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Abstract

In this Thesis we deal with nanodisordered ferroelectric perovskite crystals. These

material have been demonstrated to be a good test-bed to study nonlinear optical phenomena

due to their strong optical properties. In fact, their embedded disorder enhances their

response at the phase transition and makes these materials suitable to sustain solitons and

rogue waves also with low optical power.

We first use self-focusing at the paraelectric phase to study nonlinear wave propagation.

Our experiments are conceived to investigate the evolution of structured waves in time and in

space. We make three beams to interfere to optically observe the Fermi-Pasta-Ulam-Tsingou

recurrence. We experimentally verify its analytic solution provided by Grinevich-Santini that

allows us to predict the exact position of each recurrence. Moreover, we demonstrate that

the periodic behavior is lost if the system ceases to be integrable. We study the appropriate

interference pattern in the form of nondiffractive Bessel beams to investigate what happens

to such waves in a self-focusing medium. We identify two regimes: a Bessel beam self-

trapping and a breathing soliton. Furthermore, we demonstrate the feasibility of Bessel beam

writing to build a scalable and rewritable network of waveguides inside the bulk ferroelectric

medium.

We also studied the unique properties of the ferroelectric phase. The most evident

outcome is the so-called super-crystal that is a spontaneous photonic 3D lattice that emerges

from the interplay between material order and disorder. We study the super-crystal in

different ways and we recover the periodic behavior for linear and nonlinear propagation.

In detail we report a periodic pattern for birefringence and second harmonic generation.

The main result is that we have observed the highest value of the refractive index reported

in literature for visible light and we have connected the effect to the super-crystal. This

material allows, in theory, to transmit light without any information loss, that is without

diffraction and chromatic dispersion.

The physics of diffraction is also investigated with the introduction of an innovative

method to achieve super-resolution. We exploit a confocal microscope and a remote knife-

edge technique. This allows us to directly study the role of evanescent waves in super-

resolution imaging forming, i.e. they are filtered out as the super-resolved image approaches

to the diffraction-limited one. Experiments here are performed with a terahertz frequency,
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λ ∼ 1.00 mm, to easily accede the near field and capture the information carried by the

evanescent waves.

Although all topics are related to each other, we thought it appropriate to split the thesis

into three parts which correspond to the main topics that we have addressed during the PhD.

In Part 1, our main interest is on the nonlinear propagation of specifically designed

light patterns. In Chapter 1, we introduce the theoretical basis necessary to support our

experimental findings. We introduce the nonlinear Schrödinger equation (NLSE), the

equation that rules most of nonlinear optics, and we solve it for several significant input

conditions. Then, we describe the beam propagation method, an important tool to obtain a

numerical integration of the NLSE. In Chapter 2, we report the experimental observation of

the Fermi-Pasta-Ulam-Tsingou recurrence and we compare results to the Grinevich-Santini

theory. In Chapter 3, we deal with Bessel beams. We show the self-trapping/breathing state

and we illustrate the Bessel wave-guide method. In Chapter 4 we the study the nonlinear

lattice embedded in a ferroelectric perovskite. The resultant periodic nonlinearity disappears

during the photorefractive cumulative process.

In the Part 2 our interest is on the nanodisordered ferroelectric perovskite, so that, here,

light represents the main probe to investigate crystal properties. In Chapter 5 we introduce

the samples and in particular we describe the super-crystal. In Chapter 6 we deal with the

linear response of the super-crystal and we report the formation of a light polarization lattice.

We also study the temperature dependence of the phenomenon, discovering that trough

polarization measurements we can characterize the paraelectric-ferroelectric transition.

In Chapter 7 we exploit the crystal compositional disorder to achieve second harmonic

generation through random phase-matching. Our preliminary study indicates a 3D photonic

lattice that is the nonlinear analogue of the super-crystal. In Chapter 8 we report the

observation of the index of refraction. We perform experiments with both laser light and

white light and we estimate n0 > 26.

In Part 3 we describe our experiments with a confocal microscope in the terahertz

radiation. In Chapter 9 we introduce the method to achieve remote super-resolution through

the knife-edge technique and we study the filtering out of the evanescent components varying

the distance of the knife from the sample.
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Part I

Nonlinear optical spatial waves
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In this Part we discuss the propagation of specific light patterns in a Kerr-like nonlinearity.

We first introduce the theoretical background necessary to support our experimental findings.

Then we describe experiments on the Fermi-Pasta-Ulam-Tsingou recurrence. We study

Bessel Beams and their propagation in conditions of extreme self-focusing, addressing also

the possibility to exploit them to write waveguides in the bulk ferroelectric medium. Finally,

we describe the formation of spatial solitons in a periodic linear and nonlinear index of

refraction pattern.

Our results are published in Ref. [1], [2] and [3].
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Chapter 1

Introduction

In the first Chapter we describe the theoretical background necessary to understand the

arguments treated in the following chapters. First, we highlight the role of the paraxial

Helmholtz equation in describing propagation. We point out that, including a nonlinearity,

we obtain the nonlinear Schrödinger equation. Then, we find the expression of the nonlinear

variation of the refraction index according to our specific system and, thanks to this, we are

able to introduce some of the main nonlinear phenomena: solitons, modulation instability

and rogue waves.

1.1 Nonlinear wave equation

In this Section we derive the nonlinear wave equation starting from the Maxwell Equa-

tions and we recall its wide field of application, beyond optics. The macroscopic Maxwell

equations are [4]:

∇ · ~D = ρl (1.1a)

∇ · ~B = 0 (1.1b)

∇× ~E = −∂
~B

∂t
(1.1c)

∇× ~H = ∂ ~D

∂t
+ ~J, (1.1d)

where ρl is the free-charge density whereas ~J is the current density. In dielectrics, ~H e ~D

are specified by the constitutive relations

~D = ε0 ~E + ~P (1.2a)

~B = µ0( ~H + ~M), (1.2b)
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where ~P and ~M are the vectors of electric and magnetic polarization respectively. We can

always take ~M = 0 and µr = 1 since all media that we have studied have a negligible

magnetization. We can consider ~P ( ~E) = ε0( ¯̄εr−1) ~E so that ~D = ¯̄ε ~E with ¯̄ε = ε0 ¯̄εr where
¯̄εr is the two index permittivity tensor which, from here on, we recall ε and ε0 ≈ 8.85 ·10−12

F/m is the vacuum permittivity. Now we take the monochromatic field ~E(~r, t) = ~Eω(~r)eiωt,
with ω the fixed frequency and with the above consideration, we can rewrite the Maxwell

Equations

∇ · (εω ~Eω) = 0, (1.3a)

∇ · ~Hω = 0, (1.3b)

∇× ~Eω = −iωµ0 ~Hω, (1.3c)

∇× ~Hω = iωε(ω) ~Eω. (1.3d)

We apply∇× to (1.3c) and, exploiting (1.3a) and (1.3d), we obtain

∇2 ~Eω +∇
(
~E · ∇ε

ε

)
+ ε

ε0

ω2

c2
~Eω = 0, (1.4)

with c = 1√
µ0ε0

≈ 2.99 · 108 m/s that is the speed of light in vacuum. We define the

refractive index as n(ω,~r) =
√

ε(ω,~r
ε0

=
√

¯̄εr and k0 = ω
c = 2π

λ and we can rewrite Eq.

(1.4):

∇2 ~Eω + 2∇
(
~Eω · ∇ ln(n(ω))

)
+ k2

0n
2(ω) ~Eω = 0. (1.5)

This is a vectorial equation that we can simplify following the dimensional analysis of Ref.

[5]. We can neglect the second term of Eq. (1.5) for λ ∼ 0.5µm (optics fields) and for

common beam dimensions and we obtain the Helmholtz scalar equation

∇2 ~Eω + k2
0n

2(~r) ~Eω = 0, (1.6)

with the refractive index n(~r) = n0 + δn(~r) where n0 is its constant part whereas δn(~r) is

the position dependent part that includes the nonlinearity. In our experiments the longitudinal

size of the beam lz is much lager than its transverse size lxy, typically lz ∼ 1 ÷ 3 m and

lxy ∼ 10 ÷ 1000 µm. In these conditions, the paraxial approximation holds and the field

can be expressed as ~Eω(~r) = ~Aω(~r⊥, z)e−ik(ω)z with k(ω) = k0n1(ω) = ω
c n1(ω). Finally,

exploiting all the previous formulas we can write the paraxial Helmholtz equation:

∂ ~Aω
∂z

+ i

2k∇
2
⊥
~Aω = −ik δn(~r)

n0
~Aω, (1.7)

here the term with ∂2/∂z2 does not appear because we have imposed the Slowly Varying

Envelop Approximation (SVEA). Eq. (1.7) represents a fundamental equation for beam
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propagation. We will extensively recall Eq. (1.7) in this Thesis to predict and verify the

experimental findings. The second term describes diffraction, i.e. the beam spreading,

whereas the term on right is the general expression of nonlinearity. We point out that, despite

the fact that we have obtained it from Maxwell equation, Eq. (1.7) is relevant in a more

general context, in fact, it is called NonLinear Schrödinger Equation (NLSE) and has the

same structure of the Schrödinger Equation in quantum mechanics. NLSE can be found in

almost of the systems concerning waves [6–13], therefore optics represents a good test-bed

to discover most of the NLSE possibilities.

1.2 Notable solutions of the linear Helmholtz equation

In this Section we limit our analysis to the linear part of Eq. (1.7) [and Eq. (1.6)].

Discarding all the nonlinear contributions, we get the linear paraxial Helmholtz equation

∂ ~Aω
∂z

+ i

2k∇
2
⊥
~Aω = 0. (1.8)

Two of the most notable solutions of Eq. (1.8) are the gaussian beam and Bessel beam which

we introduce below.

1.2.1 Gaussian Beam

The gaussian beam is a specific parabolic solution of Eq. (1.8) and it is expressed by the

following formula for x-polarized beam propagating along z [14]

~A(r, z) = A0x̂
w0
w(z) exp

(
−r2

w(z)2

)
exp

(
−i
(
kz + k

r2

2R(z) − ζ(z)
))

, (1.9)

where r =
√
x2 + y2, z is the axial distance from the focus, R(z) is the radius of curvature

of the beam wavefront, w(z) is the beam width at a given position z with w0 ≡ w(z = 0)
the so-called beam waist. The phase term ζ(z) is the so-called Gouy phase, a phase that

have to be considered as well as the phase velocity.

The beam intensity I = | ~A(r,z)|2
2ηi

(with ηi the wave impedance) is obtained evaluating

the modulus of the pointing vector ~S which has always the z direction [4]. We get I(r, z) =
I0
(
w0
w(z)

)2
exp

(
−2r2

w2(z)

)
so that the intensity I has a clear guassian shape with w2(z)/2 that

represents its variance. Instead of using w(z), in our experiments we prefer to exploit the

so-called Full-Width-at-Half-Maximum (FWHM) to describe the beam dimension. We point

out that FWHM(z) =
√

2 ln 2w(z).

The beam width is w(z) = w0
√

z
zR

, so that we can introduce the Rayleigh length (or

Rayleigh range) zR = πw2
0

λ . At z = zR the beam width is
√

2 larger, and conventionally zR
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is an important parameter to experimentally characterize the the intrinsic diffraction of a

gaussian beam.

In the end, we note that the Fourier transform of gaussian beam is a gaussian beam itself.

This fact is very important because gaussian beams preserve its own shape passing through

a lens, since every lens produces the Fourier transform of the input beam [15].

1.2.2 Bessel Beam and Airy Beam

In this Paragraph we introduce two of the most significant non-diffractive solutions of

(1.8). The property of non-diffraction arises from plane waves, also solutions (1.8). Indeed,

non-diffracting beams are volume interference patterns of plane waves and inherited their

proprieties [2]. For example, these patterns exhibit self-healing, i.e. they reform after an

obstacle, since their parent plane waves permeate all space. The Airy Beam (AB) and

the Bessel Beam (BB) belong to the category of non-diffractive beams. Both AB and BB

carry an infinite amount of energy and have an infinite number of secondary lobes that

provide energy to the main lobe, avoiding diffraction[16, 17]. A realization of both consist

in considering for example AB or BB with a gaussian envelope. These new solutions, the

so called Airy-Gauss beam or Bessel-Gauss beam, maintain the properties or AB and BB

but only for finite distances suitable for experiments [18, 19]. These nondiffracting waves

are encountered in many fields, i.e in acoustics [20–22], quantum mechanics [16, 23] and

in optics[17, 24, 25] with several associated applications, i.e. in plasma generation [26],

material processing [27, 28] and microscopy [29].

Figure 1.1. Propagation of (a) Airy beam and (b) Airy-Gauss beam. (From Ref. [25])

ABs bend during propagation, as reported in Fig. 1.1(a), and they are often called

accelerating beams [16]. Considering the dimensionless variables s = x/x0 and ξ = z/kx0

with x0 an arbitrary transverse scale, the AB expression is [25]

E(ξ, s) = Ai
(
s− (ξ/2)2

)
exp

(
i(sξ/2)− i(ξ3/12)

)
(1.10)

with Ai the Airy function. As shown in Fig. 1.1(b), Airy-Gauss beam maintains most of

the features of the AB, i.e. the bending, but progressively loses intensity. Looking at the

intensity profiles, the insets of Fig. 1.1, it is clear that the tail of Airy-Bessel beam decays
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faster than the tail of AB.

(a) (b) (c)

Figure 1.2. Numerical simulation of the transverse intensity of (a) Bessel and (b) Bessel-Gauss
beam. In the numerics we use kr = 0.28 µm−1 and, only for (b), σ = 60 µm. (c) Fourier
trasform of the Bessel beam in (a).

A BB is characterized by the presence of a central intense lobe surrounded by less

intense rings, as reported in Fig. 1.2(a). Its equation is [30]

E(r, φ, z) = A0 exp(ikzz)Jn(krr) exp(±inφ) (1.11)

with A0 the amplitude and where n represents the order of the Bessel function J and φ is

the azimuthal component. To achieve the Bessel-Gauss equation we consider Eq. (1.11) and

a gaussian envelope exp(−x2/σ2). Here we report the simpliest, but very important (e.g.

for simulations), case of z = 0, the complete formula is provided in Ref. [19]:

E(r, z = 0) = A0Jn(krr) exp(−r2/σ2) (1.12)

with σ2 the variance of the gaussian curve and smaller the σ, less the number of the Bessel

rings, as shown in Fig. 1.12(b).

We note that the BB arises from the interference of plane waves that propagate on a

cone [30], i.e. they have all the same transverse wavevector modulus |kr|. This reflects on

the Fourier spectrum of the BB that is a ring as shown in Fig. 1.2(c). We have exploited

the Fourier property to generate BB in Chapter 3 where we extensively study BBs, both for

linear and nonlinear propagation.

1.3 Photorefractive effect

In this Section we consider, among all, the photorefractive effect, that is the principal

nonlinear phenomenon that occurs in our crystals. The photorefractive effect is a phe-

nomenon in which a local variation of the index of refraction is induced by an optical field
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proportional to the light intensity [31]. The photorefractive effect arises from the charge

carriers that are optically generated by a light pattern. The charges then migrate due to drift

or diffusion and they generate a space-charge field due to the charge separation. Ultimately,

such a field produces a refractive index change via the Pockels’ effect [32]. The model

that is commonly adopted to describe the photorefractive effect is the Kukhtarev-Vinetskiis

model that we will explain in the next Paragraph.

1.3.1 The Kukhtarev-Vinetskiis model

Here we introduce the Kukhtarev-Vinetskiis model (KV model) for the photorefractive

effect. Thanks to this model we will get the explicit formula for the induced space-charge

field used later to compute the refractive index modulation. The basic elements of the

Figure 1.3. Scheme of the band structure of a typical photorefractive material and sketch of the
charge carriers separation (recombination) in the illuminated (dark) zone of the crystal (From
Ref. [33]).

KV model are reported in Fig. 1.3. We consider a dielectric medium with in-band deep

acceptors and photosensitive donor impurities, their density are respectively Na and Nd and

typically Nd � Na. When light propagates inside the crystal with a non-uniform intensity

distribution I(~r), the charge carriers of the donor sites in the bright areas are excited and,

then, they drift and/or diffuse till they recombine in the acceptor sites in the dark area. The

result is a spatial charge field that depends on the light pattern [33]. The KV model assumes

a constant number of impurities and can be summarized by the rate equation [34]

∂

∂t
N+
d = (β + sI(~r))(Nd −N+

d )− γNeN
+
d , (1.13)



1.3 Photorefractive effect 9

where N+
d is the ionized donor density, Ne is the free electron concentration, β is the

thermal ionization coefficient, s is the photo-ionization coefficient related to the absorption

cross-section and γ electron-donor recombination constant according to Langevin theory

[33]. We remind that the Einstein diffusion coefficient is D = (µkBT ) /e0 with µ is the

carrier mobility, e0 is the modulus of the elementary charge and KBT is the thermal energy

with kB the Boltzmann constant. To complete the KV model we include the continuity

equation that connects the current density ~J with the average charge density distribution ρ

∂

∂t
ρ+∇ · ~J = 0, (1.14)

with ~J = eµNe
~E + kbTµ∇Ne and ρ = e(N+

d −Na −Ne) where we have considered that

all the acceptors are ionized due to thermal excitation. Finally, the space charge electric field
~Esc can be obtained from the Poisson’s equation

∇ · (ε ~Esc) = ρ. (1.15)

In principle, from the above set of equations we can exactly find ~Esc but the system does not

have an analytic solution. We, therefore, have to make some simplifications. We consider

that two time scales intervene: the charge recombination time τr and the dielectric relaxation

time τd and typically τr � τd [5]. This statement, with also the consideration that usually

Ne � Na and α ≡ (Nd −Na)/Na � 1, allows us to manage Eq. (1.13) and ρ to get:

Ne = (β + sI)
γ

[
Nd − p/e
p/e+Na

]
, (1.16)

and, substituting this to (1.14), we achieve [5]

∇
[

γ

eµsα

∂(ε(0) ~E)
∂t

+ ~E(β/s+ I)
1− ∇·(ε(0) ~E)

αNae

1 + ∇·(ε(0) ~E)
Nae

+

+ kBT

e
∇ ·

(
(β/s+ I)

1− ∇·(ε(0) ~E)
αNae

1 + ∇·(ε(0) ~E)
Nae

)]
= 0,

(1.17)

where we use ε(0) to underline that the dielectric response is quasi-static for the considered

time scales. We can define the dark intensity Id ≡ β/s, this term represents the light-

independent thermal contribution to the charge ionization. Id is part of the more general

background illumination Ib that takes into account all the secondary intensities that intervene

during the process. Since α� 1 and for the quasi-stationary case (∂ ~E/∂t ≈ 0), Eq. (1.17)
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reduces to

~E(Ib + I) 1

1 + ∇·(ε ~E)
eNa

+ kbT

e
∇ ·

(Ib + I) 1

1 + ∇·(ε ~E)
eNa

 = g, (1.18)

where g is a boundary-condition-dependent constant. For the unbiased case, that is V = 0,

g = 0 and we get the diffusive electric field ~E = −kbT
e
∇I
Ib+I . A more complex picture

can be obtained considering g 6= 0 which means that there is an external bias electric

field E0 6= 0. If this occurs, it’s hard to manage equations also for the one dimensional

case (∇ → d
dx ) and only a perturbative approach is possible. To do this, we introduce the

following dimensionless quantities:

Y ≡ |
~E|
E0

Q ≡ Ib + I

Ib
ξ ≡ x

xq
= x

eNa

εE0
, (1.19)

where xq is the saturation length. Typically the illuminated region of the crystal l is much

smaller than the whole crystal length L � l, consequently E0 ' V/L. Thanks to the

definitions in (1.19), Eq. (1.18) can be rewritten:

Y Q

1 + Y ′
+ a

[
Q′

1 + Y ′
− Q

(1 + Y ′)2Y
′′
]

= G, (1.20)

with a = NakbT/εE
2
0 e G = g/E0Ib and where the symbol ′ indicates d/dξ. Assuming

l� xq, the nonlocal effects are secondary and Eq. (1.20) becomes:

Y = G

Q
− aQ

′

Q
+ GY ′

Q
+ a

Y ′′

1 + Y ′
, (1.21)

in which the first term indicates the local contributions whereas terms with the derivative

takes into account the nonlocal contributions. If the first term is appreciably bigger than

the others, a saturated Kerr-like nonlinearity formula is recovered. This occurs for our

experiments where the beam dimension, that is its Full-Width-at-Half-Maximum (FWHM),

is ∆x ∼ l ∼ 10µm. Since the derivatives scale with η = xq/l ∼ 0.01 whereas a is typically

of the order of units [5] we can expand in orders of η. At the zero-th order we have

Y (0) = G

Q
+ o(η), (1.22)

and, iterating, we get the first order

Y (1) = G

Q
− aQ

′

Q
− Q′

Q

(
G

Q

)2
+ o(η2), (1.23)
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the first term is the so-called screening term and governs the soliton formation. It is a local

term since the field in a given position depends only from the optical intensity in the same

position. Since typically G ' −1, this term makes | ~E| < E0 because the charges rearrange

to screen the external field, hence its name. The second term is the diffusion field whereas

the third term represents a coupling between the diffusion field and the screening field: they

both are nonlocal terms and they give rise to asymmetrical contributions that can distort

beam propagation, e.g. they cause soliton to bend [35].

1.3.2 Nonlinear variation of the refractive index

At this point we render explicit the nonlinearity enclosed in δn(~r) term in Eq. (1.7).

In this Thesis, we deal with the electro-optic response as the principal phenomenon that

gives rise to the nonlinear variation of the refractive index. The electro-optic response

emerges from the coupling between a low-frequency electric field, for us the quasi-static

photorefractive ~E, and high-frequency electromagnetic field ~Eopt, i.e. the light beam. The

physical mechanism of the coupling can be explained assuming that the material reacts to

the presence of ~E changing locally its dielectric properties. This means a variation of the

high-frequency polarization that affects also the propagation of ~Eopt. The more suitable

parameter to describe the electro-optic effect is the tensor ε = ε0n
2 or the strictly correlated

tensor 1/n2 [5]. We define (1/n2) = (1/n2)| ~E=0+∆
(

1
n2

)
. The tensor variation ∆

(
1
n2

)
is

therefore caused by the low-frequency ~E via the nonlinear components of the susceptibility

of the medium, i.e. its polarization and electric displacement vector. We note that ∆
(

1
n2

)
can be considered a local variation if it is compared to the spatial and temporal nonlocality of

the charge migration [5]. TheE-dependence of ∆
(

1
n2

)
can be summarized by the following

tensorial expression:

∆
( 1
n2

)
ij

= rijkEk + sijklEkEl, (1.24)

where the sum on repeated indices is assumed and rijk and sijkl are the linear and quadratic

electro-optic coefficients respectively. In our experiments we essentially deal with only

centrosymmetric media, which are all of our crystals, above their Curie point. For centrosy-

metric materials, the linear term in (1.24) disappeared and only the quadratic electro-optic

response remains with sijkl that has a strong temperature dependence. In this situation, it is

more appropriate to consider polarization ~P instead of ~E, so we have

∆
( 1
n2

)
ij

= gijklPkPl, (1.25)

with gijkl the element of the electro-optic tensor referred to ~P . We point out that gijkl is

temperature independent since all the dependence in temperature is enclosed in ε. From
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(1.25) we get the second order variation of the refractive index ∆n(E)

δn(E) = −1
2n

3
0geffε

2
0 (εr − 1)2E2 (1.26)

where we have introduced geff the effective electro-optic parameter. Through the photore-

fractive effect we have found the expression for | ~E| [Eq. (1.22)] and inserting it in (1.26),

we finally obtain:

δn(I) = −δn0
1

(1 + I/Ib)2 (1.27)

with δn0 = (1/2)n3geffε
2
0 (εr − 1)2E2

0 . We note that geff governs the sign of the nonlin-

earity. We have a focusing (defocusing) nonlinearity for geff > 0 (geff < 0). The ratio

I/I0 indicates that also low powers can produce appreciable effects and it is a consequence

of the cumulative response.

1.3.3 Cumulative nature of photorefractive response

Photorefraction is a nonlinearity based on the electro-optic response to a photoinduced

space-charge field [5]. The spatial and temporal dynamics of the nonlinearity are dominated

by the underlying mechanisms leading to the space-charge distribution, namely photoexcita-

tion/recombination from deep-inband donor-impurities and charge migration through drift

and thermal diffusion. Under quite general assumptions, typical of most experimental condi-

tions, and in the accessible 1+1D case, that is, when the optical field depends only on one

transverse axis (say the x axis), the photo-excitation/migration/recombination mechanism

reaches a steady-state for an electric field that is well approximated by

E(x) = E0

1 + I(x)
Id

, (1.28)

where I is the optical intensity and Id is the dark illumination. The dark illumination is the

intensity equivalent to the low residual thermal conductivity in the absence of the optical

field. It can be artificially increased illuminating the sample with a second plane-wave optical

field, the so-called background illumination. This model is termed the steady-state screening

model for photorefractive solitons. For a linear electro-optic response, that is, in conditions

in which ∆n(E) ∝ E, this leads to the saturated Kerr response ∆n = −∆n0(1 + I/Is)−1,

with Is ≡ Id while, for a quadratic electro-optic response with ∆n(E) ∝ E2, to the

saturated response ∆n = −∆n0(1 + I/Is)−2. At steady-state, the small fraction of light

absorbed by the donor impurities promotes to the conduction band the same number of

electrons per unit of time that recombe throughout the sample, while on consequence of

the space-charge field, diffusion, and external bias, the net charge migration per unit time

in all regions is zero. This steady-state is reached only after a transient regime in which
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the space-charge is built-up in time, or accumulated, ultimately to form the steady-state

distribution. In this transient, nonlinear response is accumulated, the crystal passing from

being a homogeneous system to one with a growing ∆n. The build-up process, in conditions

in which the crystal is subject to a constant external bias and is illuminated by a constant

optical field, involves a complex temporally nonlocal optical response [36].

