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Abstract. The analysis of a malicious piece of software that involves
a remote counterpart that instructs it can be troublesome for security
professionals, as they may have to unravel the communication protocol in
use to figure out what actions can be carried out on the victim’s machine.
The possibility to recur to dynamic analysis hinges on the availability of
an active remote counterpart, a requirement that may be difficult to meet
in several scenarios. In this paper we explore how symbolic execution
techniques can be used to synthesize a command-and-control server for
a remote access trojan, enabling in-vivo analysis by malware analysts.
We evaluate our ideas against two real-world malware instances.
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1 Introduction

Remote Access Trojan (RAT) is a term used to identify a cyber menace that
can steal information and carry out malicious behaviors on a victim machine at
the command of a remote counterpart. RATs provide attackers with capabilities
like file upload, key logging, and remote code execution, communicating with
a counterpart commonly dubbed C2 (Command & Control) server. Communi-
cation protocols are specific to RAT families and can become richer as families
evolve over time: although packets are carried out using standard means like
HTTP or IRC, their format is proprietary and the contents possibly encrypted.

Unlike other malware categories, analyzing a RAT typically requires active
ongoing communications for the results of the analysis to be rich. This is the
case not only with an initial assessment in a sandbox, but also with an in-
depth analysis by malware analysts on its code. Unfortunately this may not
be possible for a variety of reasons. For instance, a company that discovers
and promptly contains an infection [14] may not allow communications for the
sake of analysis, especially where there is a suspicion of a targeted attack—as
such communications would reveal that the target has been reached. A server
counterpart may also decline connection attempts when the analysis takes place
from an unexpected network origin or time frame. Another common scenario is
when the server disappears from the network—either at the attacker’s will or
because of an intervention by the authorities—but the analysis of the RAT could
still be valuable (e.g., to unveil its infection spreading mechanisms).



L. Borzacchiello et al.

Automatic analysis systems may be of little use in the absence of an active
counterpart, leaving manual dissection as the only avenue to analysis. RATs can
accept dozens distinct commands as part of the communications with the C2
server: while commands are usually not hard to analyze when taken individu-
ally, their number and interplay can make the analysis quite complex and time
consuming. Authentication schemes can make the work of human analysts even
more tedious as they have to mimic them when carrying out the analysis. Finally,
even in the presence of an active counterpart the server may not be sending all
the supported commands within a reasonable timeframe, leaving to the analyst
the task of unveiling the characteristics of the remaining ones.

Protocol reverse engineering techniques may reveal details of the communi-
cation scheme, producing automata and grammars that capture facts inferred by
analyzing packets. Their applicability to RAT analysis may however be limited
by constraints, e.g., on having to communicate with the server for validating
messages, or on having access to its binary. Although the output of such tech-
niques can bring valuable insights to analysts, they could not be used readily in
the setting where malware dissection normally takes place, which would instead
benefit from having a synthesized counterpart to interact with in order to reveal
indicators and features of the sample other than its communication protocol.

Previous research has explored static analysis techniques to ease RAT dis-
section: in particular, [2] proposes symbolic execution to reveal and analyze the
commands supported by a RAT without requiring the presence of the server
counterpart. The output is a collection of execution traces enriched with sym-
bolic constraints on the data buffers exchanged throughout communications.
Unfortunately, such traces typically encompass at most one command due to
scalability issues, and may come in numbers often much greater than the sup-
ported commands due to the nature of the symbolic exploration: for instance,
multiple paths can be generated for the same command when its handler con-
tains loops or when memory is dereferenced using a symbolic pointer [3, 11].
Another problem is that such reports cannot be merged to form longer paths
descriptive of communication patterns with the C2 server, as protocol rules may
shape subsequent packets differently than in a naive concatenation of recorded
communications (consider for instance the use of sequence numbers).

Contributions. We propose a technique to reconstruct the C2 server counterpart
for a RAT by having access only to the sample meant to run on the victim’s
machine. Our goal is to synthesize a program so that the analyst can make the
client connect to it, enabling in-vivo analysis of the RAT. To this end:

– we produce execution traces for a sample using symbolic execution, exploring
the full software stack to avoid writing API models required by [2];

– we assemble traces into a compact automata representation inspired by pre-
vious protocol reverse engineering research;

– we augment the automaton with speculative edges not seen in recorded traces
to build paths that span multiple commands in a C2 communication session,
and validate them with symbolic execution to generate server instances.
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We implement the technique in the context of the S2E platform [7], and
perform a preliminary assessment against two well-known RAT samples.

