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Abstract 

In this paper, a simplified procedure for the evaluation of the seismic performance of bridge 

piers founded on caissons subjected to strong ground motions is outlined. To this end, the up-

per-bound semi-empirical relationships proposed in [1] are considered for the estimation of 

the seismic performance, expressed in terms of the maximum and permanent values of the 

deck drift ratio attained during and at the end of the seismic event. These drifts were related 

to the period ratio Teq/T0 between the fundamental periods of the deck-pier-caisson-soil sys-

tem and of the soil column in free-field conditions. The deck drift and the period ratios were 

extracted from the results of an extensive parametric study, where 14 different systems were 

subjected to 6 real high-intensity seismic records. In the parametric study, 3D dynamic anal-

yses were performed with the Finite Element Method in the time domain, in terms of effective 

stresses but assuming undrained conditions and adopting an elastic-plastic constitutive model 

to reproduce the irreversible soil behaviour under cyclic loading. As 3D dynamic numerical 

analyses are not expected to become an every-day design tool, the period ratios Teq/T0 are 

evaluated through empirical and analytical relationships available in the literature as well 

and then compared with the ratios obtained from the parametric study, to assess the possibil-

ity of using simplified relationships while still getting a reliable estimate of the deck drift ra-

tio. It is shown that these relationships can be profitably adopted provided that a fair estimate 

of the equivalent shear wave velocity, depending on the intensity of the seismic inputs, is used. 
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1 INTRODUCTION 

The seismic performance of bridge piers on cylindrical caisson foundations depends on 

several factors, namely the geometric and mechanical properties of the superstructure, the 

foundations and the volume of soil deposit affected by the presence of the structure as well as 

the characteristics of the seismic event, that is its intensity, duration and frequency content. 

Complexity of the problem requires, in principle, 3D coupled non-linear dynamic analyses 

performed in the time domain, where the entire deck-pier-caisson-soil deposit is modelled and 

its elastic-plastic behaviour under cyclic loading is described through advanced constitutive 

models. However, this approach is too much time-consuming and therefore it is typically not 

adopted for design purposes, as several analyses are generally required to reproduce different 

seismic records derived to match a site-specific earthquake spectrum. Indeed, a few non-linear 

dynamic analyses are available in the literature regarding the seismic performance of the sys-

tems at hand, they referring either to specific cases [2, 3] or to parametric studies where soil 

behaviour is described using a simple elastic-perfectly plastic constitutive model in terms of 

total stresses, that is assimilating the soil to a mono-phase medium [4, 5]. 

Recently, Gaudio and Rampello [1] provided easy-to-use empirical relationships linking 

the seismic performance of bridge piers founded on cylindrical caisson foundations to the pe-

riod ratio Teq/T0, where Teq is the fundamental period of the entire (compliant base) deck-pier-

caisson-soil system and T0 is the fundamental period of the 1D soil column under free-field 

conditions. These relationships were obtained from the results of an extensive parametric 

study where several deck-pier-caisson-soil systems were subjected to strong seismic motions, 

suitably selected to promote the activation of irreversible strains in the soil deposit. 3D dy-

namic analyses were performed in the time domain with the Finite Element Method, assuming 

an undrained response of foundation soils but describing soil behavior in terms of effective 

stresses, using an elastic-plastic strain hardening constitutive model. 

In the framework of the performance-based design, the seismic performance of the system 

was expressed in terms of the maximum and permanent values of the deck drift ratio urel/hs 

attained during and at the end of the seismic event, where urel is the deck drift and hs is the 

pier height. The main concern is then related to the evaluation of the period ratio Teq/T0, where 

the increase of the eigen period of the system due to both soil-structure interaction effects and 

the development of irreversible strains into the soil should be properly considered. 

In this paper, the simplified procedure proposed in [1] is firstly presented and the influence 

of soil plasticity and of properties of the seismic input are discussed. Then, a comparison is 

made of the period ratio Teq/T0 provided by the 3D dynamic analyses with that evaluated 

through empirical relationships proposed in the literature, this allowing the simplified proce-

dure to be adopted to get a reliable estimate of the seismic performance of bridge piers on 

caisson foundations. 