A good approximation to the transient can be achieved on time scales larger than

the electron-recombination time, i.e., in conditions in which the excitation-recombination

process has reached locally an equilibrium. Here the transient is governed by the charge

relaxation process associated to charge conservation, ∂tρ+∇ · J = 0, where ρ and J are

respectively the charge and current densities. The build-up then obeys

td
∂E

∂t
+
(

1 + I

Id

)
E = E0, (1.29)

where td is the dielectric relaxation time. The model can be further simplified by considering

situations of weak diffraction, that is, conditions in which the build-up is essentially constant

along the propagation axis, so that [5]

E = E0e
−
(

1+ I
Id

)
t

td . (1.30)

For a quadratic electro-optic response, the resulting nonlinearity is

∆n = −∆n0e
−
(

1+ I
Id

)
2t
td ' −∆n0e

− 2It
Idtd ≡ −∆n0e

− I
Is(t) (1.31)

as I � Id in the regions of interest for the propagation and having defined Is(t) ≡ Idtd/2t.
It also possible, under some approximations, the most important of which is neglecting

the weak x dependence, to exploit the time dependence of the nonlinearity to achieve the

evolution of the light beam along z or, more precisely, along the so-called zeff . The easiest

way to derive zeff is to consider the one-dimensional NLSE for the pure Kerr nonlinearity:

i
∂u

∂z
+ 1

2
∂2u

∂x2 + δn|u|2u = 0. (1.32)

In a first approximation, the dependence on time t can be can be factored out from the

nonlinear variation of the refractive index δn = f(t)∆n(|u|2), where f(t) is a func-

tion which depend only on t. The dynamics along each transverse coordinate is thus

described by the one-dimensional equation i∂zu + (1/2k)∂2
xxu + 2ρ|u|2u = 0, where

ρ = (k/n)∆n0f(t) is the single parameter that fixes the relative strength of diffraction

and nonlinearity. Introducing the following change of variables, zeff = ρz, X =
√

2kρx
and u(x, z) = ψ(X, zeff ), the equation can be transformed into the dimensionless NLSE:

i∂zeff
ψ + ∂XXψ + 2|ψ|2ψ = 0. An analogous renormalization of the wave equation is

widely adopted in nonlinear fiber optics, where the optical power of the input wave is
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exploited to mimic the spatial dynamics along the fiber [37]. Rigorously, since the normal-

ization makes dispersive terms slowly varying along the propagation, the approach allows to

observe only an effective field evolution.

1.4 Photorefractive screening soliton

Solitons, in general, are localized waves that do not spread in time or space. They are

ubiquitous in nature and can be found in several systems such as optical fibers [38, 39],

semiconductor microcavities [40], Bose-Einstein condensates [10], water [41], crystals [42]

and lattices [3].

From a mathematical point of view, spatial solitons emerge when the diffraction is exactly

compensated by the nonlinearity so that the beam is shape-invariant along propagation,

namely the z axis. The solution is analytic for pure Kerr nonlinearity and for (1+1D) soliton,

that is a soliton with only one transverse dimension, i.e. x-axis, that propagates along

another dimension, i.e. z-axis. For (2+1)D soliton, two transverse dimensions, x and y, plus

one propagation dimension, a numerical description is possible and the picture requires the

taking into account the intrinsic instability of the 2D nonlinearity and the anisotropy of the

photorefractive response.

1.4.1 (1+1)D Soliton

As discussed above, (1+1D) admits an analytic solution. The soliton, to preserve the

shape of the beam during propagation, needs that the z-dependent factor is confined only

in a phase factor. We, therefore, impose the solitonic solution as follows, trying to find the

right parameters according to Eq. (1.7),

A(x, z) = u(x)eiΓz
√
Ib + Id (1.33)

with Γ the solitonic propagation constant and, as discussed above, Id � Ib. Passing trought

the dimensionless quantities [43]

ξ ≡ x

d
d ≡ (±2kb)−1/2 b ≡ k

n

[
1
2n

3geffε
2
0(εr − 1)2l

(
V

L

)2
]
, (1.34)

In these assumptions we have included the value of δn(I) found before. We get, therefore,

the dimensionless equation for centrosymmetric bright screening (1+1)D soliton [44]:

d2u(ξ)
dξ2 = −

[
1

1 + u2
0
− 1

(1 + u(ξ)2)2

]
u(ξ) (1.35)
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where d is called nonlinear length and u(ξ) is the soliton amplitude u(x) normalized to

the square root of the sum of background and dark irradiances. In the u0 � 1 limit, the

pure Kerr model is recovered, which is integrable, and the solution takes the shape of a

hyperbolic secant [43, 45]. This means that for an input gaussian beam some intensity is

radiated away to get the right secant-profile [46]. This solution represents an attractor to

the system dynamics and it is stable to perturbations [47]. The main beam parameters that

characterize the soliton solution are the normalized width ∆ξ (associated to the FWHM

of the imput beam) and the normalized intensity u0 and the relation between these two is

unique [47].

The full problem can be solved integrating numerically Eq. (1.35) and the solution

remains a bell-shaped function but it is are neither a Gaussian nor a hyperbolic secant [47].

In this case the relation between ∆ξ and u0 is no longer fixed but it is summarized by the

so-called existence curve (an example of this is reported in Fig. 1.4).

Figure 1.4. Soliton existence curve for photorefractive spatial solitons. The solid line is a theoretical
prediction whereas the dots are experimental points. (From Ref. [44]).

1.4.2 Anisotropy in the photorefractive response and (2+1D) soliton

In the simplified 1+1D model, the low-frequency photoinduced electric field E depends

only on the transverse x-axis along which the bias field is applied. In a more general

situation, as occurs for optical beams that are confined in two transverse directions in the

(x, y) plane, the situation is more involved since the external field is delivered by two

x-directed plane electrodes while the photoinduced electric field E, obeying the quasi-static

irrotational condition ∇ × E ' 0, will also have a y-directed component [5]. In typical

experimental conditions, a prevalently x-directed field E ' Eux emerges in a manner

analogous to what occurs when a dielectric cylinder (the illuminated region) is place in a

uniform electric field. As for the polarization charge in the dielectric, here the space-charge

forms two lateral lobes along the x-axis. The lobes break the rotational symmetry of the

nonlinearity. The lobes, that have been subject of intense debate and study, play a dominant
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role when diffraction is strong. In the weakly diffracting case, as the one investigated in this

Thesis, they affect the finer details of the nonlinear dynamics.

The anisotropy seems to theoretically to allow, at least, only (2+1D) elliptic soliton and

to prohibit the existence of perfectly cylindrical one [48]. In truth, circular soliton are also

possible, the key is the lobes suppression that occurs for enough small transverse dimension

∆x and ∆y [48]. In turn, we have to note that the two-dimensional soliton is unstable for

pure Kerr nonlinearity but it is stable for the saturable nonlinearity as our photorefractive

one [49].

1.4.3 Solitons interaction

One of the featuring properties of solitons is how they behave after a mutual interaction.

This problem is extensively studied for a great variety of different soliton such as dark

solitons [50], solitons with different dimensionality [51], solitons carrying an orbital angular

momentum [52] and optical spatial bright solitons [53]. Every soliton-soliton interaction is

affected by the degree of coherence between them.

Solitons manifest elastic and inelastic collision, so that, despite from their wave nature,

they behave like particle. The forces exchanged during interaction can modify the soliton

shape and/or direction. It is possible to observe, for low-saturation systems, interpenetration

without energy exchange, soliton repulsion and soliton spiraling [54, 55], whereas, for highly

saturated media, energy transfer occurs with soliton oscillation and fusion [56]. Among all,

for optical bright soliton, coherence regulates the attractive and repulsive forces. In detail,

when the two solitons are perfectly in-phase (out-of-phase), an attractive (repulsive) force

intervenes [57]. Incoherent collision, instead, simply reproduces the attractive force to a

lesser degree [53].

1.5 Modulation Instability

In this Section we brief introduce to Modulation Instability (MI), another phenomenon

that is described by NLSE. Then, MI is correlated to solitons and, like the latter, MI can be

observed in many fields [58].

Formally this kind of instability emerges when the propagation is affected by a very

strong nonlinearity. Like solitons, we are able to analytically treat MI only for (1+1)

dimension and for pure Kerr nonlinearity, that represents a limit for our experiment. In these

approximations, we recall Eq. (1.32)):

i
∂u

∂z
+ 1

2
∂2u

∂x2 + |u|2u = 0. (1.36)

A possible solution is given by the continuous plane wave u(x, z) = u0 exp(ipz + iqz)
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with u0 is a constant and p and q satisfy the dispersion relation p = −q2/2 + u2
0 [49]. Now

we evaluate the stability of this solution against the small perturbation parameters u1 and

v1. Inserting the perturbed solution u = (u0 + u1 + iv1) exp(ipz + iqz) in (1.36), we

get a system of two couple equations that can be solved imposing the plane wave form

exp(iKz + iQx). The dispersion relation obtained is

K = −qQ+Q
(
Q2/4− u2

0

)1/2
, (1.37)

and the solution remains stable until u2
0 < Q2/4. Otherwise for u2

0 > Q2/4, that is for large

self-focusing, the solution becomes unstable and MI emerges [49]. MI is the result of the

nonlinear amplification of the small perturbations producing a strong modulation on the

principal wave [58].

Experimentally, we observe MI when we propagate the light beam in the photorefractive

crystal with self-focusing conditions that exceed those appropriate for the soliton existence,

e.g. too high electric field or temperature too close to TC . We observe 1D wave break up in

equally spaced aligned 2D solitons that maintain the overall 1D symmetry as in Fig. 1.5.

Figure 1.5. Experimental observation of modulation instability in KLTN crystal at T = TC + 5K.
The input 1D light beam with λ = 532 nm and FWHM= 9 µm first linearly propagates and
spread to FWHM= 31 µm after 2.4 mm of crystal length. After the application along the y-axis
of an external electric field of 2.5 kV/cm, the beam shrinks and collapse to the MI reported.

Providing further nonlinearity, the behavior changes dramatically and random speckle

pattern emerges with the appearance of rogue waves.

1.6 Rogue Waves

In this Section we make a brief introduction of rogue waves, extreme events that can

affect several wave-sustaining systems [59]. In particular, our attention is focused on spatial

rogue waves that emerge in a photorefractive crystal due to the very strong cumulative

nonlinearity larger than that the one that sustains modulation instability .

The first observations of rogue waves were done in ocean [60]. Since they represent a
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real danger for vessels, many efforts heve been exercised to understand the phenomenon

but with little success due to the intrinsic difficult of observing in nature such rare events

[61]. The need of available controllable experimental conditions has driven the search for

rogue waves in different systems. In fact, despite they come from different mechanisms, all

extreme events respond to an universal statistics and they fulfil the NLSE. The aim is to

exploit more affordable systems as test benches for their ocean counterpart and, of these, a

very suitable choice are ferroelectric crystals in proximity of the phase-transition due to their

large photorefractive nonlinearity and their intrinsic random distribution of ferroelectric

domains of different size and orientation [62].

The key signature of the extreme events is the presence of long-tail statistics, which

indicates, for spatial experiments, the existence of high intensity peaks in the transverse

profile. To clarify this point, we introduce the intensity distribution function, e.g. extrapolat-

ing the peak intensities over more than one thousand images. For a gaussian distribution

we expect a decay following the function P (I) = exp(−I/Ī)/Ī [63]. Large deviation

from gaussian behavior means that the intensity distribution is described by a stretched

exponential P (I) = exp
(
−cIb − a)

)
with b < 1 that indicates the presence of long tail

statistics. Furthermore, to recognize a rogue wave, the hydrodynamic criterion is also

commonly adopted, that is an extreme event is identified if its intensity exceed at least by a

factor of two the mean amplitude of the highest one-third of the detected waves [64]. Both

of these criteria are well satisfied by photorefractive ferroelectric crystals close to the Curie

point as shown in Fig. 1.6(a). It is relevant the the rogue phenomena disappear for crystals

far above the phase transition (Fig. 1.6(b)), demonstrating the relevant role of nonlinearity in

extreme events formation. Simulations, indeed, demonstrates that the modulation instability

state evolves into more complex state with random quasi-soliton fusion [61].

Figure 1.6. Rogue wave in nanodisorder ferroelectric crystal for (a) large nonlinearity for T ∼ TC

and (b) small nonlinearity for T > TC . Solid red line represents the gaussian P(I), green dashed
line indicates the limit of hydrodynamic criterion and squares and triangles are experimental
points. The blue lines are fit curve with stretch exponential with (a) b = 0.65 and (b) b = 0.99.
(Adapted from Ref. [61]).

In the next chapters we will discuss again extreme events in nonlinear media. We will

study the special case of rogue waves that produce an evidence of a Fermi-Pasta-Ulam-

Tsingou recurrence and, ultimately, we will be able to predict their appearance.
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1.7 Numerical solution of the NLSE

In this Section we discuss briefly a numerical method to solve the NLSE (1.7) and to

obtain the evolution of a given light beam into a nonlinear medium. The method is the

so-called Beam Propagation Method (BPM) and it is a kind of Split-Step Fourier Method

[65, 66].

To derive the BPM we can rewrite the one-dimensional NLSE in the compact form:

∂

∂z
A = (D̂ + N̂)A, (1.38)

where D̂ = − i
2k

∂2

∂x2 e N̂ = −i kn0
δn(x) are the diffraction and the nonlinear inhomo-

geneities operators respectively. Eq. (1.38) can be solved formally and solution is expressed

in the recursive mode:

A(x, z + l) = el(D̂+N̂)A(x, z), (1.39)

where l is the single evolution step. Generally, the dispersion and nonlinearity effects are

not separable because they act together all along the propagation in the medium and the

commutator
[
D̂, N̂

]
6= 0.

The BPM provides an approximate solution of the NLSE applying separately D̂ and N̂

for each step of l length. The approximation is good if l � L the whole propagation and

if the dynamics along z is sufficiently slow. In these hypotheses we can apply the Trotter

identity1 [67] on Eq. (1.39) and we obtain:

A(x, z + l) = e
l
2 D̂e

ˆlNe
l
2 D̂A(x, z) +O(l2). (1.40)

This equation gives the recipe to built an efficient algorithm. We apply cyclically the

operators D̂ and N̂ on the initial state to get the evolution. We can do this because the

analytical effects of D̂ and N̂ are known.

Specifically, to take into account D̂, we must move in the Fourier space. Neglecting N̂ ,

we have in direct space ∂
∂zA = ∂2

∂x2A that corresponds in Fourier space of:

∂

∂z
A = ik2

xA, (1.41)

and the solution of this equation is A(kx, z + ∆z) = A(kx, z)e
i
2kx∆z . To explicit the effect

1Given two non-commuting operators A and B, we have:

e(A+B) = lim
S→∞

(
eA/2SeB/SeB/2S

)S
'
(
eA/2SeB/SeB/2S

)S
eO(1/S2).
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of D̂ in direct space, we can simply perform the inverse Fourier transform and we obtain:

A(x, z + ∆z) =
∫
R
A(kx, z)e

i
2kx∆zeikxxdkx. (1.42)

For N̂ the derivation is easier. In fact, neglecting D̂, we have ∂
∂zA = −i kn0

δn(x)A

whose solution is directly A(x, z + ∆z) = A(x, z)e−i
k

n0
δn(x)∆z .

1.7.1 BPM simulation of (1+1D) soliton

In this Paragraph we report a significant example of the using the BPM to achieve the

soliton propagation in a self-focusing medium which follows the saturable Kerr nonlinearity

δn(I) = −δn0
1

(1+I/Ib)2 .

(a)

(c)

(b)

(d) (e)

Figure 1.7. Linear and non linear propagation in 2 mm photorefractive medium of an input gaussian
beam with FWHM= 6 µm. (a) Linear propagation in the x− z plane and (b) profiles at z = 0
(blu line) and z = 2 mm (orange line). The diffraction produces a beam with FWHM=34 µm. (c)
Soliton propagation in the x− z plane and (d) profiles at z = 0 (blu line) and z = 2 mm (orange
line). (e) Refractive index variation δn at z = 2 mm. The other parameters of the simulations
are: λ = 532 nm, n0 = 2.3, I/Ib = 60, δn0 = 10−4, εr = 1.3× 104, geff = 0.16, E0 = 2.4
kV/cm.

First, we study the linear propagation of a gaussian beam with FWHM= 6 µm along

z = 2 mm medium with n0 = 2.3. The resulting propagation is shown in Fig. 1.7(a).

From Fig. 1.7(b) we can appreciate the amount of the diffraction: the beam spreads up to a

FWHM=34 µm.

The introduction of the nonlinearity of Eq. (1.27), induced by the application of E0 =
2.4 kV/cm, sustains the solitary propagation of Fig. 1.7(c) without appreciable changing in

the beam profile between the input and the output of the medium [Fig. 1.7(d)]. Thanks to

the BPM we can also study the shape of the nonlinear refraction index variation δn that we

report in Fig. 1.7(e). We see that there is a global lowering of the refractive index except

from the area illuminated by the beam. The net effect is to create a sort of waveguide, that is
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a zone with a refractive index upper than outside, and this cause the beam to be guided and,

ultimately, to not diffract.
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Chapter 2

Observation of the exact dynamics of
the Fermi-Pasta-Ulam-Tsingou
recurrence

Fermi-Pasta-Ulam-Tsingou1 recurrence (FPUT) is one of the most important problems in

nonlinear physics [69]. In this Chapter we report our experiments that allowed us to observe

several spatial recurrences. The recurrence period and phase-shift are found in remarkable

agreement with the exact recurrent solution of the Nonlinear Schröedinger Equation provided

by Grinevich and Santini [70, 71], whereas the recurrent behavior disappears as integrability

is lost. This identify the origin of the recurrence in the integrability of the underlying

dynamics and allows us to reconstruct the exact initial condition of the system after several

return cycles.

2.1 Integrability and the FPUT problem

The FPUT problem was discovered by Fermi in collaboration with Pasta, Ulam and

Tsingou two years before the publication of their famous paper [72], occurred one year

after Fermi’s death. Fermi didn’t understand why a chain of weakly anharmonic oscillators,

with a single-mode initial condition, doesn’t exhibit thermalization, also after a long time

scale2. They discovered that the system, instead of converging to the equilibrium, that is

the energy equipartition on all the modes, returns, almost periodically, to its initial state.

Indeed, nonlinear interaction in a multimodal system introduces coupling between its linear

modes. When a reduced set of modes is initially excited, the energy exchange associated to

this coupling provides the route to reach thermodynamic equilibrium. This process towards
1The contribution of Mary Tsingou was officially recognized only in 2008 [68].
2In 1955 they believed that their time scale was long, referring to their computational power. Nowadays their

time scale is generally considered short.
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thermalization is irreversible but they showed that it can present local reversibility, with the

appearence of specific quasi-periodic states [69, 73, 74].

An approach to understand the physical mechanism underlying the phenomenon rests

on the quasi-integrability of the system [75–78]. This property implies the existence of a

time scale for which the FPUT dynamics is essentially integrable. In fact, for integrable

models, pure thermalization is never reached since normal modes are phase-locked and not

free to resonantly interact and spread energy over the entire spectrum [76]. Consistently,

certain integrable systems support breathers; their phase space presents homoclinic orbits

connecting unstable solutions, so that trajectories starting in proximity of these unstable

points can return close to the original state. The key role of integrability explains why

the FPUT recurrence has eluded in-depth experimental investigations. Specifically, while

in numerical studies the thermalization time was too large to be initially identified, quite

the opposite issue arises in experiments: in open systems involving several interacting

modes recurrences to the initial state are not normally reported. In fact, due to the effect of

intrinsic dissipation or input noise amplification [79], a natural process rarely is integrable

and preserves multiple returns. In fact, observations in Hamiltonian systems have so far been

limited to one or two return cycles [80]. Evidences of the recurrence of states have been

reported in deep water waves [80], surface gravity waves [81], magnetic rings [82], optical

microresonators [83] and optical fibers [84–86]. In spite of these efforts, how the specific

initial condition determines the properties of the recurrent behavior remains a fundamental

point that has never found experimental validation. An important attempt in this direction

has been reported very recently in loss-compensated optical fibers [86], where, however, the

tailored amplification allows the system just to mimic the return cycles that would have its

non-dissipative counterpart. In this setting, among the many recurrent behaviors expected

varying the input state, only the two types with opposite symmetry has been observed and

related to separate families of orbits in phase space [86]. The observation of the FPUT

dynamics as predicted by exact solutions of an underlying integrable model remains an open

challenge.

2.2 Exact recurrences in the nonlinear Schrödinger equation

In this section we resume the theory of Santini and Grinevich about the recurrence

of rogue waves. We start our analysis by recalling the NonLinear Schrödinger Equation

(NLSE) (Eq. 1.7 of Chapter 1) and, more specifically, we use its integrable form, i.e. for

pure Kerr effect:

i∂zψ + ∂xxψ + 2|ψ|2ψ = 0. (2.1)
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This equation is associated to an universal model describing the propagation of a quasi-

monochromatic field ψ(x, z) in a weakly nonlinear medium [87]. Exact solutions of Eq.

(2.1) corresponding to perturbations of the constant background wave have recently attracted

considerable attention in hydrodynamics and optics [39, 41, 88–92], in particular as they

describe the dynamics of the Modulation Instability (MI) and may be relevant in explaining

the formation of extreme amplitude waves (rogue waves) [59, 61, 93–96]. On the other

hand, the NLSE naturally arises as the continuous limit (infinite number of modes) for the

dynamics of a chain of anharmonic oscillators coupled by a cubic nonlinearity, the so called

β-FPUT model [97, 98]. In this framework, the problem of finding the time scale of the

recurrence as a function of the specific input condition has been elusive up to recently. The

analytic description of the recurrence for an initially-perturbed background field of finite

length with a single unstable mode has been reported by Grinevich and Santini using the

finite-gap method or matched asymptotic expansions [70, 71]. Theory points out a variety

of phase-shifted recurrences closely determined by the phase and amplitude of the input

condition. In particular, considering the single-mode perturbed input field

ψ0(x) = 1 + ε
(
c1e

ikx + c2e
−ikx

)
, (2.2)

with complex amplitudes c1 and c2 and ε� 1, we expect the recurrent growth of a coherent

structure of the Akhmediev type (x-periodic) and its recurrent decay to the initial state. The

first-appearance time or recurrence partial-period of this large-amplitude wave is predicted

to as [70, 71]

Z1 = 1
σk

log
(

σ2
k

2ε|α|

)
, (2.3)

where σk = k
√

4− k2 is the growth rate of the input unstable mode with wavevector k and

α = c∗1 − c2 exp(2iϑ) with ϑ = arccos(k/2). The multiple recurrence of the field to the

initial condition corresponds to periodic orbits close to the homoclinic orbit described by

the well-known Akhmediev breather (AB) exact solution of the NLSE [99]. In fact, in the

m-th recurrent nonlinear stage of the dynamics (m ≥ 1), the field is described by the AB

soliton, which, at its maximum, reads as

ψ(x, Zm) = eiξm
cos(2ϑ) + sin(ϑ) cos[k(x−Xm)]

1− sin(ϑ) cos[k(x−Xm)] +O(ε), (2.4)
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where ξm, Zm and Xm are parameters related to the input condition through the elementary

functions [70, 71]

Zm = Z1 + (m− 1) 2
σk

log
(

σ2
k

2ε
√
|αβ|

)
,m ≥ 1

Xm = arg(α)− ϑ+ π/2
k

+ (m− 1)arg(αβ)
k

,

ξm = 2Zm + 2(2m− 1)ϑ,

(2.5)

with β = c∗2 − exp(−2iϑ)c1. Altough solution of the Akhmediev type have been observed

and connected to recurrent behaviors in different settings [80, 86], experimental demon-

stration of Eq. (2.3), which forms the basis for the FPUT dynamics in a broad range of

systems, is lacking. In other words, the way in which these exact recurrent solutions can

have physical relevance is an open question.

2.3 Numerical Simulations

In this Section we show the FPU recurrence numerically, evolving the state (2.2) through

the pure Kerr NLSE via the BPM (explained in Chapter 1). To simplify the analysis we
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Figure 2.1. Numerical simulation of the FPUT recurrence. (a) Evolution of the symmetric state
ψ0(x) = 1 + ε

(
|c|eikx − |c|e−ikx

)
with k = 0.18 µm−1 with the appearence of three FPUT

recurrences. Each rogue has an Akhmediev breather profile as analyzed along the white dashed
lines for the first one (b) and the second one (c). Points are the numerical values whereas the
solid lines are fit curves according with Eq. (2.4) (see text).

limit our study to the symmetric perturbation, that is for |c1| = |c2| and arg(c2)-arg(c1)=-1,
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coherently with the experiments below. In Fig. 2.1(a) we report the case of k = 0.18 µm−1.

Three FPUT recurrences are clearly evident and their intensity profiles fit well with the

squared AB formula (2.4) (details of the fitting method are reported in Paragraph 2.5.1). The

profiles and the fit curves are shown in Figs. 2.1(b),(c) (the profile of the third recurrence

is not reported). The fit parameters are for both θ = 1.019 and k = 0.18, as expected. We

note that X1 = 19.89 whereas X2 = 17.63, this indicates that there is a slight shift of the

recurrences along the x-axis, as predicted by the theory and also visible in Fig. 2.1(a).

We point out that the simulation are carried out for an arbitrary long propagation. In

our experiments, instead, we are limited by the fixed length of the crystal but, as showed

below, we are able to overcome this fact rescaling units exploiting the time-dependence of

the nonlinearity.

2.4 Experimental Setup

To investigate FPUT recurrences in optical dynamics, we consider the propagation of

nonlinear optical waves in a photorefractive crystal. The wavectors of the optical field

constitutes the linear modes which are coupled by nonlinear propagation. The transverse

crystal size fixes the finite length of the input wave, a condition ensuring a countable set

of Fourier modes and a finite recurrence period. Under specific conditions, the system

can be described by the NLSE in the spatial domain, with the propagation direction acting

as evolution coordinate [100]. The experimental geometry of our setup is shown in Fig.

2.2(a). In detail, a y-polarized optical beam at wavelength λ = 532 nm from a continuous

30 mW Nd:YAG laser source is split and recombined in the xz-plane to form a symmetric

three-wave interferometer, with the two arms having opposite wavevectors and forming an

angle θ with the 300 µW central beam. The interference pattern is focused by a cylindrical

lens down to a quasi-one-dimensional beam with waist ω0 = 15 µm along the y-direction

and periodically-modulated along the x-direction [inset in Fig. 2.2(a)]. This pattern well

satisfy our request of one-dimensional background wave with a coherent single-mode

perturbation. It follows that along the transverse x-direction, the relevant one for the dy-

namics under study, the resulting optical field is E = E0 +E1e
iφ1eikx +E2e

iφ2e−ikx, with

k = 2π tan(θ)/λ. The optical intensity normalized to the background I/I0 (I0 = |E0|2)

can be expressed as I/I0 ≡ |ψ0(x)|2 = 1 + A cos(kx + B), which directly maps

the initial condition in Eq. (2.2) with A = 2ε|γ|, B = arg(γ) and γ = c1 + c∗2.