2 Approach

In the present section we provide the reader with an overview of our approach.
We then describe in detail every step of the proposed technique, using a simple C2
communication protocol implemented in an artificial RAT as running example
to highlights challenges and key points in our strategy. Finally, we discuss open
problems and limitations of our solution.

2.1 Overview
Figure 1 visually summarizes the main steps behind our approach:
1. Trace Generation. Given a RAT sample, we use symbolic execution [3] as

in [2] to reveal different executions paths, trying to maximize code coverage
during the exploration. For each path we record traces of taken branches and
relevant APIs that get executed. The presence of input-dependent loops and
the uncertainty on other portions of the input may lead to a high number
of alternative states in the symbolic executor, but we expect a significant
fraction of the recorded traces to reveal at least one command of the RAT
(i.e., the associated paths are deep enough to perform authentication and
carry out one of the supported functionalities). Traces where no interesting
APIs have been executed are discarded.

2. Trace Analysis. To reason over the possibly large number of reports gener-
ated during the previous step we build an Augmented Prefix Tree Acceptor
(APTA) [6], a tree-shaped DFA used in previous research on protocol reverse
engineering [10]. This representation allows us to compactly represent traces
into a single data structure, capturing which APIs and branches have been
observed along different paths.

3. Speculation. While an APTA can capture information about distinct (sym-
bolically executed) paths, our goal is to generate a small number of paths—
ideally one—that can cover all the commands. We use information from past
executions to speculate over richer paths that could be possible in the RAT
but were not observed possibly due to the limited scalability of the symbolic
analysis. To this end, we add speculative edges to the APTA—turning it
into a graph—and compute path(s) that can cover all its nodes, describing
an execution where multiple commands are taken in by the RAT.

4. Validation. We validate the feasibility of a speculatively generated path with
symbolic execution, using knowledge on the branches from initially recorded
traces to drive the exploration. We rely on the symbolic engine to fill the
blanks for the actions that take place between two commands linked by a
speculative edge, as the latter is not backed by a trace. When the symbolic
exploration succeeds, we record a sequence of API calls and results that in a
native execution would lead the client to follow the path. When we cannot
produce a valid sequence, we go back and try a different speculation.
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5. C2 Server Generation. For each validated path spanning multiple commands,
we synthesize a C2 server counterpart for executing the client natively. At
each step the server executes APIs that symmetrically interact with the ones
invoked by the client (e.g., they send data when a client is expecting to re-
ceive some), using inputs that were instantiated in the symbolic exploration.

2.2 Steps

To illustrate the different steps of our approach we will use the artificial RAT
instance of Figure 2 as running example: as we mentioned, its code is meant
to capture common traits of several real-world RATs. The client instantiates a
connection to the C2 server and waits from the attacker for the commands to
be executed on the victim’s machine. Its dispatcher takes the form of an infinite
loop for processing incoming packets: our RAT supports only two commands,
namely the first allows the attacker to execute a program using the WinExec
Windows API, while the second can remove a file using DeleteFile. A simple
authentication scheme is implemented at branches B2 and B3 in the code, while
sequence numbers are used for packet validation at branch B4.

Trace Generation. Similarly as in [2] we use symbolic execution techniques
to reveal interesting control-flow paths that the execution may follow within a
RAT. A symbolic engine supplies symbolic expressions in place of concrete inputs
to a program, where an input may represent data coming from the network or
other interactions with the OS. When symbolically executing instructions in
the program, the engine maintains a collection of constraints on the program
state, forking the execution when a branch involving symbolic expressions is
met and both outcomes are feasible. An SMT solver is used to evaluate symbolic
expressions as well as to obtain valid concrete assignments for them.

Symbolic execution can be very valuable in our setting, as the analysis can be
carried out by modeling the communications with the C2 server using symbolic
buffers in network-related APIs. Unfortunately though symbolic techniques incur
scalability issues (especially the path explosion problem [3, 2]) that make it hard
to analyze long program paths. Fully automatic approaches to the exploration
of a RAT are unlikely to reveal the commands without heuristics tailored to the
structure of the sample under analysis; also, the presence of code for its initial
activities (e.g., environmental checks, achieving persistence) may prevent the
exploration from reaching the command dispatching loop at all. For this reason
we ask the analyst to provide hints in the form of the location of the dispatcher
loop and relevant details for reaching it (such as the thread on which the analysis
should focus or branches that were possibly forced in the debugger).

