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Abstract: Background: Medullary thyroid carcinoma (MTC) originates from the parafollicular C 
cells of the thyroid gland. Mutations of the RET proto-oncogene are implicated in the pathogenesis of MTC. Germline ac-
tivating mutations of this gene have been reported in about 88–98% of familial MTCs, while somatic mutations of RET 
gene have been detected in about 23-70% of sporadic forms. Although these genetic events are well characterized, much 
less is known about the role of epigenetic abnormalities in MTC. 

Objective: The present review reports a detailed description of epigenetic abnormalities (DNA methylation, histone modi-
fications and miRNA profile), probably involved in the pathogenesis and progression of MTC.  

Methods: A systematic review was performed using Pubmed and Google patents databases.  

Results: We report the current understanding of epigenetic patterns in MTC and discuss the potential use of current 
knowledge in designing novel therapeutic strategies through epigenetic drugs, focusing on recent patents in this field.  

Conclusion: Taking into account the reversibility of epigenetic alterations and the recent development in this field, epige-
netic therapy may emerge for clinical use in the near future for patients with advanced MTC.  

Keywords: DNA methylation, epigenetics, epigenetic therapy, histone modifications, medullary thyroid cancer, microRNA. 

1. INTRODUCTION 

 Medullary thyroid carcinoma (MTC) is a malignant neo-
plasm of the parafollicular C cells and it accounts for about 
5-10% of thyroid tumors. Most MTCs occur in a sporadic 
form (70-80% of cases). The other 20-30% is inherited as 
three familial forms: multiple endocrine neoplasia type 2A 
(MEN 2A), multiple endocrine neoplasia type 2B (MEN 
2B), and familial MTC not associated with MEN (FMTC) 
[1].  
 Mutations of the RET proto-oncogene are implicated in 
the pathogenesis of MTC. Germline activating mutations of 
this gene have been reported in about 88-98% of familial 
MTCs, while somatic mutations of RET gene have been 
detected in about 23-70% of sporadic forms [2]. While 
these genetic events are well characterized, much less is 
known about the role of epigenetic abnormalities in this 
tumor. 
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 Epigenetic mechanisms play an essential role in normal 
development and cell differentiation. Disruption of epige-
netic processes can lead to altered gene function and malig-
nant cellular transformation [3-5]. Besides genetic lesions, 
epigenetic alterations regarding DNA methylation, histone 
modifications and non-coding RNAs, play a role in all three 
steps of tumorigenesis [6]: initiation, promotion, and pro-
gression [7]. It is important to emphasize that, unlike genetic 
abnormalities, epigenetic changes are reversible with promis-
ing applications in the field of epigenetic therapy in cancer 
[8]. 
 In this review, we report the current understanding of 
epigenetic patterns in MTC, the potential use of this knowl-
edge in designing novel therapeutic strategies and a focus on 
recent patent applications in this field.  