2 PROBLEM DEFINITION 

A schematic layout of the problem is depicted in Figure 1. The transversal section of a 

long-span and equally-spaced bridge deck is considered, so that the assumption of no interac-

tion between two adjacent piers can be made. The cylindrical caisson foundation of height H 

and diameter D is embedded in a 5-m-thick gravelly sand layer underlain by a 55-m-thick lay-

er of silty clay, this representing a typical alluvial deposit where caisson foundations may be 

preferred to pile foundations. The bedrock is at the depth Z = 60 m, where the seismic input 

motion is applied in the x direction in terms of horizontal acceleration time histories, this cor-

responding to the assumption of infinitely rigid bedrock. The water table is located at the in-

terface between the sand and the clay (zw = 5 m) and a hydrostatic pore water pressure regime 
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is assumed. The pier is assimilated to a linear viscous-elastic Single Degree of Freedom Sys-

tem (S.D.O.F.) characterized by a stiffness ks, here the flexural stiffness of the pier, a damping 

ratio s = 5 % and a lumped mass ms = mdeck + 0.5∙ mpier, where mdeck and 0.5∙mpier represent, 

respectively, the mass of a span (the part attributed to each of the piers in the adopted scheme) 

and the mass of the upper half of the pier. The mass of the lower half of the pier is applied to 

the top of the caisson via a uniform distribution of vertical stresses z(0.5pier). 

Mechanical properties of the foundation soils are listed in Table 1, where  is the unit 

weight, c′ and ′ are the effective cohesion and the angle of shearing resistance, OCR is the 

overconsolidation ratio and k0 is the earth pressure coefficient at rest, the latter computed us-

ing following Mayne and Kulhawy [6]. The profile assumed for the small-strain shear modu-

lus G0 was obtained using the empirical relationships proposed by Hardin and Richart [7] for 

the gravelly sand and by Rampello et al. [8] for the silty clay. 

In the parametric study, soil behaviour under cyclic loading was described through an elas-

tic-plastic constitutive model with isotropic hardening and a Mohr-Coulomb failure criterion, 

the Hardening Soil with Small-Strain Stiffness (HS small) model [9]. The parameter adopted 

in the model are given in Table 1, where G0
ref and m were calibrated to reproduce the above-

mentioned G0 profile, while the shear strain 0.7 and the unloading-reloading modulus Eur
ref 

were obtained to best-fit the adopted shear modulus decay and damping increase curves, 

namely the ones proposed by Seed and Idriss [10] for the sand layer and the ones proposed by 

Vucetic and Dobry [11] for the clay layer. More details on the calibration of these parameters 

are given in [12, 13].  

The high-intensity seismic inputs adopted in the non-linear dynamic analyses were 

grouped into two different sets, each characterized by three horizontal acceleration time histo-

Z = 60 m

gravelly sand

silty clay

D

ms = mdeck + 0.5mpier

z (0.5pier)
hs

H1 = zw = 5 m

H2 = 55 m

L

B

s

H

x

z

ks, s 

 

Figure 1: Schematic layout of the problem. 

 

Soil 
 c′ ′ OCR k0 G0

ref m 0.7 Eur
ref ur E50

ref Eoed
ref 

(kN/m3) (kPa) (°) (-) (-) (MPa) (-) (%) (MPa) (-) (MPa) (MPa) 

Gravelly sand 20 0 30 1.0 0.5 145.7 0.61 0.024 174.9 0.2 58.3 58.3 

Silty clay 20 20 23 4.4÷1.5 1.1÷0.7 65.7 0.75 0.045 58.2 0.2 19.4 19.4 

 

Table 1: Mechanical properties assumed for soils and adopted in the HS small model. 
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ries with the same intensity level. Specifically, the first set presents values of the Arias inten-

sity IA = 1.12 ÷ 1.17 m/s, whereas the second is characterised by IA = 2.79 ÷ 2.87 m/s. Seis-

mic inputs were amplified by factors F ranging between 0.5 and 2, to match the desired Arias 

intensity (the one of Tolmezzo record for the first set and of Nocera Umbra for the second set) 

and a given site-specific spectrum. The main synthetic ground motion parameters of the se-

lected seismic inputs are given in Table 2, where amax is the peak horizontal acceleration, Tm 

is the mean period as defined in [14] and TD is the significant duration as defined in [15]. In 

Table 2, the record on the second row of each set mainly differs from the one on the first row 

in terms of mean period Tm, while the record on the third row differs for the significant dura-

tion TD. Figure 2 shows the relevant Fourier Amplitude (a-c) spectra and Arias intensity time 

histories (b-d). 

In the parametric study, 14 different deck-pier-caisson-soil system were subjected to the 6 

seismic inputs discussed above. Systems differ for the caisson diameter (D = 8 and 12 m) and 

slenderness ratio (H/D = 0.5, 1 and 2), as well as for the pier height (hs = 15, 30 and 60 m). 