Once the symbolic exploration reaches the loop for the first time, we adopt
an iterative deepening search strategy as in [2] to combine the benefits of BFS
and DFS in this specific setting: each alternative path originating from the un-
certainty on received inputs is explored for a given number of instructions before
the exploration switches to another path in the queue. Optionally the analyst
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Fig. 1: Overview of the steps for the proposed approach.
unsigned char seqNum = 0;
unsigned char data[N];
int socket = connectWithServer(); // socket + connect
while (1) { // B1

clearBuffer(data, N);
read(socket, data, N);
if (seqNum == 0) { // B2

if (strncmp("MAGIC_STR", data, N) == 0) // B3
seqNum += 1; // authentication success

} else if (seqNum == data[0]) { // B4
switch (data[1]) {

case 1: // B5
WinExec(data + 2, 0); break;

case 2: // B6
DeleteFile(data + 2); break;

}
seqNum += 1;

}
}

Fig. 2: Artificial RAT instance. For the sake of presentation, conditional branches and
case statements in the C code are annotated with labels BK .

can provide further hints on the location of the handler for individual commands,
which may be simple to spot in a debugger unless the code is heavily obfuscated.
For each path we record the sequence of taken branches and Windows API calls
for communications or anyhow relevant in malicious code analysis (we will refer
to such APIs as interesting). Branches are split in groups across invocations of
APIs that produce new symbolic inputs. The exploration is terminated upon
exhaustion of the memory and time budget for the analysis.

When symbolically executing our artificial RAT using the search strategy
described above, and assuming that we exhaust the time budget after com-
pleting two iterations of the dispatcher loop (branch B1) along each possible
path, our approach generates the following traces:

– Trace 1
(a) API: socket(...), connect(..., SERVER_ADDR, ...), read( ..., D1,

64), read(..., D2, 64), WinExec(D3, 0)
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(b) buffers: *D1:= "MAGIC_STR", *D2:= "11Program.exe",
*D3:= "Program.exe"

(c) taken branches: [B1], [B2, B3], [B4, B5]
– Trace 2

(a) API: socket(...), connect(..., SERVER_ADDR, ...), read( ..., D1,
64), read(..., D2, 64), DeleteFile(D3)

(b) buffers: *D1 = "MAGIC_STR", *D2 = "12File.doc",
*D3 = "File.doc"

(c) taken branches: [B1], [B2, B3], [B4, B6]
– Other traces

Traces that failed to authenticate (i.e., branch B3 not taken) or received in-
valid commands (i.e., sequence number not validated at B4 or unimplemented
switch). Discarded as they do not contain any interesting Windows APIs.

For each trace we maintain three records: (a) a list of executed APIs and
their call sites1, (b) a concrete assignment for each symbolic buffer Di ma-
nipulated by one or more API in the trace, and (c) a list of branches taken
along the explored path. For instance, the first trace reports that the client
instantiates a connection to a C2 server identified by the sockaddr structure
SERVER_ADDR, performs two consecutive read operations, and executes the
WinExec API. The trace provides concrete assignments for buffers D1, D2,
and D3, obtained by querying the solver before terminating the exploration.
When buffers used as arguments for known APIs contain unconstrained or
loosely constrained symbolic values, we add constraints to make the solver
produce an answer meaningful for a human agent. For instance, we ask
the solver whether symbolic buffer D3 can hold a path to some executable.
Taken branches are split across the two invocations of read. In our traces
read yields symbolic buffers D1 and D2, while D3 is a substring of D2.
Observe that the two traces cannot directly be merged to form a longer
one involving both commands: the sequence numbering scheme would drop
replayed packets for commands issued in different communication sessions.

Trace Analysis. To compactly represent the generated traces we use an APTA
representation inspired by prior protocol reversing research [10]. An APTA is
a tree-shaped, incompletely specified DFA (deterministic finite state automa-
ton) [6]: its root represents the common initial state for the explored traces,
while each path in the tree denotes a communication session (in other words, a
trace). Each path ends with a final state that marks the end of a trace: such a
state does not necessarily correspond to the end of communications with the C2
server, but may be part of a session that we explored only partially under the
given resource budget. In our setting, internal nodes of the APTA other than
the root represent receive operations, i.e., APIs such as the read function that
2 Omitted for brevity, we use them to distinguish different calls to the same API.
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Fig. 4: Speculation step.

generate new symbolic inputs and thus identify incoming data buffers from the
C2 server. Edges are characterized by two records extracted from traces: the
interesting APIs invoked (API) and the branches taken (BT) between the two
actions encoded by the two nodes of the APTA. Paths with the same prefix of
nodes and edges get merged by the tree representation.