2. EPIGENETIC MODIFICATIONS IN MTC 

2.1. DNA Methylation

 DNA methylation involves the addition of a methyl 
group to DNA residues and plays an important role in regu-
lating gene expression. DNA methylation is most commonly 
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observed on the fifth carbon of the cytosine’s pyrimidine 
ring in a phosphodiester-linked cytosine and guanine (CpG) 
dinucleotide context [9]. CpG islands are regions with a high 
frequency of CpG sites and are found in about 70% of hu-
man gene promoters. These islands are usually unmethylated 
when the genes are expressed, suggesting that DNA methyla-
tion is a general transcriptional mechanism for gene silenc-
ing [10]. DNA methylation is regulated by a family of DNA 
methyltransferases DNMTs: DNMT1, DNMT2, DNMT3A, 
DNMT3B, and DNMT3L. DNMT1 preferentially promotes 
methylation of hemimethylated DNA and is responsible for 
copying DNA methylation patterns to the daughter strands 
during DNA replication [11]. Little is known about DNMT2 
that is characterized by an RNA methyltransferase activity, 
while DNMT3A and DNMT3B perform de novo methylation 
during development with the support of the DNMT3L [12]. 
 Disruption of epigenetic processes can lead to altered 
gene function and malignant transformation. Global DNA 
hypomethylation plays a significant role in tumorigenesis 
and occurs at various genomic sequences including repetitive 
elements, retrotransposons, CpG poor promoters, introns and 
proto-oncogenes [3]. This leads to genomic instability and 
activation of growth-promoting genes. In addition, site-
specific hypermethylation contributes to tumorigenesis by 
silencing tumor suppressor genes [3]. New evidence suggests 
that epigenetic abnormalities, along with genetic alterations, 
are implicated in MTC tumorigenesis and progression. In-
deed, aberrant DNA methylation of several oncogenes and 
tumor suppressor genes has been reported in thyroid tumors 
[13], including MTC [14, 15].  
 The possibility that RET has a role in the pathogenesis of 
MTC not only by genetic but also through epigenetic mecha-
nisms cannot be excluded. Interestingly, the expression of 
human RET protooncogene is controlled by a promoter har-
boring several transcription factor binding sites and rich in 
CpG islands [16]. A preliminary study, investigating the 
DNA methylation profile at the Ret locus, identified a sig-
nificantly lower degree of methylation for this protoonco-
gene in MTC cells compared with normal thyroid tissue [17, 
18]. However, a larger study is necessary to confirm this 
finding. 
 Rodríguez�Rodero et al. [19] analyzed the DNA methy-
lation profile in thyroid tumors through the genome-wide 27 
K Infinium Methylation Array. They found that 490 CpG 
(corresponding to 393 genes) and 148 CpG (corresponding 
to 131 genes) were respectively hypomethylated and hyper-
methylated in MTC compared with normal thyroid tissue. 
Interestingly, two oncogenes were frequently hypomethy-
lated: insulin like 4 (INSL4), belonging to the insulin and 
IGF family, was hypomethylated in 60% of MTC; and de-
velopmental pluripotency associated-2 (DPPA2), involved in 
the maintenance of the active epigenetic status of several 
genes, was hypomethylated in 30% of MTC. These findings 
suggest that promoter demethylation might be a frequent 
mechanism of INSL4 and DPPA2 oncogenes activation in 
MTC. Hypomethylation of the membrane-associated protein 
17 (MAP17) promoter was detected in 38% of MTC. Inter-
estingly, MAP17-overexpressing TT cells, a human MTC 
cell line, were associated with increased number of colonies, 
cell growth, and migration capability, suggesting the poten-

tial oncogenic property of MAP17 in MTC and its involve-
ment in MTC carcinogenesis through epigenetic events [19]. 
 The tumor suppressor gene RASSF1A (RAS association 
domain family protein 1A gene), which is epigenetically 
inactivated [20], in a variety of human tumors, resulted hy-
permethylated in 40-80% of MTC [21, 22]. This gene en-
codes a protein similar to the RAS effector proteins. The 
inactivation of RASSF1A has been associated with increased 
tumour cell proliferation through accelerated cell cycle pro-
gression and resistance to apoptosis signals. Thus, it may be 
an event in the pathogenesis of MTC [21, 22].  

 Macià et al. [23] investigated the role of the epigenetic 
modifications of Spry1, which belongs to Sprouty family of 
genes composed of four members in mammals (Spry1-4) 
[24]. Spry proteins have been shown to be activators or in-
hibitors of receptor tyrosine kinase signalling, depending on 
the cellular context or the type of receptor tyrosine kinase. 
Spry1 was expressed at very high levels in normal thyroid C-
cells and it has been identified as a candidate tumour sup-
pressor gene in MTC. Indeed expression of Spry1 reduced 
cell proliferation of TT cells. In MTC, SPRY1 promoter was 
frequently methylated and its expression was consequently 
decreased. This process may represent another mechanism 
involved in MTC tumorigenesis. Indeed, the targeted dele-
tion of Spry1 caused C-cell hyperplasia, a precancerous le-
sion preceding MTC, in young adult mice. The tumour sup-
pressor activity of Spry1 does not appear to be related to 
inhibition of RET signalling, but to the induction of cellular 
senescence [23]. 

 A global dysregulation of epigenetic machinery appears 
to be involved in the progression of MTC. The expression of 
several DNMT (DNMT1, DNMT3A and DNMT3B) resulted 
higher in MTC with lymph node and distant metastases (N1 
M1) compared to localized MTC (N0 M0) [25]. 

