
Synthesis Time Reconfigurable Floating Point

Unit for Transprecision Computing

Giulia Stazi, Federica Silvestri, Antonio Mastrandrea, Mauro Olivieri, and
Francesco Menichelli

Dept. of Information Engineering, Electronics and Telecommunications (DIET)
Sapienza University of Rome, Via Eudossiana, 18, 00184 Roma, Italy
{stazi,mastrandrea,olivieri,menichelli}@diet.uniroma1.it

Abstract. This paper presents the design and the implementation of a
fully combinatorial floating point unit (FPU). The FPU can be recon-
figured at implementation time in order to use an arbitrary number of
bits for the mantissa and exponent, and it can be synthesized in order
to support all IEEE-754 compliant FP formats but also non-standard
FP formats, exploring the trade-off between precision (mantissa field),
dynamic range (exponent field) and physical resources.
This work is inspired by the consideration that, in modern low power
embedded systems, the execution of floating point operations represents
a significant contribution to energy consumption (up to 50% of the en-
ergy consumed by the CPU). In this scenario, the adoption of multiple
FP formats, with a tunable number of bits for the mantissa and the ex-
ponent fields, is very interesting for reducing energy consumption and,
simplifying the circuit, area and propagation delay. Adopting multiple
FP formats on the same platform complies with the concept of transpre-
cision computing, since it allows fine-grained control of approximation
while meeting the required constraints on the precision of output results.
The designed FPU has been tested in order to evaluate the correctness
of all supported operations, and implemented on a Kintex-7 FPGA. Ex-
perimental results are provided, illustrating the impact and the benefits
derived by the use of non-standard precision formats at circuit level.

Keywords: Floating Point Unit, Low Power Consumption, Approxi-
mate computing, Transprecision Computing

1 Introduction

The execution of FP operations in most embedded applications emerges as a ma-
jor contributor to system energy consumption. In [1] experimental results show
that 30% of the energy consumption is due to FP operations and an additional
20% is caused by moving FP operands from memory and registers and vicev-
ersa. Approximate computing [2–5] is an emerging technique which proposes to
relax the specifications on precise computation allowing digital systems to in-
troduce errors implied by imprecise hw/sw, and trading off quality, in terms of
computational accuracy, for energy consumption or speed. According to another



2 G.Stazi et al.

paradigm, transprecision computing [6], low power embedded systems should be
designed to deliver the required precision for computation. In this scenario sev-
eral works try to overcome the limitations of fixed-format FP types: for example
in [7, 8] multi-precision arithmetic software libraries for performing calculations
on number with arbitrary precision are proposed. In [1] the authors present a
transprecision FPU capable of handling 8-bit and 16-bit operations in addition
to the IEEE-754 compliant formats.

In this paper, we describe the design and the implementation of a fully com-
binatorial and reconfigurable FPU, supporting IEEE-754 and also capable of
working with reduced precision formats, characterized by an arbitrary number
of bits for the mantissa and the exponent.

2 Floating Point representation, IEEE-754 standard

The IEEE floating point standard (IEEE 754) [9] is a technical standard for
floating-point computation, established in 1985 by the Institute of Electrical
and Electronics Engineers (IEEE).

X = (−1s)× 1.mb × b
e (1)

According to Equation 1 a floating point number consists of three fields:a sign
bit (s), a biased exponent(e) and a mantissa (m).

The IEEE standard for half precision floating-point numbers has 1 sign bit,
5-bit exponent, and 11-bit mantissa, for single precision has 1 sign bit, 8-bit ex-
ponent, and 23-bit mantissa and finally for double precision has 1 sign bit, 11-bit
exponent, and 52-bit mantissa. The advantage of floating-point over fixed-point
is the range of numbers that can be represented with the same number of bits.
In addition, the floating point IEEE-754 standard has defined representations
for zero, negative and positive infinity, and NaN (Not a Number).

3 Reconfigurable Floating Point Unit

The primary goal of this work is the design and implementation of a fully combi-
natorial and reconfigurable FPU using VHDL hardware description language at
Register Transfer Level (RTL). The unit allows to perform operations on float-
ing point numbers in any format with a maximum length of 64 bits and with an
arbitrary number of bits dedicated to the exponent and to the mantissa fields.
In this way, it is possible to support floating point operations fully compliant
with those defined by the IEEE-754 standard (double-precision, single-precision
and half-precision) and operations with reduced precision formats. The FPU has
been made reconfigurable at synthesis time by declaring the length of all signals
and variables as function of two generic types, m and e, used respectively for
defining the length of the mantissa and the exponent.