Previous research [10] uses inferred message types for edge labels, while we
do not assume to know such information. Instead, we choose labels according
to the relevant effects from receiving a message, that is, the interesting APIs
executed in the trace. Our goal is clearly different than the one pursued in [10]:
we are not interested in building a specification of the communication protocol,
but rather in generating a synthetic C2 server for in-vivo RAT dissection.

Figure 3 shows the APTA built for our artificial RAT. Given the two traces
generated in the initial step, we construct a tree characterized by two distinct
paths with a common prefix. Node A is the initial state. Nodes B and C
represent the two invocations of the read function executed in the body of
the dispatcher loop across two loop iterations. Nodes D and E denote the
final states for the first trace and the second trace, respectively. Edge AB
is characterized by the invocation of socket and connect and by the taken
branch B1. Edge BC reports only the taken branches B2 and B3 since no
interesting API appeared in the traces between the two read invocations.
Edges CD and CE represent what has been recorded in two traces from the
last invocation of the read function (node C) and the end of each trace.

Speculation. We would like to identify a theoretical path that could drive
symbolic execution into generating a single trace that exposes all the commands
implemented by the RAT under analysis. As the list of such commands is not
know a priori, we can try and learn from traces generated in the first step, lever-
aging the practical observation that several real-world RATs are implemented
through an infinite dispatcher loop: although we expect a few commands to sink
the communication (e.g., shutdown command), a significant fraction of them
could be executable one after the other. Instead of using heuristics to identify
commands, we limit our reasoning to the APIs observed in the initial step. In
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other words, we characterize commands based on the set of APIs that could be
executed by the RAT in response to some network data received from the C2
server. Hence, the aim of this step is to speculate over the feasibility of an exe-
cution path in the RAT able to execute the entire set of APIs observed across
several traces during the first step of our approach.

We start by choosing the order by which we would like to visit interesting
edges in the APTA. This order could be arbitrary or based on hints provided
by an analyst2. To make exploration easier, we require that subsequent edges
within alternative paths inside the APTA appear consecutively (i.e., edges are
not interleaved). To build a path we start from the root node of the APTA and
visit edges according to the chosen order until a leaf node is met. We then add
a speculative edge from the leaf node to the source node of the next edge that
we would like to visit. We continue to visit edges according to the order until
another leaf is reached. We repeat the process of adding speculative edges as
long as needed, until all the interesting edges are covered by the generated path.

For the APTA of Figure 3 we choose to visit edges in the following order:
AB, BC, CD, CE. Edge AB has to come before BC and CD due to their
ordering in the first trace. Similarly, BC comes before CD. The ordering
between CD and CE is arbitrary. To build a valid path covering all edges,
we start from the root node A and follow edges in order until the leaf D is
met. To hit the remaining edge CE we add a speculative edge between nodes
D and C, and eventually we visit E to cover CE. Hence, the trace that we
would like to generate in the next phase should follow the path: ABCDCE.
Figure 4 shows the path on the APTA after adding the speculative edge.

Validation. To validate the feasibility of the speculatively generated path we
resort to symbolic execution. Differently from the first step, we can now exploit
knowledge from past executions. Any non-speculative edge in the path is found
in the APTA too, so it represents a portion of a trace recorded in the initial
step: the taken branches associated with non-speculative edges can thus be used
to guide symbolic execution when attempting to cover them.

We carry out the symbolic execution following three different exploration
strategies: strictly-branch-guided, target-guided, and loosely-branch-guided.

The first strategy is only used at the beginning when starting the symbolic
execution from the same point used in the first step. Since the speculative path
begins with a prefix that strictly coincides with one of the traces generated during
that step, the exploration is guided along the branches that were taken in each
edge along that prefix. Assuming the execution is deterministic, the control flow
should reach the first node in the speculative path that corresponds to a leaf in
the APTA following exactly the same branches as in the original trace, i.e., the
symbolic engine does not yield alternative execution paths.
2 An analyst may desire to test whether the RAT can execute a speculated sequence
of APIs that they build by combining insights from previous observations.
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Upon reaching the first leaf, we switch to the target-guided exploration strat-
egy switches. Since the execution should now aim at covering a speculative edge,
there is no record of taken branches to reach it from past executions. However,
the exploration has a well-defined target location: the node reached by the spec-
ulative edge. Hence, we now allow for a strategy where multiple alternative paths
can be explored by the engine, and see whether within a given time and memory
budget at least one such path reaches the target location. When one is found,
the exploration continues along it and we switch to the third strategy.