With respect to the experimentally accessible parameters, the amplitude and phase of

the perturbation read as A = 2
√

[I1 + I2 + 2
√
I1
√
I2 cos(φ1 + φ2)]/I0 and tan(B) =

(
√
I1 sinφ1 −

√
I2 sinφ2)/(

√
I1 cosφ1 +

√
I2 cosφ2). Therefore, the spatial frequency of

the perturbation k can be varied acting on the geometrical angle θ in between the arms of the

interferometer, whereas their optical power and phase delay φ ≡ φ1+φ2 = arg(c1)+arg(c2)
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set, respectively, the amplitude and phase of the single-mode [Fig. 2.2(b-c)]. The fringe

visibility is thus maximum for φ1 +φ2 = 0 and minimum for φ1 +φ2 = π. In the symmetric

case I1 ' I2, we have B ' (φ1 − φ2)/2.
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Figure 2.2. Experimental setup. (a) Sketch for the symmetric three-wave interferometric scheme
used to generate a quasi-one-dimensional background wave with a single-mode perturbation that
propagates in a pumped photorefractive KLTN cystal. The inset shows an example of the detected
input intensity distribution (scale bar is 50 µm). (b) Input intensity x-profiles normalized to the
background for different amplitudes of the harmonic perturbation (k = 0.019 µm−1). (c) Phase
control of the initial condition: intensity distribution varying the relative phase φ between the
interfering waves.

The copropagating waves are launched into an optical quality specimen of 2.1(x) ×
1.9(y) × 2.5(z) mm. The crystal, a potassium-lithium-tantalate-niobate (KLTN), is a solid

solution of K0.964Li0.036Ta0.60Nb0.40O3 with Cu and V impurities. It exhibits a ferroelectric

phase transition at the Curie temperature TC = 284 K. Nonlinear light dynamics are studied

in the paraelectric phase at T = TC + 8 K, a condition ensuring a large nonlinear response

and a negligible effect of small-scale disorder [101]. The time-dependent photorefractive

response sets in when an external bias field E is applied along y (voltage V = 500 V). To

have a so-called Kerr-like (cubic) nonlinearity from the photorefractive effect, the crystal

is continuously pumped with an x-polarized 15mW laser at λ = 633 nm. The pump does

not interact with the principal beams propagating along the z-axis and only constitutes a

reference intensity larger than the single-mode perturbed background wave. The spatial

intensity distribution is measured at the crystal output as a function of the exposure time by

means of an high-resolution imaging system composed by an objective lens (NA = 0.5)

and a CCD camera at 15 Hz.

Since the propagation length cannot be varied in our setting and the intensity profile

inside the crystal cannot be directly measured [66], nonlinear evolution of the input field

is observed by the time the crystal is exposed to the copropagating light beams. The

method relies on the nature of the photorefractive nonlinearity, that is noninstantaneous and

accumulates in time as a photogenerated space-charge field builds up. Since the process
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occurs on a slow time scale compared to wave propagation through the medium, this implies

a nonlinear coefficient that depends parametrically on the exposure time. Due to the invariant

properties of the wave equation, observations of the intensity distribution at the crystal output

at different times correspond to beam propagation for increasing effective distances zeff (see

Section 1.3.3 of Chapter 1). This is equivalent to study the dynamics varying the strength of

the nonlinearity through an external parameter, in close analogy with FPUT investigations in

optical fibers where changes of the input optical power are exploited [84]. Recalling Chapter

1, we can factorize δn = f(t)∆n(|A|2). In our system, that is the focusing photorefractive

nonlinearity in centrosymmetric media, we have δn = f(t)∆n0/(1 + |A|2)2, where ∆n0

include the quadratic electro-optic effect. For |A|2 � 1, as occurs in our externally-pumped

configuration, we obtain the Kerr-like regime where ∆n(|A|2) ≈ 2∆n0|A|2, apart from a

constant shift. As mentioned above, the evolution in zeff is studied at a fixed value of z (the

crystal output) varying the exposure time t. In fact, experimental results obtained in similar

photorefractive KTN crystals have verified that the average index change grows and saturates

according to f(t) = 1− exp(−t/τ) [102]. The time dependence is well defined through the

saturation time τ once the input beam intensity, applied voltage and temperature have been

fixed. Using this relation with the measured τ ≈ 80 s, observations at the crystal output

are rescaled as a function of the effective distance Z. The nonlinear response function f(t)
represents the main limitation of the technique in reconstructing the spatial dynamics from

time-resolved measurements. Specifically, f(t) is independent of the local intensity only in

a first approximation, a fact that affects the accuracy of the obtained field evolution. When

the intensity distribution presents large intensity variations or strong spatial inhomogeneities,

intensity-dependent corrections to f(t) should be taken into account to have a quantitative

reconstruction along the evolution coordinate. These high-order terms are nonlocal in space

and time; their main effect is that the time evolution of high-intensity regions slows down

[5]. Therefore, in the present case, the method is particularly accurate up to a distance Z1

(first-appearance time). Small longitudinal deformations appear at longer evolution scales

[Fig. 2.3(a-b)] and the relative distance between the observed AB structures can not be

accurately evaluated. This fact explains the discrepancy with theory for the value of the

recurrent period when measured through the Z-distance between returning intensity maxima.

In particular, the recurrent AB seems to appear at an effective distance that is always shorter

than expected according to theoretical predictions. Moreover, as the nonlinearity finally

saturates in time, the field dynamics at large Z departs from that of the integrable model and

evolution towards thermalization is observed.
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Figure 2.3. Observation of the FPUT recurrence of Akhmediev breathers. (a-b) Evolution of the
detected spatial intensity distributions for (a) k = 0.019 µm−1, A = 0.3 and (b) k = 0.030
µm−1, A = 0.5. Both observations show the appearance of a high-intensity pattern at a distance
Z1 (red dotted line), its return to the initial state and multiple recurrences with a spatial phase-
shift that depends on the experimentally assigned input condition (∆ ≈ 15 µm, 2 µm in (a)
and (b), respectively). (c-d) Intensity x-profile measured at the first appearance of the localized
waves (circles) fitted with the AB profile at its maximum (red line, Eq. (4)) for (c) k = 0.021
µm−1 and (d) k = 0.014 µm−1.
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2.5 Experimental Results

The spatial intensity distribution I(x)/I0 detected as a function of the evolution co-

ordinate Z is reported in Fig. 2.3(a) for k = 0.019 µm−1, A = 0.3. We observe the

input perturbation grow on the modulationally unstable background forming a train of

large-amplitude localized waves, which decays back to an almost constant background

and recurrently reappear from it. The set of linear modes undergoes several return cycles

in which energy flows back and forth, passing from the zero and first mode (the initial

perturbation) to a spectral distribution in which all the modes are excited, the signature of

the FPUT dynamics [103].

At variance with classical and quantum beating, such as Rabi cycles in two-level quantum

systems [104], here energy oscillations involve several modes and occur without any driving

field. At each cycle the whole field distribution is spatially shifted by an amount ∆, a

phenomenon also referred to as broken symmetry of FPUT recurrence [80, 86]. Although

a similar phase-shift has been associated theoretically to the specific gain of the seeded

wavevector [105] and the effect of dissipation [106], we show hereafter that it results from

the sensitivity of the dynamics to the specific initial phase. This phase-shift, as well as the

recurrence period detected through the first appearance distance Z1 of the high-intensity

pattern, strongly changes as the input perturbation is varied. For instance, in Fig. 2.3(b)

we report the observed FPUT recurrence for k = 0.030 µm−1 and A = 0.5, where no

significant phase-shift occurs. The recurrent behavior can be directly related to the excitation

from the single-mode input perturbation of an orbit close to the Akhmediev breather [71].

As shown in Fig. 2.3(c-d), the periodic intensity profile detected along x when the amplified

modes reach their first maximum is well fitted by the Akhmediev breather solution of the

NLSE at its maximum [Eq. (2.4)]. Consistently, throughout the manuscript we refer to

these localized states to as AB. The finding of exact solutions indicates that our system

remains close to the integrable regime on these effective distances, that is, it can be properly

described by the NLSE.

We study the FPUT recurrence by varying the single-mode input condition. Fixing the

initial phase of the field through a careful maximization of fringe visibility, we first analyze

the recurrence partial-period varying the amplitude of the perturbation A. Results in Fig.

2.4(a) show that the first appearance of the AB occurs at a distance that decrease as the

single-mode amplitude becomes larger. An analogous behavior is observed for the recurrent

breather (second appearance). In remarkable agreement with the analytic solution of the

NLSE, the observed scaling follows Eq. (2.3), which predicts Z1 ∝ log(1/A). For modes k

falling in proximity of the maximum gain, the recurrence period only weakly depends on

the input wavevector [Fig. 2.4(b)], a feature well captured by Eq. (2.3) through σk. More

importantly, the main effect on the recurrence is found to be related to the phase of the

initial condition. To investigate its role, we balance the optical power in the interferometer
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Figure 2.4. Properties of the recurrent behavior. Recurrence partial-period measured (dots) varying
(a) the amplitude of the input excitation (k = 0.023 µm−1) and (b) the frequency of the input
mode (A = 0.3). (c) Evolving intensity distribution detected for an input phase that varies along
x (k = 0.030 µm−1). White lines interpolates local maxima and serve as guides. (d) Zm as a
function of the initial dephasing. Blue and magenta lines in (a-d) are fitting functions according
with Eq. (2.3). (e) Recurrence phase-shift varying the input phase: measured sharp transitions
(dots) and predicted behavior (line).
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arms (I1 ≈ I2) and introduce a slight tilt in one of them, so as to have a perturbation with a

phase that depends on the spatial point. The observed FPUT dynamics is reported in Fig.

2.4(c); the AB appears and recurs phase-shifted at a propagation distance that varies along

the transverse coordinate. As a function of the input phase delay, Z1 presents an oscillation

having a sharp maximum for φ ' −0.3π and a broad minimum for φ ' −0.9π, 0.35π
[Fig. 2.4(d)]. This characteristic behavior, which reflects phase-dynamics in each return

cycle, is in remarkable agreement with the NLSE theory and represents its main validation.

In fact, in Eq. (2.3) the recurrent semi-period critically depends on |α|, a quantity that

oscillates with the relative phase of the complex amplitudes c1 and c2 forming the initial

perturbation. Specifically, in the case of symmetric perturbations (I1 ≈ I2), theory predict

a sharp maximum in Z1 for φ ' −2ϑ; from Fig. 2.4(d) we can thus obtain the theoretical

parameter ϑ ' 0.15, consistent with the one extracted from the AB profile. Moreover, a

sharp transition is expected for the recurrent phase-shift as a function of the input phases

[86]. In Fig. 2.4(e) we report the measured shift, which sharply passes from ∆ ≈ 0 to

∆ ≈ 1/2k varying the phase delay, a behavior that well agrees with the theoretical condition

cos(φ) ≷ cos(2ϑ). These effects indicate that the coherence of the field is maintained as

energy is exchanged between different modes: phase-locking dominates the nonlinear stage

of the unstable dynamics and thermalization slows down.
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Figure 2.5. Inverse problem. (a) Experimental observation used to test the predictability of the input
state from the recurrent dynamics (k = 0.021 µm−1). Measured (dots) and retrieved (line) input
field for different initial phases: (b) φ ' π, (c) φ ' 0 and (d) φ ' 0.3π. Dashed lines indicates
the uncertainty of the retrieved condition.

The deterministic properties of the return cycle imply its predictability once the input

condition is completely known, and vice-versa. To investigate this integrable character in
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experimental conditions we retrieve the actual initial state from the features exhibited by the

recurrent stage (inverse problem). We consider the FPUT dynamics reported in Fig. 2.5(a).

The phase B of the input perturbation is obtained taking into account that the periodic

transverse position X1 at which the first AB has its maximum intensity strictly depends on φ,

as well as the specific shift ∆ characterizing the return cycle. In fact, according to Eq. (2.5)),

we have X1 = (arg(α) − ϑ + π/2)/k. At each recurrent cycle the breather solution is

transversely shifted by ∆ = arg(αβ)/k. Therefore, when ϑ ≈ 0, arg β ' k(∆−X1)+π/2
and the phase of the input excitation can be evaluated as

B = arg(γ) ≈ k(∆−X1)− ϑ, (2.6)

where k and ϑ are extracted from the first AB profile. The amplitude of the single-mode

follows from the observed Z1 through the scaling in Fig. 2.4(a). As shown in Fig. 2.5(b-d)

for different initial dephasing, the field retrieved using this procedure agrees well with the

experimental input condition that generates the recurrence: the non-equilibrium dynamics

can be accurately traced on the basis of the underlying integrable model.

2.5.1 Analysis of the recurrence

The intensity traces detected as the normalized distribution I/I0 = |ψ|2 reaches their

maxima are compared with the Akhmediev breather profile in Eq. (2.4). In fitting the data

in Fig. 2(c-d), the coefficients ξm, k, ϑ and Xm are considered as bounded parameters. The

detected recurrence partial-period is analyzed according to Eq. (2.3); for the measurements

in Fig. 3(a) we consider a log(b/ε) as a fitting function, with a and b free parameters.

In Fig. 2.4(b) we use a log(b(k
√
K2
max − k2)2)/k

√
K2
max − k2, where a and b are free

parameters and Kmax ≈ 0.03 µm−1 is the wavevector with maximum gain that we indepen-

dently measure from spontaneous MI of the background wave. In Fig. 2.4(d) the detected

Zm is compared to log(a/
√
c2

1 + c2
2 − 2c1c2 cos(φ+ b)), being a, b, c1 and c2 bounded

parameters. In this case, it is interesting to note that the fitting procedure returns c1 ' c2,

that is, a balanced condition for the interferometer arms as experimentally settled. In Fig.

2.4(e) the fitting functions are a+ b/[cos(φ)− cos(c)], as predicted for the symmetric case

|c1| ≈ |c2|. As for the retrieval of the input perturbation, from the observed recurrences in

Fig. 2.5(a-b) we measure, for example, k = 0.021 µm−1, ∆ = 1± 1 µm, Z ′1 = 2.6± 0.1,

ϑ = 0.1 which, for X1 = 208 µm, gives B = −40.1 ± 0.3 and A = 0.33 ± 0.02. For

comparison, B = −40.9 ± 0.2 and A = 0.34 ± 0.01 are the values obtained fitting the

experimental initial intensity.



2.6 Discussion 34

(a)

(b)

p
u

m
p

 p
o

w
e

r

(c)
 

 

 

0 2 4
0

50

100

propagation dinstance  Z (a.u.)

 

sp
ac

e 
 x

 (
m

)

0 2 4
0

50

100

propagation dinstance  Z (a.u.)

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

50

100

 

s
p

a
c
e
  
x
 (

m

)

0

7

I/
I 0

0

5

I/
I 0

0

5

I/
I 0

Figure 2.6. From the integrable to the non-integrable regime. Nonlinear evolution detected for
k = 0.021 µm−1 and A = 0.5 varying the external pump power: (a) P = 6 mW, (b)P = 2 mW
and (c) P = 0.5 mW. The recurrent behavior in (a) is superseded by the appearance of spatial
solitons (c) as the dynamics is far from integrability (highly-saturated conditions).

2.6 Discussion

The predictability of the FPUT dynamics is a general property of the system and does

not depend on the specific input state. However, nonlinear evolution becomes more complex

when several harmonics are initially excited. We observe that for two excited input modes

recurrent high-intensity patterns still occur but their periodicity is lost and different states

are experienced during propagation. Starting with a superposition of a large number of

modes, random noise or localized perturbations, wave turbulence sets in [107, 108]. In these

complex regimes, disordered nonlinear interactions may play a crucial role with respect to

exact solutions of the underlying model [109]. Finally, we note that the observed recurrence

gradually disappears as the external pump is weakened, a finding that further corroborates

integrability as the basis of the phenomenon. The continuous transition towards the non-

integrable regime is reported in Fig. 2.6. Pseudo-recurrent breather structures persist as

the nonlinearity approaches the saturable regime and the model departs from the canonical

NLSE [110] [Fig. 2.6(a-b)], whereas no return to the initial state occurs in highly-saturated,

non-integrable conditions [Fig. 2.6(c)]. Here, interacting spatial solitons form and evolve

towards equilibrium compatibly with a soliton turbulence scenario [111].

The optical setting we have introduced, in which the input condition can be in principle

arbitrarily shaped, provides a general test-bed for investigating universal nonlinear phe-

nomena. Our findings shed light on the foundations of the FPUT problem and represent a

unique test for nonlinear wave theory, with broad implications in hydrodynamics, nonlinear

optics, Bose-Einstein condensates and beyond. In the future we plan to extend our analysis
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to systems with multi-mode excitation, at least two, to further validate the Grinevich-Santini

theory.
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Chapter 3

Bessel Beam propagation in
self-focusing medium

A Bessel beam (BB) represents an example of a beam that does not suffer diffraction.

In this Chapter we present our studies on the effects of a self-focusing nonlinearity. We

observed that BBs, at first, undergo to self-trapped oscillations that gradually decay into

breathing-like solitons. This resulting wave is analyzed and several peculiar properties are

reported, such as their behavior during collisions. Furthermore, we exploit BBs to optically

write waveguides in a bulk crystal via the electro-optic effect.

3.1 Nonlinear Nondiffracting Waves: an overview

In Chapter 1, we have first introduced BBs and Airy Beams (AB) as non-diffracting

solutions of the linear Schrödinger equation (1.8) and then we have shown how a self-

focusing nonlinearity can counterbalance the diffraction for spread waves. Here, our aim is

to merge the two phenomena, i.e. we want to investigate how non-diffracting waves respond

to nonlinearity.

Without diffraction, self-focusing will generally lead to an unchecked wave distortion:

the spatially-resolved intensity pattern causes a spatially-resolved phase-modulation that, on

propagation, is transformed into an intensity modulation that is not, in general, balanced by

diffraction. The scenario finds confirmation in recent experiments on ABs undergoing strong

self-focusing, where off-shooting soliton emission is observed [112, 113]. This intuitive

picture, in turn, appears fundamentally different for BBs, where numerical studies reveal

an intriguing phenomenon, according to which strong self-focusing generates a signature

breathing of the beam that can even partially support self-guiding [114, 115]. Furthermore,

energy transfer from the tails to the central lobe along propagation can lead to stationary

conical waves in Kerr systems with nonlinear loss [116, 117].

Our work has consisted in predicting and experimentally observing a Bessel-Beam
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optical self-trapping, a breather that forms when a BB suffers strong self-focusing and

undergoes long propagation distances. The effect emerges through a precise interplay of

the residual diffraction associated to the finite-energy physical realization of the BB and the

action of distributed lensing on the underlying conical spatial spectrum.

3.2 Numerical Results

In this Section we report the numerical results obtained through the beam propagation

method (detailed in Chapter 1). In distinction to previous studies [114, 115, 118–122],

we carry out simulations using Kerr-saturated nonlinearities, as this both describes experi-

mentally accessible spatial soliton-supporting mechanisms and avoids catastrophic beam

collapse typical of unsaturated Kerr propagation in the inherently 2+1D geometry [123].

Spatial spectrumIntensity distribution

(g)

(a)

(c)

(e)

(g)

(b)

(d)

(f)

Figure 3.1. Bessel-Beam breather self-trapping. Numerical 2+1D simulated nonlinear propagation
of an initial λ = 532 nm fundamental BB with kr = 0.28 µm−1 and a gaussian σ = 60 µm
envelope for different input peak intensities Ip/Is, with n0 = 2.3 and ∆n0 = 5.6× 10−4. (a)
x,z section of the intensity distribution (the distribution is symmetric for rotations around the
propagation axis) with Ip/Is = 0.04 and (b) corresponding kx, z section of the transverse spatial
spectrum distribution, where the ring structure leads to a propagation-invariant double spot. (c)
BB dynamics for Ip/Is = 0.4 and (d) corresponding evolution of the spatial spectrum, with the
characteristic generation of low-frequency components and the appearance of a second ring. (e)
A breathing self-trapped solution at Ip/Is = 4.4 and (f) corresponding spatial spectrum. The
original BB is locked into an oscillating solution that is now localized in the transverse plane
and periodic along propagation. (g) Peak-intensity Ip(z)/Ip for the various conditions.
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The formation of BB self-trapped state is shown numerically in Fig. 3.1 for an input

λ = 532 nm zero-th order BB of amplitude J0(krr) exp[−(r/σ)2], with r =
√
x2 + y2

and where kr and σ are selected to match experiments (see next Section). Simulations

are carried out using the split-step-Fourier-method (or beam-propagation-method [65])

applied to nonlinear spatial wave dynamics [49]. The full 2+1D NLSE is solved, that is,

both transverse x and y axes are considered along the propagation axis z while, in the

figures, we report only specific sections of the 2+1D intensity distribution. The envelope

produces a physically observable finite-energy approximation of the BB (a so-called Bessel-

Gauss-Beam) [19]. Specific reported results refer to an exponential nonlinearity ∆n =
−∆n0 exp (−I/Is), where ∆n0 and Is fix its strength and saturation intensity, respectively

[47]. This nonlinearity describes the phenomenon of quasi-steady-state self-trapping and

solitons in both ferroelectric crystals, such as SBN, and paraelectric crystals, such as KLTN

[124–127]. The effect reduces to the Kerr case for negligible saturation, that is, for short

exposure times in the quasi-steady-state response and low peak-intensity-to-background-

intensity ratios. In Fig. 3.1(a) the intensity distribution in the x, z plane is reported for

parameters ∆n0 = 5.6× 10−4 (n0 = 2.3) and an input peak intensity Ip(z = 0) ≡ Ip =
0.04Is. In these conditions the input beam with a 10 µm central lobe evolves linearly

with a diffraction length LD ' 7.5 mm. The spatial spectrum is the characteristic ring or

annular distribution of the linear conical BB and is propagation-invariant, as reported in

Fig. 3.1(b). As the peak intensity is increased to Ip/Is = 0.4, propagation is modified

(Fig. 3.1(c)) and the spatial spectrum changes, with the appearance of a signature second

ring [Fig. 3.1(d)], in agreement with previous studies [114, 119]. In turn, as the nonlinear

response increases, for Ip = 4.4Is, the initial BB becomes a self-trapped breathing solution

[Fig. 3.1(e)] with an equally breathing spectrum [Fig. 3.1(f)], i.e., a wave whose energy is

localized in the transverse plane xy and oscillates along the propagation z in close analogy

with temporal breathers [128, 129]. While the original BB diffracts on consequence of its

finite gaussian transverse envelope, in this highly nonlinear regime, the breathing solution

is both localized and with a propagation invariant pulsing [Fig. 3.1(g)]. Interestingly, the

breathing phenomenology reported appears qualitatively similar to what encountered in

Bessel-Beams in systems with nonlinear losses where, however, pulsing occurs on scales

connected to the interplay between losses and replenishing from tails [117, 130], i.e., is not

governed solely by diffraction, as in our case.

3.3 Experimental Results

Experiments are performed in a compositionally disordered photorefractive KLTN

crystal (Potassium-Lithium-Tantalate-Niobate - K0.95Li0.05Ta0.6 Nb0.4O3), grown through

the top-seeded solution method by extracting a zero-cut optical quality specimen that



3.3 Experimental Results 39

0
0.2
0.4
0.6
0.8
1

In
te

n
s
it
y
 (

A
rb

. 
U

n
it
s
)

0
0.2
0.4
0.6
0.8
1

In
te

n
s
it
y
 (

A
rb

. 
U

n
it
s
)

INPUT OUTPUT

(a)

(b) (c)

Nd:YAG

LASER

L1 L2

SLM

POL L3

L4 CAM1

CAM2

BS
KLTN

T

z

x

y

V

𝐿𝑧

𝐿𝑥

𝑬𝟎

Figure 3.2. (a) Experimental setup. The input BB is generated using a liquid-crystal SLM. The
laser beam from a doubled Nd:YAG laser at 532 nm is expanded (lenses L1 and L2) to impinge
as a plane wave onto the SLM that, using a polarizer (POL), transmits a ring. The transmitted
light is then focused and Fourier-transformed onto the input of a photorefractive KLTN crystal,
generating the input BB. ∆n0 is fixed through the x-directed bias electric field E0 = V/Lx

and the Peltier-controlled sample temperature T. CAM1 records the intensity distribution while
CAM2 the spatial spectrum. (b-c) Transverse intensity distribution at input (b) and output (c)
facets of the crystal with negligible diffraction for the Lz = 1.8 mm propagation.
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measures Lx = 2.6 mm, Ly = 3.4 mm , Lz = 1.8 mm along the x-y-z axes. The setup

of the experiment is sketched in Fig. 3.2(a). The sample is kept at T = TC + 9 K above

its ferroelectric Curie point at TC = 292 K using a Peltier cell. The sample manifests a

quadratic electro-optic effect and the index of refraction is n = n0 + ∆n with ∆n(E) =
−(1/2)n3

0geff ε
2
0(εr(0)−1)2E2, where geff = 0.14m4C−2 is the effective quadratic electro-

optic coefficient, ε0 is the vacuum permittivity, εr(0) ' 1.0× 104 is the quasi-static relative

permittivity of the medium, and E is the low-frequency electric field. BBs can be engineered

in various ways, using intensity masks [17], axicon lenses [131, 132] or holograms [24]. In

our experiment, the launch BB is obtained from a continuous-wave λ = 532 nm doubled

Nd:YAG laser that is enlarged and made to propagate through a Spatial-Light-Modulator

(SLM) that transmits a ring [133]. The modulated 600 nW x-polarized beam is now focused

onto the input facet of the sample, made to propagate along the z axis, and its intensity

distribution in the transverse x,y plane is imaged onto a CCD camera. A zeroth-order

Bessel-Gauss beam with kr = 0.28 µm−1 and σ = 60 µm [Fig. 3.2(b)] is launched into

the Lz = 1.8 mm long sample and suffers negligible distortion for linear propagation [Fig.

3.2(c)]. Note that our choice of σ allows us to inspect at least one breathing oscillation

for the finite length of the sample. Numerical simulations indicate that larger envelopes,

characterized by more extended ring-like tails, lead to analogous phenomenology but require

stronger nonlinearity. The case with σ = 120 µm is reported in Fig. 3.3.