 The reversible nature of epigenetic changes that occur in 
cancer renders them ideal targets for therapeutic interven-
tions. DNA methylation inhibitors were among the first epi-
genetic drugs proposed as cancer targeted therapy. 5-aza-2'-
deoxycytidine and 5-aza-cytidine, both DNMT inhibitors, 
are currently used for treatment of hematologic malignan-
cies. Unfortunately, clinical trials with DNMT inhibitors in 
solid tumors have not shown the same results. Both 5-aza-
2'-deoxycytidine and 5-aza-cytidine are active in hema-
tologic malignancies at lower (less toxic) doses than are 
required for demethylation in solid tumors. At high doses 
these compounds are associated to severe toxicity mainly 
related to myelosuppression, due to the chemical instability 
and their incorporation in the genome. The development of 
novel inhibitors, that do not rely on DNA incorporation for 
activity, has the potential to greatly increase the clinical use 
of DNMT inhibitors [26]. Andrew et al. recently patented a 
new approach to inhibit DNMT activity, using DNMT 
trapping oligonucleotides. These oligonucleotides are de-
signed specifically as trapping suicide oligonucleotides, 
which capture DNMTs. They are not incorporated into ge-
nomic DNA, reducing or eliminating the main cause of 
dose-limiting toxicities of existing epigenetic drugs 
(US20150038548) [27]. 
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 We have recently showed a potent in vitro antitumor 
activity of 5-aza-2'-deoxycytidine in MTC cell lines (TT 
and MZ-CRC-1), mainly through cell cycle arrest [28]. 
Further studies are required to confirm the antitumor activ-
ity of demethylating agents in MTC, in particular for these 
new DNMT trapping oligonucleotides. It would be also 
interesting to focus on establishing clinically relevant com-
binations of DNMT inhibitors and conventional therapies 
in MTC. Indeed, there are several evidences supporting a 
role of DNMT inhibitors as efficient chemo- and radiosen-
sitizers in solid tumors [26]. According to several recent 
patents, demethylating agents potentiate also the antitumor 
activity of immunomodulatory agents (WO2014128245, 
WO2015035112) [29, 30], somatostatin analogues and do-
pamine agonists (WO2007114697) [31]. 

2.2. Histone Modifications

 Human genomic DNA is packed into nucleosomes, con-
sisting of approximately 150�base pairs of DNA wrapped 
around a histone octamer [32]. A gene can be transcribed 
only if the chromatin structure allows regulatory proteins to 
bind the relevant portion of the DNA [33]. Several histone 
post-translational modifications, such as acetylation, methy-
lation, phosphorylation and ubiquitination [34], can modu-
late chromatin structure and transcriptional activity. Acetyla-
tion of histones is the key mechanism of chromatin modifica-
tion and has been correlated with transcriptionally active 
chromatin, whereas histone methylation can be linked to 
either repression or activation of transcription depending on 
the context and extent of methylation [35, 36]. Histone 
deacetylases (HDAC) and histone acetyltransferases exert 
opposing enzymatic activities that modulate the degree of 
acetylation of the histones. In the same way, histone methy-
lation is regulated by two families of enzymes with opposing 
catalytic activities: lysine methyltransferases and demethy-
lases. These enzymes regulate gene expression, cellular dif-
ferentiation and survival [37]. 
 Aberrant pattern of histone modifications appears to be 
another relevant hallmark of MTC. A relative high expres-
sion of EZH2 and SMYD3 genes occurred in MTCs with a 
more aggressive behavior and a worst clinical outcome [25]. 
However, expression of EZH2 and SMYD3 did not correlate 
significantly with mutational status of RET and RAS [25]. 
EZH2 induces trimethylation of histone H3 lysine 27 
(H3K27me3) and determines transcriptional repression in 
genes involved in cell growth, adhesion, and transformation 
[38]. SMYD3 encodes a histone methyltransferase involved 
in the growth of various human cancers [39] and its overex-
pression is correlated to metastatic cancer progression [40]. 
A small but significant increase of the histone demethylase 
KDM5B and the histone deacetylase 7 (HDAC7) was also 
observed in the group of tumors with local and distant metas-
tases (N1, M1) compared to less aggressive MTCs (N0, M0) 
[25]. 
 On this basis, histone methyltransferases and HDACs 
appear to be promising targets for MTC therapy. Novel his-
tone methyltransferase inhibitors, also specific for EZH2, 
with potential antitumor activity have been recently patented 
(US9175331, WO2015152437) [41, 42]. Indeed, molecular 
targeting of specific histone methyltransferase is emerging as 