In the loosely-branch-guided strategy we are trying to cover a non-speculative
edge from the current execution path. Although this edge is present in the APTA
and thus a list of taken branches is available, we cannot expect execution to
strictly follow it: as the internal program state may have changed along the path,
there is no guarantee that the RAT can now take branch decisions observed in the
exact same manner as in the original trace behind that edge. We thus try to drive
execution towards such list of branches using a loose enforcement: the strategy
is designed to tolerate up to k divergences (i.e., different branch decisions) with
respect to the original branches. If at least one execution path reaches the next
leaf in the speculative path, we discard any other alternative paths and switch
back to the target-guided strategy, aiming at covering the next speculative edge
in the path. We repeat this process as long as needed to validate the entire path.

During this process the target-guided and loosely-branch-guided strategies
may possibly fail. In this case, our technique goes back to the speculation phase,
marks as invalid the speculative edge that led to the failure and tries a different
speculation. In particular, for such an invalid edge (s, t) we replace it with a new
edge between node s and the nearest ancestor of node t, i.e., its parent. We then
recompute the speculative path using the new edge in place of the old one and
we attempt validation. Observe that another failure would lead us to consider
the second nearest ancestor for t and so on. In case of repeated failures when
considering other of its ancestors, we update the speculative path by dropping
any edge along the sub-path from t to the next leaf. After completing the vali-
dation phase, if any edge present in the APTA has been dropped in the process
we go back to the speculation phase and compute an alternative additional path
covering the dropped edges. As every edge in the APTA gets covered by at least
one speculative path, a pathological exploration sequence may lead to a number
of speculative paths equal to the number of traces obtained in the first step.

Given the speculative path ABCDCE for our artificial RAT, we start the
symbolic exploration from node A using the strictly-branch-guided strategy.
The execution path follows branches B1, B2, B3, B4 and B5 (just as expected
as we are replaying the first recorded trace) and reaches node D, which is
a leaf in the APTA. From now on, the exploration switches to the target-
guided strategy in order to reach node C. Assuming a time budget sufficient
to cover a few instructions, the symbolic engine can lead the execution path
to successfully reach C. Then, the engine switches to the loosely-branch-
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guided strategy, trying to drive the exploration towards branches B4 and
B5. At least one symbolic execution path can reach node E (leaf) at the
end of our speculative path, thus terminating the validation step. No APTA
edge was dropped from the initial speculative path, thus no extra speculative
paths are required. The trace generated for the speculative path is:

(a) API: socket(...), connect(..., SERVER_ADDR, ...), read( ...,
D1, 64), read(..., D2, 64), WinExec(D3, 0), read(..., D4, 64),
DeleteFile(D5)

(b) buffers: *D1 = "MAGIC_STR", *D2 = "12Program.exe",
*D3 = "Program.exe", *D4 = "22File.doc", *D5 = "File.doc"

(c) branch taken: [B1], [B2, B3], [B4, B5], [B4, B6]

C2 Server Generation. We synthesize a distinct C2 server for each trace gen-
erated from a speculative path. Each server sends back to the RAT the network
buffers reported in the trace. To this end, we use network APIs that carry out
symmetric functionalities for those that get executed in the RAT client.

Given the network APIs and the buffers listed in the trace generated during
the previous step for our RAT, the C2 server implementation is characterized
by the following flow of actions:

s1 = socket(...); bind(s1, ...); // symmetric to socket()
s2 = accept(s1, ...); // symmetric to connect()
write(s2, D1, 64); // symmetric to read(..., D1, ...)
write(s2, D2, 64); // symmetric to read(..., D2, ...)
write(s2, D4, 64); // symmetric to read(..., D4, ...)

The analyst sets up redirection for connections from the RAT to the server
instance, then in-vivo analysis can take place in a debugger or other tools.

2.3 Discussion

A number of issues may hinder the applicability of our approach when consider-
ing real-world RATs. In the following we discuss relevant challenges we identified.

Encryption. Communications with C2 servers may be protected by crypto
schemes. Although this may seem a showstopper at first—as SMT solvers used
in symbolic execution cannot defeat robust encryption—we may still be able
to analyze several real-world such instances. RATs often use symmetric crypto
functions with keys embedded in the binary or sent by the server: since symbolic
execution can handle both scenarios, our approach may sustain C2 server recon-
struction for such RATs. Asymmetric crypto schemes are instead likely to make
symbolic execution fail at reasoning over exchanged data. However, if the sample
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is using standard crypto APIs we could extend our approach to perform func-
tion call interposition, rewriting API arguments to use custom private and public
keys. For instance, a symbolic engine may model the Windows CryptDecrypt
API internally in order to return a valid content for an encrypted network buffer.
To make the synthesized server work, similar hooks should be applied also when
running the RAT within the analyst’s environment.