Figure 3.3. Nonlinear propagation with σ = 120 µm in an exponential nonlinearity (∆n0 =
5.65× 10−4, I/Is = 4.4).

Experiments aimed at investigating nonlinear dynamics of initially non-diffracting waves

pose the basic challenge of requiring long propagation distances. To inspect the formation

of the breather self-trapped state keeping the propagation distance Lz constant, we make

use of the quasi-steady-state response, typical of photorefraction [47, 134], i.e.,

∆n(I, t) = −∆n0e
−I/Is(t). (3.1)
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Here t is the interval of time from the beginning of optical exposure, ∆n0 = ∆n(E0),

Is(t) = Idtd/2t, Id and td are constants, the dark-illumination (that can be changed using

a background illumination) and dielectric relaxation time, respectively, while the factor 2

stems from the use of a quadratic electro-optic response [47]. Hence, as t increases, for

a fixed Ip and Lz , we are able to observe beam propagation for progressively stronger

nonlinearity associated to higher values of normalized intensity Ip/Is.
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(d)

Figure 3.4. Observation of a Bessel-Beam breather. Transverse profile for (a) Experiments and (b)
numerical simulations. Experimental central lobe complete oscillation and partial one for (c)
Id1 and (d) Id2, where Id2 ' 10Id1 is achieved using an illuminator. A complete oscillation
is also reported for numerical simulation (e). The intensity reported in plot (c-d-e) is spatially
averaged on a 6 µm radius circular region around the geometric central lobe. The agreement
between observations and numerical simulations not only validates the quasi-steady-state model
, for which Is ∝ t, but also the general physical picture of a breathing self-trapped state. In turn,
differences in the fine details in the x-directed profiles are due to the fact that anisotropy is not
considered in the model (see text).

The observation of a BB breathing in conditions of strong self-focusing (Ip/Is > 0.4) is

reported in Fig. 3.4. The sample is first cleaned of spurious photorefractive space-charge

using a white light microscope illuminator that causes a homogeneous conductivity. The

illuminator is now switched off, and a constant V = 450 V is applied to the x-facets of

the sample. In these conditions E0 = V/Lx = 1.7 kV/cm and ∆n0 ' 5.24 × 10−4.
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Starting from the linear propagation at t = 0, the response accumulates, Ip/Is grows and the

breathing feature becomes manifest. The breathing behavior is reported in Fig. 3.4(a) in the

transverse plane and is compared with the predicted beam intensity distribution, reported in

Fig. 3.4(b). The slight anisotropy observed in the beam and the lateral asymmetric distortion

are the effects of underlying response anisotropy. In turn, no beam bending is observed,

suggesting a negligible role of nonlocal effects that are absent in the Kerr-like model of

Eq.(3.1) [5]. Breathing is observed for different values of input parameters for sufficiently

strong nonlinearity. According to Eq. (3.1), Is determines the strength of the nonlinearity.

In Fig. 3.4(c,d) we report the behavior for different values of nonlinearity, experimentally

controlling Is(t = 0) via the dark-illumination Id and keeping Ip fixed. For the higher

nonlinearity Ip/Is ' 100 of Fig. 3.4(c), we are able to explore a full period of the breathing.

For the weaker (but, in any case, strong) nonlinearity of Fig. 3.4(c), with Ip/Is ' 9, a partial

breathing oscillation is also visible, while Fig. 3.4(e) reports the numerical prediction.

𝐈𝐩/𝐈𝐬 = 𝟎. 𝟔𝐈𝐩/𝐈𝐬 = 𝟎 𝐈𝐩/𝐈𝐬 = 𝟏. 𝟏 𝐈𝐩/𝐈𝐬 = 𝟏. 𝟖 𝐈𝐩/𝐈𝐬 = 𝟐. 𝟗

(a)

(b) THEORY

EXPERIMENTS

Figure 3.5. Bessel-Beam breathing spectrum. The intensity of the ring is progressively reduced and
a central lobe appears (a) in agreement with numerical simulations (b) (see text).

To understand the physical underpinnings of Bessel-Beam self-trapping we consider

the dynamics of the spatial spectrum, reported in Fig. 3.5. In the first panel of Fig. 3.5(a)

the input spectrum shows a ring structure, typical of a BB, but with a finite width, the

spectral footprint of the gaussian envelope. As self-focusing sets in, the ring spectrum is

progressively transformed into a more elaborate structure with multiple concentric rings and

a central lobe, similar to a BB, but now in the spatial spectrum. This reflects the fact that,

while self-focusing can compensate the diffraction associated to the finite width of the ring,

no balancing can exist for the ring itself, that is inherently non-diffractive. Consequently,

while the gaussian enveloped is trapped into what would be a spatial soliton, the discrete
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annular portion of the spectrum suffers a distributed lensing effect and is Fourier-transformed

at each equivalent diffraction length of the gaussian envelope, i.e., passes from a ring to

a BB-like distribution [see second and third panels of Fig. 3.5(a)]. The picture is further

validated by numerical predictions reported in Fig. 3.5(b).

3.4 Bessel self-trapping interaction

We saw in Chapter 1 that solitons have a peculiar behavior during interactions. In

this Section we want to further characterize BBs self-trapping by studying nonlinear BBs

collision. We show that they behave differently from standard solitons.

(a)
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Figure 3.6. Nonlinear BBs interaction. (a) Sketch of the experimental setup for half-collisions, we
use this configuration to have a good beams separation after the 1.8 mm sample propagation.
By governing the size and position of the rings on the SLM we are able to control the Bessel
vector kr (associated with the angle γ) and the external collision angle α that correspond to the
internal angle β = α/n0 with n0 the linear refractive index of the sample. For further details
of the setup refer to the caption of Fig. 3.2. (b)-(c) Collision between (b) coherent in-phase
and (c) incoherent BBs (kr = 0.28 µm−1 and gaussian envelope of FWHM=110 µm). (b) A
E0 = 1.7 kV/cm electric field makes the interaction nonlinear and generates an off-shooting
bright beam with FWHM=15 µm that does not correspond to the centres of the parents BBs. (c)
The E0 = 1.7 causes the attraction between the centres of the original BBs without fusion.

For experiments we use almost the same setup of Fig. 3.1, in which we sent two Bessel,

instead one, so that they can collide on the input facet of the crystal as detailed in Fig. 3.6(a).
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Moreover, thanks to the SLM homemade interface, we can send the two BBs at the same

time or alternating to have a coherent or incoherent collisions.

For mutually coherent in-phase BBs, we observe the emerging of an off-shooting soliton

as in Fig. 3.6(b). Even if soliton fusion is a well-known phenomenon in saturable media,

the behavior of BBs is a bit surprising respect to what occurs for gaussian beams in the

same conditions. Indeed, we send two gaussian beam with FWHM' 10 µm, the same value

of the central core of the BBs in Fig. 3.6(b) and with the same collision angle α and we

observe only attraction and no fusion (not reported).

The BB interaction is governed by the mutual coherence and the angle α. To understand

the importance of the first we make the two BBs mutually incoherent. We observe that they

evolve independently with negligible attraction [Fig. 3.6(c)]. In fact, a single BB of the pair

evolves irrespectively of the other and we can obtain the same BB self-trapping reported

above (not showed).
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Figure 3.7. Study of the angle alpha collision dependence. (a) Plot of the experimental normalized
intensity of the off-shooting soliton versus the alpha. (b) Numerical simulation for α = 100
mrad.

The collision angle dependence is studied repeating the experiment for various angles

and taking the intensities of the off-shooting beams. The data are reported in Fig. 3.7(a).

They show that the intensity decreases as angle α increase. The asymptotic behavior is

studied through numerical simulations since we are limited by our setup to α < 40 mrad. In

Fig. 3.7(b), we show the propagation for α = 100 mrad : the off-shooting beam is absent.

These results deserve a deep investigation. It seems that BBs have a stronger interaction

than solitons due to their bigger extension in space. We believe that, for coherent BBs, the

system has a sort of resonance so that the off-shooting beam exists for α ∼ 28 mrad, that is

the value of the BB Fourier spectrum as in Fig. 3.5.
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3.5 Discussion

We note that the breathing self-trapped state here investigated is stable on accessible

distances, while numerical simulations indicate that weak radiation ultimately causes it to

decay into a conventional breathing soliton state [135–137]. In Fig. 3.8(a), for example, this
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Figure 3.8. (a) Long propagation (Lz = 300 mm) of a Bessel-Gauss beam with kr = 0.28 µm−1

and σ = 60 µm. The numerical simulations are performed with the exponential nonlinearity
with I/Is = 4.4 and ∆n0 = 4.87× 10−4. (b) Breathing period Λz versus Ip/Is. The gray area
indicates values of Ip/Is that give rise breathing soliton without Bessel self-trapping. The values
of Λz are obtained averaging on more than three periods, disregarding the first four oscillations.

transition occurs in our experimental conditions for Lz = 30 mm. We note that for a given

set of launch parameters (kr, σ), breathers and self-trapping are found to occur for a specific

range of values of ∆n0 and Ip/Is. Within this range, the actual values of ∆n0 and Ip/Is
fix the breathing period Λz . Congruently with what expected from a pure Kerr-like model,

where no self-trapped BB state is possible, for lower saturation ratios the soliton breathing

regime appears before the BB self-trapped regime emerges. For example, in Fig. 3.8(b),

we report the predicted Λz with the two different behaviours, for several values of Ip/Is
and ∆n0 = 5.6 × 10−4. The breather soliton that appears for lower Ip/Is has a Λz that

decreases increasing Ip/Is while, for the self-trapped state, Λz increases as Ip/Is increases.

Values of launch Ip/Is outside this range cause the BB to spread (low Ip/Is) or collapse

(high Ip/Is).

The phenomenology reported is general because it emerges also for other saturated

nonlinearities, such as for ∆n(I) = −∆n0(1 + I/Is)−1 and ∆n(I) = −∆n0(1 + I/Is)−2.

Evidence of the nonlinear propagation supported by the latter law is given in Fig. 3.9.

These are local approximate models for experiments in biased ferroelectric and paraelectric

photorefractive crystals, respectively [138, 139]. Indeed, comparing Fig. 3.8(a) and Fig. 3.9,

they both qualitatively describe the same phenomenon, that is, the initial self-trapping state

and the following breather soliton. The unsaturated Kerr case ∆n = n2I , instead, does not

lead to stable self-trapping, as expected.

Concluding, solitons and non-diffracting waves share similar phenomenology but have

a profoundly different nature. Solitons stem from the balance between diffraction and
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Figure 3.9. An Lz = 100 mm propagation of Bessel-Gauss with kr = 0.28 µm−1 and σ = 60
µm evolving according to the saturable Kerr nonlinearity law. The other parameters of this
simulation (I/Is = 4.4, ∆n0 = 4.87× 10−4) are the same as in Fig. 3.8(b).

self-focusing, while non-diffracting waves are volume interference patterns. We have

demonstrated numerically and experimentally that a Bessel-Beam propagating in a strongly

self-focusing medium undergoes relevant propagation dynamics that ultimately cause it to

self-trap into a periodic breather. The oscillating spatial spectrum appears as a sequence

of periodic Fourier transformations of the original beam from an annular to a Bessel-like

distribution. Findings indicate a new form of nonlinear construct in which an interference

pattern locks together with a diffracting wave, shedding light into the physics of non-

diffracting waves and their behavior in materials.

3.6 Bessel beams waveguide induction

Since now, we have addressed Bessel beam nonlinear evolution in a self-focusing

medium. For some applications, such as optical writing, it is preferable to handle with

linear phenomena because this guarantees the scalability of the process, a key ingredient to

build miniaturized photonic 3D circuits that are fundamentally to develop innovative optical

devices. Indeed, while present achievements are based on planar photonic circuits [140–

142], in principle operating in a fully three-dimensional volume increases the achievable

number of interlinked gates and devices and this requires specific fabrication tools, such

as direct optical writing or 3D printing [143–148]. At present, direct writing involves a

step-by-step fabrication that becomes increasingly cumbersome as circuit complexity grows.

Furthermore, as the details of the circuitry are scaled down to the optical wavelength, the

requirement that the writing beam focus be ever smaller increases the impact of diffraction

and introduces limitations on the effective available volume. Previous studies have attempted

to overcome diffractive distortion in optical writing and achieve scalability using nonlinear

effects, by which the beam carrying out the writing is self-guided by the waveguide it is
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creating, a phenomenon related to spatial solitons known as self-writing [127, 149–152].

In turn, the nonlinearity introduced by the self-writing fundamentally limits the circuit

capability, so that writing two waveguides in close proximity follows the physics typical

of soliton-soliton interaction [153–155]. The result is a method that does not have writing

linearity, a potentially crucial feature by which the writing of a given component does not

affect and is unaffected by other previously written components. At present no optical

writing technique based solely on linear waves has been demonstrated in a full macroscopic

volume that is scalable, i.e., unaffected by diffraction.

In what follows, we want to demonstrate the use of Bessel beams to optically write

patterns unaffected by diffractive distortions able to guide and route light, in the form of

localized modes, through a volume. In our experiments, the method also maintains writing

linearity allowing us to fabricate waveguides in increasingly complex geometries, integrated

multi-port splitters and miniaturized functional electro-optic gates.

3.6.1 Theoretical Background

We optically induce the BB pattern in a photorefractive crystal. Writing is carried out

using a Bessel-Gauss beam with Aw = Aw0J0(krr) exp[−(r/σ)2], with kr and σ chosen

so that Rayleigh length zR = πnσ2/λ� Lz , where Lz is the length of the sample along the

propagation axis [19]. The photoexcitation of deep in-band impurities and charge transport

lead to the formation of an optically-induced space-charge field Esc(Iw, t) given by [5]

Esc(Iw, t) = E0w

(
e
−
(

1+ Iw
Id

)
t

td − 1
)
. (3.2)

Here Iw = |Aw|2 is the writing intensity distribution, t is the duration of writing process,

Id and td are constants, the dark-illumination (that can be changed by also illuminating the

sample with a plane wave) and the dielectric relaxation time, respectively [5]. E0 = E0w

is, in turn, the constant external bias field applied to the sample along one transverse axis,

say the x axis, during the writing phase. The electric field E = E0w + Esc now changes

locally the sample index of refraction through the electro-optic effect. Since the sample is

heated above its room-temperature Curie point TC , in the paraelectric phase, it manifests a

quadratic electro-optic effect according to which ∆n = −(1/2)n3
0geff ε

2
0(εr(T )− 1)2E2 ≡

−∆n0,T (E/E0)2. Here, geff is the effective electro-optic coefficient, ε0 is the vacuum

dielectric constant, εr(T ) is the low-frequency sample relative dielectric constant at the

writing temperature T , and ∆n0,T ≡ (1/2)n3
0geff ε

2
0(εr(T ) − 1)2E2

0 is the characteristic

scale of the response for the given temperature and bias field E0. The presence of the

dielectric anomaly at T = TC implies that the dielectric constant in the paraelectric phase

is strongly temperature dependent, following the Curie-Weiss law εr(T ) = C/(T − TC)
[44]. Hence, heating the sample to a sufficiently high temperature Tw > TC causes the
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electro-optic response to drop and renders nonlinear beam effects and self-writing negligible

[2, 116, 117].

The light-induced Esc of Eq. (3.2) can now be used as a blue-print for the electro-optic

activation of a waveguide. This is achieved by cooling the sample closer to the Curie point to

Tg (Tg < Tw), leading to a strongly enhanced εr(Tg) > εr(Tw), and applying an appropriate

bias guiding electric field E0 = E0g. The resulting index pattern is

∆n(E0g) = −(1/2)n3
0geff ε

2
0(εr(Tg)− 1)2(E0g + Esc)2. (3.3)

This index pattern can be used to guide and route an optical field Ag (Eq.(1)) with no

further light-induced changes in Esc. This can be achieved either using attenuated light

(Ig ≡ |Ag|2 � Iw), effectively halting the build-up process, or using longer wavelength

light, for which the photoexcitation process becomes inefficient. For E0g = E0w and for

unsaturated conditions (i.e., t� td), Eqs. (3.2) and (3.3) give ∆n ∝ Iw, reproducing the

process analyzed in Fig. 1 (with Ag(r, z = 0) = A0 exp[−(r/σG)2]). More generally,

E0g 6= E0w leads to a varied family of different guiding, routing, and antiguiding structures

described by Eq. (3.3) and the NLSE [Eq. (1.7)]. This allows fast electro-optic control of

the index of refraction pattern with no nonlinear propagation and without involving the slow

charge migration processes required to alter the space-charge density [156–158].
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Figure 3.10. Demonstration of a BB waveguide in photorefractive KLTN. Fabrication : (a) scheme
of the optical writing stage; (b) input and (c) output intensity distribution of the writing beam
(kr = 0.16 µm−1 and σ = 110 µm). Waveguiding: (d) scheme of the optical guiding stage;
(e) input and (f) output of a Gaussian guided beam (input FWHM = 12 µm, σG = 10 µm)
compared to (g) the diffracted output distribution with no waveguide (output FWHM = 39 µm).

3.6.2 Experiments

The setup for writing is the same used for studying the BB self-trapping, as can be easily

understood comparing Fig. 3.2(a) with Fig. 3.10. The main difference, as explained above,

it that now we operate at high T, namely Tw ∼ TC + 20 K to avoid the electro-optic effect.
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Indeed, we do not appreciate any evolution of the BB profile between the input facet, Fig.

3.10(b), and the output facet of the crystal, Fig. 3.10(c), even after 6 minutes of exposing the

sample to 2.5 kV/cm writing field Ew. This setup for the reading is modified sobstituting

the SLM-polarizer pair with an attenuator as shown in Fig. 3.10(d), so that we pass from

Iw = 1.5 µW BB power intensity in writing to Ir = 40 nW gaussian beam in reading. In

this conditions, the waveguide is activated without further modification induced by light and

we can see that the x-polarized gaussian beam of FWHM= 12 µm is guided inside the 1.8

mm length of the crystal [Figs. 3.10(e),(f)]. For comparison, in Fig. 3.10(g) we report the

same output intensity distribution if no fabrication stage is enacted and the BB waveguide is

absent, where the beam spreads to an output FWHM of 39 µm.

To demonstrate the capability of our waveguide induction method, we show in Fig. 3.11,

some of the most significant results that we got. In Fig. 3.11(a)-(e) we report the use of

writing linearity, that is, the ability to write structures independently in the same sample

in close proximity. In our specific demonstration, we fabricated two parallel waveguides

at different distances. For a distance of 15 µm, the waveguide pair acts as a mutual phase-

dependent direction-coupler [Fig. 3.11(a)-(c)]. For a larger interwaveguide distance 20 µm,

each waveguide acts independently and no mode coupling is detected for the length of the

sample Lz [Fig. 3.11(d),(e)].

In Fig. 3.11(f)-(n) we demonstrate the use of BB waveguide writing to achieve 1×2,

1×3, and 1×4 splitters launching multiple angled BB during the fabrication stage. The BBs

are rendered mutually incoherent using a specific SLM time sequenced mask that turns on

only one BB at a given time. This demonstrates how fabrication of complex circuitry can

also be achieved in a single illumination stage without having to mechanically shift and

move the sample, as instead is required in direct writing scanning techniques.

With these last experiments, we have demonstrated the use of single and multiple Bessel

beams to optically write waveguides and electro-optic circuits in a bulk crystal. Our method

represents the first scalable method able to realize reprogrammable optical networks in a

full 3D setting.
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Figure 3.11. Examples of multi-waveguide structures achieved using BB writing. BB waveguide
directional coupler (a)-(e). (a) Output intensity distribution when the signal input is launched
inbetween two parallel BB waveguides (∆y = 0), 15 µm apart. (b),(c) Directional coupling
from one waveguide to the other when the signal input is launched into one of the waveguides
(∆y = −7.5 µm). Coupling is found to be strongly dependent on the effective optical length of
the coupler, leading to different coupling efficiencies for slightly different values of T and Vg ((b)
and (c) differ by ∆T ' 0.5 K). For Lz = 1.8 mm, coupling becomes negligible for waveguides
20 µm apart, as reported in (d) and (e), with ∆y = −10 µm and ∆y = 10 µm respectively. In the
insets, yellow points represent the BB waveguides while red points indicate the input position of
the Gaussian beam. Multi-splitters writing and testing (f)-(n). (Left) Fabrication of a 1×2 (top),
1×3 (center), and 1×4 (bottom) splitter. 1×2: (f) Input and (g) output intensity distributions of
an incoherent superposition of two BBs with a mutual angle of 8.9 mrad. Fabrication writing
input and output intensity distributions for a 1×3 (i),(j) and 1×4 (l),(m), where three and four
incoherent BBs are launched at the input forming splitters with angles of 33.6 mrad and 35 mrad
inside of the crystal, respectively. (Right) Output intensity distribution indicating the splitting of
an input launch Gaussian beam at the center of the multi-beam pattern (see inset) for the 1×2
(h), 1×3 (k), and 1×4 (n) structures.
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Chapter 4

Continuous Soliton in a Lattice
Nonlinearity

Until now, we have studied the nonlinear propagation of different light patterns in a

bulk self-focusing medium. In this Chapter we deal with gaussian beams, either one or

two dimensional, that propagate in patterned self-focusing nonlinearity, a periodic pattern

that both affects and is strongly affected by the wave. Observations are carried out using

spatial photorefractive solitons in a volume microstructured crystal with a built-in oscillating

low-frequency dielectric constant. The pattern causes an oscillating electro-optic response

that induces a periodic optical nonlinearity. On-axis results in potassium-lithium-tantalate-

niobate (KLTN) indicate the appearance of effective continuous saturated-Kerr solitons,

where all spatial traces of the lattice vanish, independently of the ratio between beam width

and lattice constant. Decoupling the lattice nonlinearity allows the detection of discrete

delocalized and localized light distributions, demonstrating that the continuous solitons form

out of the combined compensation of diffraction and of the underlying periodic volume

pattern.

4.1 Physical Context

The coupling between different and matched spectral components of the optical field is

one of the fundamental effects governing propagation through periodic systems [159]. The

interplay between this coherent effect and nonlinearity has been extensively investigated

allowing diffraction control [160, 161] and giving rise to self-localized states, such as

discrete and gap solitons [6, 162–166]. Experiments on discrete trapping are generally

based on photonic lattices made from etched waveguide arrays [6, 165] or created through

optical induction in photorefractive media [164, 167]. Studies have spanned a wide variety

of physical mechanisms affecting solitons, such as nonconventionally biasing [168, 169],

PT-symmetry [170], and disorder [171]. At present, however, the soliton has always evolved
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Figure 4.1. Nonlinear propagation in periodic systems. (a) Trapping in photonic lattices: the periodic
pattern δnlatt affects the spatial propagation but is not affected by the wave. (b) Trapping in
lattice nonlinearity: optical field and lattice are mutually coupled and δnlatt depends on the
waveform.
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Figure 4.2. Details of the experimental conditions. (a) Dielectric spectroscopy of the KLTN for
low-frequencies electric filed. The clear peak indicates the phase-transition at T = 293.5 K. (b)
Fourier analysis of (c) the trasmittance image of the KLTN that reveal a well-defined peiod of
Λ = 5.5± 0.3 µm. (d) Scketch of the experimental setup.

in a fixed linear/nonlinear pattern, i.e., in conditions in which the lattice is not appreciably

affected by the wave [161, 172].

We here study an entirely opposite condition: spatial solitons that form in a lattice

nonlinearity. A lattice nonlinearity is a periodic variation in the nonlinear response that

is in turn negligible in the linear response. This means the lattice itself depends on the

soliton, and both lattice and soliton are strongly interacting during propagation. This

fundamental difference with respect to previous experiments is schematically illustrated in

Fig. 4.1, where the optical propagation in a photonic lattice is compared with that in a lattice

nonlinearity. In general, the standard physical condition [Fig. 4.1(a)] consists in a media with

a periodic index of refraction variation δnlatt, affecting parametrically the superimposed

soliton nonlinearity δnsol. So, while the nonlinear waves evolve into a lattice-dependent

trapped state, δnlatt remains almost completely unaffected by the waves dynamics. On

the contrary, if the beam and lattice are mutually nonlinear, δn = δn(δnsol, δnlatt), the

nonlinear propagation modifies spatially the underlying periodic pattern itself (Fig. 4.1(b)).
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4.2 Experimental Environment

The experiments are performed in a compositionally disordered photorefractive KLTN

crystal, K1−αLiαTa1−βNbβO3 with α = 0.04 and β = 0.38, grown through the top-

seeded solution method by extracting a zero-cut 2.4(x)x2.0(y)x1.7(z)mm optical quality

specimen. The Curie point at the temperature TC = 294 K is measured and characterized

through low-frequency dielectric spectroscopy, reported in Fig. 4.2(a), that also signals the

absence of large deviations from the mean-field behaviour, typical of other near-transition

disordered ferroelectric samples [62, 173]. The sample is grown so as manifest a sinusoidal

variation in the low-frequency dielectric constant [174–176]. An electric field can turn this

volume microstructure into a periodic index of refraction modulation ∆n(x) through the

quadratic electro-optic effect [177]. The lattice nonlinearity arises when this electric field

is optically-induced, as occurs for the photorefractive screening nonlinearity [5, 178]. The

leading terms are

∆n(x) = δn0 cos(Kx)− 1
2n

3
0geffε

2
0ε

2
r

[
1 + 2δTc

T − TC
cos(Kx)

](
E0

1 + u(x)2

)2
, (4.1)

where δn0 contains the contribution of the Sellmeier’s refractive index grating, n0 is the

unperturbed average index of refraction, geff the appropriate electro-optic coefficient, δTc
the amplitude of the nonlinear grating, K = 2π/Λ the grating number, being Λ the grating

period, E0 = V/lx (lx = 2.4 mm) the bias field amplitude and u(x) =
√
I(x)/IB the

beam intensity normalized to that of background.

In Fig. 4.2(c) we report the image of the linear part of the grating, the transmitted

light is optically detected with a plane wave for the resonant Bragg condition ϑ = ϑB . We

compute the Fourier transform of Fig. 4.2(c) and the result, showed in Fig. 4.2(c), reveals a

well-defined grating period Λ = 5.5± 0.3 µm. We note that Eq. (4.1) states that the spatial

period of the nonlinear part is the same of the linear part but the latter only weakly affects

propagation. It is central to our present study that, in turn, the field-dependent lattice term is

not at all a perturbation to the screening nonlinearity. Indeed, in our sample we obtain from

the measured Bragg diffraction efficiency [175] δn0 ≈ 5× 10−5 and δTC ≈ 1 K, working

at T = TC + 4K as in our experiments. Other parameters are n0 = 2.4 (experimentally

measured), εr = 0.91× 104 [see Fig. 4.2(a)] and geff ∼ 0.16 m2/C4, considering the value

of Ref. [175].

