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Abstract When the likelihood of the model is not explicitly available, standard
Markov Chain Monte Carlo techniques may become impractical. This paper has
the aim to investigate a combination of Sequential Monte Carlo and Metropolis-
Hastings algorithm in the spirit of the pseudo-marginal approach. This produces
algorithms known as Particle MCMC which are part of a powerful and flexible class
of algorithms called Exact-Approximate MCMC. They establish a new paradigm
in parameter estimation in the non-linear and non-Gaussian Hidden Markov Models
(HMM). In this paper, the Particle Gibbs sampler is used to recover the parameter of
an HMM applied to the time series of worldwide annual earthquakes of magnitude
7 or greater occurred in the 21st century.

Abstract Quando la verosimiglianza non é trattabile analiticamente, allora le
teniche Markov Chain Monte Carlo standard possono risultare inattuabili. Questo
articolo ha I’obiettivo di analizzare una combinazione di tecniche Sequential Monte
Carlo e dell’algorithmo Metropolis Hastings alla luce dell’approccio pseudo-
marginale. Tale combinazione produce algoritmi Particle MCMC, parte di una
classe molto flessibile nota come Exact-Approximate MCMC, che costituiscono un
nuovo paradigma per la stima nell’ambito di Hidden Markov Model non lineari
e non Gaussiani. In questo articolo é proposto I'utilizzo del Particle Gibbs per la
stima di un modello HMM applicato alla serie annuale dei terremoti di magnitudo
7 o superiore avvenuti su scala mondiale durante il XXI secolo.
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Introduction

Interest in a process which can only be observed indirectly is a problem encountered
in a variety of applications: biological sequences analysis [4], speech recognition
[15] and time series analysis in general. Sometimes, the presence of a latent process
depends on the theoretical framework, but often it is introduced for convenience.

Consider, for example, a Bayesian framework where the parameter of interest
0 € O has a posterior density py(0) that is not analytically available. The introduc-
tion of a latent variable z € 2 usually allows for an easier formulation and manipu-
lation of the model. A typical estimation technique in such contexts is based on the
Gibbs Sampler which samples alternatively from the conditionals py(0|z) e py(z|0).
This sampling scheme can very often ease programming and lead to elegant algo-
rithms. On the other hand, if p,(0) were known analytically or cheap to compute,
it would often be possible to generate “more efficient” samples {6;} from a Markov
chain by means of a classic Metropolis-Hastings (MH) algorithm. This led to the
development of MCMC algorithms that try to combine possible computational ef-
ficiency of sampling directly from p,(6) and implementational ease of augmented
schemes.

Often the likelihood, even if not analytically available, can be estimated in an
unbiased way using Monte Carlo methods: this is the case of Hidden Markov Models
(HMM, introduced in Section 1). Sequential Monte Carlo (SMC) allows to simulate
from the unobservable process and get unbiased estimate of the needed density,
paving the way to the application of approximated algorithms.

Section 2 focuses on Particle MCMC (PMCMC), introduced in [2], which en-
ables to perform parameter estimation for HMMs. These algorithms combine the
ability of SMC to provide an unbiased estimate of the marginal likelihood of the
process along with the pseudo-marginal approach [1], leading to a procedure that
targets the true joint distribution of the parameters and the latent process.

In Section 3, a non-linear and non-Gaussian HMM is considered to model the
annual time series of earthquakes of magnitude 7 or grater occurred worldwide dur-
ing the 21st century. The Particle Gibbs sampler (PG), Gibbs-style version of the
PMCMC, is used in order to recover the posterior distribution of the parameters and
the resulting estimates are discussed in comparison to the ones obtained by [3] on
the same data using the Particle Marginal Metropolis Hastings.

1 Hidden Markov Models

[6] describe Hidden Markov Models (HMM) as the most successful statistical mod-
eling ideas that have came up in the last forty years. The partial bibliography by [5]
gives a partial account of the wide scope of the domain: speech recognition [10],
econometrics [12], computational biology [13], etc. The use of the hidden states
makes such models generic enough to handle a variety of complex real-world time
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series, while the relatively simple formulation still allows for the use of efficient
computational procedures.