Nondeterminism and other input types. Another challenge is repre-
sented by nondeterministic factors in the execution. Recorded traces during
phase one could not be directly repeatable [18] due to nondeterminism in OS
interactions, the network or other external factors such as time sources. Since
we implemented our approach on top of S2E [7], a framework for whole-system
analysis, some of these issues could be mitigated in practice. However, the prob-
lem of limiting nondeterminism in the RAT execution when running it in the
analyst’s analysis environment remains an open problem.

A crucial assumption behind our approach is that the execution of interest-
ing APIs causally depends on the receival of specific commands from the C2
server. This assumption may be not always be true and several factors can thus
undermine our reasoning. In general, network may not be the only source of
input: as we will see in Section 3, real-world RATs may use other data coming
from the environment (e.g., obtained through a system call) as an input. Our
approach builds on top of the assumption that any input source can be iden-
tified and marked as symbolic. In practice, this may require additional effort
from the analyst. RATs using multiple channels for communicating with the at-
tacker, e.g., samples relying on bifurcated or covert signaling channels, are not
currently handled by our approach. Also, our model should be extended to ac-
count for concurrent communications with the C2 server carried out by using,
e.g., multiple threads.

Obfuscation. Our approach relies on symbolic execution to reveal interest-
ing behaviors in RATs. Code obfuscation techniques, such the ones described
in [4, 24], could be used by malware writers to render symbolic execution ineffec-
tive. Nonetheless, to the best of our knowledge, these kinds of code obfuscations
are not currently widespread in the malware realm. This situation may change in
the future and thus symbolic execution frameworks may require enhancements
in order to better cope with these techniques.

Number of paths in the APTA. When constructing an APTA using
the approach presented in Section 2.2, we may get an extremely large number
of paths inside the APTA. Unlike our toy example, a command handler of a
real-world RAT may embed a logic made of several conditional branches: un-
fortunately, each such branch can make the exploration fork, yielding several
traces for the same command and increasing the number of paths in the APTA.
To mitigate this problem, we merge APTA edges that refer to the same source
and target receive nodes and report the same list of interesting APIs. In other
words, we merge edges that differ only for the taken branches. To avoid losing
useful information when merging, we define the BT record as a set of lists, where
each list identifies the branches taken in some trace. Besides reducing the size of
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Fig. 5: NetWire – Control flow graph of the RAT’s dispatcher loop.

the APTA, this allows our approach to consider multiple—alternative—ways of
guiding a path over an edge during the validation step, possibly increasing the
chances of covering a command.

Speculation. Finally, we point out that the order by which during the spec-
ulation phase we pick edges of the APTA to be visited plays a crucial role. The
interplay between commands may make a chosen speculative path unfeasible,
yielding in the worst case to traces just as short as those we were able to record
during the first step of our approach. Nonetheless, testing and validating any
possible speculation decision for path construction is not feasible as we would
be dealing with a combinatorial choice problem.

3 Experimental Evaluation

In the following we discuss a preliminary experimental evaluation of our approach
considering two real-world RATs. We prototyped our technique in S2E [7] to
perform symbolic execution on the entire software stack (including kernel and
libraries), and extended it with more than 70 hooks for Windows APIs—used to
inject symbolic data in case of network communications and to track interesting
APIs—and the three exploration strategies discussed in Section 2.2.

We run the experiments on a server equipped with two Intel Xeon E5-2630
v3 CPUs (16 cores in total, @2.40GHz) and 256GB of RAM, running Debian
Linux 9. We use a budget of 6 hours and 32 GB of RAM for the trace generation
step, and one of 12 hours and 64 GB of RAM for the validation step. To validate
the results of our experiments, we manually reviewed the synthesized C2 servers
by running them alongside the RAT samples, checking their functionalities and
verifying that commands described in public reports on the two RATs were
actually handled by the generated servers.

3.1 NetWire

NetWire is a RAT with keylogging capabilities sold on the black market. It exists
in several variants and has been used by criminals since 2012. In 2016 this RAT
received particular attention from security vendors after taking part in a large
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campaign for stealing payment card data [17]. The variant we considered [16]
allows an attacker to perform 51 commands on the infected machine, e.g., sending
a file, stealing browser credentials, or taking a screenshot of the victim’s desktop.
Figure 5 provides an annotated CFG for its dispatcher.

