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ABSTRACT 

 

The main research activity carried out within the frame of the present PhD thesis was 

focused on the study and development of materials to be used as plasters in the building 

industry and in the restoration and conservation of Cultural Heritage. In particular, the aim 

of this PhD thesis was to optimize the fiber-matrix interface in fiber reinforced cement-

based composites through specific surface treatments of the natural basalt fibers. 

Therefore, the compatibility, in terms of adhesion, between chopped basalt fibers 

(commercial and modified in the present work) and the selected matrices (Portland cement 

and natural hydraulic lime) was studied to understand and define possible improvements in 

the final composite materials. 

 

Therefore, different surface treatments were designed on the basalt fibers, to subsequently 

characterize them and to study the hydrolytic degradation phenomena respectively. With 

this information, composite materials reinforced with different types of fibers according to 

their surface nature, were finally designed and characterized. 

 

The first step of the project concerned the design and characterization of chemical coatings 

of basalt fibers with silane coupling agents.  

Surface treatments were carried out after a surface pretreatment through a calcination 

(elimination of the sizing applied during the production process on the commercial fiber) 

and an activation (treatment with chlorhydric acid to regenerate silanol groups on the fiber 

surface) process of the commercial fibers. Subsequently, the fibers were chemically treated 

with different silane aqueous solutions (aminosilanes): i) γ-aminopropyltriethoxysilane, 

APTES; ii) γ- aminopropylmethyldiethoxysilane, APDES and iii) mixture 50% by weight 

of both silanes, APTES + APDES. The commercial and modified fibers were characterized 

in terms of structure, composition and morphology through different instrumental 

techniques (DRX, FT-IR, TGA, SEM and AFM). From these initial results, it was 

observed that the calcination process was effective to remove the commercial sizing 

present on the fiber surface making the surface smooth. The activation process fully 

removed possible residues of the initial coatings, making completely smooth the fiber 

surfaces. In addition, this process regenerated silanol groups allowing the grafting of 
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aminosilanes on the fibers surface through condensation processes with formation of 

siloxane bonds. Through the morphological analysis of the silanized fibers, it was found 

that the silanization process made the surfaces rough, showing higher heterogeneity due to 

the presence of the organic matter deposited on the fibers. It was found that the higher the 

amount of triethoxysilane, APTES, used in the composition of the solution, the higher the 

surface heterogeneity in terms of topography. 

 

In a second phase of the thesis project, the phenomena of hydrolytic degradation of the 

polysiloxane coatings were studied since the siloxane bonds (-Si-O-Si-) formed with the 

silanols of the fibers surface and the silanols of the silane molecules, as well as those 

formed between the silane molecules between them, are hydrolysable bonds dependent on 

pH. Therefore, it is considered that the study of possible surface degradation phenomena 

may be useful to understand similar phenomena that could occur at the fiber-matrix 

interface. These studies are considered of crucial importance since, during the preparation 

of cement-based composite materials (matrix characterized by alkaline pH), it is necessary 

to mix the components with water. The hydrolytic degradation processes of the siloxane 

coatings were studied by monitoring the pH of the aqueous solution where the silanized 

fibers were immersed, by steady-state fluorescence spectroscopy. After modification with 

silane coupling agents, the silanized fibers were chemically labeled with a fluorescent label 

(fluorescein isothiocyanate, FITC) to be immersed afterwards in different aqueous 

solutions (pH=7 and pH=10). The study was carried out at different temperatures to study 

the kinetics of the process. The kinetic study allowed to obtain information about the 

activation energy of the three studied systems (APTES, APTES+APDES, APDES) and to 

evaluate the equilibrium degradation times for the different silanes. The results indicated 

that the hydrolytic rate of the three coatings increased in the order: APDES < 

APTES+APDES < APTES. It was found that the mechanism of the hydrolytic process is 

the same for the three studied systems and it was concluded that the rate of the hydrolytic 

degradation process is related to the initial concentration of siloxane bonds (-Si-O-Si-) able 

to be hydrolyzed. In addition, this study suggests that, in cement-based fiber-reinforced 

composites, the use of a polyorganosiloxane with a lower crosslinking degree, such as the 