a new direction for cancer therapy. However, the antitumor 
efficacy of histone methyltransferase inhibitors has not yet 
been tested in MTC. On the other hand, the antitumor activ-
ity of HDAC inhibitors has been widely studied in the last 
years [43]. Several HDAC inhibitors, suberoylanilide hy-
droxamic acid (SAHA), m-carboxycinnamic acid bis-
hydroxamide (CBHA) and belinostat (PXD101), suppressed 
in vitro cell proliferation of TT cells [37, 44]. The HDAC 
inhibitors suberoyl bis-hydroxamic acid (SBHA) and val-
proic acid (VPA) have been shown to inhibit the expression 
of neuroendocrine markers (chromogranin A and calcitonin) 
and the growth of MTC cells, both in vitro [45, 46] and       
in vivo, through the activation of the Notch1 signaling path-
way and the induction of apoptosis [47]. The Notch1 signal-
ing pathway plays an important role in cellular differentia-
tion and proliferation, acting as a tumor suppressor and its 
overexpression in MTC cells is associated with growth inhi-
bition [48, 49]. Also Notch3 acts as a tumor suppressor in 
human MTC. AB3, a novel class I HDAC inhibitor, inhibited 
in vitro MTC proliferation and expression of neuroendocrine 
markers (chromogranin A and ASCL1) through the activa-
tion of Notch3 signaling [50]. 
 To date, the FDA has approved three HDAC inhibitors: 
vorinostat (SAHA), romidepsin and belinostat, for cutane-
ous/peripheral T-cell lymphoma [3]. Other HDAC inhibitors 
are in different stages of clinical trials for the treatment of 
hematologic malignancies and solid tumors [51].  
 A Phase II study assessed objective response to vori-
nostat in patients with advanced thyroid cancer (3 out of 19 
with MTC). No patient achieved a partial or complete re-
sponse. Median duration of therapy in patients with differen-
tiated thyroid cancer was 17 weeks, whereas in MTC pa-
tients it was 25 weeks [52]. Although this study suggested 
that vorinostat alone is not effective in metastatic thyroid 
carcinoma, there remains the question of whether combina-
tion therapy including HDAC inhibitors may be effective. In 
fact, few preclinical studies have demonstrated that HDAC 
inhibitors potentiate the antitumor activity of several com-
pounds in MTC. SAHA strongly sensitized TT cells to 
doxorubicin inducing cell death [37]. Combination therapy 
with HDAC inhibitors (SBHA or VPA) and lithium chlo-
ride exhibited potent antiproliferative effects and sup-
pressed hormonal secretion in TT cells [53] through con-
comitant upregulation of Notch1 and inhibition of glycogen 
synthase kinase-3ß (GSK-3ß) pathway [48]. All this repre-
sents the rationale for clinical studies of HDAC inhibitors 
[54] in combination with other anticancer therapies, in an 
effort to improve the clinical outcome of patients with ag-
gressive MTC. In future studies it would be extremely use-
ful to evaluate the antitumor activity of HDAC inhibitors in 
combination with tyrosine kinase inhibitors [55] taking into 
consideration that: 1) in several tumors this combination 
showed a synergistic antitumor activity in vitro (US9101579, 
WO2015054197) [56-59]; 2) treatment of advanced MTC 
was recently improved with the approval of two tyrosine 
kinase inhibitors (vandetanib and cabozantinib) [60, 61]. 
Interestingly, new chimeric HDAC inhibitors merged with 
protein tyrosine kinase inhibitors [62] have been recently 
synthesized. These chimeric compounds retain both selective 
pharmacological activities, postulating a broader activity 
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spectrum and less likelihood of drug resistance in cancer 
patients [63]. 
 On the basis of the strategy of creating multifunctional 
drugs, a novel series of compounds capable of simulta-
neously inhibiting HDACs and promoting the release of ni-
tric oxide, has been recently synthesized and patented for the 
treatment of cancer (CN104356087) [64]. These compounds 
showed additive antitumor activity via HDAC inhibition and 
nitric oxide release in several tumors [65] and may represent 
a new potential tool in the therapy of MTC, taking into con-
sideration that a very strong anti-tumor activity of nitric ox-
ide donors has been previously observed in MTC animal 
models [66, 67].  