The hardware architecture has been designed trying to satisfy the following
targets: (a) reduced area occupation; (b) low power consumption; (c) maximum



Synthesis Time Reconfigurable FPU for Transprecision Computing 3

propagation speed. The FPU is fully combinatorial, in order to be inserted in a
CPU 1-cycle pipeline stage. The implemented operations are: sum, subtraction,
multiplication, conversion from floating point to integer and from integer to
floating point.

3.1 Floating Point Unit core

Fig. 1 and Fig. 2 represent, respectively, the Floating Point Unit core internal
diagram and external interface. The FPU does not support operations between
denormalized numbers because they would led to a larger use of logic and there-
fore of area occupation in exchange for a marginal increase in accuracy. The
approach is indeed the same one used in the VFP of ARM processors: all denor-
malized numbers in input to the FPU are directly approximated to 0. The other
FPU input signals are:

– operation, which encodes the type of operation to be executed;
– control, which configures the unit before performing computational tasks;

in particular it assigns the sign during integer to float conversion and it
determines whether exceptions are enabled on the status port .

Fig. 1. Floating Point Unit Core architecture

Fig. 2. External interface of FPU core

The output signals are:

– result, which provides the result of the performed operation. Again, its length
depends on the number of digits for the exponent and the mantissa (e and
m parameters).



4 G.Stazi et al.

Table 1. List of analyzed formats

#bit sign #bit exponent #bit mantissa Total bits

1 5 10 16 (IEEE half precision)

1 6 11 18

1 5 12 18

1 6 13 20

1 5 14 20

1 7 16 24

1 6 17 24

1 8 23 32 (IEEE single precision)

1 10 37 48

1 9 38 48

1 11 52 64 (IEEE double precision)

– status, which contains information regarding exceptions that have occurred
and that are appropriately flagged.

The FPU supports the following exceptions: inexact result, invalid operation,
underflow and overflow. When a case of underflow is detected, the result is
approximated to 0, when instead an overflow occurs, the result is approximated
to infinity. As far as the exception of an invalid operation is concerned, the result
is set to NaN.

4 Experimental Results

4.1 Testing

The testing phase, performed immediately after the FPU design, represented
an important step in order to make sure that the computational unit operates
according to its design specifications and produces the correct results. To verify
the behavior of the designed core for a variety of inputs, a testbench has been
built. The testbench inserts input test vectors, automatically generated by a C
program, into the FPU and then compares the results processed by the com-
putational core with the output produced by the C program (using hardware
FP). All validation was performed simulating the FPU at behavioral level using
Modelsim SE 10.1c[10].

Considering a FP number of predefined length, the partition of bits between
the mantissa and the exponent fields has an impact on the represented num-
bers, enforcing a trade-off between dynamic range and precision; in particular
the number of bits in the exponent field affects the range of numbers that can be
represented while in the mantissa field modifies the precision of the represented
number. We centered our analysis on reduced precision formats from a minimum
of 16 bits up to 64 bits; this choice is supported by the consideration that sin-
gle precision IEEE format is often not necessary for applications in embedded
domains while IEEE half precision can be affected by underflow/overflow prob-
lems. In particular, Table 1 shows the list of standard and non-standard formats
analyzed in this section.



Synthesis Time Reconfigurable FPU for Transprecision Computing 5

4.2 Synthesis and implementation

The next step was the synthesis and the implementation of the FPU core on
Kintex 7 FPGA throughXilinx Vivado Design Suite[11]. Since the FPU is fully
combinatorial, it does not have an input clock signal. As timing constraint for
the project, a virtual clock, which is not connected to any design object, was
used. To obtain data that reflect the effective gate area occupation, we run syn-
thesis with hardware FPGA DSP block disabled, leaving the synthesizer with
the possibility of using only the remaining logic blocks. This approach was re-
quired in order to compare the area occupied by different FP formats, which
otherwise would have been implemented using DSP block using fixed FP for-
mats. Table 2 shows the results gathered from the Utilization report. This report
has been produced after the implementation of the FPU core at 40 MHz clock
speed (25 ns is the minimum period obtained for the single precision FP format)
and it collects data regarding number of LUTs and slices used in the unit. It can
be seen that the reduced precision formats allow to significantly limit hardware
resources. Propagation speed results, extrapolated from the Timing Summary