APDES coating, could be the most effective strategy to resist a possible attack of water, 

especially in the alkaline environment characteristic of the cement matrix. 
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Finally, composite materials reinforced with different types of fibers according to their 

surface nature were prepared. Mortar samples based on Portland cement and chopped 

basalt fibers (commercial and modified) were prepared. On the other hand, mortar samples 

based on natural hydraulic lime and chopped basalt fibers (commercial and modified) were 

also prepared. Mechanical performances of the composite materials were evaluated by 

three-point flexural test and compressive strength test. An analysis and subsequent 

discussion on the interactions and compatibility between the reinforcing agent and the 

matrix were done. Different characteristics of the fiber surface were considered in order to 

find the best conditions, in terms of preparation of materials, to obtain interfaces whose 

special characteristics contribute to improve the performance of the final composite 

materials. Therefore, a fractographic analysis on the images obtained by scanning electron 

microscopy (SEM) and laser and optical profilometry were performed to study the 

compatibility between fiber and matrix. To evaluate other possible interactions between 

fiber and matrix and to understand possible contributions in terms of mechanical adhesion 

between them, a study on the fiber surface roughness at nanoscopic scale by atomic force 

microscopy (AFM) was carried out. In addition, the possible contribution to the final 

mechanical behavior related to the porous structure of the samples was also studied 

through BET-BJH analysis by N2 adsorption-desorption. From these studies it was found, 

that, in general, the simple presence of basalt fibers as well as specific variations of the 

fibers surface nature, increased the mechanical performance of the materials under study 

compared to the reference mortars that is the materials without fibers. Finally, it was 

possible to conclude that, independently of the used matrix, better mechanical 

performances are mainly associated to the best adhesion at the fiber-matrix interface, 

which, in particular, is achieved in the case of mortars reinforced with basalt fibers treated 

with the mixture of two silanes (APTES + APDES). 
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RESUMEN 

 

El siguiente proyecto de tesis doctoral se ha centrado en el estudio y desarrollo de 

materiales con potencial uso como revestimientos en el sector de la construcción y en la 

restauración de edificios históricos de gran interés cultural. En particular, como objetivo 

principal de la investigación se pretendió optimizar la interfase fibra-matriz de materiales 

compuestos reforzados con fibra de matriz cerámica (cementosa) a través de tratamientos 

superficiales de fibras naturales de basalto. Para ello, se estudió, en términos de adhesión, 

la compatibilidad existente entre las fibras cortas de basalto (comerciales y modificadas en 

el presente trabajo) y las matrices seleccionadas (cemento Portland y cal hidráulica natural) 

con el fin de comprender y definir posibles mejoras en las prestaciones o comportamiento 

en servicio final del material compuesto. 

 

Por ello, se diseñaron diferentes tratamientos superficiales sobre las fibras de basalto, para 

posteriormente caracterizarlos y estudiar fenómenos de degradación hidrolítica 

respectivamente. Con esta información finalmente se diseñaron y caracterizaron los 

materiales compuestos reforzados con los diferentes tipos de fibras según su naturaleza 

superficial. 

 

La primera fase del proyecto consistió en el diseño y caracterización de recubrimientos 

químicos de fibras de basalto con agentes de acomplamiento silano. Los tratamientos 

superficiales se realizaron después de un tratamiento previo por medio de un proceso de 

calcinación (eliminación del ensimaje superficial aplicado durante la fase producción en 

las fibras comerciales) y activación (tratamiento con ácido clorhídrico para promover la 

regeneración de grupos silanol de la superficie) de las fibras comerciales. Posteriormente, 

las fibras se trataron químicamente con diferentes disoluciones acuosas de agentes de 

acoplamiento silano (aminosilanos): i) γ-aminopropiltrietoxisilano, APTES; ii) γ-

aminopropilmetildietoxisilano, APDES y iii) mezcla al 50% en peso de ambos silanos, 

APTES + APDES. Las fibras comerciales y modificadas se caracterizaron en términos de 

su estructura, composición y morfología a través de diferentes técnicas instrumentales 

(DRX, FT-IR, TGA, SEM y AFM). A partir de estos resultados iniciales, se observó  que 

el proceso de calcinación fue eficaz para eliminar el ensimaje presente en la fibra 
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comercial y suavizar su superficie. El siguiente proceso de activación eliminaba 

completamente los posibles residuos de recubrimientos iniciales, consiguiéndose así 

superficies de fibras completamente lisas. Además, este proceso favoreció la regeneración 

de grupos silanol que fueron fundamentales para el injerto de los aminosilanos en la 

superficie de las fibras a través de procesos de condensación con formación de enlaces 

siloxano. Gracias al análisis morfológico de las fibras silanizadas se encontró que el 

proceso de silanización generaba superficies en las fibras más rugosas mostrando mayor 

heterogeneidad debida a la presencia de la sustancia organica depositada sobre las fibras. 