The experimental geometry in which focused beams are launched into the microstruc-

tured KLTN is shown in Fig. 4.2(d); µW cylindrical waves at λ = 532 nm propagate in a

transmission configuration with respect to the grating, with the main wavevector k = kz
orthogonal to the grating vector K and to the bias field (on-axis, ϑ = 0). Light beam

polarization is chosen to maximize the external field effect.
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4.3 Numerical Simulations

Before exposing the experimental results, it is convenient to discuss some numerical

analysis. We perform the simulations evolving a gaussian beam through the NLSE exploiting

the saturable Kerr nonlinearity of Eq. (4.1). Details of the integration method, that is the

BPM, can be found in Chapter 1. Our model cannot take into account the cumulative nature

of photorefractive response but, despite this, we can get several informations about the

steady state, especially the index of refraction pattern.

(a)

(g)

(d)

(b) (c)

(e) (f)

(h) (i)

Figure 4.3. Numerical simulations of the gaussian beam propagation with FWHM= 8 µm. (a),(d),(g)
Intensity distribution along z = 2 mm medium for linear, nonlinear (E0 = 4.1 kV), zero-field-
read-out propagation respectively. (b),(e),(h) Associated transverse intensity profiles for input
(blu) and output (orange) and (c),(f),(i) index modulation patterns. The parameters of the
simulation are λ = 532 nm, n0 = 2.4, I/Ib = 60, δn0 = 10−4, εr = 1.3× 104, geff = 0.16,
TC = 21 K, T = 25 K, δTC = 1 K. Further details are in the text.

In Fig. 4.3, we show the propagation of a gaussian beam of FWHM= 8 µm. In

the absence of the external field E0, the beam diffract to FWHM= 30 µm after a linear

propagation along 2 mm medium [Figs. 4.3(a),(b)]. The output profile of Fig. 4.3(b)

has only a small modulation due to the little linear component of δn in Eq. (4.1) [Fig.

4.3(c)]. Applying E0 = 4.1 kV/cm, the nonlinearity sustains the soliton propagation with

the absence of periodic features [Figs. 4.3(d),(e)]. The phenomenon can be understood

observing the δn pattern of Fig. 4.3(f): the modulation is almost absent in the area where the

beam propagates, apart from the little linear contribution. To further understand the role of

δn we study the case of which the δn is bigger where the light intensity is higher as in Fig.

4.3(i). Now the propagation is characterized by the presence of evident periodic structures
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[Figs. 4.3(g),(h)]. Experimentally, this can be achieved by the so-called zero-field-read-out,

a technique described below.

4.4 Experimental Results
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Figure 4.4. Observed beam dynamics from the starting delocalized discrete pattern to the continuous
soliton. (a) Input and (b) output beam when the lattice nonlinearity is deactivated. (c) Output
discrete spatial distribution as soon as the lattice nonlinearity is enabled at V = 400 V and (d)
continuous soliton at the steady state. (e) Intensity Fourier transform of (b) (red line), (c) (cyan
line) and (d) (magenta line).

The observed beam propagation dynamics inside the microstructured nonlinear lattice

is shown in Figs. 4.4(a)-(d). When the electro-optical response is not activated through

the bias field, the input Gaussian beam with full width at half maximum FWHM= 7 µm

experiences quasi-linear diffraction, resulting in an FWHM= 26 µm output distribution

[Figs. 4.4(a),(b)]. In these conditions, only the weak linear part of the lattice is involved in

the beam propagation and, analyzing the spectrum [Fig. 4.4(e)], its affect on the beam is

negligible. However, when the beam is exposed to the lattice nonlinearity, that is, the sample

is biased, it instantaneously (at fast electro-optic response times) rearranges itself over the

periodic index of refraction pattern. Considering the µW power used in the experiments, the

photorefractive response begins changing the pattern only approximately 10-20 seconds after

this initial stage. The discrete light distribution emerging in the first instants, before the light

is able to produce the space-charge field, is shown in Fig. 4.4(c), for u0 =
√
Ipeak/IB ' 8

and V = 400V, and appears delocalized compared to the input beam distribution. The

operational temperature in this case is T = TC + 2K, so that, from Eq. (4.1), we expect a

nonlinear lattice with the same amplitude of the “homogeneous” photorefractive nonlinearity

(∆n of the order of 10−3). The build-up of the space-charge field causes the progressive

local screening of the periodic lattice until the continuous steady-state soliton forms after

few minutes [Fig. 4.4(d)]. The soliton transverse profiles have no trace of a periodic feature,

so the lattice nonlinearity allows the transition from a discrete delocalized pattern to a

continuous soliton. In Fourier space (transverse spatial spectrum), the spectrum of the output

intensity distribution passes from having a dominant peak compatible with the lattice spatial

frequency to a monotonous decaying behaviour without dominant resonances [Fig. 4.4(e)].
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Figure 4.5. Experimental observation of the nonlinear propagation of 1D beams, with (a-c) FWHM=
7 µm and (e-g) FWHM= 22 µm, and 2D beams, with FWHM= 8 µm (h-j). Applying a bias
field of 2.4 kV/cm the diffraction (b)(f)(i) associated to every inputs (a)(e)(h) is counterbalanced
by the photorefractive nonlinearity of Eq. (4.1) and the continuous localization emerges (c)(g)(j).
e) Experimental relation between normalized intensity and external field for the 1D solitons with
linear fit.

The continuous soliton behaviour in the lattice nonlinearity is further demonstrated in

Fig. 4.5. When no bias field is applied the input beam with FWHM= 7 µm experiences ho-

mogeneous diffraction resulting in an FWHM= 24 µm output distribution [Figs. 4.5(a),(b)].

Applying a V= 580 V static potential a steady-state soliton propagation is obtained for

an intensity ratio u0 ' 5. Fig. 4.5(c) demonstrates the absence of discrete features in the

soliton state. This effect is independent both of the grating amplitude and of the beam

width. The first statement is verified spanning the experimental soliton parameters (u0, E0)
[Fig. 4.5(d)] and changing the operational temperature; in particular, we note that even

when the lattice amplitude is larger than the standard photorefractive term the continuous

picture remains unchanged. In fact, although we are not able to investigate this regime

experimentally because close to Tc the external field needed for soliton formation induces

the ferroelectric phase-transition, numerical simulations consistently indicate the formation

of continuos solitons. Independence from the beam waist is demonstrated launching beams

whose size covers several grating periods (weak-binding). As reported in Figs. 4.5(e)-(g), a

FWHM= 22µm, u0 = 2.5 input beam weakly diffracts when unbiased; it self-focuses up

to 8µm in the nonlinear case. Even in this case the output lacks marked discrete features,

as numerically verified. We also demonstrate that what has been achieved occurs in the

same spatial lattice geometry for two-dimensional solitons; a 2D continuous soliton, 8µm
sized, is shown in Figs. 4.5(h)-(j) at u0 = 8.5. Fig. 4.5(d) reports the relation between

normalized intensity and external field for observed 1D solitons; the linear behaviour is
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coherent with the general relationship in centrosymmetric media, even though the slope

observed is considerably reduced, this underlining the fundamentally different nature of our

present continuous solitons compared to conventional screening solitons [5].
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Figure 4.6. Zero-field discrete dynamics after the soliton formation. (a-d) Measured time evolution:
(a-b) discrete delocalized pattern,(c) localization with discrete features and (d) relaxation to the
equilibrium. (e) Comparison of the spectral properties of (a) (magenta line), (b) (cyan line) with
those of the numerical output of Fig. 4.3(h) (red line).

This picture is expected to change if the electro-optical lattice can be decoupled from

the photorefractive nonlinear response. Since these two responses act on different time

scales, being the electro-optic modulation instantaneous with respect to the photorefractive

one, the grating can be decoupled dynamically. This decoupling appears in the first stages

of propagation into the lattice nonlinearity and leads to a discrete pattern, as discussed

and reported in Fig. 4.4. However, this happens also for transient states after the soliton

formation, when then bias field is removed. To further characterize the underlying nonlinear

response, we carried out a zero-field-readout, as reported in Fig. 4.6. As the bias field

is switched off after the steady-state is reached, previously guiding features become anti-

guiding and vice-versa [5]. The effect evolves in time as the now diffracting beam washes

out the original soliton-supporting space-charge distribution. So, in our case, removing the

bias field causes the lattice to drop to zero everywhere except for in the region in proximity to

the original soliton, where the space-charge field remains unshielded. The beam experiences

the local nonlinear lattice and discrete features are now observable. We show the phenomena

in Fig. 4.6, for the dynamics subsequent to the soliton propagation in Fig. 4.5(a). In the first

stages [Figs. 4.6(a)-(b)] a discrete delocalized pattern takes place with some “waveguides”

more excited than others. After this phase, the beam begins to modify the local index pattern

and its propagation and interesting transient states can emerge. In Fig. 4.6(c) we show a

transient discrete localization occurring 3 minutes after the bias field was removed. The

nonstationary dynamics cause the localized pattern to spread, ultimately reaching its final

equilibrium state, where normal diffraction is almost restored [Fig. 4.6(d)]. We also perform

the spectral analysis of the zero-field evolution and we obtain the spectra of Fig. 4.6(e).

Comparing the last with Fig. 4.4(e), we observe a similar evolution that is the spectrum

progressively sheds off its peaks, show a consistent transfer of spectral content to the lower
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frequency component. The characteristic frequencies are identified as the first harmonics of

the lattice K and the spatial scale introduced by the beam waist [179].

In conclusion, we have demonstrated continuous on-axis soliton propagation in a lattice

nonlinearity. The nonlinear photonic lattice is characterized by the electro-optic coupling

with the soliton supporting nonlineariy and varies depending on the beam features. These

results point out how the periodic properties of a media can be made to not emerge in the

propagating waveform if they are filtered out by a strong interplay between the nonlinear

waves and the nonlinear lattice.

On the other hand, this work opens new perspectives in condensed matter physics. The

nonlinear embedded grating causes several new phenomena at the paraelectric-ferroelectric

phase transition because it represents a constraint for the size and orientation of the ferroelec-

tric domains. Probably the most evident effect is the conversion at TC of the one-dimensional

grating into a fully three-dimensional periodic structure that we call super-crystal. This

phenomenon will be extensively discussed in the next Part of this Thesis.
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Part II

Optics in nanodisordered
ferroelectrics
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In this Part 2 we focus our interest on the characteristics of the our materials. Unlike

Part 1, here light is no more our matter of study but represents a probe to disclose the optical

properties and ultimately the intrinsic structure of these crystals. In other words, in this Part

2, we mostly study the linear propagation, excluding some relevant exceptions, because

we want to compare the response of our materials with well-known ones to underline the

peculiarities of ours.

Our results are published in Ref. [180] and Ref. [181].
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Chapter 5

Super-crystals in composite
ferroelectrics

In this Chapter we discuss the peculiar properties of nanodisordered ferroelectrics often

associated to their compositional disorder. In particular we introduce the super-crystal [101],

a 3D lattice that emerges from the interplay between material order and disorder.

5.1 Ferroelectric Perovskites

The crystals that we use in this Thesis belong to the class of perovskites. The perovskite,

properly speaking, is a mineral whose minimum chemical formula is CaTiO3. In literature,

any material that has the chemical formula of ABO3 is called perovskite. In Fig. 5.1(a),

we report the 3D structure of the cubic unit cell: there is one oxygen per each six face

centres, the element A occupies the eight vertexes and the element B is placed in the center

of the cube [182]. In general, element A is an alkaline metal or a rare earth whereas B is

a transition metal. The chemical bonding is ionic with oxygens as anions and A and B as

cations.

Perovskites play a relevant role in optics because they are transparent ferroelectric media,

dielectric or semiconductor, that manifest a strong electro-optic and nonlinear response

[173, 183, 184]. Ferroelectricity is the property of materials to have a spontaneous and

reorientable electric polarization. Moreover, ferroelectric perovskites have two main phases,

the Paraelectric Phase (PP) and the Ferroelectric Phase (FP), that are characterized by

different behaviors and crystal symmetries [185].

Defining the Curie temperature, TC , as the temperature of the phase transition, for

T < TC we are in the FP whereas for T > TC we are in the PP and the crystal behaves like a

common isotropic dielectric, e.g. without hysteresis. From a microscopic point of view, the

phase transition corresponds to a structural rearrangement of the elementary cell from the

centrosymmetric cubic PP to a noncentrosymmetric orthorhombic FP. To minimize the free
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Figure 5.1. Three-dimensional structure of the perovskite unitary cell. (a) Structure for the paraelec-
tric phase. (b) Structure for the ferroelectric phase with the displacement of the central cation
that causes the spontaneous polarization ~P .

energy, the transition to PF is accompanied by the displacement of the central cation towards

the center of one of the six faces of cubic cell , see Fig. 5.1(b). The broken symmetry leads to

the appearance of a local spontaneous dipole moment strongly influenced by the polarization

of the neighbours. The net effect is the creation of macroscopic polarization clusters. This

phase transition can be ascribed as both first and second order transition according to

Ehrenfest classification [186]. To take into account the spontaneous polarization, we can

consider the electric susceptibility χr as the order parameter and, as expected, it diverges as

the temperature approaches TC (from PP) according to the Curie-Weiss law:

χr = C

T − TC
, (5.1)

where C is the material-specific Curie constant. Eq. (5.1) states that for T � TC the

polarization of the system is globally zero. For T ∼ TC , χr diverges and values of χr > 105

are actually measured; the phenomenon is associated with the divergence of correlation

length, that is the system has a strong collective response. An important consequence of

this is that the material, at the transition, manifest the so-called critical opalescence, i.e. a

huge scattering caused by border of the domains whose size is comparable to wavelength,

impeding the light propagation. For this reason, usually experiments are performed some

degree above TC to have a transparent medium and to exploit the elevated χr [1–3, 44].
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5.2 Polar Nano Regions and Relaxors

The introduction of compositional disorder can change the properties of the crystals, e.g,

preventing the long-range correlations of ferroelectric domains and allowing propagation

also upon the phase transition. The disorder turns an ordinary ferroelectric crystal into a

relaxor ferroelectric or, simply, relaxor [187, 188]. From a microscopical point of view, the

disorder is produced by the chemical substitutions of ions of different valences than the host

ions leading to the formation of lattice defects or also substitutions of ions with other with

the same valence but different size generating an asymmetry of the cubic cell that causes

a dipole moment. The final effect is the the existence of a unique polar structure made by

polar nanometer-size regions (PNRs) that enhances the response of the material to external

stimuli [185]. PNRs, indeed, are known to form the basis for remarkable optical responses

of both fundamental and technological interest, such as randomly-matched second harmonic

generation [189–191], the giant photorefractive nonlinearities [42, 61, 100, 108, 192, 193],

giant quadratic electro-optic coefficients [62, 183, 194–196], strong electromechanical

coupling [197] and the anomalous electro-optic effect [173, 198, 199].

Relaxors properties are governed by the crystal temperature. For temperature T � TC

relaxors behave like ordinary ferroelectrics in their PP. Cooling the system to the so-called

Burns temperature TB , with TB > TC , the PNRs appear. This is a glassy state, with

randomly distributed directions of dipole moments, and ergodic behavior [200]. Even if we

are formally in the PP (at TB there is not an actual structural phase transition), the unique

physical properties of this state often induce to consider the medium at TC < T < TB in a

new phase, different from the PP [188]. An evidence of this is that, for T < TB , the material

does not follows the Curie law [Eq. (5.1)] and this fact is used to define TB itself as done

in Fig. 5.2. Here we report an example of the χr vs T plot obtained through the dielectric

spectroscopy performed on a relaxor sample, specifically a sodium-potassium-tantalate-

niobate (KNTN) crystal. As previously mentioned for ordinary ferroelectric, we observe

values of χr > 9× 103 but here we also note two of the main characteristic of relaxor: the

broad PP-FP transition and its frequency dependence.

The broad phase transition makes it possible to exploit the high χr in the transparent PP.

On the other hand TC (the value estimated from the Curie law in PP) is no longer suitable

to describe the transition and, usually, the temperature Tmax of the peak is adopted, as

illustrated in Fig. 5.2. The temperature Tmax is only approximately, indeed, as we can see

in the inset, measurements taken with different electric field frequencies change the peak χr
value and the actual Tmax. This phenomenon is described by the Vogel-Fulcher law:

f = (2πτ0)−1 e
−Ea

kB(T−TV F ) , (5.2)

where f is the measurement frequency and τ0, Ea and TV F are fitting parameters [201].
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Figure 5.2. Experimental measurements of εr = χr + 1 through dielectric spectroscopy for a relaxor
ferroelectric KNTN. The position of the temperatures TC , TB , Tmax are in agreement with the
definitions provided in text. In the inset is reported a magnification of the broad relaxor transition
around Tmax to emphasize the dependence of εr to the electric-field frequency. (From Ref.
[62]).

The Vogel-Fulcher law is known to hold for spin-glasses and, associated to relaxors, makes

them test beds for the experimental study of dipole glasses [188].

Another useful parameter to describe relaxors is the freezing temperature Tf , with

TC . Tf < TB , that is the temperature under which the ergodic regime ceases and PRNs

remain in a frozen state. The dipole relaxation time τ is strongly temperature dependent and

the modified Arrhenius law holds [188]:

τ = τ∞e
Eb

kB(T−Tf ) (5.3)

where τ∞ and Eb are parameters and for Tf = 0 the proper Arrhenius law is recovered. Eq.

(5.3) establishes that τ grows when T ∼ Tf and tends to τ = ∞ for T = Tf . This mean

that the system at T < Tf cannot reach the equilibrium state but remains in a metastable

state. We remark that this metastable state is not always the same but is correlated by the

previous history of the sample, i.e. thermal cycles, electric field application or observation

time. A direct consequence of this is, in Fig. 5.2, the existence of a hysteresis loop, that is,

different values of χr are obtained in cooling and in heating. We note that although Eq. (5.2)

and Eq. (5.3) have similar structure, the connection between them is not straightforward and

still debated [188].

A last noteworthy feature of many relaxors is their peculiar anisotropic response, that

is, different behaviors for propagation along the three crystalline axes [202]. An example

of this is reported in Fig. 5.3, here the dielectric spectroscopy on a KNTN crystal shows

directional anisotropy also in the nominally cubic phase. These observations are attributed to

the alteration of polarization and internal strain induced during the sample growth. Moreover,



5.3 Spontaneous Ordered Phase Transition 65

Figure 5.3. Relative permittivity as function of the measured temperature for several electric field
frequencies (we recall that εr = χr + 1). The experiment is performed during the heating stage
along the three crystalline axes: a (a), b (b) and c (c). (Adapted from Ref. [202]).

the slightly different transition temperature is associated to a hysteretic effect [202].

In the following Chapters we optically study the relaxor features of our samples. We

provide evidences of crystal anisotropy, with direction-dependent linear and nonlinear

propagation. Furthermore, we report the anomalous behaviors in proximity or just below the

PP-FP transition, i.e. the giant refractive index and the polarization modulation.

5.3 Spontaneous Ordered Phase Transition

In the last section we have observed evidence of the anisotropic response of a ferroelectric

relaxor, a spontaneous symmetry breaking that depends on the crystal axis and temperature.

Furthermore, we have shown that the PP-FP transition generally leads to a disordered mosaic

of polar domains that permeate the finite samples [203].

Here we report a different phase transition associated with coherent and ordered ferro-

electric domains. In detail we discuss the spontaneous formation of an extended coherent

three-dimensional (3D) superlattice in the nominal ferroelectric phase of specifically grown

potassium-lithium-tantalate-niobate (KLTN) crystals [3]. Visible light propagation reveals a

polarization pattern with a micrometric lattice constant, a counterintuitive mesoscopic phase

that naturally mimics standard solid-state structures but on scales that are thousands of times

larger and, for these reasons, we call it Super-Crystal (SC).

5.3.1 Super-Crystal Observation

The phenomenon is achieved using a compositionally disordered ferroelectric crystal

with an oscillating composition along the growth axis achieved using an off-center growth

technique in the furnace [175, 204]. The sample, the same of Chapter 4, has the grating

period Λ = 5.5 µm [Fig. 4.2(b),(c)].

When the crystal is allowed to relax at T = TC − 2 K, i.e., in proximity of the spatially

averaged room-temperature Curie point TC = 294 K, laser light propagating through
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Figure 5.4. Super-crystal patterns. (a) Sketch of the light propagates inside the periodic KLTN.
(b)-(c) SC light distribution obtained from a plane wave that propagates inside the KLTN at
T = TC . The images represent the Fourier transform of the micrometric domains organization.
(Adapted from Ref. [101]).

the sample suffers relevant scattering with strongly anisotropic features [see Figs. 5.4(a)-

(d)]. Typical results are reported in Fig. 5.4(b)-(d), and appear as an optical analogue

of x-ray diffraction in low-temperature solids. This optical diffractometry provides basic

evidence of the 3D SC at micrometric scales. Probing the principal crystal directions

reveals several diffraction orders that map the entire reciprocal space. The large-scale

SC, that permeates the whole sample, overlaps - along the x-direction - with the built-

in compositional oscillating seed. The SC extends in full three-dimensions, with the

same periodicity Λ = 5.5 µm of the x-oriented compositional oscillation, also along

the orthogonal y and z-directions. In particular, Fig. 5.4(d) indicates that in the plane

perpendicular to the built-in dielectric microstructure Γ vector, i.e., where spatial symmetry

should be unaffected by the microstructure in composition, the ferroelectric phase-transition

leads to a spontaneous pattern of transverse scale Λ. The corresponding elementary structure

on micrometric spatial scales is reported in Fig. 5.4(e); it can be represented as an fcc-cubic

structure in which the occupation of one of the three faces (z − y face) is missing [205].

The structure can be reduced to an simple cubic structure with a three-fold basis and lattice

parameter a = Λ.

As the crystal is brought below the average Curie point, it manifests a metastable (super-

cooled) and a stable (cold) phase, as analyzed in Fig. 5.5 both in the reciprocal (Fourier)

and direct (real) space. In the nominal paraelectric phase, at T = TC + 2K [Fig. 5.5(a)],

we observe the first Bragg diffraction orders (±1) consistent with the presence of the seed
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Figure 5.5. Light diffraction above and below TC . (a) Reciprocal space probed at T = TC +2 K (hot
paraelectric phase), showing the first diffraction orders due to the one-dimensional sinusoidal
compositional modulation. Cooling below the critical point results at T = TC − 2 K (super-
crystal ferroelectric phase) in (b) a supercooled (metastable) 1D superlattice with the same
diffraction orders that relaxes at the steady state into (c) the cold (stable) super-crystals. In both
b,c the direction of incident light is othogonal to ~γ, as in a. (d–h) Corresponding transmission
microscopy images revealing (d) unscattered optical propagation, (e,f) scattering at the phase
transition, (g) unscattered optical propagation in the metastable superlattice and (h) periodic
intensity distribution underlining the 3D superlattice. Metastable and stable (equilibrium) phases
are inspected, respectively, at times t ≈ 1 min and t ≈ 1 h after the structural transition at
T = TC . Bottom profiles in a–c are extracted along the red dotted line. Scale bars (a–c), 1.2 cm,
(d–f), 100 µm and (g,h), 10 µm.(From Ref. [101]).
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microstructure, a one-dimensional transverse sinusoidal modulation acting as a diffraction

grating; the distance from the central 0-order fulfils the Bragg condition,that is, scattered

light forms an angle θB = λ/2n0Λ ' 7◦ with the incident wavevector k. Crossing the ferro-

electric phase-transition temperature TC we detect a supercooled metastable state that has an

apparently analogous diffraction effect [Fig. 5.5(b)] that is dynamically superseded by the

stable and coherent cold SC phase [Fig. 5.5(c)], in which spatial correlations are extended to

the whole crystal volume. In real space, transmission microscopy shows unscattered optical

propagation through the paraelectric sample at T = TC + 2 K [Fig. 5.5(d)], that turns into

critical opalescence and scattering from obliques random domains at the structural phase

transition [Fig. 5.5(e)-(f)], and in unscattered transmission in the metastable ferroelectric

phase at T = TC − 2 K [Fig. 5.5(g)]. After dipolar relaxation has taken place, the cold SC

appears in this case as a periodic intensity distribution on micrometric scales, as shown in

Fig. 5.5(h).

E0 = 0.8 kV/cmE0 = 0

Figure 5.6. Direct space images of the super-crystal at T = TC − 3 K (left) before and (right) after
the application of E0 = 0.8 kV/cm external electric field along the x-axis.

The metastable SC state survives only around the critical temperature TC . In fact, the

brightness of the SC spots decreases cooling the sample and for T ∼ TC − 10 K the SC

disappears. Furthermore, also an external electric field E0 ' 0.8 kV/cm can induce the SC

a transition to the PP, as showed in Fig. 5.6. We point out that, removing E0 = 0, the SC

does not restore.

