
Impact of Approximate Memory Data
Allocation on a H.264 Software Video Encoder

Giulia Stazi1, Lorenzo Adani1, Antonio Mastrandrea1, Mauro Olivieri1, and
Francesco Menichelli1

Sapienza University of Rome Dept. of Information Engineering, Electronics and
Telecommunications (DIET) Rome, Italy

{stazi,menichelli,mastrandrea,olivieri}@diet.uniroma1.it
adani.1342114@studenti.uniroma1.it

Abstract. This paper describes the analysis, in terms of tolerance to
errors on data, of a H.264 software video encoder; proposes a strategy to
select data structures for approximate memory allocation and reports the
impact on output video quality. Applications that tolerate errors on their
data structures are known as ETA (Error Tolerant Applications) and
have an important part in pushing interest on approximate computing
research. We centered our study on H.264 video encoding, a video com-
pression format developed for use in high definition systems, and today
one of the most widespread video compression standard, used for broad-
cast, consumer and mobile applications. While data fault resilience of
H.264 has already been studied considering unwanted and random faults
due to unreliable hardware platforms, an analysis, considering controlled
hardware faults and the corresponding energy quality tradeoff, has never
been proposed.

1 Introduction

Reducing power consumption in digital architectures gained a prominent role
in research since almost two decades, especially when technology shrinking of
physical devices started to rise important design issues due to increased power
density. The problem has been further amplified by application requirements
demanding increasingly amounts of processing power and memory size (e.g. high
definition multimedia, high speed communication, big data applications).

The contribution of this work is to propose a strategy for selecting error
tolerant data structures and to study the impact of faults on the quality of the
H.264 video stream. The results, as a case study, allow to find the relationship
between video output quality and hardware fault rate, which is the final metric
to guide the relaxation of hardware design constraints to save power (energy
quality tradeoff [1]).

1.1 Approximate memory

In modern digital systems memory represents a significant contribution to system
power consumption. Approximate memories are memory circuits where cells are

2 G.Stazi et al.

subject to hardware errors (bit flips) with controlled probability. From a concep-
tual point of view they are not different from standard memories (which are also
affected by errors), but, in approximate memories, errors are allowed by design
and are non-negligible for the software application. The presence of errors is the
result, in general, of design implementations introduced to significantly reduce
power consumption [2–4]. Different design strategies can be actively used in or-
der to introduce approximation, depending on memory technology. Specifically
for eDRAM/DRAMs, the refresh operation degrades performance and wastes
energy; for example, when the system is in standby mode, it can reach up to
50% of total power consumption [5].

In exact DRAMs refresh time interval is set according to the worst case
access-statistics of the most leaky cells. Commercial DRAM modules, for exam-
ple, have a worst case retention time of 64ms determined by the leakiest cells
in the entire array [3]. High refresh rate, which guarantees a storage without
errors at the expense of power consumption, may not be necessary, especially
considering low occurrence probability of the worst case.

In [6] the authors propose to abandon worst case design paradigm, showing
the benefits that can be achieved by relaxing the refresh time interval at the
expense of increasing error rates. In particular, tests on 8 chips of GC-eDRAMS
show that, admitting an error rate of 10−3 and relaxing refresh rate from 11ms
(worst case retention time) to 24 ms, 55% of energy can be saved; while an error
rate of 10−2 guarantees energy savings up to 75%. These experimental results
are just an example of the potential benefits that approximate memories can
achieve, depending on memory technologies and approximation levels that the
target applications can tolerate.

2 OS managed approximate memory and AppropinQuo
emulator

In this section we briefly describe our previous work regarding the introduction of
approximate memory support in Linux kernel and the development of a hardware
emulator, AppropinQuo, for platforms containing approximate memory.

Linux kernel support for approximate memory [7] allows the OS to distinguish
between exact memory banks and approximate memory banks. Approximate
memory management has been integrated in the kernel memory management,
relying on the internal concept of physical zone. In this way, the Linux kernel is
aware of exact memory and approximate memory physical pages, managing them
as a whole for the common part (e.g. optimization algorithms, page reuse) but
distinguishing them in terms of allocation requests and page pools management.

AppropinQuo [8] is a platform emulator that supports approximate mem-
ory models (along with normal exact memory) and allows the execution of the
operating system and applications while injecting faults at run time. The fault
injection mechanism has different levels of insertion, tunable at byte level and at
segment level, as well as configurable error rates and error injection models. In

Impact of Approximate Memory on a H.264 Software Video Encoder 3

particular, faults are based on models designed to reproduce the effects on mem-
ory cells of circuital and architectural techniques for approximate memories (e.g.
errors on cells can be introduced by access operations or can occur randomly,
even if the cell is not accessed).