Values of stiffness ks and masses mdeck, mpier and ms are representative of span length ranging 

between 40 and 110 m (Tab. 3): they were obtained to return fixed values of the safety factor 

against bearing capacity under static and pseudo-static conditions, FSv = 5.5 and FSe = 0.7, 

respectively. Initial stress conditions in the foundation soil are then equal for all the systems, 

this allowing a consistent comparison of their seismic performance. The value FSe < 1 was 

(a)

(b)

IA = 1.12 ÷ 1.17 m/s IA = 2.79 ÷ 2.87 m/s
(c)

(d)

 

Figure 2: Selected seismic inputs: Fourier amplitude spectra (a-c) and time histories of Arias intensity (b-d). 

Record 
F amax IA Tm TD 
(-) (-) (m/s) (s) (s) 

Tolmezzo E-W 1.00 0.316 1.17 0.50 5.220 

Assisi E-W 2.00 0.332 1.12 0.24 4.295 

Adana E-W 1.05 0.292 1.17 0.62 12.990 

Colfiorito N-S 2.00 0.676 2.79 0.51 5.115 

Nocera Umbra N-S 1.00 0.502 2.87 0.21 4.640 

Dayhook N-S 1.45 0.573 2.84 0.46 12.870 

 

Table 2: Main synthetic ground motion parameters of the scaled seismic input motions. 
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selected to promote the triggering of irreversible strains in the foundation soils during seismic 

shaking [1, 4]. The coupled dynamic analyses were performed using the FE code PLAXIS 3D 

[16] where the numerical model shown in Figure 3 was implemented. The dynamic calcula-

tion stage was carried out after the drained activation of the caisson and of the superstructure. 

It is worth mentioning that the reduction of the stresses into foundation soils due to caisson 

excavation was indirectly considered by applying a volumetric contraction v to the soil vol-

ume that would be filled by the concrete, thus the soil approaching active limit conditions at 

the soil-caisson contact. A consolidation analysis was then performed at the end of the dy-

namic calculation stage to allow the accumulated excess pore water pressures to vanish. A 

total of 51 dynamic analyses were performed, as the first set of seismic records was applied to 

all the 14 systems, while the second set was applied to the 9 systems characterised by 

D = 12 m and hs = 30 m only. 

3 ASSESSMENT OF THE SEISMIC PERFORMANCE 

The seismic performance of the systems was evaluated in terms of the deck drift ratio 

D H/D hs ks mdeck mpier ms 
(m) (-) (m) (MN/m) (Mg) (Mg) (Mg) 

8 

0.5 15 10.1 1278.0 196.7 1376.4 

1 
30 11.8 1500.3 217.2 1608.9 

60 6.2 698.6 1018.9 1208.1 

2 

15 102.4 2115.4 112.0 2171.4 

30 46.9 1804.8 422.6 2016.1 

60 20.8 1162.4 1065.0 1694.9 

12 

0.5 

15 106.4 3445.1 113.2 3501.7 

30 37.7 3173.5 384.8 3365.9 

60 19.8 2159.0 1399.3 2858.6 

1 

15 169.3 4160.5 134.6 4227.8 

30 78.7 3806.0 489.2 4050.6 

60 29.9 2841.1 1454.0 3568.1 

2 
30 411.2 4986.9 904.2 5439.0 

60 192.3 2374.3 3156.8 4132.7 

 

Table 3: Properties of the systems considered in the parametric study. 

 

Figure 3: Numerical model adopted in the parametric study. 
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urel/hs, defined as follows:  

 rel deck caisson head flex

s s s s

tan
u u u u

h h h h
     (1) 

where  is the angle or rigid rotation of the caisson and uflex is the flexural component of the 

horizontal displacement of the deck. The maximum and permanent values of urel/hs computed 

during and at the end of the dynamic calculation phase are plotted in Figure 4a and 4b, respec-

tively, against the period ratio Teq/T0. The equivalent period Teq was computed for each sys-

tem from the ratio between the spectral acceleration at the level of the deck and of the top of 

the caisson (R = Sadeck/Sacaisson head), both obtained in the 3D elastic-plastic dynamic analyses, 

while the fundamental period of the soil column T0 was calculated through preliminary 

ground response analyses performed in free-field conditions using HS small. It is worth men-

tioning that both Teq and T0 account for the period increase due to soil plasticity. 