2.3 Non-coding RNA 

 Based on size, non-coding RNAs (ncRNAs) are grouped 
into two categories, long ncRNAs (> 200 nucleotides) and 
small ncRNAs (< 200 nucleotides) [68]. Several evidences 
suggest that long ncRNAs act at different levels of gene ex-
pression, such as chromatin remodelling, transcription, ge-
nome stability, post-transcriptional modifications and trans-
lation. Long ncRNAs constitute an important component of 
tumor biology, they have been found to be differentially ex-
pressed in cancer and their deregulated expression seems to 
be involved in cell malignant transformation [69]. Small 
ncRNA family includes microRNAs (miRNAs), small nu-
cleolar RNAs (snoRNAs), small nuclear RNAs, piwi-
interacting RNAs and small interfering RNAs [70], out of 
which miRNAs were most known and extensively studied in 
human cancers [71]. miRNAs act as negative regulators of 
the gene expression [33]. Endogenous miRNAs are impor-
tant in the regulation of cell differentiation, proliferation, 
apoptosis and autophagy [72]. The link between miRNAs 
and epigenetics is bidirectional, whilst the expression of 
miRNAs is dictated by the methylation and acetylation status 
of DNA, on the other hand miRNAs regulate the expression 
of DNMTs and HDACs [72, 73]. Indeed, a large proportion 
of miRNA loci are associated with CpG islands giving 
strong basis to their regulation by DNA methylation [70]. 
This complicated network appears to form an epigenetics-
miRNA regulatory circuit able to modulate the whole gene 
expression profile. Dysregulation of miRNA has been ob-
served in several tumors, including MTC, suggesting a po-

tential role in tumorigenesis and progression by regulating 
cell growth, cell death and migration through targeting tran-
scription factors or signalling pathways (Table 1). 
 Nikiforova et al. were the first to investigate miRNA 
expression in 2 patients with MTC. They showed that ten 
miRNAs (miR-323, miR-370, miR-129, miR-137, miR-10a, 
miR-124a, miR-224, miR-9, miR-154 and miR-127) were 
up-regulated in MTC compared to normal thyroid tissues 
[74-76]. 
 Other studies have focused on the analysis of miRNAs 
expression in MTC by ‘miRNA array profiling’, revealing 
the dysregulation of several miRNAs [6, 17, 77]. Hudson  
et al. evaluated the expression of over 700 miRNAs in a co-
hort of 15 patients with MTC. They found significant over-
expression of miR-375 and miR-10a, while miR-455 was 
less expressed compared to normal thyroid tissue. These date 
were validated in a larger cohort of 59 cases [6]. Interest-
ingly, miR-375 is highly expressed in neuroendocrine cells 
[17] and seems to play opposite roles in cancer pathogenesis, 
either as oncogene or as a tumor suppressor [65, 78]. YAP1, 
a growth inhibitor that is known to be downregulated in neu-
roendocrine cell lung tumors by miR-375 [79], resulted to be 
also downregulated in this series of MTC [80]. Therefore, 
miR-375 mediated downregulation of YAP1 may be in-
volved in tumor development of MTC. 
 In another work overexpression of miR-21, miR-127, 
miR-154, miR-224, miR-323, miR-370, miR183, miR375 
and miR-9* has been found in MTC and c-cell hyperplasia 
compared to normal thyroid tissue [17]. The most pro-
nounced increase was observed for miR-9*, while miR-21 
upregulation in MTC samples was concomitant with a 
marked loss of nuclear programmed cell death 4 (PDCD4) 
protein. PDCD4 is a tumor suppressor gene involved in 
apoptosis, cell transformation, invasion, and tumor progres-
sion [81]. miR-21 has been reported to target the PDCD4 
3’UTR, which negatively regulates its expression [82]. From 
all nine miRNAs, only for miR-127 has been observed a link 
with RET status, sporadic MTC carrying somatic RET muta-
tions showed a lower upregulation of miR-127 than those 
with a wild-type RET [17]. 
 miR-129-5p represents another miRNA probably in-
volved in MTC tumorigenesis. It resulted down-regulated in 
human MTC tissues compared to normal adjacent thyroid 