5.3.2 Super-Crystal Model

An interesting point arising from the experimental results and analysis is how the

periodically-ordered polarization state along the x-direction leads to the SC. Since we pass

spontaneously from a metastable to a stable mesoscopic phase, polar-domain dynamics in

presence of the fixed spatial scale Λ play a key role. In fact, we note that the 1D super-lattice

sketched in Fig. 3(c) involves the appearance of charge-density and associated strains

between polar planes, so that the ferroelectric crystal naturally tends to relax into a more
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Figure 5.7. Polar-domain configuration underlying the 3D superlattice. (a) Typical 180◦ and 90◦

domain configurations in perovskites ferroelectrics. (b) Planar domain arrangement scheme
in the stable super-crystal phase obtained with elementary blocks of 90◦ configurations (green
cell). In this periodically-ordered ferroelectric state the compositional modulation (as for Fig.
3(c)), other domain walls ruling optical diffractometry (black lines), and periods along x,y and
xy-axis (white bars) are highlighted. Vertical polarizations have a lighter color to stress their
weak optical response in our KLTN sample. (c) Extension of the single unit-cell (green cell in
(b)) in three dimensions.
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stable configuration. In standard perovskites, equilibrium configurations are mainly those

involving a 180◦ and 90◦ orientation between adjacent polar domains, as schematically

shown in Fig. 5.7(a). To explain the 3D polar-state and its periodical features underlying

the SC, we consider the 90◦ configuration, which is characterized by 45◦ domain walls

that we observe in a disordered configuration during the ferroelectric phase transition at

TC [Fig. 5.5(f)]. Due to the periodic constraint along the x-axis, this arrangement has the

unique property of reproducing our observations, minimizing energy associated to internal

charge-density, and transferring the built-in 1D order to the whole volume with the same

spatial scale Λ. We illustrate the domain pattern in Fig. 5.7(b) for the x−y plane, whereas in

Fig. 5.7(c) the elementary cell is shown in the three-dimensional case, where it maintains its

stability features in terms of charge-density energy. In particular, in Fig. 5.7(b), domain walls

resulting in the diffraction orders of Fig. 5.4(b) are marked, as well as the 45◦ correlation

period, that agree with optical observations of the reciprocal space. We further stress that

vertical domains [light blue in Fig. 5.7(b)] are optically analogous to paraelectric regions;

moreover, 180◦ rotations in the polarization direction in each polar region has no effect on

the optical response. In view of the symmetry of this arrangement, the observed diffraction

anisotropy [Fig. 5.4(d)] is then associated to the absence of grating-planes in the y − z face.

In the next chapters we illustrate other peculiar properties of the SC. We extensively use

the 3D structure developed here to explain most of the observed phenomena.
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Chapter 6

Observation of
polarization-maintaining light
propagation in depoled
compositionally disordered
ferroelectrics

Here the super-crystal is studied from the point of view of the optical birefringence. We

report experimental measurements of both global and local Stokes parameters, varying the

input light polarization and the temperature. Results indicate the existence of a polarization

grating that gradually disappears as the ferroelectric state reduces to a disordered distribution

of polar nanoregions above the critical point. This analysis represents an important step to

understand the proprieties of ferroelectric domains and makes birefringence as an important

tool to reveal the phase transition.

6.1 Light Polarization in Anisotropic Media

The polarization of light is strongly affected by anisotropy, the paradigm being the

birefringence observed in non-centrosymmetric crystals, such as ferroelectrics [203], where

the index of refraction depends on the polarization and propagation direction. In a full three-

dimensional scenario, birefringence can also affect wave propagation, not only introducing

coherent scattering [206], but even engendering localized guided modes.

PNRs, in relaxor material, generally form a disordered three-dimensional mosaic for

which optical birefringence experiments indicate average local symmetry breaking, providing

a tool for the study of possible non-ergodic behavior and dipolar-glass dielectric relaxation
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Figure 6.1. Schematic of different spontaneous ferroelectric states. (a) Three-dimensional disordered
distribution of polar domains. (b) Example of a volume polar structure underlying a ferroelectric
super-crystal.

[207–210]. In turn, the presence of large polar domains below the Curie point or in

the paraelectric phase under high electric field [194], causes complete depolarization of

propagating optical fields, a result of multiple interference of random scattered waves. This

complicates the use of giant ferroelectric response in photonic applications, whether these be

based on quasi-phase-matching and nonlinear electronic susceptibility or simply the electro-

optic response [158, 211–214]. In recent studies, conditions have been found in which

the polar-nanoregion mosaic spontaneously settles into a three-dimensional coherent and

periodic structure, a ferroelectric super-crystal with intriguing optical diffraction properties

[101]. In this case, interesting effects are expected to emerge in light-polarization dynamics

from the interplay of mesoscopic domain ordering and anisotropy, all this in a volume

scenario.

Here, spontaneous polarization leads to a periodic three-dimensional polar lattice with

strong inhomogeneity and anisotropy at the micrometer scale. Polarimetric experiments

indicate that, in distinction to pure depoled ferroelectrics, light propagates fully polarized

for a linear polarization along the super-crystal principal axes. Analyzing the wave spatial

distribution, we found the effect to be associated with the formation of speckle distributions

of alternating orthogonally polarized states that spatially separate the input polarization into

its linear polarization components parallel to the principal super-crystal axes. Precursors

of the phenomenon are observed also above the Curie point, where the ferroelectric super-

crystal vanishes, thus indicating preferred orientations of polar-nanoregions.

To grasp the physics underlying the polarization dynamics reported, we note that a

three-dimensional disordered mosaic of anisotropic domains, as schematically shown in

Fig. 6.1(a), dephases the components of an incident optical field according to the local

random optical axis, so as to scatter and depolarize the transmitted light irrespective of its

input polarization state. In turn, an ordered volume pattern of polar domains, such as the

one encountered in a ferroelectric super-crystal and illustrated in Fig. 6.1(b), where each
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lattice cell may host a so-called Kittel-like vortex [101], leads to a qualitatively different

polarization evolution. In fact, in this case ferroelectric anisotropy is inhomogeneous but the

local optical axis is on average aligned along the super-crystal structure.

6.2 Experimental Setup

In our experiments we used super-crystals formed in two different composite ferro-

electrics to demonstrate the generality of the polarization-maintaining scenario. The sodium-

potassium-tantalate-niobate (KNTN) super-crystal was obtained allowing a KαNa1−αTaβNb1−βO3

(α = 0.85, β = 0.63) solid-solution crystal to equilibrate for approximately 30 minutes be-

low its ferroelectric-paraelectric Curie point T = Tc − 3 K, with Tc = 293.5 K. The crystal

LP QWP KNTN

CCD

x

y

LPQWP

HWP

PM

y

Figure 6.2. Sketch of the experimental setup: linear polarizer (LP), quarter-wave plate (QWP),
half-wave plate (HWP), power meter (PM) and imaging camera (CCD). The inset shows the
optical diffraction pattern of the ferroelectric super-crystal embedded in the KNTN sample. Scale
bar is 5 mm.

is grown through the top-seeded solution method by extracting a zero-cut optical-quality

2.1 mm by 2.5 mm by 2.6 mm specimen (along the x,y,z axes). The lithium-potassium-

tantalate-niobate (KLTN) super-crystal emerged from the equilibration of a 2.4 mm by 2.0
mm by 1.58 mm KαLi1−αTaβNb1−βO3 (α = 0.96, β = 0.62) with Tc = 294 K. Dielectric

response for both samples is detailed in Refs. [202, 215] and the super-crystal formation

process is reported in Ref. [101]. In Fig. 6.2 we show the optical diffraction pattern ob-

served for the KNTN super-crystal: discrete spots fill the Fourier space and signal a periodic

micrometric order on large scales (≈ 25 µm) in the sample volume.

Polarization evolution in ferroelectric super-crystals is investigated through conventional

Stokes parameter measurements [216, 217], performed using the setup shown in Fig. 6.2.

A beam from a Nd:Yag laser (λ = 532 nm, 150 mW) is expanded so as to form a plane

wave propagating along the z direction and whose input polarization state is fixed using
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a linear polarizer and a half-wave plate. The output polarization state is analyzed using a

half-wave plate, quarter-wave plate, and a linear polarizer placed after the sample. This

allows the decomposition of the field into its Stokes components, i.e., horizontal (parallel

to the x axis) SH , 45 degrees S45 and right-circular SR from the optical intensity detected

through a power meter and a CCD camera.

6.3 Global Stokes Parameter Measurements
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Figure 6.3. Light-polarization dynamics in the KNTN super-crystal. (a-c) Stokes parameters
measured varying the input polarization state along equators of the Poincaré sphere through the
angular coordinate θ. Blue squares indicate the horizontal component of the polarization, red
circles the 45◦ one, orange and green triangles are, respectively, the right-handed part and the
degree of polarization ν. Solid lines are fitting functions (see main text) and dashed lines serves
as guides. Insets show the corresponding input (red cubes) and output (blue spheres) states in
the Poincaré space.

Results for the KNTN super-crystal are reported in Fig. 6.3 varying the input polarization

state along different trajectories on the Poincaré sphere. In Fig. 6.3(a) is shown the behavior

of a linear polarization; the degree of polarization ν =
√
S2
H + S2

45 + S2
R is observed to
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strongly depend on the polarization direction θ of the field. In particular, light remains fully

polarized and ν is maximum for a field parallel to the x or y axis (θ ' 0◦, 180◦), whereas

complete depolarization occurs in the conjugate points (θ ' 90◦, 270◦). For intermediate

values of θ, evolution of the horizontal component is well fitted by SH(θ) = cos θ (blue

line in Fig. 6.3(a,b)). Moreover, the transmitted light maintains a polarized fraction that

almost coincides with SH , that is, ν(θ) = | cos θ| [green line in Fig. 6.3(a,b)]. An analogous

evolution is observed for an elliptical input state oriented along the x axis [Fig. 6.3(b)]. In

this case, the circular components completely depolarize whereas the linear horizontal and

vertical ones propagate unaffected in the spatially inhomogeneous ferroelectric structure.

Moreover, the output field is always depolarized (ν ' 0) along a trajectory on the Poincaré

sphere orthogonal to the H axis [Fig. 6.3(c)]. The whole picture is observed in both

super-crystals, is found to be independent of the laser wavelength (532-633 nm) and crystal

orientation, and occurs equally for light propagating along the x and y directions of the

sample. This suggest a strong connection between the observed depolarization and the

one reported in electro-optic experiments in similar crystals in proximity of Tc under large

electric field [62, 183, 193, 194], an effect that has been only partially understood.

6.4 Spatially Resolved Experiments

(a) (b)

(c)

Figure 6.4. Evidence of a locally-polarized speckle lattice. Stokes parameter maps showing the
transmitted (a) SH (b) S45 and (c) SR local components for a linear input polarization with
θ = 90◦. Scale bar is 20 µm.

To pinpoint the underlying mechanism we perform spatially-resolved Stokes parameter

maps of the transmitted light. In Fig. 6.4(a) we report the detected SH for the significant

case of a linearly polarized [θ = 90◦ in Fig. 6.3(a)] input wave from a He-Ne laser

(λ = 633 nm, 15 mW) propagating along the z direction of the KLTN super-crystal. We

observe a speckle-like distribution arising from scattering during propagation. However, in
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contrast to what is expected for depolarized light from scattering, speckles distribute on a

periodic lattice with approximately 6 µm lattice constant that coincides with the super-crystal

structure. A similar speckle lattice is found for the S45 and SR map, Fig. 6.4(b) and Fig.

6.4(c), respectively. Interestingly, while the global degree of polarization is ν ' 0, the

degree of polarization measured averaging on each spatial point is ν ' 0.7. Therefore, the

output polarization state consists of a mixture of spatially-separated polarized states. This

indicates how inhomogeneity of the medium introduces a local phase difference between

orthogonal polarization components that strongly varies in space. A macroscopic Stokes

measure (Fig. 6.2) averages out these local phases so that the field appears as depolarized

although horizontal and vertical components are maintained during propagation. The optical

polarization lattice closely follows the super-crystal, and this demonstrate a principal role

played by the underlying ferroelectric state [see Fig. 6.1(b)].

6.5 Temperature Varying Measurements

To further test the role of ferroelectric domains, we perform polarimetric transmission

experiments varying the crystal temperature, so as to introduce strong fluctuations in super-

crystal order, ultimately crossing the Curie temperature to restore global inversion symmetry

in the paraelectric phase. As reported in Fig. 6.5(a) for the dynamics of a linearly polarized
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Figure 6.5. Partial depolarization from polar-nanoregions. (a) Stokes parameters measured in the
nominal paraelectric phase (T = Tc + 6 K) for propagation along the x direction of the KNTN
crystal. Inputs are linearly polarized, that is, θ varies along the equator of the sphere in Fig.
6.3(a). (b) Minimum degree of polarization νmin for measurements as in (a) versus T − Tc.

input state in KNTN (see Fig. 6.3(a) for a comparison), the average depolarization of the

input wave appears less pronounced at T = Tc + 6 K. Although ν still depends on θ, its

minimum at θ ≈ 90◦ no longer vanishes. Although the main Stokes component remains

SH , other components become significant. Polarization evolution now is found to depend

on the length of the sample along the propagation axis and on λ, suggesting a macroscopic
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birefringence of the hosting paraelectric medium. This is consistent with the fact that

above the Curie point the super-crystal is superseded by a disordered distribution of PNRs

[173, 196–199] that acts as a precursor of the macroscopic phase transition, so that no

macroscopic index of refraction periodic lattice emerges. As reported in Fig. 6.5(b), the

corresponding minimum degree of polarization (νmin) increases as temperature moves away

from the critical point, an order parameter further underlining the role of the ferroelectric

inhomogeneous structure. At T = Tc + 20 K, where the crystal appears no longer affected

by polar-nanoregions (proper paraelectric phase), ν = 1 for all input polarizations.

in conditions for which an ordered three-dimensional polar-lattice is embedded in the

material. Experiments above the Curie temperature, then, suggest that polar nanoregions

have preferred orientations along the crystal axes, a fact that may play a crucial role in

phenomena involving the giant electro-optic and giant piezoelectric effect. Our results

demonstrate how ordered polar domains can coherently modify the polarization of light, pos-

sibly enabling the use of the unconventional ferroelectric properties in photonic applications

based on polarization control.
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Chapter 7

Second Harmonic Generation in
nanodisordered ferroelectrics

Second Harmonic Generation (SHG) is one of the paradigmatic effects in nonlinear

optics. It is fundamental in many applications from SHG microscopy [218] to laser sources,

allowing laser emission for frequencies not accessible from high-efficiency electronic

transitions [216]. In this Chapter we illustrate the very recent findings about SHG, made on

nanodisordered perovskites and the role that SHG can play to unveil the hidden structure of

these materials.

7.1 Second Harmonic Generation

SHG represents the conversion of a field E1, the pump, with frequency ω1 = ω into

a field E2, the signal, with frequency ω2 = 2ω. SHG is a second-order effect and only

materials with the proper symmetry, and polarization, allow it. Indeed, we have to recall

that, in general, the i-th component of the second-order polarization vector with frequency

ωn + ωm is connected with the fields with frequency ωn and ωm by the the susceptibility

tensor [219]:

Pi(ωn + ωm) = ε0
∑
jk

∑
(nm)

2dijkEj(ωn)Ek(ωm), (7.1)

where we use the contracted notation for the susceptibility tensor dijk and
∑

(nm) is to

consider all the possible permutation of the indexes.

To derive the formulas of the SHG, we solve the Maxwell equations (1.1) releasing the

constraint of monochromatic field. After some simply considerations, we obtain the wave

equation [219]:

∇2 ~En(~r) + ω2
n

c2 ε
(1) ~En(~r) = − ω2

n

ε0c2
~PNLn (~r), (7.2)

where the subscript n = 1, 2 indicates the components with frequency ωn = ω1, ω2
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respectively and PNLn states for the nonlinear part of the polarization vector. We have written

ε(1) to recall that this is the linear contribution of the dimensionless relative permittivity.

Assuming to be in a lossless medium, the solution of Eq. (7.2) for ~PNLn (~r) = 0, is

the plane wave En(z, y) = An exp(iknz − ω3t) with kn = nnωn/c and n2
n = ε(1)(ω3).

To extend this solution to the complete Eq. (7.2), we can replace the constant wave am-

plitude An with a slowly varying function of z that is A(z) and we obtain En(z, t) =
An exp(iknz) exp(−iωnt) + (c.c.). In this hypothesis there is no more dependence on

the transverse coordinates x and y and we can replace ∇2 by d2/dz2. Now we focus our

attention on the equations for the field at frequency ω2. Following Eq. (7.1), the polarization

can be expressed through the effective value of the susceptibility tensor deff [219]:

P (2ω) = 2ε0deffE
2(ω). (7.3)

From all of the previous considerations and performing the slowly varying amplitude

approximation (SVEA)1, we can handle Eq. (7.2) as follows:

dA2
dz

= iω2
2deff

k2c2 A2
1e
i(2k1−k2)z. (7.4)

For the field E1 we can repeat all the above passages and we obtain:

dA1
dz

= 2iω2
1deff

k1c2 A2A
∗
1e
−i(2k1−k2)z. (7.5)

The term ∆k = 2k1 − k2 is the so-called momentum mismatch.

7.1.1 Phase-Matching

The Phase-Matching (PM) condition plays a crucial role in establishing the availabil-

ity of a nonlinear process. To understand PM, we simplify the discussion introducing

the undepleted-pump approximation, i.e. A1 constant; this is particularity true for low-

conversion efficiency as in our experiments. In this approximation, we see from Eq. (7.4)

that, for ∆k = 0 (perfect phase-matching), the amplitude A2 can grow linearly (Fig. 7.1 red

line) with z and consequently the SHG intensity can grow quadratically. On the other hand,

when the PM condition is not fully achieved, the SHG field oscillates along the propagation

and the efficiency remains low, as reported in Fig. 7.1 black line.
1The SVEA means ∣∣∣∣d2A2

dz2

∣∣∣∣� ∣∣∣k2
dA2

dz

∣∣∣ .
This condition requires that the fractional change in A3 in a distance of the order of an optical wavelength must
be much smaller than unity [219].
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Δ𝑘 = 0

Δ𝑘 ≠ 0

Figure 7.1. Amplitude of the SHG for different PM mechanisms as function of the length of the
crystal L normalized to the coherence length of the nonlinear interaction lc. (Adapted from Ref.
[220])

The PM condition for SHG explicitly means that:

n2ω2
c

= 2n1ω1
c
⇒ n(2ω)2ω = 2n(ω)ω ⇒ n(2ω) = n(ω). (7.6)

No material can directly satisfy condition (7.6) because of the frequency dispersion of the

refractive index [221]. The usually adopted solution is to exploit the intrinsic birefringence

of media, that is the dependence of the refractive index on the polarization direction. The

crystal has, then, two refractive indexes, the ordinary and the extraordinary, with two

different dispersion relations and it could happen that, for certain values of frequencies, the

Eq. (7.6) is satisfied. There are two possibilities:

• Type 1 PM: the two waves of the pump have the same polarization and the SHG is

orthogonally polarized;

• Type 2 PM: the two waves of the pump are orthogonally polarized and the SHG is

ordinary (extraordinary) if the medium is a positive (negative) uniaxial crystal.

We point out that not all crystals display birefringence, in particular centrosymmetric media

are optically isotropic and then do not manifest birefringence. Furthermore, it may possible

that the noncentrosymmetric medium does not possess enough birefringence to compensate

the refractive index dispersion for the desired wavelengths. All these circumstances reduces

the availability of phase-matchable materials and other solutions are necessary.

7.2 Phase Matching In Periodic Structures

We have seen that an efficient SHG requires the noncentrosymmetric medium to fulfil the

PM constraints. In nature, only few material are directly available so that other techniques
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Figure 7.2. Example of the SHG in a periodic medium. (a) Scheme of the nonlinear Bragg
diffraction. (b) Scheme of the Raman-Nath diffraction. (c) Sketch of the SHG setup. (d)-(e)
Actual experimental observations. (From Ref. [222])

are adopted to overcome PM limitations. One of these is the so-called Quasi Phase Matching

(QPM) that is achieved by a structural periodicity built into the nonlinear medium that

corrects the phase mismatch [223]. As illustrated in the inset of Fig. 7.1, the QPM material

is periodically poled so that the orientation of the crystalline axis flips every coherence

length lc = λ(ω)/4[n(2ω)− n(ω)] [224]. The inversion of the crystalline axis is associated

with the change of the sign of the nonlinear coupling coefficient deff that can compensate

the nonzero wavevector mismatch [219]. It happens that the SHG is crescent in the length

lc and after that, instead of decreasing as normal PM establishes (black line of Fig. 7.1), it

grows again due to inverted deff as shown by the blue and green curves of Fig. 7.1 [220].

The concept of QPM can be extended in 2 and 3 dimensions in the so-called nonlinear

photonic lattices. We consider now the simplest case with constant linear susceptibility

(ε(1)
r =const) in the whole material so that the periodic pattern is attributed only to deff(~r),

i.e.

deff(~r) =
∑
~G

κ ~G exp(−i ~G · ~r), (7.7)

where ~G = (π/Λ)~n is one of the vectors of the reciprocal lattice along the ~n direction

and κ ~G are coefficients. Inserting Eq. (7.7) in Eq. (7.4), we obtain the PM expression for

nonlinear photonic lattices [224]

∆~k = 2~k1 − ~k2 + ~G. (7.8)

We note that the found expression is a relation between vectors and not simply between
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scalar quantities as for the one dimensional case. This means that the PM constraints has to

be satisfied both in the longitudinal and transverse directions. In particular the transverse

PM condition states that sinαm = m|~G|/k2. The resulting SHG has a discrete emission

that can lead to the so-called nonlinear Bragg diffraction [224, 225] that is illustrated in Fig.

7.2(a). Moreover, another SHG discrete mechanism belongs to nonlinear photonic lattices:

the so-called Raman-Nath nonlinear diffraction. Here, the PM is fulfilled thanks to a phonon

which provides the reciprocal lattice vector δ~kph and the associated PM relation becomes

∆~k = 2~k1 − ~k2 + ~G+ δ~kph [222, 226] as sketched in the scheme of Fig. 7.2(b).

An experimental example of the combined effect of the nonlinear Bragg and the nonlinear

Raman-Nath on SHG, is provided in Figs. 7.2(d),(e). In detail, the small spots near the

pump position are associated to the nonlinear Raman-Nath instead the farther spots refer to

the nonlinear Bragg. The one dimensional emission along the x-axis is coherent with the

experimental setup of Fig. 7.2(c).

7.3 Random Phase Matching

By its own nature, QPM suffers important limitations: the SHG is allowed only for

the frequency to which the material is designed. Furthermore, there is a high angular and

temperature sensibility so that also a small variation can cause an appreciable reduction

in the conversion efficiency due to the slight change in the actual period. Most of QPM

restrictions can be overcome by Random Phase Matching (RPM) [190, 227]. This method

exploits the disorder inside some materials to fulfil the PM conditions. The principle is the

same of QPM but it is available for an infinite number of wavevectors due to the random

photonic nonlinear structure of the material.

In the bottom panels of Fig. 7.3 there are illustrated two possible random microscopic

crystal configurations: the two fractal patterns are made by domains of different size. The

mechanism of QPM can be understood looking at the Fourier spectra in the top panels of Fig.

7.3. We see that for each configuration is associated a continuous of reciprocal vectors ~G

that corresponds to the various periodicities Λ embedded in the fractal structure. In analogy

with nonlinear photonic crystals, such vectors ~G can be exploited to fulfil the PM condition

of Eq. 7.8 [190]. In Fig. 7.3(a) it is shown a possible situation where the SHG is expected

to be emitted in the angular direction α. This is the so-called Čerenkov-type PM2 and in

isotropic media it manifest in a continous conical emission with α = arccos(nω/n2ω) [222,

229–231].
2Some authors refer to the nonlinear Bragg diffraction as nonlinear Čerenkov emission [228].
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Figure 7.3. Illustration of QPM in ferroelectric perovskite. Bottom panels: simulation of random
domains distributions with (a) smaller and (b) bigger grain size. The black and white colors
indicate opposite signs of the deff. Top panels: Fuorier spectra of the corresponding fractal
pattern of the bottom panels. Brighter the color, higher the Fourier component. (From Ref.
[191])

7.4 Preliminary Results

Many Perovskites, in the orthorhombic (non-centrosymmetric) ferroelectric phase, have

been demonstrated to be eligible to achieve RPM due to the random distribution of the

ferroelectric domains [191, 227]. In the same materials, furthermore great efforts are made

to study and obtain nonlinear photonic lattices.

In particular two recent works, Ref. [220] and Ref. [232], concerning three-dimensional

photonic crystals renew the interest on the structured SHG. They, independently and at the

same time, demonstrate that ferroelectric perovskites can be turned into fully 3D nonlinear

photonic crystals. They both reach their results with material engineer, laser writing a

periodic structure with few layers along the propagation axis.

In our work we have studied the SHG in a lithium-potassium-tantalate-niobate (KLTN).

The measurements are performed in both unpoled and field cooled sample. The field cooling

process is achieved first heating the sample and than cooling it applying a strong electric

field [191]. We note that this method provides an uniform directional strain that does not

modify locally, i.e. periodically, the domains sizes and orientations.

Specifically, here, we report the preliminary results obtained exploiting the KLTN crystal

at T = TC − 25 K. All measurements are performed with a λ = 820± 10 nm pump with

average power of ' 500 mW and pulse duration of ' 70 fs. The observations for poled

sample are reported in Figs. 7.4(a)-(b), 7.5(a), 7.6(a). They indicate the existence of a

periodic features in the SHG that reveal a grating-like spatial distribution of the nonlinear

coefficient according to the QPM theory. We point out that the linear cross-polarizer
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imaging of the crystal input-facet [Figs. 7.4(c), 7.5(b), 7.6(b)] shows periodic features that

are incompatible with the observed SHG as verified by Fourier analysis (not reported). This

is particularly true for the SHG that rise from the speckle image of Fig. 7.6(b) that we

believe is caused by the random organization of dipoles along the field-application direction.

To understand the effect of poling we report the SHG obtained from the unpoled KLTN

in Figs. 7.4(d), 7.5(c), 7.6(c) . The observed SHG cannot be connected to any periodic

structure. On the other hand these kind of patterns are very similar to those reported for

RPM in ferroelectric crystal [190, 191]. In particular, in the Fig. 7.5(c) configuration we

measure a conversion efficiency of 0.5% that is comparable with the highest observed for

RPM SHG [227].