Se encontró que cuanto mayor era la cantidad de trietoxisilano, APTES, utilizado en la 

composición de la solución, mayor era la heterogenidad superficial en términos 

topográficos.  

 

En una segunda fase del proyecto de tesis, se estudiaron los fenómenos de degradación 

hidrolítica de los recubrimientos de base organosiloxánica ya que los enlaces de siloxano (-

Si-O-Si-) que se forman entre los silanoles de la superficie de las fibras y los silanoles de 

las moléculas de silano, así como los formados entre las propias moléculas de silano son 

enlaces hydrolizables dependientes del pH. Por lo tanto, el estudio de posibles fenómenos 

de degradación superficiales se piensa que podrían extrapolarse a fenómenos similares que 

pudieran ocurrir en la interfase fibra-matriz. Este tipo de estudios se considera que son de 

fundamental importancia pues durante la preparación de los materiales compuestos de 

matriz de cemento (matriz de pH alcalino) se necesita la mezcla de los componentes con 

agua. Mediante la utilización de espectroscopía de fluorescencia de estado estacionario se 

estudiaron los procesos de degradación hidrolítica de los recubrimientos siloxánicos 

controlando el pH de la disolución acuosa en la que se sumergieron las fibras silanizadas. 

Para ello, las fibras después de haber sido modificadas con los agentes de acoplamiento de 

silano, se marcaron químicamente con una especie fluorescente (isotiocianato de 

fluoresceína, FITC) y posteriormente se sumergieron en disoluciones acuosas a pH 

controlado (pH=7 y pH=10). El estudio se llevó a cabo a diferentes temperaturas para 

estudiar la cinética del proceso. El estudio cinético permitió obtener información sobre la 

energía de activación de los tres sistemas estudiados (APTES, APTES+APDES, APDES) y 

estimar los tiempos de degradación hidrolítica en el equilibrio para los diferentes silanos. 

Los resultados obtenidos indicaron que la velocidades de degradación de los tres 

recubrimientos aumenta según el orden: APDES < APTES+APDES <APTES. Se ha 
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encontrado que el mecanismo del proceso de degradación es el mismo para los tres 

sistemas estudiados, por lo que se concluye que la velocidad de hidrólisis depende de la 

concentración inicial de los enlaces de siloxano (-Si-O-Si-) capaces de ser hidrolizados. 

Además, este estudio sugiere que, en compuestos a base cementosa reforzada con fibras, el 

uso de un poliórganosiloxano con un bajo grado de reticulación, como el correspondiente a 

un recubrimiento realizado con APDES, podría ser la estrategia más eficaz para resistir un 

posible ataque de agua, especialmente en el ambiente alcalino característico de la matriz de 

cemento. 

 

Finalmente, se prepararon los materiales compuestos reforzados con los distintos tipos de 

fibras según su naturaleza superficial. Por un lado, se prepararon morteros a base de 

cemento Portland y fibras cortas de basalto (comerciales y modificadas). Por otro lado, se 

prepararon morteros a base de cal hidráulica natural y fibras cortas de basalto (comerciales 

y modificadas). Se investigaron las propiedades mecánicas de los materiales compuestos a 

través de ensayos de flexión en tres puntos y de compresión. Los resultados obtenidos 

permitieron realizar un análisis y posterior discusión en función de las interacciones y 

compatibilidad entre el agente de refuerzo y la matriz considerando diferentes 

características de las superficie de las fibras intentando encontrar las mejores condiciones, 

en términos de preparación de materiales, para conseguir interfases cuyas características 

especiales contribuyan a mejorar las prestaciones de los materiales compuestos finales. En 

este sentido, además, se llevó a cabo un análisis fractográfico de imágenes obtenidas por 

microscopía electrónica de barrido (SEM) y perfilometrías láser y óptica respectivamente 

para estudiar la compatibilidad entre la fibra y la matriz. Para evaluar otras posibles 

interacciones entre la fibra y la matriz, se realizó un estudio de rugosidad de las superficies 

de las fibras a escala nanosópica por microscopía de fuerza atómica (AFM) y así entender 

la posible contribución de adhesión mecánica entre las fibras y la matriz. Además, también 

se estudió la posible contribución al comportamiento mecánico final de la estructura porosa 

de las muestras, utilizando para ello análisis BET-BJH por adsorción-desorción de N2. 