Table 1. miRNAs Potentially Involved in the Tumorigenesis and/or Progression of MTC and Related Targets. 

miRNA Description Targets References 

miR-375 It is expressed in neuroendocrine cells and is important for tumor development  YAP1 [58] 

miR-21 It promotes neoplastic cell trasformation by repressing tumor suppressor genes PDCD4 [59] 

miR-129-5p It decreases cell growth, induces apoptosis and suppresses migration in MTC cells AKT and RET [64] 

miR-183 Knock down of miR-183 reduced cell proliferation in TT cells LC3B [57] 

miR-200 The down-regulation of miR-200 family confers a more aggressive phenotype to 
MTC cells 

ZEB1, ZEB2, TGF�1 and TGF�2 [67] 

miR-9-3p It reduced cell viability through an arrest of cell cycle and significantly inhibits 
autophagy  

Atg5, PIK3C3, mTOR and LAMP-1 [71] 
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and exerted tumor suppressor activity by inhibiting expres-
sion of RET, through a direct interaction with 3�UTR of 
RET, and by suppressing AKT phosphorylation. Interest-
ingly, the overexpression of miR-129-5p through transfec-
tion in MTC cell lines (TT and MZ-CRC-1) inhibited cell 
proliferation and migration ability, and stimulated cell apop-
tosis [83].  
 Puppin et al. [84] demonstrated that mRNA levels of 
DICER, DGCR8, and XPO5, all genes involved in miRNA 
biogenesis, were significantly overexpressed in MTC har-
bouring RET mutations, particularly in the presence of 
RET634 mutation, but not RAS mutations. These data sug-
gest that DICER, DCGR8, and XPO5 may represent novel 
targets for therapy in RET-mutated MTC aimed to restore 
the normal miRNA pattern [84]. 
 Few studies supported a potential role of miRNA dys-
regulation also in MTC progression. 
 Through an array covering 1084 miRNAs, ten miRNAs 
were found to be differentially expressed between sporadic 
and familial MTC. Among these miRNAs, six (miR-199b-
5P, miR-9, miR-9*, miR-223, let-7i, and miR-23a) were 
underexpressed, whereas four miRNAs (miR-182, miR-183, 
miR-375 and miR-551b) were overexpressed in sporadic 
MTC compared with hereditary MTC [76]. Overexpression 
of miR-183 [85] and miR-375 was associated with a more 
aggressive behaviour including residual disease, lymph node 
metastases, distant metastases, and higher mortality [6]. In 
this regard, downregulation of miR-183 reduced cell prolif-
eration in TT cells in association with an increase in LC3B 
expression, probably via autophagy, indicating that miR-183 
represents a potential therapeutic target for MTC [77, 86]. 
 In another series of MTCs, high miR-224 levels signifi-
cantly correlated with the absence of node metastases, lower 
stages at diagnosis and with a biochemically free status at the 
end of the follow-up [17]. 
 MiRNA expression profiling was evaluated through an 
array with more than 1200 capture probes in matched metas-
tatic and primary tumor samples. Five miRNA were down-
regulated (miR-7, miR-10a, miR-29c, miR-200b and miR-
200c) and five were up-regulated (miR-130a, miR-138, miR-
193a-3p, miR-373 and miR-498) in metastatic MTC tissues 
respect to primary MTC [87, 88]. Interestingly, the down-
regulation of the miR-200 family in MTC cells (TT and MZ-
CRC-1) significantly increase migration and invasion poten-
tial of these cells, shifting from an epithelial to a mesenchy-
mal and more aggressive phenotype, through repression of 
E-cadherin expression. In fact, the miR-200 family regulate 
the expression of E-cadherin through direct targeting of 
ZEB1 and ZEB2 mRNA and by enhancing the expression of 
tumor growth factor � (TGF�)-2 and TGF�-1. Concerning 
the other miRNAs differently expressed between matched 
metastatic and primary MTC samples, in several other cellu-
lar systems miR-7 regulates the expression of epidermal 
growth factor receptor (EGFR); miR-29c induces apoptosis 
in a p53-dependent manner; miR-130a, miR-138, miR-193a, 
miR-373 and miR-498 control several genes that modulate 
apoptosis, cell migration and angiogenesis. However, the 
real effects of these miRNAs have not yet been established 
in MTC cells [88]. 