Trace generation. Starting the exploration from the executable’s entry point
would likely lead to the generation of a large number of paths in the symbolic
executor, exhausting the resource budget well before reaching the dispatcher
loop. For this reason, as in [2] we assume that the analyst can identify the
thread executing the loop and provide hints for steering the exploration toward
this component. Since in NetWire it is implemented as a switch statement with
a large number of cases, detecting it in an initial inspection was straightforward.
Our prototype generated over 2000 traces, covering 41 commands while 10 led
to internal crashes. An excerpt3 from a valid trace is the following:

(a) API: ..., socket(...), connect(...), ..., time(T), ..., send(...,D1, ...), ..., recv(...,
D2, ...), recv(..., D3, ...), fopen(D4, ...), send(...,D5, ...), ...

(b) buffers: *D1= f(T), *D2= SEED_IV, *D3= {0x3e, ...},
*D4= "C:\Users\...\Opera\profile\wand.dat", *D5= {...}

When analyzing the entire trace, we can learn several interesting facts about
NetWire. First, it uses a raw TCP socket for communicating with the C2 server.
Second, it sends to the server a buffer that contains some data f(T) derived
from a timestamp T obtained using the function time. The server sends back
a buffer that likely contains a seed and an initialization vector, internally used
by NetWire in combination with a statically embedded password to generate a
symmetric key. This key is then used during communications to encrypt data
using a custom implementation of AES. As discussed in Section 2.3, symmet-
ric encryption can be handled by our approach when the key is embedded in
the binary or is dynamically generated with a computation. NetWire derives
the symmetric key from a buffer received from the server, falling in the latter
case. Since we generate the server and thus can control the buffer’s content, our
approach is able to successfully deal with the symmetric encryption scheme of
NetWire. However, to make the trace replayable outside our environment the
time function should be hooked in order to produce the same value used in
the symbolic exploration. Another interesting element from this trace is that
NetWire implements a command (0x3e) that sends to the server the content of
profile files for the Opera browser.

Trace analysis, speculation, and validation. The APTA built from ana-
lyzing the traces is depicted in Figure 6. To make the representation compact,
we merged paths related to the same command (see Section 2.3) and discarded
traces where no interesting APIs were observed. The resulting APTA contains
29 distinct paths, covering 30 commands (since command 0x4 is a prefix for all
3 Addresses of taken branches seem of little interest and are thus omitted.
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Fig. 6: NetWire – APTA with speculative edges after completing the validation step.

the paths). We discarded traces related to 11 commands for which no interest-
ing APIs were recorded. Figure 6 shows the path chosen in the speculation step:
the path was successfully validated during the fourth step, generating a single
execution trace able to cover all 30 commands.

C2 server generation. To synthesize a C2 server instance for NetWire, our
prototype programmatically generated a Python program template using wrap-
pers for network APIs such as socket, bind, accept, read, and write. When
generating the server, our prototype reports that the analyst should hook (e.g.,
using debugger scripting or by rewriting API results in a sandbox) the invocation
of the time function that takes place at a specific call site inside the sample.

3.2 GoldSun
The first specimen of the GoldSun RAT dates back to 2004: over the years, the
RAT has infected machines in over 60 countries [23]. We considered a variant [2]
that injects code in Windows Explorer to remain stealthy and lets the attacker
perform 16 types of commands on the victim’s machine, such as executing a file
or stealing one. Figure 7 provides an annotated version of the control flow graph
(CFG) for the dispatcher loop of the variant we analyzed.

Trace generation. Similarly as for NetWire, we rely on the initial guidance
of the analyst to reach the dispatcher loop: our prototype could generate more
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Fig. 7: GoldSun – Control flow graph of the RAT’s command processing thread [2].

than 300 traces originating in it, exposing all the 16 commands implemented by
the RAT. An excerpt from one of the traces is the following:

(a) API: ..., InternetOpenA(...), InternetConnectA(..., D1, 80,...),
..., InternetReadFile(..., D2, 4096, ...), ..., WinExec(D3, 0), ...

(b) buffers: *D1= "mse.vmnat.com", *D2= XOR(0x45, "@@5File.exe"),
*D3= "File.exe"

where *D1 is the server domain used by the C2 server (listening on port 80) and
*D2 is the buffer for requesting the RAT to execute the program File.exe on the
victim’s machine using WinExec. Notice that *D2 is encrypted with a single-byte
XOR scheme (key 0x45) while buffer *D3 is just a substring of decrypted *D2.