Both the maximum and permanent values of the deck drift ratio show the highest values in 

the range Teq/T0 ≈ 0.8 ÷ 2, that is close to resonance conditions between the flexible base sys-

tem and the soil column. Lower displacements (i.e. a better seismic performance) are ob-

served for more flexible systems, that is for Teq/T0 ≥ 2 [1]. With regard to seismic input 

properties, the records characterised by the longest significant duration TD (Adana and Day-

hook, black symbols) provide the highest values of the deck drift ratio, that is the worst seis-

mic performance. On the contrary, the influence of Arias intensity IA on the seismic 

performance is negligible for the cases at hand, as soil plasticity limits the inertial actions that 

could be transmitted to the superstructure. Finally, no remarkable influence of the caisson di-

ameter D is observed.  

84th percentile upper-bound semi-empirical relationships were obtained from the results 

shown in Figure 4, by assuming a log-normal distribution of the deck drift ratio around its 

mean value and then best-fitting the computed drift ratios with an exponential expression: 

(a) (b)

 

Figure 4: Maximum (a) and permanent (b) deck drift ratio against the period ratio. 
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 eq 0A T /Trel
84

s

e
u

B
h

 
   (2) 

where B84 is the deck drift ratio for Teq/T0 = 0 and A is the slope of the curve in a semi-log 

plane. The coefficients defining the curves were obtained separately for the maximum and 

permanent values of urel/hs and for high (Adana, Dayhook) and low (Tolmezzo, Assisi, Colfio-

rito, Nocera Umbra) significant durations TD (Tab. 4). Upper-bound values of the intercept 

B84 are of 1.58 to 18.48 ‰ with a mean value equal to 8.39 ‰, whereas values of the slope A 

range between 0.23 and 0.52 with an average A = 0.42. The upper-bound empirical relation-

ships can be used for Teq/T0 ≥ 0.75 to estimate the maximum expected deck drift ratio as a 

function of the dynamic properties of the flexible base system (Teq), of the soil column (T0) 

and of the seismic input (TD). The estimated displacements can also be used to perform a pre-

liminary screen analysis, similarly to what is usually done for slopes [17]. The main concern 

for the evaluation of the deck drift ratio then regards the estimation of the period ratio Teq/T0. 

This key aspect is assessed in the next paragraph. 

4 ESTIMATION OF THE PERIOD RATIO 

In the proposed simplified procedure, it turned out that the period ratio Teq/T0 should be 

evaluated using some empirical and/or analytical relationships to overcome the issues related 

to time-consuming 3D non-linear dynamic analyses. To this end, here the possibility of using 

the empirical relationship proposed by Tsigginos et al. [18] for Teq and an analytical formula 

for T0 is assessed. Specifically, for the period Teq it would be 

 s s
eq s

1.18 0.613 0.5

s

s S,eq caisson

21
2

T T
h m h

T V m D

                    

 


 (3) 

where s s s2T m k   is the fixed-base period of the pier and VS,eq is the equivalent shear 

wave velocity of the deposit, defined into the volume of soil interacting with the foundation 

(“zone of influence”). For the fundamental period of the soil column the simple formula for a 

homogeneous soil deposit, T0 = 4Z/VS,eq, is adopted. 

The main concern related to these relationships relies on the fact that they are developed in 

the framework of linear viscous-elasticity, while the strong influence of soil plasticity on the 

seismic performance of the systems at hand has been recently clarified [1, 13]. This key as-

pect can be embodied in the value of the equivalent shear wave velocity VS,eq adopted in cal-

culations. Therefore, a ground response analysis analysis should be performed with the linear-

equivalent method [19]. An example is given in Figure 5 for the input of Tolmezzo, where 

eff = 0.65∙max is the shear strain in a constant-amplitude cycle, equivalent to the peak value 

Record urel/hs 
A B84 

(-) (‰) 

Tolm. + Ass. + Colf. + Noc. 
Max. 0.51 9.25 

Perm. 0.52 1.58 

Adana + Dayhook 
Max. 0.41 18.48 

Perm. 0.23 4.25 

 

Table 4: Coefficients defining the 84th percentile upper-bound deck drift ratios. 
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max, G/G0 is the shear modulus decay caused by eff and SV G   is the corresponding 

shear wave velocity ( = 2.04 Mg/m3 is soil density). Assuming an “influence zone” down to 

a depth zmax = H +2D, the equivalent shear wave velocity can be computed as 

 

n

i

i 1
S,eq n n

i i

i 1 i 1S,i S,i

2
  = = 

h
H+ D

V
h h

V V



 



 
 (4) 

where hi is the thickness of the ith stratum discretising the soil column and n is the number of 

strata. For the caisson characterised by a diameter D = H =12 m, a depth zmax = 36 m and a 

shear wave velocity VS,eq = 145 m/s are obtained. The assumption of the maximum depth be-

ing zmax = H +2D was compared with numerical results, obtaining a good agreement [1]. The 

shear wave velocity computed for all the 51 different combinations of systems and seismic 

inputs are listed in Table 5, where VS0,eq is the “small-strain” equivalent shear wave velocity, 

not dependent on the adopted seismic input.  