 These data suggest that expression of specific miRNAs 
seems to be involved in MTC carcinogenesis and progres-
sion, providing new insights to pathogenesis and very attrac-
tive therapeutic targets [89]. Indeed, unlike genetic changes, 
miRNA alterations can be corrected. The detrimental impact 
of upregulated miRNAs with a potential oncogenic role can 
be counteracted with specific inhibitors or antimiRNA, 
which are synthetic molecules able to prevent the selective 
binding of a specific miRNA to its target. Few antisense oli-
gonucleotides, able to affect the activity of miR-375 and 
miR-21, have been recently constructed and patented 
(US8951984, US9181547) [90, 91]. 
 On the other hand, restoration of expression for miRNA 
with a tumor-suppressor role represents another therapeutic 
approach in cancer through the use of synthetic miRNA 
mimics, miRNA precursors or pre-miRNA mimics, to be 
introduced in cancer cells by miRNA delivery systems [92]. 
Several preliminary studies showed the possibility to sup-
press the proliferation of MTC cells, at least in vitro, through 
the upregulation of miR-129-5p [83] and miR-9-3p [93] and 
the downregulation of miR-183 [77, 86]. 

3. CURRENT & FUTURE DEVELOPMENTS 

 The primary molecular mechanism underlying MTC tu-
morigenesis is the aberrant activation of RET signalling 
through gene mutations [94]. Epigenetic modifications ap-
pear to be involved together with the overactivation of the 
RET signalling pathway in the pathogenesis and progression 
of MTC. However, it is difficult to accurately estimate the 
epigenetic mechanisms that play a pivotal role in this tu-
mour. In few studies the epigenetic profile of MTC cells has 
been compared with that of normal thyroid tissue, composed 
of follicular and parafollicular C cells. Because MTC origi-
nates from parafollicular cells, the differential expression 
between MTC tissues and their adjacent normal thyroid 
could be partially influenced by epigenetic differences in 
cellular populations of normal tissue. The application of cell 
enrichment techniques, like laser capture microdissection, 
could increase the specificity and sensitivity of cell-specific 
molecular profiling from tissue sections [95]. Future studies 
should better identify the epigenetic profile in MTC com-
pared with that detected in normal parafollicular C cells, 
isolated through the use of laser capture microdissection. 
 Taking into account the reversibility of epigenetic altera-
tions and the recent development in this field [32], epigenetic 
therapy may emerge for clinical use in the near future for 
patients with advanced MTC. Several new epigenetic tools 
and strategies, recently patented, such as DNMT trapping 
oligonucleotides, histone methyltransferase inhibitors spe-
cific for EZH2 and SMYD3, HDAC inhibitors with nitric 
oxide donor and antisense oligonucleotides counteracting the 
activity of miR-375 and miR-21, should be investigated in 
MTC (Fig. (1)). 
 In addition, the next efforts of research should be devoted 
towards: 1) the identification of epigenetic mechanisms po-
tentially involved in drug resistance in MTC; 2) the devel-
opment of novel chimeric molecules with combined tyrosine 
kinase inhibitor specific for RET and HDAC inhibitor activ-
ity. These molecules should combine the best characteristics  
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Fig. (1). Future perspectives in the epigenetic therapy of MTC: 
Histone methyltransferase (HMT) inhibitors (HMTI) specific for 
EZH2 and SMYD3 (1), antisense oligonucleotides (AO) counter-
acting the activity of miR-375 and miR-21 (2), DNMT trapping 
oligonucleotides (O) (3), HDAC inhibitors (HDACI) with nitric 
oxide (NO) donor (4). Me: Methyl group; Ac: Acetyl group. 

of RET tyrosine kinase inhibitors and HDAC inhibitors, and 
exhibit a potent antitumor activity with a good tolerability to 
provide a clinical use in patients with MTC. 
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