De estos estudios se encontró que la simple presencia de fibras de basalto junto con 

variaciones específicas de la naturaleza superficial de las mismas en general aumentan las 

prestaciones mecánicas de los materiales bajo estudio en comparación con los morteros de 

referencia, es decir, materiales sin fibras. 
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Finalmente, se pudo concluir, independientemente de la matriz utilizada, que las mejores 

prestaciones mecánicas se asocian fundamentalmente a mejor adhesión en la interfase 

fibra-matriz que en particular se consigue en el caso de morteros reforzados con fibras de 

basalto tratadas con la mezcla de los dos silanos (APTES+APDES). 
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RIASSUNTO 

 

Il seguente progetto di tesi di dottorato di ricerca si è incentrato sullo studio e sviluppo di 

materiali da utilizzare come intonaci nel settore dell’edilizia e per il ripristino di edifici 

storici di grande interesse culturale. In particolare, lo scopo principale del progetto di 

ricerca è stato quello di ottimizzare l’interfase fibra-matrice all’interno dei materiali 

compositi fibrorinforzati a matrice cementizia attraverso trattamenti superficiali delle fibre 

naturali di basalto. Pertanto, è stata studiata, in termini di adesione, la compatibilità 

esistente tra le fibre corte di basalto (commerciali e modificate nel presente lavoro) e le 

matrici selezionate (cemento Portland e calce idraulica naturale) con lo scopo di 

comprendere e definire possibili miglioramenti delle prestazioni e del comportamento 

finale dei materiali compositi.  

 

Pertanto, sono stati preparati diversi trattamenti superficiali sulle fibre di basalto, per essere 

successivamente caratterizzati e poter studiare rispettivamente i fenomeni di degradazione 

idrolitica. Con queste informazioni sono stati infine preparati e caratterizzati i materiali 

compositi rinforzati con le fibre con diversi trattamenti superficiali. 

 

La prima fase del progetto ha riguardato la preparazione e caratterizzazione di rivestimenti 

chimici delle fibre di basalto con agenti di accoppiamento silano. I trattamenti superficiali 

sono stati eseguiti dopo aver effettuato un pretrattamento mediante un processo di 

calcinazione (rimozione del rivestimento superficiale applicato in fase di produzione sulla 

fibra commerciale) e di attivazione (trattamento con acido cloridrico per favorire la 

rigenerazione dei gruppi silanoli superficiali) delle fibre commerciali. Successivamente le 

fibre sono state chimicamente trattate con soluzione acquose di agenti di accoppiamento 

silano (amminosilani): i) γ-amminopropiltrietossisilano, APTES ii) γ-

amminopropilmetildietossisilano, APDES ii) miscela al 50% in peso di entrambi i silani, 

APTES+APDES. Le fibre commerciali e modificate sono state caratterizzate in termini di 

struttura, composizione e morfologia mediante diverse tecniche strumentali (XRD, FT-IR, 

TGA, SEM e AFM). Da questi primi risultati si è osservato che il processo di calcinazione 

era efficace per rimuovere il rivestimento presente sulla fibra commerciale e rendeva la 

superficie liscia. Il successivo processo di attivazione rimuoveva completamente possibili 

residui di rivestimento iniziale rendendo la superficie del tutto liscia. Inoltre, questo 
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processo ha favorito la rigenerazione di gruppi silanoli fondamentali per l’innesto degli 

amminosilani sulla superficie delle fibre attraverso processi di condensazione con 

formazione di legami silossanici. Attraverso l’analisi morfologica delle fibre silanizzate, è 

stato osservato che il processo di silanizzazione generava superfici più rugose 

evidenziando una maggiore eterogeneità dovuta alla presenza della sostanza organica 

depositata sulle fibre. Si è constatato che quanto maggiore fosse la quantità di 

trietossisilano, APTES, utilizzata nella composizione della soluzione, maggiore era 

l'eterogeneità superficiale in termini topografici. 