3 H.264 video encoding

H.264, or MPEG-4 AVC, is a video compression format developed for use in high
definition systems.

Because of its widespread use and computational requirements, advanced
platforms for its efficient implementation in terms of cost, power, quality, have
been proposed. Research has been conducted on processing units and memory
subsystems [9].

Data fault resilience of H.264 algorithm has already been studied [10, 11],
however the approaches consider unwanted and random faults due to unreliable
hardware platforms. These faults, manifested as spurious bit flips, can be char-
acterized in terms of statistical probability, but cannot be controlled at data
level. In our work, faults are intentionally allowed on selected data structures
and with controlled and higher probability than the former works.

The x264 encoder is a free software library and application for encoding video
streams into H.264 [12]. We characterized heap memory usage for different video
resolutions and encoding options. Heap memory is commonly used by applica-
tions for dynamic allocation of large memory buffers during data processing,
which, for the x264 encoder and in general for ETAs, are good candidates for
approximate memory storage.

We expected larger memory requirements for higher resolution video, but
also for different encoding options. Encoding options in x264 set a tradeoff be-
tween encoding speed and output quality (considering the same bitrate) and
are another source of increasing memory requirements. For practical use these
options are grouped in presets ranging from high speed/low quality (ultrafast
preset) to extremely low speed/high quality (slow preset).

Table 1 reports memory usage for different input video resolutions and en-
coding options, showing the expected dependency on them. Peak heap represents
memory peak allocation, while useful heap is the actual memory used for appli-
cation data; the difference being memory consumed by allocation size rounding
and administrative byte associated with each allocation. We note that not all
heap can be allocated in approximate memory, since part of its data, typically
called critical data, are not tolerant to errors. A strategy for selecting candidates
for approximate memory allocations is then required, and it is described in the
following section.

3.1 Approximate memory data allocation for the x264 encoder

In order to select candidate data structures for approximate memory allocation,
we analyzed the x264 memory usage traces during execution (memory profiling).

4 G.Stazi et al.

Table 1. Heap memory usage

video resolution x264 option (preset) peak heap[MB] peak usefulheap [MB]

176x144 medium 15.6 15.4

704x576 veryfast 57.2 49.6

1920x1080 ultrafast 90.1 77.8

1920x1080 superfast 216.0 192.1

1920x1080 veryfast 269.0 238.6

We traced all functions called to allocate heap memory and then determined
which data are not critical for program execution. The profiling has been per-
formed using the Valgrind debug and profiling suite [13]; in particular, the heap
profiler tool called Massif. In Fig. 1 we report an extract (peak memory sample)
of Massif output for the encoding of a 1920x1080 resolution video and veryfast
option setting. The following analysis is valid for other preset options and res-
olutions since, apart from absolute memory usage, relative percentages remain
similar.

88.69% (250,198,526B) (heap allocation functions)
malloc/new/new[], --alloc-fns, etc.
->88.03% (248,347,652B): x264 malloc
| ->70.33% (198,419,648B): x264 frame new
| | ->70.33% (198,419,648B): x264 frame pop unused
| | ->41.92% (118,246,016B): x264 encoder encode
| | | ->41.92% (118,246,016B):encode frame
| | | ->41.92% (118,246,016B): main
| | ->12.18% (34,360,128B): x264 encoder open 152
| | ->12.18% (34,360,128B): x264 encoder encode
| | ->04.06% (11,453,376B): x264 encoder encode
| ->08.82% (24,883,200B):x264 encoder open 152
| ->04.47% (12,603,136B):
x264 macroblock cache allocate
| ->04.41% (12,441,668B): x264 encoder open 152

Fig. 1. Memory allocation profiling: Massif output

From the profiling reported we deduce that the total amount of useful heap
memory is about 239MB. The largest part of heap memory allocation is indeed
handled by function x264 malloc, which covers about 88.03% of total allocated
heap memory. The function x264 frame new, which in turn calls x264 malloc,
covers 70.33% of heap allocations.

The next step involved the analysis of source code in order to identify the
actual data allocated by these functions. By this analysis we discovered that
the first one, x264 malloc, is too generic, handling also allocation of critical
data structures. We could classify as critical in x264, for example, data re-
garding encoder behavior, frames analysis, color space bits depth setting and
encoding bitrate control. These data are critical because they are responsible
of program control flow, which cannot be altered randomly by faults without
completely compromising the encoding algorithm. The analysis of the function
x264 frame new revealed that this routine is used to create and allocate frames
for encoding or decoding the video, in the form of frame structures. For each
of these frames, x264 allocates a heap space large enough to contain the whole
picture buffer and other information, depending on encoder options. In partic-
ular the frame structure, among others, stores data concerning frame encoding
options, colors space information, buffers for frame pixels, motion vector buffers

Impact of Approximate Memory on a H.264 Software Video Encoder 5

Table 2. Test videos from derf’s collection

name resolution lenght [frames]

ducks take off 1080p 500

dinner 1080p 950

crowd run 1080p 500

blue sky 1080p 217

and rate control; some of this information is involved in the encoding control
flow and must be still kept exact. Conversely, buffers for frame pixels are op-
timal candidates for approximate memory, because introducing errors in them
does not alter program execution flow. Further analysis showed that image pix-
els are grouped into three different buffers, containing the pixel values for each
color component, each 1-byte large (8-bit per pixel). This data representation
analysis is important for the optimization of approximate memory techniques,
as will be discussed in the following section.