 

Figure 5: Computation of the equivalent operative shear wave velocity VS,eq from the results of a site response 

analysis performed in free-field conditions with the linear-equivalent method (Tolmezzo record, caisson with 

D = H = 12 m). 

D H/D VS0,eq VS,eq 

(m) (-) (m/s) 
(m/s) 

Tolmezzo Assisi Adana Colfiorito Nocera Dayhook 

8 

0.5 192.9 130.2 148.2 130.4 125.3 136.6 121.7 

1 197.8 132.9 152.6 131.9 126.4 138.6 124.5 

2 206.4 140.9 162.3 137.3 130.4 144.6 130.8 

12 

0.5 204.4 136.7 157.5 134.3 128.3 141.4 127.9 

1 210.4 145.0 166.6 140.3 132.6 147.8 133.3 

2 221.2 152.1 175.2 145.3 137.1 153.8 137.9 

 

Table 5: Equivalent shear wave velocities. 
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The equivalent shear wave velocities were then used to calculate the equivalent period Teq 

with eq. (3), thus obtaining the results shown in Figure 6. These values of Teq were computed 

using VS0,eq (Fig. 6a) and VS,eq (Fig. 6b): both were then compared to the equivalent period 

computed from the 3D elastic-plastic analyses, Teq el.-plastic. The numerical and empirical values 

of Teq are in good agreement for both Teq[VS0,eq] and Teq[VS,eq], with a slight underestimation 

of the equivalent period using VS0,eq and a slight overestimation using VS,eq. Indeed, linear re-

gressions returned values of the angular coefficient very close to unity, namely 1.054 and 

0.947 for VS0,eq and VS,eq, respectively. Also, high coefficients of determination were obtained 

in both cases, with the same value R2 = 0.88. 

From the above results it could be concluded that it is not necessary to perform preliminary 

ground response analyses with the linear-equivalent method to evaluate Vs,eq (see Fig. 5). 

However, the fundamental period of the soil column in free-field condition, T0, is to be com-

puted to use eq. (2). Figure 7 shows the remarkable differences obtained if the “small-strain” 

equivalent shear wave velocity VS0,eq is used. Indeed, an angular coefficient further from unity 

is calculated when finding the linear regression, equal to 0.914, with a greater dispersion 

(R2 = 0.83). Conversely, using VS,eq from the results of the ground response analyses provides 

an angular coefficient of the linear regression equal to 1.053, again very close to unity, with a 

lower scatter of the data (R2 = 0.87). Therefore, adopting the equivalent shear wave velocity 

VS,eq from ground response analyses is strongly recommended. 

5 CONCLUSIONS 

The evaluation of the seismic performance of bridge piers founded on cylindrical caissons 

would require, in principle, expensive and time-consuming 3D non-linear dynamic analyses 

performed with numerical methods. However, this approach cannot be taken as a design ref-

erence tool. Therefore, Gaudio and Rampello [1] recently provided upper-bound relationships 

to get an estimate of the maximum and permanent values of the deck drift ratio urel/hs as func-

(a) (b)

 

Figure 6: Comparison between the fundamental period of the system obtained from the numerical elastic-plastic 

analyses and the one computed using the empirical relationship by Tsigginos et al. [18] with: (a) VS0,eq; (b) VS,eq. 
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tions of the period ratio Teq/T0 and of the significant duration of the seismic input TD. It is 

shown that empirical and analytical relationships available in the literature can be profitably 

adopted for the evaluation of the period ratio Teq/T0, provided that preliminary ground re-

sponse analyses are performed with the linear equivalent method, thus obtaining a fair estima-

tion of the reduction of the shear wave velocity due to the non-linear soil behaviour triggered 

during strong ground motions. Once Teq/T0 is evaluated, a preliminary estimate of the maxi-

mum or permanent deck drift ratio can be obtained using the proposed empirical relationships. 
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