and DiRuggiero, 2019);
hence, databases offer only limited coverage for alignment of
reads. In these instances, the first challenging step is the as-
sembly of a reference metagenome to use in the analysis.

Assembly is a key step of the analysis pipeline as all
subsequent output will depend on its outcome. Some features
of metagenomic data (i.e., uneven coverage across species,
highly similar sequences in unrelated species due to hori-
zontal gene transfer, and repeated sequences) require dedi-
cated software. Binning co-abundant sequences before
assembly has been proven to overcome limitations due to
uneven coverage (Plaza Oñate et al., 2018). Several different
strategies can be exploited (Ghurye et al., 2016), and a wide
array of software to assemble metagenomes have been de-
veloped and tested on both real samples (Olson et al., 2017;
Wang et al., 2019) and synthetic bacterial communities
(Greenwald et al., 2017). It has been shown that virome
analysis (a branch of metagenomics focusing on bacterio-
phage communities) is particularly affected by the choice of
the assembler software used (Sutton et al., 2019).

Metagenomics analysis: one raw reads dataset,
several layers of information

Through the use of several available tools, bioinformatics
analysis of metagenomics datasets can provide information
at different levels. Even though, metagenomics datasets are

most commonly investigated to achieve information on the
taxonomic and functional profiles of a microbiome, tools to
investigate the virome (Nooij et al., 2018; Ogilvie and Jones,
2015; Rampelli et al., 2016), the replication rates of bacteria
(Korem et al., 2015), and the profile of antibiotic resistance
(Rowe and Winn, 2018; Yang et al., 2016) have also been set
up. In particular, virome investigation through metagenomics
has revolutionized the field of virology, disclosing a wealth of
putative novel viruses (Schulz et al., 2018; Simmonds et al.,
2017). Moreover, bacteriophages have recently emerged as
key remodelers of microbial host communities, influencing
the bacterial diversity, facilitating nutrient turnover, and
conferring antibiotic resistance genes through horizontal
transfer of genetic material (Modi et al., 2013; Ogilvie and
Jones, 2015; Reyes et al., 2013).

Taxonomic profiles are obtained by mapping reads on a
database of reference bacterial genomes. Most software rely
on a small selection of genes (markers) to obtain a taxonomic
profile (Nayfach et al., 2016; Segata et al., 2012; Truong
et al., 2017). The choice of the selection of marker genes
allows users to obtain taxonomic profiles with relatively low
computing power.

Of note, contamination-free collection, homogenization,
storage, and a subsequent efficient DNA extraction method
have been shown to significantly affect the taxonomic profile
yielded (Brooks et al., 2015; Wesolowska-Andersen et al.,
2014). Several studies documented that contaminant DNA
and cross-contamination can critically influence NGS-based
microbiome analyses (Salter et al., 2014; Sinha et al., 2015).
Contaminant DNA appears to originate from reagents, lab-
oratory environments, human commensals on laboratory
personnel, and sample processing. Indeed, for the Human
Microbiome Project, a rigorous study protocol and stan-
dardized instructions for body site sampling and specimen
processing were set up (Aagaard et al., 2013). Moreover,
Panek et al. (2018) described the influence of storage con-
dition and sample extraction in detection and composition of
the fecal bacterial community.

Functional metagenomics: from microbial community
biodiversity to functional processes

Functional profiling aims at achieving a comprehensive
view of the functions of proteins encoded by the metagen-
ome. Such analysis is extremely relevant for both ecologic
and clinic purposes, as it highlights the interplay between a
specific microbial community and the environment. Meta-
bolomic analyses are the natural complement of a functional
profiling, allowing the researcher to correlate alteration in the
abundance of specific metabolites and that of taxa and genes
related to those metabolites (Frankel et al., 2017; Liu et al.,
2017).

16S amplicon sequencing allowed functional profiling by
assuming that it is the sum of the functional profiles of all the
identified species (Aßhauer et al., 2015; Langille et al.,
2013). Otherwise, metagenomics yields functional profiles
through direct identification of the genes encoded by a me-
tagenome rather than inferring them based on taxonomy.
Furthermore, most pipelines can assign a function not only to
reads mapping to annotated genes but also to a fraction of the
reads that cannot be precisely assigned to an annotated ge-
nome. This is exerted through in silico translation of the

Table 1.AU11 c How Metagenomics Changed Our Approach

to Microbiology and Future Directions

State of the art
metagenomics

Next generation
metagenomics

Discovery of novel species
and strains

Characterization of
variability within each
species and strain through
single-cell metagenomics

Taxonomic and functional
community profiles
associated with health/
disease or environmental
changes

Mechanistic insights into
the role of specific
microorganisms in health
and disease or in specific
ecosystems

Ongoing annotation of
genomes and genes

Exhaustive metagenomic
databases; extensive
characterization of
microbial gene function

Computationally intensive
assembly of metagenomes
from shotgun DNA
fragments arising from
different cells

Assembly of genomes from
single-cell shotgun
metagenomics
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DNA sequences, followed by homology search on protein
sequence databases. This process, called ‘‘translated
search,’’ allows the software to ascribe a putative function to
the protein encoded by a DNA fragment (Buchfink et al.,
2015; Franzosa et al., 2018; Huson et al., 2016). While ex-
tensive annotation of the gut microbiome allows binning of
most reads in gut microbiota, in environmental metage-
nomics, most reads cannot be assigned to any function, due
to lack of annotation and poor knowledge of the function of
most polypeptides encoded by microorganisms (Quince
et al., 2017), reflecting the current bias of the annotation
toward a small number of cultivable microorganisms.
Functional metagenomics, aiming at isolation, cloning, and
expressing genes into suitable model organisms to identify
their function will be required to achieve a comprehensive
annotation of microbial genes (Santana-Pereira and Liles,
2017), thus improving the resolution of functional profiles
obtained through metagenomics.