4 Results

The approximated x264 encoder was compiled and executed in the Appropin-
Quo emulator, running Linux kernel version 4.3 with support for approximate
memory management and built for the x86 architecture.

Input test files were selected from the Xiph.org Video Test Media (derf’s
collection) [14]. Given the large number of choices available, we selected videos
in raw format (no compression applied), color and characterized by moving and
still parts. A list of them is present in Table 2.

Tests were executed configuring the approximate memory model in Appropin-
Quo for DRAM memories using slower refresh rate [3, 5], considering different
fault rates and bit-level error masking (looseness level). The range of fault rates
was chosen according to a refresh rate increase ranging from 8x (256ms) up to
400x (25s), while bit-level error masking allows to take into account more ad-
vanced approximate techniques that distinguish between bit weights (the quality
of the user experience in multimedia application is mainly defined by the most
significant bits [15]).

Results are provided in terms of user perceived video quality, comparing
original and coded frames. In particular, as quality metric, we used peak signal-
to-noise ratio (PSNR), defined as the ratio between the maximum pixel value
and rms of corrupting noise that affects the fidelity of its representation.

All tests were executed with the x264 veryfast preset option, since this setting
provides a good balance between encoding processing time and quality.

In order to produce reference values, we first run the original x264 encoder,
with buffers allocated in exact memory. The average results are a global PSNR of
29.696 dB and an output bitrate of 17537 kbps. We note that the global PSNR
value on output videos for exact compression should be considered an upper
bound to evaluate x264 with the present settings.

6 G.Stazi et al.

4.1 Output with approximate memory and energy saving
considerations

Table 3 shows the results of the same encoding using approximate memory.
Global PSNR values are reported for each fault rate/looseness mask combina-
tion. According to AppropinQuo simulation parameters [8], looseness mask is a
32-bit configurable mask (constant for the whole memory array) that is applied
to every 32-bit location in memory in order to allow selective fault protection at
bit level (i.e. the MSBs); considering that pixel values stored by approximated
buffers have 8-bit size and are packed on 32-bit locations by the compiler (see
Section 3.1), we set the looseness mask as repetitions of an 8-bit submask.

Table 3. Video Output PSNR [dB]

Looseness
mask

Fault rate [errors/(bit × s)]

10−2 10−3 10−4

0x3F3F3F3F 19.97 25.18 28.84

0x1F1F1F1F 24.47 28.01 29.43

0x0F0F0F0F 27.35 29.13 29.59

0x07070707 28.96 29.52 29.63

0x03030303 29.47 29.61 29.64

0x01010101 29.61 29.64 29.64

Fig. 2. Extract from HD frame: exact (left), 0x0F0F0F0F mask (center), 0x3F3F3F3F
mask (right), fault rate 10−3 errors/(bit× s)

We note that for a fault rate of 10−3 errors/(bit× s) and a looseness mask
set to 0x0F0F0F0F (i.e. error allowed on the four LSBs of each byte), PSNR
is 29.13 dB, or about 0.5 dB under the exact case, confirming good tolerance
to errors. The table shows also that, with the same fault rate, all masks more
protective than 0x0F0F0F0F (i.e 0x07...07, 0x03...03, 0x01...01) produce very
close outputs, but would result in larger energy consumption (since they imply a
larger portion of exact bits). Figure 2 shows the visible effects, for 0x0F0F0F0F
and 0x3F3F3F3F bit masks, on a portion of a frame.

Simulations with fault rate set to 10−2 errors/(bit × s) illustrate that the
0x0F0F0F0F mask produces a PSNR value about 2 dB under the exact case,
resulting in more visible effects of corruption on the output. Figure 3 plots output
PSNR for an extended fault rate range.

Actual energy saving related to the application of our test cases can be ex-
tracted assuming as reference the results showed in [3]. Refresh power depends
on refresh rate, if we assume a 10−3 error rate, a 60x increase in refresh period

Impact of Approximate Memory on a H.264 Software Video Encoder 7

can be allowed. A looseness mask set to 0x0F0F0F0F means that half the cells
must be exact while the other can be approximate memory cells. In our tests,
data structures selected to be allocated in approximate memory are about 60%
of total data, resulting in a system where, globally, about 30% are approximate
memory cells while 70% are exact memory cells.