The experiments are not definitive but they are enough to illustrate the possibilities of

SHG in nano-disorder ferroelectric crystals. The periodic feature observed for the poled

crystal pushes us to connect this structured SHG with the linear super-crystal since the

samples have essentially the same structure. From an applicative point of view these studies

represents an important advantage in search of new and more feasible sources. We observed,

indeed, a wide angular and spectral acceptance that is it seems that the structured SHG is

not susceptible to variation of ±45◦ and ±30 nm of the pump. From theoretical point of

view, these studies demonstrate that the SHG can be used as an important tool to disclose

the microscopic structure of the nano-disorder ferroelectric perovskites.
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Figure 7.4. Experimental observation of λ = 410 SHG in the KLTN crystal. In the poled sample the
λ = 820 nm pump propagates along the z-direction and it is (a) y-polarized or (b) x-polarized.
(c) Corresponding cross-polarizer linear propagation. (d) SHG from the unpoled KLTN obtained
by the x-polarized pump, the case with y-polarized pump is not reported because it manifest the
same feature with lower visibility.
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Figure 7.5. Experimental observation of λ = 410 nm SHG in the KLTN crystal. The λ = 820 nm
pump propagates along the y-direction and it is x-polarized. Reported Fourier space images
for (a) poled and (b) unpoled sample. The pump polarization is chose only to maximize the
conversion efficiency and same SHG distribution, but lower, is observed also with z-polarized
pump. (b) Linear cross-polarizer imaging for poled crystal.
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Figure 7.6. Experimental observation of λ = 410 nm SHG in the KLTN crystal. The λ = 820 nm
pump propagates along the x-direction and it is y-polarized. Reported Fourier space images
for (a) poled and (b) unpoled sample. The pump polarization is chose only to maximize the
conversion efficiency and same SHG distribution, but lower, is observed also with z-polarized
pump. (b) Linear cross-polarizer imaging for poled crystal.
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Chapter 8

Giant broadband refraction in the
visible in a ferroelectric perovskite

In this Chapter we report our observation of Giant index of Refraction (GR). In principle,

materials with a broadband giant index of refraction (n > 10) overcome chromatic aberration

and shrink the diffraction limit down to the nanoscale, allowing new opportunites for

nanoscopic imaging [233]. They also open new avenues for the management of light

to improve the performance of photovoltaic cells [234]. Here we report a ferroelectric

perovskite with an index of refraction n > 26 across the entire visible spectrum and

demonstrate its behaviour using white-light and laser refraction and diffraction experiments.

The sample has a natural-occurring room temperature phase that propagates visible light

along its normal axis without significant diffraction or chromatic dispersion, irrespective of

beam size, intensity, and angle of incidence.

8.1 Fresnel Refraction Theory

In conditions of validity of the macroscopic Maxwell Equations, the optical electric field

E obeys ∇2E− (n/c)2∂ttE = 0, where n is the wavelength-dependent index of refraction

of the material and c the speed of light. Light entering a material with index of refraction n

suffers refraction according to Snell’s law, i.e., sin θ1 = n sin θ2, where θ1 and θ2 are the

angles formed by the beam with the normal to the boundary of the material. Once inside the

material, diffraction causes the beam to have an angular spread ∆θ ∝ λ/nw0, where λ is

the wavelength and w0 is the input size of the beam, and this limits the spatial resolution of

transmitted waveforms. Since n is wavelength-dependent, both refraction and diffraction

are chromatic, i.e., different wavelengths follow different paths (chromatic aberration) and

have a different angular spread. A giant refraction (GR) with n � 1 across the visible

spectrum implies that refracted beams propagate along the normal to the material boundary,

with a vanishing θ2 = sin−1 ((1/n) sin θ1), and a vanishing chromatic aberration dθ2/dλ '
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− sin θ1(1/n)2(dn/dλ). Furthermore, since each spectral component of wavelength λ obeys

a different Helmholtz Equation∇2Eλ + (k0n(λ))2Eλ = 0 [235], where k0 = 2π/λ = ω/c

and ω is the corresponding angular frequency, each plane-wave component of wave-vector

k obeys k2
x + k2

y + k2
z = k2

0n
2. Angled components with kx, ky 6= 0, fixed by their

values outside the material, manifest a different phase-velocity along the propagation axis

kz =
√
k2

0n
2 − k2

x − k2
y . The dephasing of these components, i.e., diffraction, is thus

associated with the value of ∂kz/∂kx = −kx/
√
k2

0n
2 − k2

x − k2
y ∼ (1/n) that vanishes,

along with ∂kz/∂ky, as n� 1. Analogously, also the angular spread vanishes for n� 1,

∆θ = |k⊥|max/kz ∼ 1/w0k0n, where |k⊥|max = |
√
k2
x + k2

y|max ∼ 1/w0 is the size of

the transverse angular spectrum at the boundary. In other words, for all wavelengths, θ2 ' 0
for all launch θ1, (no chromatic aberration) and we have a vanishing angular spread ∆θ ' 0
for all beam sizes w0 (no diffraction). In terms of imaging, GR causes the material to project

the input optical field directly to the output of the sample as if the space occupied by the

material itself were absent. While GR is generally inaccessible in an isotropic material

because an n � 1 implies that the Fresnel reflection coefficient at the input (and output)

boundary is R ' 1 [236], i.e., no light ever enters or leaves the material, it becomes

accessible in an anisotropic material. Strong anisotropy together with a giant dielectric

response is found in critical disordered ferroelectric perovskites [173, 183, 202].

8.1.1 Giant Refraction and Anisotropy

Giant Refraction implies refraction along the normal to the boundary of the medium, no

chromatic aberration, and no diffraction. In turn, the boundary conditions for an isotropic

material with GR also imply that very little light can actually enter or leave it, as rendered

explicit by the standard Fresnel equations. For example, in the case of normal incidence, the

coefficient R = |(1− n)/(1 + n)|2 → 1 as n → ∞. An analogous anomalous reflection

also occurs on exiting the material, where now the relative index of refraction is (1/n)� 1.

Fresnel reflection, in turn, does not hamper GR in anisotropic systems [237]. In Fig. 8.1

we report (1+1)D FDTD numerical results for reflection and refraction for the TM and TE

modes, where ut is the unit vector parallel to the boundary in the incidence plane, un is

the unit vector normal to the boundary, and up is the one normal to the incidence plane.

In Fig. 8.1(a) standard refraction and reflection can be found for a homogeneous n = 2
TM case, while, as reported in Fig. 8.1(b), for n = 5, both refraction and reflection are

stronger. In Figs. 8.1(c),(d) we report the cases with ntt = 2, nnn = 5, npp = 2 and

ntt = 2, nnn = 2, npp = 5, respectively. The picture is radically modified in Fig. 8.1(c)

where the diagonal index matrix has ntt = 2, nnn = 5, npp = 2: enhanced refraction is

found without the enhanced reflection. The TE case is reported in Fig. 8.1(e)-(h), where

enhanced refraction is observed in the case of ntt = 2, nnn = 2, npp = 5 [Fig. 8.1(h)] and,

as for the homogeneous case of Fig. 8.1(f), also enhanced reflection is found.
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Figure 8.1. Numerical analysis (using an FTDT algorithm) of refraction and reflection in various
conditions (see text). The wave has λ=632.8 nm, an input width of 1.75 µm, θ1=45◦, and is
allowed to propagate in the refracting material that is 6 µm in length along un .

In the TM case refraction is associated to the matching of the wave-vector across the

boundary along ut, and this involves the component of the optical electric field that oscillates

along un so that, in order to have GR, nnn � 1 is required. In turn, the Fresnel equations

involve the susceptibility along ut, so that a standard ntt leads to standard reflection. In the

TE case, GR involves the optical component of the electric field that oscillates along up, so

that npp � 1 is needed. Since, however, in this case the Fresnel equation involves npp, GR

is accompanied by strong reflection.

8.2 Experimental Setup

The key ingredient of out experiment is our nano-disorder ferroelectric perovskite which

we report a picture in Fig. 8.2(a). The sample we have grown is a zero-cut polished

lithium-enriched solid-solution of potassium-tantalate-niobate (KTN:Li) with an average

composition K0.997Ta0.64Nb0.36O3:Li0.003. It measures in the three directions 6.0(x) x 2.6(y)

x 3.0(z) mm and has a pale green hue (with an absorption of 2 cm−1 in the visible) caused

by a small component of Cu impurities. The unit cell manifests random substitutions,

a compositional-disorder that, on consequence of the structural flexibility typical of per-

ovskites, leads to locally modified polarizabilities and temperature-dependent nanoscale

dipolar structures (nanodisordered ferroelectricity). The result is a modified ferroelectric
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Figure 8.2. Sample and apparatus sketch. (a) Image of the KLTN crystal during GR experiment.
Strongly diffracting white-light from a projector is focused onto the sample, propagates through
it, and appears to exit as if it had been focused directly onto the output facet, 3mm away. The
sample projects the input light beam to the output as if not only the sample is absent, but also the
space occupied by it. (b) Side-view and (c) top-view of the experimental setup.

behavior dominated by so-called polar-nanoregions (PNRs), characterized by dielectric dis-

persion and out-of-equilibrium behavior (relaxor ferroelectricity) [185, 238]. In our present

case, this disorder is itself not homogeneous, manifesting a spatially-periodic micrometric

oscillation along a specific crystal axis. This is because the sample is grown into a bulk

through the top-seeded method, a technique that entails a slight time oscillation in the tem-

perature of the solidifying melt that, in turn, translates into a characteristic periodic pattern

along the growth (or pull) axis. This pattern conditions the nanoscale dipolar structures

that, at the room-temperature Curie point (TC=288 K), form a three-dimensional mesh of

spontaneous polarization, the super-crystal [101, 180]. We note that samples of KTN:Li can

be grown as films and thin films using vapor deposition or be tailored into waveguides using

ion amorphization. While a lower-dimensional super-crystal can potentially emerge in a

film, at present no GR experiments have been performed in a film of thin-film sample.

The experimental setup is sketched in Figs. 8.2(b)-(c). The source is a commercial

projector (NEC-VE281X, XGA, 2800 lumens). Light exiting a bright screen image is sent

through a linear polarization filter (POL) that allows the passage of light polarized along the

x axis (TM mode) or along the y axis (TE mode). Light is collected using a high-aperture

long-working distance microscope objective (OBJ, Edmund Optics - 100X - 3mm working

distance -achromatic - NA =0.8) positioned approximately 30 cm from the output lens of the

projector. An important parameter in experiments is the rotation angle of the KTN:Li sample

around the vertical y axis, θ1 (see Fig. 1c), i.e., the angle between the normal to the sample

input facet (z) and the experiment propagation axis (z’). Images and movies are obtained

using an Apple iPhone7 either directly or through one eyepiece of a high-aperture optical

microscope (Nikon, NA=0.8) positioned on top of the sample, along the y axis. Higher

resolution images are attained placing in the eyepiece a high-resolution black-and-white

charged-coupled-device CCD (PCO Pixelfly, 14 bit, 1392×1060 pixels). Transmitted light
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is collected by an imaging lens with numerical aperture 0.35 and focal length 75 mm. This

lens forms an image of a desired plane onto the front-view CCD ( Thorlabs BC-106VIS, 12

bit). Sample temperature is fixed by a current-controlled Peltier junction and is positioned

and rotated using micrometric stages.

8.3 White Light Propagation

(a)

T=TC1

z

z’
T=TC1

z

z’

GR

(c)

1s

6s

2s

8s

4s

10s

(b)

Chromatic
aberrations

1 mm

1 mm

Figure 8.3. Low resolution color images of the GR inside the KLTN sample. (a) Top view of the
behavior of light inside the sample and (b) the manifestation of GR as the sample thermalizes at
the Curie point. (c) Achromatic nature of GR compared to colored scattering.

The basic GR phenomenon is reported in Fig. 8.2(a), where stray light indicates that

while light is focused onto the input facet, it appears to emerge directly from the output

facet, 3mm away from the input. In Fig. 8.3(a) the top view image shows light undergoing

GR: the beam is transmitted orthogonal to the sample facets, irrespective of the actual tilt

angle. In fact, for T = TC , a distinct white beam forms that extends from the input of the

sample to the output. This beam propagates with θ2 = 0, is white, and does not spread, even

though it originates from a white incoherent focused spot from the microscope objective.

We underline that, normally, the white beam diffracts so as to engulf the entire sample and

some chromatic aberrations are seen.

The GR beam forms on consequence of thermalizing the crystal to TC , as can be

appreciated in Fig. 8.3(b), where the sample originally at 303 K is brought to T = TC and

progressively thermalizes in time. Intervals of time measure the delay between the moment

in which the image is captured and that for which the sensor measuring the temperature

of the sample first reaches TC . The phenomenon depends solely on T and is independent

of beam intensity, size, launch angle θ1, and position in the sample. As expected, GR

also occurs when the white-light is focused before and after the input facet, but with a

correspondingly larger width in the GR component. Specifically, in Fig. 8.3(b), the focus is

formed inside the sample and, as the GR regime emerges, the actual focus disappears and

leads to a slightly enlarged GR transmission. The GR beam does not manifest the chromatic

dispersion that can, in turn, be directly observed in conventional scattering from the crystal
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support, as reported in Fig. 8.3(c).
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Figure 8.4. (a) High resolution top-view of the beam suffering GR at T = TC and (b) at T < TC ,
an increased scattering is evident. (c) GR for the TE mode (T < TC). (d) Intensity of scattered
light along propagation for different polarization states and temperatures. (e) Input and output
transverse intensity distribution when the sample manifests standard refraction (T > TC) and
GR (T = TC). The broad background at T = TC is the original diffracting Snell component
that is, in the present case, angularly superimposed with the GR beam.

Higher-resolution images of the effect are reported in Figs. 8.4(a)-(c). Figure 8.4(a)

reports the GR effect as the sample is kept at the ferroelectric Curie point, while Fig. 8.4(b)

reports the phenomenon when the sample is kept at a lower temperature (TC-3 K). Compared

to the GR case, increased scattering causes light to decay along the normal to the input

facet. Enhanced scattering appears in the path of the beam. At this same temperature, also

light polarized in the orthogonal TE mode suffers GR, along with a similar scattering [Fig.

8.4(c)]. The intensity of scattered light, as deduced from scattered intensity, is reported in

Fig. 8.4(d) (where background noise has been subtracted). Orange squares refer to data

from the T = TC GR and indicate an exponential decay with a decay rate of 3.8 cm−1

while blue and green curves refer, respectively, to the TM and TE modes at T = TC -3K,

with a decay rate of 11.2 cm−1. Front images of the projector light are reported in Fig.

8.4(e) at the input and output at T = TC + 15K and T = TC . Light is focused to a 52 µm

spot, and the sample is rotated by an angle of θ1 = 35◦. When GR emerges, the output

Full-Width-at-Half-Maximum (FWHM) is 35 µm, while without GR the FWHM is larger

than 142 µm, as the output diffraction image is a convolution of the actual spread out beam

with the limited optical transfer function of the output imaging lens.
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Because no refraction and diffraction are observed at TC (Fig. 8.4), the estimated value

of n across the visible spectrum descends from the experimental uncertainty. In terms

of the angle of refraction, spatial resolution is limited by the width of the beam (∼ 50
µm) and the length of the sample (Lz = 3 mm), so that the minimum observable θ2 is

δθ2 = 50/3000 = 0.017. Consequently, the minimum observable index of refraction is

δn = sin θ1/ sin δθ2 = 34 (θ1 = 35◦), hence n > 34 for the spectrum of the projector

lamp.

8.4 Laser Light Propagation
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Figure 8.5. Physical origin of GR. (a) Optical characterization of the ferroelectric SC (the correlation
coefficient C(d) is calculated between a portion of the intensity distribution transmitted by the
sample 35×35 µm2 and a portion shifted by d along the up axis). (b) Spontaneous polarization
mesh in the perovskite tetragonal SC phase with a blow-up of the regions (red) supporting TM
GR.

To further investigate the GR effect we have performed experiments with laser light

substituting the projector with a 5 mW He-Ne laser operating at λ=632.8 nm and linearly

polarized along ut. The monochromatic light transmission is reported in Fig. 8.5(a) for

T > TC (303 K), T = TC (288 K), and T < TC (283 K). At TC the emergence of

a coherent spatial structure, typical of the ferroelectric SC [101, 180], leads to a finite

correlation in the intensity distribution, absent in the paraelectric transmission and in

the subcooled ferroelectric state, where relevant domain disorder is observed. Optical
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diffraction experiments indicate that the SC is compatible with the three-dimensional mesh

of spontaneous polarization (blue arrows) illustrated in Fig. 8.5(b) (left). Here the anisotropy

required for GR, as explained in Sec. 8.1, occurs on a subset of regions in the sample that

forms a characteristic lattice illustrated in Fig. 8.5(b) (right, red). In detail, the blue-shaded

regions contain spontaneous polarization prevalently along ut and up, while the red-shaded

regions also contain spontaneous polarization along un. In conditions in which the optical

susceptibility is enhanced along the direction of spontaneous polarization, these regions

have the principal components of the index of refraction tensor that allow TM GR, i.e.,

nnn � ntt, npp along un, ut, and up, respectively. The GR for the TE mode, in turn,

is supported by the regions with a prevalently up directed spontaneous polarization (not

illustrated). Only the component of the input beam that impinges on the regions that allow

the correct anisotropy can actually manifest GR, while the remaining component of light

suffers standard Snell refraction.
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Figure 8.6. GR for low aperture laser light. (a) Low aperture laser light showing the decay of the
standard refraction component into multiple GR beams at T = TC along with the standard
refraction component (see text). (d) The top-view snapshot reports GR along the long 6 mm side
of the sample. (e) Detailed analysis of laser light propagation seen from a top-view (top) front
view (central) and as a profile along the dashed line (bottom) as the sample relaxes to T = TC .
Time intervals are measured starting from when the temperature gauge reaches TC .

The presence of the two components is confirmed using low-aperture laser light, as

reported in Figs. 8.6. For this kind of experiments, the beam is first expanded using two

confocal lenses to a plane-parallel 10 mm radius beam. The beam is then focused using a

150 mm focal length lens onto the input facet of the sample. The beam numerical aperture
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is NA=0.1 (in air). The input beam has a FWHM of 18 µm and is TM polarized. Top

view images are captured in a fashion similar to that used for white-light [scattered light

leads to an estimated monochromatic 632.8 nm decay rate along propagation at TC of 4.6

cm−1 for the steady-state of Fig. 8.6(c)]. Thanks to this procedure, we are able to study

the component of the light beam that undergoes standard refraction and diffraction, not

observable in the white-light experiments of Figs. 8.3 and 8.4. Moreover, as expected from

the wholly three-dimensional nature of the SC, the effect occurs along all three directions

of the underlying SC [see Fig. 8.6(b) for GR with un along the 6mm long side of the

sample]. Front view images and intensity profiles of transmitted light reported in Fig. 8.5(c)

indicate that the GR suffers a filamentation with a characteristic scale of tens of micrometers,

compatible with the scale of the SC. Close inspection reveals that this filamentation is also

marginally visible in the top-view images of the output facet, but at lower resolution, as

caused by the coherent speckle dominated laser scattering (indicated as "Filaments" in the

top-view image). The image is further distorted by the finite depth of focus of the imaging

system, as this only allows a portion of the filaments [dashed yellow box in Fig. 8.5(a)] to

be in focus at a time in the strongly tilted geometry.
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Input
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Output

T>TC

1s 5s >15s
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T=TCPosition B
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Figure 8.7. GR for high aperture laser light. (f) Input and output beam distribution for T > TC .
(g),(h) Output intensity distributions as the crystal settles to TC for two different launch positions,
Position B corresponding to a GR that involves only a micrometric section of the sample that
coincides with a single polarization vertex.

In Figs. 8.7 we analyze laser light propagation in conditions of high-aperture: the

expanded laser light is strongly focused onto the input facet using the microscope objective

(NA=0.8). The experiments are carried out with θ1 = 35◦ and the two reported sequences in

Figs. 8.7(b),(c) differ in the actual position of the sample relative to the fixed input launch

beam. In high aperture experiments, the component not undergoing GR diffracts to 81 µm,
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so that its intensity is too low to be detected when the GR component forms with its highly

localized spots [Figs. 8.7(b),(c)]. This means that, as the sample thermalizes at T = TC ,

only the GR beam is visible. Front-view images reported in Fig. 8.7(b) indicate a spatial

structure that reproduces the GR supporting structure (red-shaded regions) illustrated in Fig.

8.5(b) (right). Congruently, the GR pattern is rigidly locked to the sample, it is found to

move and rotate following the sample itself. In fact, while the SC [see Fig. 8.5(a)] for θ1 = 0
is isotropic in the x and y directions, the images of the guided tilted cases for θ1 = 35◦

manifest an anisotropy compatible with a rotation of the SC structure of Fig. 8.7(b) by

θ1 ' 35◦. The extreme consequence is that the whole GR process can even be confined to a

single micrometric section of the sample, corresponding to a single vertex in the red-shaded

region of Fig. 8.5(b) (right), if the input launch beam is sufficiently focused down and

appropriately aligned, as reported in Fig. 8.7(c) ["Position B" as opposed to the generic

input "Position A" in Fig. 8.7(b)]. As expected, not only does the beam propagate along

the normal of the input facet irrespective of the launch angle, but the beam itself does not

spread on consequence of diffraction.

Experiments in Fig. 8.7 allow an estimate of n (at the laser wavelength) analyzing

beam diffraction. Comparing the output intensity FWHM in the steady-state case of Fig.

8.7(c), where only one polarization-vertex is involved and the distortion associated with

filamentation is absent, to the input FWHM [Fig. 8.7(a)], we find that the beam spreads

from 4.7 µm to 6.8 µm after a Lz = 3mm propagation, leading to an estimate of n > 26 as

explained below. This confirms the huge values of n already encountered in the white-light

refraction experiments, huge values that suggest that at TC local fields play a principal role.

We point out that, physically, in a system where the dielectric susceptibility is dominated

by weakly-interacting atoms or molecules, an n� 10 across the visible spectrum appears

incompatible with the constraints on atomic/molecular polarizability. In these conditions,

GR would require operation in proximity of a resonance, where, however dispersion and

absorption make imaging unfeasible. In turn, in the strongly correlated perovskite where

susceptibility is dominated by local fields, n can be anomalously enhanced through self-

action. In a simplified isotropic approximation, a description is given by the Lorentz-Lorenz

relation n2 = (1 + (8/3)πNα)/(1− (4/3)πNα), where N is the density of atoms and α is

the atomic polarizability: conditions in which (4/3)πNα ∼ 1, as would occur in proximity

of a phase-transition, then allow GR [236, 239].

The giant index value here reported is noticeably lower than giant refraction reported

at microwaves[240], as the longer wavelengths involve more components to the suscepti-

bility and lead to a larger linear response. Numerical simulations indicate that rescaling a

microwave giant index of refraction to the near-visible spectrum leads to a giant refraction

comparable with the one reported here, and what is termed giant will depend on the region

of the spectrum investigated [240].
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8.4.1 Index of refraction evaluation from diffraction

Experiments in Fig. 8.7(f),(h) report beam propagation in conditions of elevated nu-

merical aperture where non-paraxial corrections become relevant. However, if we self-

consistently assume that n� 1, then the non-paraxial regime ceases to exist, as the effective

wavelength λ/n shrinks far below any reasonable transverse size of the beam. Applying the

standard diffraction laws of Gaussian beams, we then have that the width of the beam at a

given position z along propagation w(z) is related to the input minimum spot size w0 by the

relationship w(z) = w0
√

1 + (z/z0)2, where z0 = nπw2
0/λ is the Rayleigh length, so that

n = (Lzλ/πw2
0)(w(Lz)2/w2

0 − 1)−1/2. The residual spreading from the 4.7 µm input to

6.8 µm output reported in Fig. 8.7(h) indicates that two 4.7 µm spots displaced by less than

3.4 µm at input will manifest strong overlap and cannot be fully distinguished at output.

8.5 Perspectives

GR suggests a solution to overcome chromatic dispersion in image transmission that

sides other recent pioneering solutions, such as those based on metasurfaces [241], while

offering new flexibility to presently available micro and nanoscale photonics for applications

in optical components, lithography [242], and transformation optics [243]. The very idea that

white-light is transferred, irrespective of its launch direction, along the normal to the sample

can play a role in developing self-aligning white-light photonics, as would be required to

harness, for example, sunlight during a day. The vanishing effective wavelength (λ/n)→ 0
(n� 1) implies at once that the laws of achromatic geometrical optics hold and that light

energy can be localized to presently inaccessible submicrometric scales. For example, a

microscope housed inside a medium manifesting GR will be able to detect features down

to a vanishing Abbe limit d = λ/(2NA), as the numerical aperture NA ∝ n diverges

[236]. Furthermore, ultra-tight transverse localization of light, that scales with (λ/n)2, can

potentially reduce the active material required in detectors or solar-panels, reducing the

costs associated to the use of innovative materials, such as photovoltaic perovskites [182].

In terms of subwavelength quantum photonics, strong localization can also form the ideal

setting for photon-by-photon nonlinear optics [244, 245].
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Part III

Knife-Edge Super-Resolution
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In this last part we use long wavelength, at THz frequencies, to develop a new method

to achieve super-resolution through the knife-edge technique. This allows us to directly

study the role of evanescent waves in super-resolution imaging, i.e. the filtering out of the

evanescent spectrum as the super-resolved image approaches the diffraction-limited one.

Our results are published in Ref. [246]. Our other papers about THz imaging, marginally

discussed here, are Ref. [247] and Ref. [248].
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Chapter 9

Evanescent-Wave Filtering in Images
Using Remote Terahertz Structured
Illumination

Imaging with structured illumination allows for the retrieval of subwavelength features

of an object by conversion of evanescent waves into propagating waves. In conditions in

which the object plane and the structured illumination plane do not coincide, this conversion

process is subject to progressive filtering of the components with high spatial frequency when

the distance between the two planes increases, until the diffraction-limited lateral resolution

is restored when the distance exceeds the extension of evanescent waves. In this work, we

study the progressive filtering of evanescent waves by developing a remote super-resolution

terahertz imaging system operating at a wavelength λ = 1.00 mm, based on a free-standing

knife-edge and a reflective confocal terahertz microscope. In the images recorded with

increasing knife-edge to object-plane distance, we observe the transition from a super-

resolution of λ/17 ' 60 µm to a diffraction-limited lateral resolution of ∆x ' λ expected

for our confocal microscope. The extreme non-paraxial conditions are analyzed in detail

exploiting the fact that, in the terahertz frequency range, the knife-edge can be positioned at

a variable subwavelength distance from the object plane. Electromagnetic simulations of

radiation scattering by the knife edge reproduce the experimental super-resolution achieved.