An HMM is a process composed of a Markov Chain {X,}] , ¢ 2T with initial
density Xj ~ pg(-) and transition probability X, 1|(X; = x) ~ fg(-|x), where 6 € @
lives on a space of arbitrary dimension. This process {X;} is not observed directly,
but through another stochastic process {YI},T:1 C #T, whose observations are as-
sumed to be independent conditionally on Xi,X>,...,X7 and to have conditional
density Y| (X; = x;)_, ~ pe(-|x/). The dependence structure of an HMM can be
represented by a graphical model as in Figure 1, where nodes (circles) in the graph
correspond to the random variables, and the edges (arrows) represent the structure
of the joint probability distribution.

When the space 2~ of the hidden state X, is discrete, the likelihood can be com-
puted analytically while, if the space of X; is continuous, it can be computed only
when the models for X; and ¥, are linear and Gaussian [11]. This stimulated the in-
terest in alternative strategies that could be applied to more general frameworks. [9]
proposed a first attempt of approximating the target distribution using a sequential
version of the Monte Carlo importance sampling known as Sequential Monte Carlo
(SMCO). It is based on a recursive filtering approach, so that the received data can
be processed sequentially rather then as a batch. Anyway, the choice of a suitable
importance distribution in the form g(x;.|y1.,) which is easy to sample from is not
trivial. The procedure may be eased by the use of an auxiliary distribution that can
be factored as follows:

1
q(xialyre) = q(alyn) [ Ja(ilxriot,yia)-
i=1

The sampling problem reduces to the one of recursively sample an arbitrarily large
number N of particles (latent process samples) from univariate distributions of the
form above. Approximations to the marginal likelihood and posterior densities of
either parameters and latent states can be obtained from the set of the N weighted
particles, where the weights are proportional to the condional likelihood pg (y/|x;).
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2 Particle Markov Chain Monte-Carlo

PMCMC methods rely on a non-trivial and non-standard combination of MCMC
and Sequential Monte Carlo methods, which takes advantage of the strength of both
components, MCMC machineries requires either pg(y) to be analytically tractable
or pg(z]y) to be sampled from. In the case of non-linear and non-gaussian HMMs,
SMC may be used to produce likelihood estimates or to sample from py(z|y) in or-
der to yield flexible algorithms, which approximate the exact ones in the spirit of the
pseudo-marginal approach [1]. PMCMC can be used to solve the same inferential
problems of SMC and its extensions (IBIS by [7]; SMC? by [8]) but, in spite of its
reliance on SMC methods, usually it is much more robust and less likely to suffer
the depletion problem [2].

The Particle marginal Metropolis-Hastings

Recalling the standard decomposition for the posterior density p(0,xi.7|y1.r) =
p(Bly1.7)pe(xi:7|y1.r) it would be natural to suggest for the MH update a proposal
of the form ¢(0%,x].7|0,x1.7) = q(0%|0)pe~(x].7|y1.7), for which the proposed
xj.p is perfectly adapted to the proposed 6, that is sampled from an arbitrarily
chosen proposal distribution ¢(-|6). The resulting MH acceptance ratio depends on
the marginal likelihood pg(y;.7) that, in an HMM context, may be replaced by its
SMC counterpart pg(y;.r). This leads to the Particle Marginal Metropolis Hastings
(PMMRH).

Particle Marginal MH

1. Initialization. Choose () and run the SMC. Compute Do (y1:7) and sample
N AN

9 from {xgl:) } | with weights {w}l)}'

=

2. Recursions. For each j € {1,...,M}:

a. propose 8* from g(-|@U—1));
b. run the SMC to get pg-(yi.r) and sample a new hidden path x7.;;
()

c. accept 8 and x7.; in the chain (9(']')»’51‘;}) with probability:
p(6°) po- (ni7)g (66-V]67)

a=1A - : .
p(0U-1) poiony (vir) g (6+]6U-1)

Set ) = U1 and xgj)T = xg‘:’;l) otherwise.