According to this partition, and considering only refresh power, we can expect
a normalized refresh power in the range of 0.3-0.5 [3] with respect to the original
exact implementation.

Fig. 3. Video Output PSNR graph [dB]

5 Conclusion

In this work we presented the analysis of the x264 video encoder and the impact
of using approximate memory for storing its error tolerant data structures. We
started by profiling memory usage and finding a strategy for selecting error
tolerant data buffers. We then run the modified application on AppropinQuo
emulator, for several combination of fault rates (derived from actual refresh rate
reduction strategies) and fault masking at bit level (looseness level).

Results show the importance of exploring the relation between these param-
eters and output quality. For example, leaving some of the MSBs exact demon-
strated to be an effective way of allowing error probabilities up to 100x higher
with the same output quality and a refresh period increase in the order of 60x.

Since leaving exact a portion of memory cells reduces global energy sav-
ings, this knowledge is also fundamental in order to drive research on hardware
techniques specifically tailored to the application, revealing the tradeoff between
designing more aggressive approximate circuits and the number of bit cells that
must be kept exact.

Future works can consider better allocation strategies and more advanced
DRAM architectures for embedded systems, as DRAMs chips with integrated
ECC units. Another important aspect is a more accurate quantification of power
savings, which could be obtained by integrating a power consumption model in
the approximate DRAM memory model.

8 G.Stazi et al.

References

1. J. Huang, J. Lach, and G. Robins, “A methodology for energy-quality tradeoff
using imprecise hardware,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 504–509.

2. S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving dram
refresh-power through critical data partitioning,” ACM SIGPLAN Notices, vol. 47,
no. 4, pp. 213–224, 2012.

3. A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality configurable
approximate dram,” IEEE Transactions on Computers, vol. 66, no. 7, pp. 1172–
1187, 2017.

4. H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for
disciplined approximate programming,” in ACM SIGPLAN Notices, vol. 47, no. 4.
ACM, 2012, pp. 301–312.

5. J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware intelligent
dram refresh,” in ACM SIGARCH Computer Architecture News, vol. 40, no. 3.
IEEE Computer Society, 2012, pp. 1–12.

6. A. Teman, G. Karakonstantis, R. Giterman, P. Meinerzhagen, and A. Burg, “En-
ergy versus data integrity trade-offs in embedded high-density logic compatible
dynamic memories,” in Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition. EDA Consortium, 2015, pp. 489–494.

7. G. Stazi, F. Menichelli, A. Mastrandrea, and M. Olivieri, “Introducing approxi-
mate memory support in linux kernel,” in Ph. D. Research in Microelectronics and
Electronics (PRIME), 2017 13th Conference on. IEEE, 2017, pp. 97–100.

8. F. Menichelli, G. Stazi, A. Mastrandrea, and M. Olivieri, “An emulator for ap-
proximate memory platforms based on qemu,” in International Conference on Ap-
plications in Electronics Pervading Industry, Environment and Society. Springer,
2016, pp. 153–159.

9. B. H. Asma, N. Jarray, and Z. Abdelkrim, “Low-power hardware design of binary
arithmetic encoder in h. 264,” INTERNATIONAL JOURNAL OF ADVANCED
COMPUTER SCIENCE AND APPLICATIONS, vol. 8, no. 7, pp. 412–416, 2017.

10. S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Revc: Computationally reli-
able video coding on unreliable hardware platforms: A case study on error-tolerant
h. 264/avc cavlc entropy coding,” in Image Processing (ICIP), 2011 18th IEEE
International Conference on. IEEE, 2011, pp. 397–400.

11. M. Shafique, S. Rehman, F. Kriebel, M. U. K. Khan, B. Zatt, A. Subramaniyan,
B. B. Vizzotto, and J. Henkel, “Application-guided power-efficient fault tolerance
for h. 264 context adaptive variable length coding,” IEEE Transactions on Com-
puters, vol. 66, no. 4, pp. 560–574, 2017.

12. L. Merritt and R. Vanam, “x264: A high performance h. 264/avc encoder,” online]
http://neuron2. net/library/avc/overview x264 v8 5. pdf, 2006.

13. N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in ACM Sigplan notices, vol. 42, no. 6. ACM, 2007, pp.
89–100.

14. C. Montgomery et al., “Xiph. org video test media (derf’s collection), the xiph
open source community, 1994,” Online, https://media. xiph. org/video/derf.

15. J. Kwon, I. J. Chang, I. Lee, H. Park, and J. Park, “Heterogeneous sram cell sizing
for low-power h. 264 applications,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 59, no. 10, pp. 2275–2284, 2012.