Although such encryption scheme is rather weak, it is sufficient to hinder
reuse of messages across different communication sessions: the C2 server can in-
struct the sample to change the key, making messages from one session possibly
invalid for another. In addition to message format and encryption factors, classic
network simulators like FireEye FakeNet-NG would be defeated by the authen-
tication scheme using by this RAT, which requires the C2 server to execute the
first command two times before allowing the execution of any other command.
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Trace analysis, speculation, and validation. The APTA built after analyz-
ing the recorded traces is depicted in Figure 8. As for NetWire, we merged paths
for the same commands and discarded uninteresting traces, yielding a tree with
15 paths (as the first command appears twice in each path).

To build the speculative path, we added to the approach presented in Sec-
tion 2.2 the requirement for the path to cover the command 0x10 after the last
speculative edge. This choice results from the observation that this command
makes the dispatcher loop terminate, thus acting as a shutdown action. This
reasoning could be easily integrated into the approach by devising a heuristic
for detecting traces that terminate the execution, e.g., by using exit-like APIs.

Interestingly, we experienced several edge invalidations when performing the
speculation step. While our original speculative path had all the speculative
edges reaching the deepest receive node in the APTA (node K in Figure 8), the
final validated path shows several speculative edges reaching other receive nodes
(i.e., ancestors of K). This resulted from multiple failures during the symbolic
exploration. Nonetheless, no interesting edge was dropped during the validation
phase, resulting in a single speculative path (reported in Figure 8) able to execute
all the 16 commands implemented by GoldSun.

C2 server generation. The sample communicates with the C2 server using
the HTTP protocol (see, e.g., the InternetConnectA API in the trace excerpt
above). Our prototype can synthesize C2 server instances for this protocol in the
form of Python Flask applications. For GoldSun, the C2 server is mainly imple-
mented by handling request on the route /httpdocs/mm/ <victim_id>/Cmwhite,
where victim_id is a unique identifier for the victim computed in the sample
by concatenating the hostname and the MAC address of the victim’s machine.
When generating the server, our prototype reports that the analyst should set
the host name and the MAC address in the analysis environment to same values
used in the symbolic exploration to prevent path divergences in the execution.

4 Related Work

Symbolic execution and protocol reverse engineering techniques constitute the
backbone of our approach. We briefly review works targeting such research.

Symbolic execution. Symbolic execution is a program analysis technique
pioneered in the ’70s. The technique is used to explore multiple paths of a pro-
gram by using symbolic instead of concrete inputs and it is widely used by the
cybersecurity community [21, 22, 20, 19]. Due to space limitation, we refer the
reader to the work by Baldoni et al. [3] for a complete treatment of the subject.

Protocol reverse engineering. In the last two decades, protocol reverse
engineering has received large attention from the research community. A recent
survey [13] divides works on this topic in two fields:

Message format inference. The goal is to classify the messages exchanged
between client and server and, for each identified class, to deduce the fields
which compose a message from the class and the relations (if any) among these
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Fig. 8: GoldSun – APTA with speculative edges after completing the validation step.

fields. The ultimate goal is to reconstruct the grammar that defines the structure
of messages. Automatic approaches can be further categorized based on the
type of inference applied. Techniques based on network inference analyze the
packets exchanged between client and server. For instance, [5] uses sequence
alignment algorithms to find similarities among the exchanged messages and
exploits this knowledge to identify recurring patterns and field boundaries. [12]
assumes that fields delimiters are known and uses a set of heuristics to classify
the messages and to identify hierarchical relations between fields. Techniques
based on application inference monitor not only packets, but also the code. [15]
leverages the idea that an application manipulates logically-related fields in code
portions that are close to each other. [10] uses instead a combination of system-
call monitoring and taint analysis to deduce the field boundaries and possibly
the semantics of the fields (e.g., if a field encodes a length).

Protocol grammar inference. The aim of such works is to reconstruct valid
sequences of messages accepted by client and server. Message format inference is
typically a prerequisite for this phase. Active inference approaches start from an
inaccurate model and iteratively refine it by probing an application that imple-
ments the protocol; automaton learning algorithms are typically involved. For
instance, [8] infers the protocol state machine of the MegaD C2 server by probing
an active server using the L* algorithm [1]. [9] performs active protocol grammar
inference in combination with concolic execution. Passive approaches deduce in-
stead the protocol grammar by examining network traces. [10] constructs an
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automaton that models the protocol by processing sequences of captured mes-
sages that have been previously classified.

5 Conclusion

In this paper we have proposed new ideas for synthesizing a server counterpart
for a RAT malware when only the client is available for inspection. As direc-
tions for future work, we plan to extend our automata representation to account
for concurrent communications, and explore the limits of our implementation
when dealing with more complex protocols with respect to packet format and
interactions with the OS other than network-related ones.
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