Table 2. Resources @ 40MHz
clock with DSP disabled

Precision #slice #LUT
% resources rel.

to single precision

half 191 624 37.9%

m11 e6 198 664 39.2%

m12 e5 209 730 41.5%

m13 e6 238 796 47.2%

m14 e5 243 807 48.2%

m16 e7 299 1037 59.3%

m17 e6 238 1114 67.0%

single 504 1787 100%

Table 3. Propagation delay for re-
duced precision formats

Precision Propagation delay [ns]

half 20

m11 e6 20

m12 e5 20

m13 e6 20

m14 e5 20

m16 e7 21

m17 e6 21

single 25

m37 e10 25

m38 e9 25

double 29

Report produced after each implementation, are illustrated in Table 3. For half
precision and for precisions between 18 and 20 bits, propagation speed remains
constant at 20 ns, 25% better than single precision. Single precision presents a
propagation speed of 25ns, decreasing the operating frequency to 40 MHz; finally
double precision introduces an increase in propagation time of about 45% with
respect to the best case.

5 Conclusions

In this paper, the design of a FPU, synthesizable with arbitrary precision for-
mats, was presented. We showed that a FPU with reduced precision is a good so-
lution for low-power and low-cost microprocessor systems. The savings in terms
of resource occupation, for the analyzed formats, range from about 38% for
m17 e6 format and reach about 63% for m11 e6 format with respect to single



6 G.Stazi et al.

precision. Moreover, reducing precision has also considerably decreased propa-
gation delay. In particular, the propagation delay on reduced-precision imple-
mentations was about 20 ns, with a gain of about 25% and 45% with respect to
single and double precision formats.

In future works, synthesizing the FPU on ASIC will allow more accurate
estimate of area occupation and speed gain and will also add an estimate and a
comparison on power consumption, which was revealed not reliable using FPGA
as target.

References

1. G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A transprecision
floating-point platform for ultra-low power computing,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2018. IEEE, 2018, pp. 1051–
1056.

2. J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for
energy-efficient design,” in 2013 18th IEEE European Test Symposium (ETS).
IEEE, 2013, pp. 1–6.

3. G. Stazi, F. Menichelli, A. Mastrandrea, and M. Olivieri, “Introducing approxi-
mate memory support in linux kernel,” in Ph. D. Research in Microelectronics and
Electronics (PRIME), 2017 13th Conference on. IEEE, 2017, pp. 97–100.

4. F. Menichelli, G. Stazi, A. Mastrandrea, and M. Olivieri, “An emulator for ap-
proximate memory platforms based on qemu,” in International Conference on Ap-
plications in Electronics Pervading Industry, Environment and Society. Springer,
2016, pp. 153–159.

5. G. Stazi, L. Adani, A. Mastrandrea, M. Olivieri, and F. Menichelli, “Impact of
approximate memory data allocation on a h.264 software video encoder,” in In-
ternational workshop on Approximate and Transprecision Computing on Emerging
Technologies (ATCET). Springer, 2018.

6. A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagliavini, A. Emer-
son, A. Tomás, D. S. Nikolopoulos, E. Flamand, and N. Wehn, “The transprecision
computing paradigm: Concept, design, and applications,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2018. IEEE, 2018, pp. 1105–
1110.

7. D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, “Arprec: An arbitrary precision
computation package,” 2002.

8. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “Mpfr:
A multiple-precision binary floating-point library with correct rounding,” ACM
Transactions on Mathematical Software (TOMS), vol. 33, no. 2, p. 13, 2007.

9. W. Kahan, “Ieee standard 754 for binary floating-point arithmetic,” Lecture Notes
on the Status of IEEE, vol. 754, no. 94720-1776, p. 11, 1996.

10. M. Graphics, “Modelsim-advanced simulation and debugging,” 2012.
11. T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.