An extremely relevant subfield of functional metage-
nomics is related to antibiotic resistance, aiming at the
identification of genes that confer antibiotic resistance to
microorganisms. By leveraging information collected in this
field, it is possible to characterize the ‘‘resistome’’ in both
environmental (AU6 c D’Costa et al., 2006) and human samples
(van Schaik Willem, 2015) with relevant applications in built
environments such as hospitals (Mahnert et al., 2019).

In the past decade, transformation of biomedical big data
into valuable knowledge has been a fundamental challenge
in bioinformatics, and a significant role in the success of
bioinformatics exploration from biological data came from
machine learning and deep learning applications. The in-
trinsic characteristics of several steps of metagenomic an-
alyses are suitable of being addressed through machine
learning and neural networks. In fact, such methods have
been exploited for metagenome assembly (Afiahayati et al.,
2015; Ji et al., 2017; Wang et al., 2015), metagenomic reads
binning to reference genomes (Vervier et al., 2018), gene
prediction (Al-Ajlan and El Allali, 2018), gene function
prediction (Li et al., 2018), and analyses of large datasets
(LaPierre et al., 2019; Pasolli et al., 2016).

Big data storage and analysis considerations

The large amount of data typically generated by meta-
genomic opens two major challenges: data storage and
computational power. While some tasks such as taxonomic
analysis with marker genes can be achieved with limited
resources (assuming that an appropriate reference metagen-
ome is already available), more complex tasks (metagenome
assembly, functional profiling, and gene discovery) are much
more demanding in terms of computational resources. Cloud
computing can certainly provide an affordable solution; in-
deed, several server implementations of metagenomics
pipelines are available (Lee et al., 2018; Mitchell et al., 2018;
Raknes and Bongo, 2018), while other packages are released
as images installable on cloud computing servers (McIver
et al., 2018). However, privacy concerns may arise when
human microbiome data are being analyzed and stored. In
fact, several seminal studies highlighted that precise identi-
fication of individuals by means of metagenomics is feasible
(Franzosa et al., 2015; Leake et al., 2016; Schmedes et al.,
2017). Therefore, this issue started to be addressed by

implementation of metagenomics analysis using secure com-
putation (Wagner et al., 2016).

Conclusions and Future Outlook

Shotgun metagenomics has rapidly expanded our under-
standing of environmental and clinical microbial communities,
allowing to address previously unattainable biological ques-
tions as well as accelerating genome-based discovery of novel
microbial genes (Santana-Pereira and Liles, 2017). One of the
most intriguing fields propelled by metagenomics data will be
functional metagenomics. The development of medium- to
high-throughput tools to characterize the thousands of novel
genes encoded by bacterial and viral genomes will likely result
in a collection of exploitable enzymes, whose applications will
range from biotechnology to material science and pharma-
cology. Investigation of the secondary metabolites produced
by bacteria will also represent an invaluable resource.

In the last decade, according to PubMed data (Mesh terms
search), 4227 scientific reports have been published on ‘‘me-
tagenomics,’’ 1163 of which attain the ‘‘microbiome, human.’’
Indeed, characterization of the human microbiome unveiled
that microbial communities associated with human body sites
are dynamic and subject to impressive modification in the
course of host life and in response to many factors, including
the interaction between human, animal, and environment.
Changes in the microbiome have been associated with disease
states, and in some instances, causal links were highlighted
between microbiota and specific pathological conditions. Ac-
cordingly, the ‘‘One Health’’ concept underlines the insepa-
rable ecological relationships between human, animal, and
environmental, recognizing that the health of people is con-
nected to the health of animals and the environment. Indeed,
the ‘‘One Health’’ Commission declared that nearly 75% of
emerging human infectious diseases in the past three decades
originated in animals (Murtaugh et al., 2017). The develop-
ment of high-throughput tools to characterize entire microbial
communities now offers new insights toward ‘‘One Health’’
concept. Actually, metagenomics approach will integrate the
knowledge of the complex interactions from these three do-
mains, open the potential for novel diagnostic tools, and pave
the way to collaborative and integrated multidisciplinary ap-
proaches to treatment and intervention.

Most recent technological developments allowed single-
cell metagenomics (Stepanauskas and Sieracki, 2007; Stepa-
nauskas et al., 2017). This innovative approach overcomes
some relevant limits intrinsic to the shotgun sequencing, as
assembly of a genome from fragments arising from a single
cell is computationally much less demanding. In fact, while
metagenome assembly from shotgun sequencing requires
multiple comparisons between many fragments, which in
most cases arise from different genomes, single-cell metage-
nomics assembly takes advantage of smaller datasets of DNA
reads, all arising from a single cell, allowing also a much
easier parallelization of the assembly process. Furthermore,
comparison of the two methods not only provided an implicit
independent confirmation of the current metagenomics as-
sembly methods but also highlighted a thus far overlooked
variability between single cells belonging to the same taxon
(Alneberg et al., 2018). Nevertheless, further improvements
and widespread application of single-cell metagenomics are
required to fully unleash the potential of this approach.
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Many high-throughput techniques have been developed
through step-wise improvements and have required, at some
point, a standardization effort to allow proper comparison of
data produced by different groups (Brazma et al., 2001;
Taylor et al., 2007, 2008). The metagenomics community is
currently setting up reliable and consistent standard proce-
dures for sample collection, storage, and processing, data
analysis, and metagenome reporting (Bowers et al., 2017;
Roux et al., 2018). Further effort to standardize metage-
nomics database will be necessary to support consistent and
productive development of the field.
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