The PMMH update leaves p(6,x.7|y.7) invariant and, under weak assumptions,
ergodic [2]. The goodness of the resulting chain depends only on the more or less
accurate choice of the proposal density. The problem is that such a choice is theo-
retically arbitrary, and there is a really low number of guidance on its appropriate
formulation.

832



Hidden Markov Model estimation via Particle Gibbs

The Particle Gibbs

The Particle Gibbs consists of using a Gibbs-style update to sample iteratively
0 ~ p(B|x1.7,y1.7) and X1.7 ~ pg(x1.7|y1.7). It is often possible to easily sample
from p(0|x1.7,y1.7), and thus the issue of designing a proposal density for 0 is
encompassed. Sampling directly from pg(x1.7|y1:r) is usually not feasible and,
when replacing it by sampling from the SMC approximation pg(xi.7|y1.7), the
convergence properties of the Gibbs Sampler (GS) to the target density py, . (8[y1.7)
do not hold anymore. A valid particle approximation to the GS requires the use of a
special type of PMCMC update, called the conditional SMC update [2].

Particle Gibbs

1. Initialization. Set the arbitrary starting points (©), xi?} and Bgo}

2. Recursions. For j € {1,....M}:

a. sample oU) ~ p(-\x(l‘{;l),M:T);
()

b. sample xI{T running a conditional SMC.

Stationarity and ergodicity of the resulting chain with respect to the target density
are ensured in [2].

3 Applications

The earthquakes data used in [3] has been already analyzed by [14]. It describes
the number of annual earthquakes with a magnitude of 7 or over (on the Richter
scale) occurred worldwide along the 21st century. Usually this kind of data would
be modeled using the Poisson distribution. However, the series is affected by over-
dispersion and, furthermore, it presents significantly positive auto-correlations mak-
ing unrealistic any hypothesis of independence. These features of the data motivated
[14] to use a time-dependent parameter in the Poisson that may be resumed as fol-
lows:

Y| (X, = x;) ~ Pois(exp(y+x:))

X,| (X,,1 = xtfl) ~ N(¢xt,1 s T2).

[3] applied the PMMH to get Bayesian estimates of the parameters: the results are
exposed in Table 3. However, the principal drawback of the PMMH application is
that the choice of the proposal for the random walk may play a key role in deter-
mining the quality of the final chains. [3] themselves were aware that better results
could be achieved by a more careful choice of the proposal density, allowing for a
better exploration of the parameters’ space.

An alternative solution would be the application of a PG sampler in place of
the PMMH as it does not require the design of any proposal distribution. The full
conditionals of the parameters can be easily evaluated and they all turn out to belong
to known parametric families. The obtained estimates are presented along with the
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Earthquakes counts and simulations
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cffective sample sizes of the chains in Table 3. They are really close to the ones by
[3] but outplay them in terms of Effective Sample Size (ESS). Finally the average
trajectory, plotted against the observed counts, is presented in Figure 2 along with
the whole range of estimated paths. This plot shows relatively good fit with the
series of counts totally contained in the posterior predictive simulations range.

4 Concluding remarks

The aim of this work was to introduce the Particle MCMC methodology and to
provide a comparison between the PMMH and the PG algorithm. In the analyzed
application, if the random walk of the PMMH were implemented with an indepen-
dent proposal, then the chains of the parameters would exhibit stickiness, leading to
non satisfactory behaviours. [3] had to perform an accurate tuning of the covariance
matrix of the proposal density in order to achieve well-behaved chains, without any
guarantee that results could have been further improved.

The application of the PG spares the tuning and provides good results, charac-
terized by fast convergence and good mixing of the chains. We may conclude that,
whenever the model is simple enough and the correlation between parameters and
latent states is not strong, the application of the PG is encouraged as its implemen-
tation is straightforward and estimation usually is more accurate.
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