 

In una seconda fase del progetto di tesi, sono stati studiati i fenomeni di degradazione 

idrolitica dei rivestimenti a base di organosilossani in quanto, i legami silossanici (-Si-O-

Si-) che si formano tra i silanoli della superficie delle fibre e i silanoli delle molecole di 

silano, così come quelli formati tra le proprie molecole di silano, sono legami idrolizzabili 

dipendenti dal pH. Pertanto, si ritiene che lo studio di possibili fenomeni di degradazione 

superficiale possa essere utile per comprendere fenomeni simili che potrebbero verificarsi 

all'interfaccia fibra-matrice. Questi studi sono considerati di fondamentale importanza dal 

momento che, durante la preparazione dei materiali compositi a matrice cementizia 

(matrice a pH alcalino), è necessario miscelare i componenti con acqua. Attraverso l'uso 

della spettroscopia di fluorescenza a stato stazionario, sono stati studiati i processi di 

degradazione idrolitica dei rivestimenti silossanici controllando il pH della soluzione 

acquosa in cui le fibre silanizzate erano immerse. Per realizzare questo, le fibre dopo essere 

state trattate con gli agenti di accoppiamento silano, sono state chimicamente etichettate 

con una molecola fluorescente (isotiocianato di fluoresceina, FITC) e successivamente 

immerse in diverse soluzioni acquose a pH standard (pH=7 e pH=10). Lo studio è stato 

realizzato a diverse temperature per poter studiare la cinetica del processo. Lo studio 

cinetico ha permesso di ottenere informazioni circa l’energia di attivazione dei tre sistemi 

studiati (APTES, APDES, APTES+APDES) e di stimare i tempi di degradazione idrolitica 

all’equilibrio per i diversi silani.  I risultati ottenuti hanno rilevato che la velocità di 

degradazione per i tre rivestimenti aumenta secondo il seguente ordine: APDES < 

APTES+APDES < APTES.  Si è visto che il meccanismo del processo di degradazione è 

lo stesso per i tre sistemi studiati, pertanto si è concluso la velocità di idrolisi dipende dalla 

concentrazione iniziale dei legami silossanici (-Si-O-Si-) in grado di essere idrolizzati. 

Inoltre, da questo studio è emerso che probabilmente nei compositi fibrorinforzati a 

matrice cementizia, l’uso di un poliorganosilossano con un basso grado di reticolazione 
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come quello corrispondente ad un rivestimento realizzato con APDES, potrebbe essere la 

strategia più efficace per resistere ad un possibile attacco dell'acqua, specialmente 

nell’ambiente alcalino caratteristico della matrice cementizia. 

 

Successivamente, sono stati realizzati i materiali compositi con le fibre con i diversi 

trattamenti superficiali. Sono stati preparati, rispettivamente, campioni di malta a base di 

cemento Portland e fibre corte di basalto (commerciali e modificate) e campioni di malta a 

base di calce idraulica naturale e fibre corte di basalto (commerciali e modificate). Sono 

state studiate le proprietà meccaniche dei materiali compositi attraverso il test di resistenza 

a flessione a tre punti e il test di resistenza a compressione. I risultati ottenuti hanno 

permesso di realizzare un'analisi e successiva discussione basata sulle interazioni e la 

compatibilità tra l'agente di rinforzo e la matrice considerando le diverse caratteristiche 

della superficie della fibra e cercando di trovare le migliori condizioni, in termini di 

preparazione dei materiali, per ottenere interfacce le cui caratteristiche specifiche possono 

contribuire a migliorare le prestazioni dei materiali compositi finali. Pertanto, è stata 

condotta, inoltre, un’analisi frattografica delle immagini ottenute mediante microscopia a 

scansione elettronica (SEM) e misure di profilometria laser e ottica rispettivamente, per 

studiare la compatibilità tra fibra e matrice. Per valutare ulteriori possibili interazioni fibra-

matrice, è stato realizzato uno studio di rugosità superficiale a scala nanosopica attraverso 

microscopia di forza atomica (AFM) in modo da poter comprendere il possibile contributo 

dell'adesione meccanica tra le fibre e la matrice. Inoltre, è stato studiato anche il possibile 

contributo al comportamento meccanico finale relativo alla struttura porosa dei campioni, 

utilizzando l’analisi BET-BJH per adsorbimento-desorbimento di N2. 