9.1 Introduction

According to diffraction theory, monochromatic electromagnetic waves reflected from a

material surface form a mixture of propagating and evanescent waves [236]. For propagating

waves, the equal-phase and equal-amplitude fronts coincide, whereas evanescent waves

display an exponential decay of their amplitude along the propagation axis, and so the
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equal-phase and equal-amplitude fronts are perpendicular. Moreover, evanescent waves

transmit no energy and, in distinction to their formally analogous exponentially decaying

fields in dissipative media such as metals, they equally occur in vacuum and involve no

energy dissipation whatsoever. The distinction between propagating and evanescent waves

defines the notion of diffraction-limited imaging and super-resolution: a detector placed at a

macroscopic distance from an irradiating or reflecting surface will only collect non-decaying

propagating waves, i.e., waves that transfer low-resolution details of the image that are

typically of the order of the optical wavelength, depending on the numerical aperture of the

focusing optics at the object plane (diffraction-limited imaging). In turn, subwavelength

spatial details that are encoded in the evanescent waves can be either directly detected using a

scanning near-field detector [249], or, in a super-resolution scheme, they can be extracted by

processing multiple images using specifically designed excitation/emission techniques with

sub-wavelength spatial modulation, as occurs in structured illumination imaging [250]. In a

standard structured illumination scheme, the plane at which the illumination is modulated

coincides with the object plane to be imaged. Structured illumination can be generalized to

conditions in which the two planes do not coincide, as would occur when super-resolution

is required for buried objects. In these conditions super-resolution imaging implies a

counterintuitive transition from high-resolution to progressively lower-resolution images as

the distance of the structured illumination plane from the object plane increases, because

high spatial frequencies are progressively lost in the conversion of decaying evanescent

waves into propagating ones. While a great variety of microscopy schemes and experiments

tap into the evanescent fields, this progressive filtering of the spatial spectrum inherent to

remote structured illumination has not been previously experimentally investigated.

Using monochromatic terahertz (THz) radiation, we report for what we believe to be the

first time the transition from a near-field image, composed of spatial frequencies provided

by both propagating and evanescent waves, to a diffraction-limited image, formed only by

the spatial spectrum of propagating waves. Using a simple knife-edge scanning scheme, we

are able to observe this transition in great detail and quantitatively study the progressive

modification of the spectral transfer function as the distance of the knife-edge scanning

plane (i.e. the structured illumination plane) from the object plane was increased. The

experiment becomes technically possible in the THz range because the near-field region

extends up to fractions of a millimeter above the sample surface, allowing for mechanical

positioning of the knife-edge with a precision that is far smaller than the wavelength. In the

visible range, the near-field extends only a fraction of a micrometer above the sample surface

where surface roughness and electrostatic interactions make positioning with subwavelength

precision a challenge.
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9.2 Fourier Analysis Method

The filtering of high spatial frequency components with increasing distance of the struc-

tured illumination plane from the object plane can be mathematically described by consider-

ing that an optical field E of wavelength λ emitted or reflected from a surface obeys the Hel-

moltz equation∇2E +k2
0E = 0, with |k0| = 2π/λ. This implies that each plane-wave com-

ponent of wave-vector k = (kx, ky, kz) must have k2
x + k2

y + k2
z = k2

0 , so if the object plane

is taken to coincide with the x, y plane at z = 0, the irradiated field can be described in terms

of spatial Fourier components as E =
∫∫∞
−∞E(kx, ky)e(ikxx+ikyy)e(i

√
k2

0−k2
x−k2

yz)dkxdky,

where E(kx, ky) is the spatial spectrum. Waves with k2
⊥ = k2

x + k2
y ≤ (2π/λ)2 leave

the object plane in the form of propagating waves. The spatial frequency components

k2
⊥ > (2π/λ)2, beyond the so-called Ewald sphere, can only be encoded into evanescent

waves that exponentially decay in the z direction as exp (−z/zev(k⊥)), where zev(k⊥) =
(k2
⊥− k2

0)−1/2. The consequence is that the field collected by a lens or objective at distances

z � λ contains at most details down to the diffraction limit, and subwavelength features

with a spatial scale ∆x < λ are inevitably lost [251].

9.3 Remote Super-Resolution

The key ingredient in our experiment is the knife-edge scan, which amounts to a super-

resolution scheme operating with a structured illumination plane at a variable subwavelength

distance from the reflecting surface where the illuminating radiation is focused (object

plane). The knife-edge scan is a direct embodiment of the basic paradigm of super-resolved

imaging: to selectively control the regions of the x, y plane that are allowed to reflect (emit)

radiation at one given time, and acquire multiple images that can then be co-analyzed to

extract subwavelength spatial components of the distribution of reflectors (emitters) [252–

255]. The knife-edge scan achieves super-resolution in its most basic single-wavelength

beam-profiling execution [256, 257], in contrast to advanced super-resolution techniques that

generally involve radiation delivery and collection at different wavelengths, deconvolution

calculations, fluorescence phenomena [258], and/or nonlinear interactions with other light

fields [192]. In the THz range, knife-edge scans have been also implemented to greatly

increase the spatial resolution of images of laser-induced broadband source points, where

spatio-temporal aberrations can play an important role [259]. More recently, an optically-

induced virtual knife-edge technique has also been demonstrated by structured illumination

with a visible laser of the THz-emitting (object) plane [260]. Instead, the transition from

near-field imaging to diffraction-limited imaging that we want to investigate here is clear-cut

for monochromatic radiation.

To simplify the analysis, let us consider as the object plane a sample surface at z = 0
emitting/reflecting radiation in the direction z > 0, with subwavelength spatial features that
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however vary only along one of the two transverse directions, say x. The field intensity

distribution at the emitter position is I(x, z = 0). As z increases, the field intensity

distribution I(x, z > 0) progressively loses its high spatial frequency components with

kx > 2π/λ. An image of the object plane is obtained by reflective confocal scanning

microscopy, where the pixels in the image are illuminated one at a time and the corresponding

reflected power is separately measured per each pixel (details on the experimental setup are

given below). Let us now consider a fully opaque blade that scans along the x-axis a given

plane at a fixed z (see schematic in Fig. 9.1(a)). The intensity distribution immediately

after the blade is O(x, z, x′) = I(x, z)θ(x− x′), where θ(x− x′) is the step function that

represents an ideally sharp blade with its edge in x′, and edge diffraction effects are initially

being neglected, but will be considered later on in the paper. At a distance z > 0 from the

object plane, the spatial frequency spectrum of O(x, z, x′) is altered compared to that at the

object plane O(x, z = 0, x′), and corresponds to the spatial spectrum that can be scattered

by the blade in the far-field. Scattering of the evanescent wave intensity by the blade edge

into propagating waves newly formed at z > 0 allows super-resolved image reconstruction,

which is here achieved by subtracting, for each pixel in the image, the total far-field power

collected at each blade position x′ from that collected at a previous position x′ − dx′. The

intensity distribution reconstructed on the far-field detector is

IS(x′, z) = − d

dx′

∫
R
dx

∫
R
O(u, z, x′)PSF (x− u) du

= −
∫
R
I(u, z) d

dx′
θ(u− x′)du = I(x′, z),

(9.1)

where PSF(x) is the point-spread-function of the light collecting system [261]. Here, our

terahertz reflective scanning confocal microscope has a quasi-gaussian PSF of width of

0.9 mm [247]. If the knife-edge scan is carried out on a plane in the near-field of the

emitting surface, and within the above mentioned ideal blade approximation, the high spatial

frequencies of the spectrum of I(x, z) will be fully transferred to the reconstructed far-

field image IS(x, z), which is therefore no longer limited by diffraction and is a remotely

super-resolved image. While Eq. (9.1) captures the key aspects of our scheme, the ultimate

achievable resolution has to be separately evaluated through the rigorous numerical predicton

of wave scattering from the blade, as discussed below. Furthermore, our analysis is valid

under the assumption that radiation emission by the object is temporally and spatially

incoherent, a condition that is here guaranteed by the scanning confocal microscopy scheme.

[262, 263]
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Figure 9.1. (a) Knife-edge super-resolution scheme. (b) THz setup. The apparatus is a modified
confocal microscope: the radiation at 0.300 THz goes from the source to the sample throughout
a quartz beam-splitter (BS). The Schottky diode detector is placed at the same distance 310 mm
from the sample as the source. The ellipsoidal Mirror behaves both as focalizing lens and
collection lens. Motorized xyz stages allow to place the sample in the focal plane and make
the raster scan. (c) Sketch of the knife-edge profiling system with a steel blade moved by xz
actuators. Waveguide-based radiation sources and detectors coupled to the free space using horn
antennas (HA) ensure that only light which is focused in the diffraction-limited spot is actually
fed into the waveguide [264].

9.4 Experiments

We assembled the reflective confocal microscope sketched in Fig. 9.1(b), similar to

experimental setup of Ref.[247], with an added knife-edge profiling system. The microscope
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operates at λ = 1.00 mm (ν = 0.300 THz) with a reflective objective with high numerical

aperture NA' 0.5. According to the Rayleigh criterion,the diffraction-limited resolution

leads that two linear image details are resolved if they are distant more than ∆x = λ/2NA in

one-directional scans of the sample in the focal spot [247]. The THz source is an amplifier-

multiplier chain (AMC, by Virginia Diodes Inc.). The horn antenna mounted at the end of

the AMC emits TEM00 radiation with a relative bandwidth ∆λ/λ ' 5 · 10−3 and constant

continuous-wave power of ∼ 0.1 mW. The detector is a zero-bias Schottky diode (ZBD, by

Virginia Diodes Inc.) featuring a noise equivalent power of 1 nW/Hz0.5 at the sampling rate

of 40 s−1. The fully opaque knife is a steel shaving blade, displaced by a step-motor with

step precision better than 0.05 µm, much below the typical sampling step size of 10 µm,

itself much shorter than λ. The total quartz beamsplitter efficiency is calculated to be ∼ 0.1
at λ = 1.00 mm [247]. The S/N ratio is 103 per pixel for a totally reflecting sample, while

the apparent noise in the images and in the linescans is due to fluctuations in atmospheric

absorption and source temperature during the image acquisition, and the noise obviously

increases in the super-resolved reconstructions which require a full set of about 1000 images.

The investigated samples are optical lithography masks, made of fused silica coated with a

30 nm thick chromium film patterned by electron beam lithography into stripes and squares

of different sizes. The root-mean square edge sharpness is better than 5 nm. The reflectivity

of the chromium film in the THz range is RCr = 0.99, while the reflectivity of an infinitely

thick fused silica plate at normal incidence is RSiO2 = 0.08 hence providing strong optical

image contrast.

The functioning of the knife-edge super-resolved imaging is conceptually demonstrated

by the violation of the Rayleigh principle in the reconstructed images seen in Fig. 9.2.

Therein, the knife-edge scan plane is at a distance z ' 25 µm = λ/40, deep into the

near-field of the object plane. Two parallel stripes at a distance of 230 µm, i.e. (visible light

photography reported in Fig. 9.2(a)) were imaged. The distance between the stripes lies

below well below the limit set by the Rayleigh criterion ∆x ∼ 1 mm. When no knife-edge

scan is implemented, a single broad feature is observed in the confocal microscopy image

of Fig. 9.2(b). The two stripes are too close and cannot be resolved. In turn, when the

knife-edge scan reconstruction is enacted following the recipe of Eq. (9.1), the two reflecting

stripes are clearly distinguished on the non-relfecting background, as reported in Fig. 9.2(c).

To quantitatively evaluate the imaging resolution reached in the super-resolved reconstruc-

tion, we imaged a sharp border between a chromium surface and a bare silica surface

[Fig. 9.2(d) shows the border using visible light]. The imaging resolution is evaluated

by calculating the slope of the linescan variation from 10% to 90% of the intensity pro-

file of the border. Without the knife-edge technique, we measure a slope of 0.91 mm−1

corresponding to an Abbe diffraction limit of 1.1 mm, as shown in Fig. 9.2(e). In Fig.

9.2(f) we report the maximum resolution achieved using the near-field knife-edge scan. We
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Figure 9.2. (a-c) Imaging of two chromium stripes on a fused silica substrate, distant 230 µm ' λ/4
from each other. (a) Image taken with visible camera. (b) Image taken with the scanning
THz (λ = 1 mm) confocal microscope. (c) Super-resolved image. The two peaks are clearly
distinguished. (d-f) Imaging of a chromium/silica border. (d) Image taken with visible camera.
(e) Image taken with the scanning THz confocal microscope. (f) Super-resolved image with
0.06 mm ' λ/17 linescan profile width. Images (c) and (f) are achieved applying Eq. (9.1)
respectively on 76 images one for each 20 µm knife-edge step and 201 images with 10 µm steps.
Profiles and images are in arbitrary units.

measured a slope of 13.3 mm−1 corresponding to a striking sub-wavelength resolution of

approximately 0.06 mm, or λ/17. The observed imaging resolution is still six times larger

than the single step in the confocal microscopy scan of 10 µm), which was chosen as it

roughly corresponded with the actual physical sharpness of the blade evaluated with an

optical microscope, therefore a different reason has to be found for the observed imaging

resolution of the order of 60 µm. In fact, as discussed below, the imaging resolution is
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Figure 9.3. Transition from near-field imaging to diffraction-limited imaging. (Top) As the
evanescent-to-propagating wave conversion is performed at z > 0, farther from the emit-
ting/reflecting surface, the sharp edge is progressively smeared out (white line represents the
profile). (Bottom) The slope of the linescan profile as a function of z. Points are experimental data
whereas the red line is a guide to the eye represented by the function f(z) = A exp(−z/z0)+f∞
where: A = (7.0± 1.3) mm−1, z0 = (0.19± 0.03) mm and f∞ = (0.95± 0.07) mm−1. The
blue dashed line is f(z) = 0.91 mm−1 calculated from the normalized value of the slope of Fig.
9.2(e) with no knife-edge. Profiles and images are in arbitrary units.

dominated by the spatial width of the edge diffraction pattern. The finite imaging resolution

can be modeled by substituting θ(x−x′) in Eq. (9.1) with fd(x) = 1
2 + 1

2erf
(
x−x′
d

)
, where

erf(x) is the error-function, so that Eq. (9.1) can be rewritten as

IS(x, z) = −
∫
R
I(u, z) d

dx′
fd(u− x′)du

=
∫
R
I(u, z)e

(u−x′)2

d2 du,

(9.2)

where a new convolution integral intervenes and the term exp((u− x′)2/d2) behaves as an
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Figure 9.4. Filtering of the spatial frequency spectrum in the transition from near-field imaging to
diffraction-limited imaging as the distance z between object plane and structured illumination
plane increases. (Left) Plot of the spectrum displaying a spatial frequency-dependent character-
istic decay length, shorter at higher frequencies; (Right) corresponding theoretical prediction
obtained exploiting the expressions in Eq. (9.3).

effective PSF, and d ≈ 60 µm quantifies the “effective sharpness” of the blade. The image

in Fig. 9.2(c) is taken using an x-oriented raster scan. Instead, the images in Fig. 9.2(f) and

Fig. 9.3 are taken with a y-oriented raster scan. This latter raster scan mode allows one to

obtain the most reliable value of the super-resolution because the data along the y direction

can be readily integrated before image reconstruction, but it inevitably causes spurious

oscillations in the reconstructed image, as the data of adjacent points in the x direction are

taken at very different times after one entire y linescan. The multi-peak structure appearing

around x = 0.5 mm in Fig. 9.2(f) probably has a different physical origin not related to

super-resolution imaging, and it will be discussed further on in this paper.

9.5 Results

The progressive filtering out of the high spatial frequency components from the super-

resolved images, caused by the decay of the intensity of the evanescent waves scattered

by the blade edge when z is increased, is made evident in Fig. 9.3. In the top panel the

reconstructed lineascans similar to that of Fig. 9.2(f) are shown for several z values. As

z increases, one sees the decrease of the slope of the image intensity step corresponding

to the metal/silica border on the sample surface. The lateral (super-)resolution can be still

defined as the inverse of this slope, and it is reported in the bottom panel of Fig. 9.3.

Interestingly, the slope does not drop to zero for z → λ, but tends to the value f∞ = 0.91
mm−1 of the standard confocal microscopy image of Fig. 9.2(e) taken with no blade in the

beam path. This asymptotic value of the super-resolution is indicated as a horizontal blue
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dashed line in the bottom panel of Fig. 9.3. This fact indicates that, as the intensity of the

evanescent waves intercepted by the blade at the given plane z becomes negligible, only

the propagating waves are scattered by the blade, and the reconstructed image displays the

same lateral resolution as the image without a blade. The red line is an exponential fit to

f(z) = A exp(−z/z0) + f∞, which delivers z0 = 0.19mm, however, as we now explain, a

single characteristic exponential decay length for the loss of super-resolution with increasing

z cannot be defined.

The experimental spatial frequency spectrum is finally calculated as the one-dimensional

Fourier transform of the linescans in Fig. 9.3 and plotted in the left panel of Fig. 9.4. The

amplitude decay with increasing z is more rapid for the Fourier components at higher fre-

quency kx, rather than homogeneously at all kx values. We underline that this phenomenon

is not related to energy dissipation, as it occurs without a corresponding attenuation in the

total reflected beam intensity, but rather it is the signature of the progressively reduced

capability of the blade edge to scatter the evanescent waves in vacuum towards the far-field.

As a consequence, the contribution of the evanescent waves to the super-resolved image is

progressively filtered out with increasing z, and more rapidly for higher kx. The experimen-

tal spectral filtering can be compared to the theoretical expectation plotted in the right panel

of Fig. 9.4, derived from the Fourier transform of the simplified theoretical linescan of Eq.

(9.2):

E(kx, z) = E(kx, z = 0)ei(k2
0−k

2
x)1/2z (kx < k0)

E(kx, z) = E(kx, z = 0)e−(k2
x−k2

0)1/2z (kx > k0). (9.3)

The main features of the experimental spectra in Fig. 9.4 are captured by the theoretical

model of Eq. (9.3). As z is increased, there is no single exponential decay length of the

image resolution, but rather each kx component has its own decay length. As z approaches

λ/2, all secondary peaks in the spectra are filtered out apart from the first one around

kx ∼ 15 mm−1, i.e. only the slowest decaying kx & 2π/λ at the edge of the Ewald sphere

are still scattered to the far field by the blade. This explains the rough validity of the single

exponential fit in Fig. 9.3, with decay length z0 = 0.19 which can be attributed to the

lowest spatial frequency peak at kx ∼ 15 mm−1 just outside the Ewald sphere. Apparently,

this peak alone is sufficient to obtain a super-resolution of 0.5 mm ∼ λ/2, beyond the

diffraction limit λ/2NA ∼ 1 mm, for a considerable distance of the object plane from the

blade scanning plane of 0.4λ ∼ 400 µm, i.e., the blade does not need to graze the surface in

a terahertz super-resolution microscope.
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Figure 9.5. Numerical electromagnetic simulation of a Gaussian beam with ν = 0.300 THz scattered
by a semi-infinite conducting slab of finite thickness t = 40 µm. The slab extends in the x, y
plane and it sits at 20 µm from a non-reflecting surface. (a) Image plot of the z-component of
the Poynting-vector Sz(x, z). The dashed white lines are the borders of the slab. Note the very
different scale for the z and x axes. (b) Plot of S(r)

z /S
(i)
z (solid line) where S(r)

z and S(i)
z are the

z-components of the Poynting-vector of the reflected and the incident beam at the z = 0 plane.
The dashed black line is the experimental fit of the function fd(x) = 1

2 + 1
2 erf( x−x′

d ) for d = 60
µm and x′ = −1.02 mm.

9.6 Ultimate resolution limit

In order to evaluate the ultimate limit to the super-resolution attained by our technique

we have performed a two-dimensional full-wave electromagnetic simulation of the radiation

scattering by a metal blade illuminated with a focused Gaussian beam at 0.300 THz. We

consider a monochromatic linearly polarized Gaussian beam. The incident field is E(x) =
Re[E0 exp (−x2/σ2 − iωt)]ey where E0 is a constant, ω = 2πc/λ and σ = 2λ = 2 mm.

The analyzed scattering geometry is shown in Fig. 9.5(a). The conducting slab representing

the blade has a dielectric constant εr = −150 + i50 and thickness L = 40 µm. We analyze

the situation where the incident beam is centered at x = 0 and the physical blade edge is

at x = −1.00 mm, a situation in which the blade should fully obstruct the incident beam,

and we monitor the correspondence of the scattered field pattern with the physical position

and sharpness of the blade edge. Given the very different length scales involved (λ, z,

L) and the presence of metallic surfaces, the simulation is not trivial. The computational

domain is terminated with perfect electric conductor conditions at the x = ±6 mm planes

and we adopt scattering boundary conditions at the entrance (z = −17 µm) and at the exit

(z = 50 µm) facets of the domain. A suitable discretization of the computational domain is
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implemented with a maximum and a minimum mesh size of 0.2 mm and 2 µm, respectively

(which leads to 125895 degrees of freedom), and we use the UMFPACK direct solver1

with default parameters. In Fig. 9.5(a), we show the z-component of the Poynting-vector

S(x, z) = 1
2 Re[E ×H∗]. The color plot indicates that even for an infinitely sharp blade

edge, the scattering pattern has a finite dimension and a complex structure, related to well-

known edge diffraction patterns by opaque screens [236]. The center of this finite-size field

distribution is not at the blade edge (here x = −1.02 mm), but just outside it, at x′ < x. In

Fig. 9.5(b) we display S(r)
z /S

(i)
z (solid line) where S(r)

z and S(i)
z are the z-components of

the Poynting-vector of the reflected and the incident beam at the plane z = 0, respectively.

The ratio S(r)
z /S

(i)
z (blue continuous line) represents the effective electromagnetic sharpness

of an infitely sharp blade and therefore the ultimate limit of our super-resolution scheme. In

Fig. 9.5(b) we superimpose the numerical prediction (blue curve) with the profile function

fd(x) introduced in Eq. (9.2) (black dashed line) with the experimentally determined value

d = 60 µm and field distribution offset x′ = −1.02 mm. The experimental fit to fd(x) is

done with the least square method for x′ and fixing d = 60 µm from Fig. 9.2(f). While

the offset of 0.02 mm between the reconstructed image and the object is not visible in our

experiment, we can conclude from the good superposition of Fig. 9.5(b) that edge diffraction

at the blade termination explains well the maximum observed resolution of 60µm or λ/17.

Finally, we note that the polarization direction of the electric field vector can slightly

affect the knife-edge reconstruction algorithm [265] therefore, for comparison, the image

in Fig. 9.2(c) is taken with polarization parallel to the blade edge (y-axis) while Fig.

9.2(f) is taken with polarization orthogonal to it (along the x-axis). While the fundamental

observation of super-resolution is achieved in both cases, in the latter case the orthogonal

polarization should also excite cavity modes between the metal blade and the metal film

on the sample surface. The detailed study of such parasitic proximity effects is beyond

the scopes of this work, but we speculate that they may be responsible for the multi-peak

structure seen around x = 0.5 mm in Fig. 9.2(f), where one would instead expect a plateau

of very low value of the reconstructed image pixels. As a partial confirmation of the above,

the multi-peak structure fades away as soon as the blade is lifted from the sample surface

already at z ∼ 0.2λ, i.e. well below the cut-off distance of evanescent-wave filtering.

Therefore, the multi-peak structure must be related to near-field oscillations (e.g. surface

plasmon polaritons) whose field extends only in a deeply subwavelength range of z values.

9.7 Discussion

From a fundamental perspective, our study provides first experimental evidence into

the effect of so-called rigorous diffraction theory on super-resolved terahertz imaging
1COMSOL Group, COMSOL Multiphysics: Version 3.4
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[236]. Here, at the transition between the near-field region and the diffraction-limited wave

propagation region, a mixed regime known as Rayleigh-Sommerfeld diffraction is observed.

The imaging method expands THz beam profiling methods and appears fundamentally

different from previous imaging techniques since it taps into the full non-paraxial mixture of

different spatial Fourier components both inside and outside the Ewald sphere. In a Scanning

Near-Field Optical Microscope [266–270], the tip acts as the equivalent of a delta-function in

space, capturing and combining the whole spatial spectrum without distinguishing between

diffraction-limited and evanescent components, so properties associated to evanescent waves

have to be detected by suitable near-field demodulation techniques. Specifically, in a near-

field probe experiment, resolution falls off far more rapidly than predicted by Eq. 9.3,

typically at distances from the emitters below λ/6 (see, for example, Fig. 9.3 in Ref.[271]).

In order to perform super-resolved terahertz imaging beyond the edge of the Ewald

sphere, it is required to work at a single wavelength, excluding methods based on wide-band

excitation where the concept of diffraction-limit is not clear-cut and the highest resolution in

the images could potentially be carried by short wavelength components of the frequency

spectrum [272, 273].

From a practical point of view, since no sub-wavelength source or detector is used [274,

275], our scheme circumvents the need for a sub-wavelength aperture with its crippling

many-orders-of-magnitude toll on transmitted power [273, 276], enacts super-resolution with

the losses typical of a standard confocal scheme [277], and does not require ultra-sensitive

detectors (such as cryogenic bolometers [273]) or high power sources (such as gas lasers

[278, 279]).

9.8 Future Perspectives

In summary, we report the first observation of the progressive transition from near-field

imaging to diffraction-limited imaging when the structured illumination plane is lifted from

the object plane by distances of the order of one wavelength. The effect is attributed to

evanescent wave intensity decay and it is detected using a remote mechanical knife-edge scan

technique in a confocal terahertz imaging system. The loss of imaging super-resolution is

associated with filtering of the spatial frequency spectrum of the image, where higher spatial

frequencies decay more rapidly with increasing distance and a single exponential decay

length cannot be defined for the evanescent wave intensity. The findings have immediate

impact on the development of super-resolved terahertz imaging, terahertz imaging of buried

structures, and in general for super-resolution imaging in the cases of opaque media and of

non-planar emitter surfaces, where the object plane and the structured illumination plane

may not be easily made to coincide.
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Conclusions

In This thesis we have explored several new optical phenomena that arise from both

specifically designed light patterns or from the physics of nanodisordered ferroelectric

materials.

We have introduced an innovative approach to treat cumulative nonlinearity and specif-

ically the photorefractive effect. We have demonstrated that the field temporal evolution

can be mapped into a spatial evolution. This correspondence allows us to observe and

describe the Fermi-Pasta-Ulam-Tsingou recurrence but also Bessel beam self-trapping with

its breathing feature and discrete-to-continuous soliton transformation in the nonlinear grat-

ing embedded in a ferroelectric crystal. This lattice causes a nanodisordered ferroelectric

perovskite to turn into a super-crystal. We have characterized this new phase studying

the birefringence and the second harmonic generation: in all experiments footprints of

super-crystal are found. In particular, we have found evidences of periodic structure also in

the material that allows us to report the highest value of refractive index for visible light:

n > 26. In addition we have investigated the near field to grasp the role of evanescent waves.

We conveniently adopt THz wave to build a remote knife-edge super-resolution setup that

allow us to observe decaying of resolution as the near field turns into far field.
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