Da questi studi è emerso che la semplice presenza di fibre di basalto insieme a specifiche 

variazioni della natura superficiale delle fibre stesse, in generale aumentano le prestazioni 

meccaniche dei materiali in studio rispetto alle malte di riferimento, cioè materiali senza 

fibre. 

Infine, è stato possibile concludere che, indipendentemente dalla matrice utilizzata, le 

migliori prestazioni meccaniche sono principalmente associate ad una migliore adesione 

all'interfaccia fibra-matrice, che si ottiene, in particolare, nel caso di malte rinforzate con 

fibre di basalto trattate con la miscela di due silani (APTES + APDES). 
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CHAPTER 1                                                               
INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction 

In the present moment, several industrial and technological applications require the use of 

new low cost and environmentally friendly materials, offering other properties that are not 

present in traditional materials. Due to this, special efforts should be addressed in the 

material science and engineering areas, trying to design and develop innovative composite 

materials.  

 

In this contest, the design of fiber-reinforced composite materials is especially interesting 

because they are widely used in different sectors such as aerospace, aeronautical, 

automotive, construction, sporting goods industries, among others. When fibers are 

incorporated to different matrices, they usually increase mechanical resistance and stiffness 

without compromising other characteristics as the low weight [1–5]. 

 

Different types of fibers are available to reinforce polymeric, metallic and ceramic 

matrices. Nevertheless, the necessity of reducing risk for human health and environment 

impact, suggests using new materials that can be directly obtained from natural sources 

without reducing materials performances in certain applications. 

 

In the last decade, natural basalt fiber extruded from naturally fire-resistant basalt has 

emerged as a contender between the most used fiber reinforcements in composites [6–8]. 

Basalt fibers are classified as natural fibers of mineral origin characterized by high 

performance and a great range of good mechanical (high-tensile strength and high E-

modulus), thermal (high temperature resistance) and chemical properties [9]. Furthermore, 

one of the great advantages of these fibers is the high availability of the raw material 

overworld and their low cost [10,11]. Moreover, basalt fibers can be easily processed using 

conventional methods and equipments and they do not need any other additional step in the 

single producing process, making them to have an additional advantage in terms of costs. 

Finally, it is interesting to highlight that basalt fibers are safe for health because their 

diameters are larger than 9 micrometers and they are not subjected to longitudinal fracture, 



CHAPTER 1. INTRODUCTION AND OBJECTIVES  

Chap.1-12 
 

so they cannot be considered as inhalable materials. Due to the last characteristics 

mentioned basalt fibers have been recently classified as “The green industrial material for 

the twenty-first century”. This definition reveals the sustainability, point of growing 

interest in new worldwide productions. In many cases basalt fibers might be an 

extraordinary candidate to replace synthetic fibers in composite materials. Nowadays, the 

fiber market is mainly oriented to the use of glass and carbon fibers. Basalt fibers might be 

an extraordinary candidate to replace the last ones since they have better tensile strength 

than E-glass fibers, greater failure strain than carbon fibers as well as good resistance to 

chemical attack [9]. Moreover, due to the high resistance against the action of fungi and 

microorganisms and their high mechanical properties, basalt fibers can be used for many 

applications as alternative to the other type of natural fibers of vegetable origin [11–13] .  

 

The use of high-performance and eco-friendly materials is currently in high demand in 

different engineering and industrial fields. In the last years, a great interest of this type of 

materials is growing in the building industry where the concept of sustainability is 

becoming important. Moreover, special attention to fiber-reinforced materials is being 

developed in many countries where special climatic conditions and catastrophic events 

such as floods and earthquakes are becoming more frequent [11,14–16]. These events, 

sometimes, contribute to the deterioration of the modern and ancient buildings. In Italy for 

example, the most important historical centres have been damaged as a consequence of 

these catastrophic events. In this way, the identification and use of new materials for the 

preservation and conservation of cultural heritage are very important issues that generate 

considerable interest. The necessity of maintaining the characteristics of ancient materials 

implies finding out innovative materials for restoring masonry and plasters, guaranteeing 

their properties especially in terms of mechanical performance. Moreover, a very important 

issue to be considered in a restoration intervention is compatibility with the original 

structure; therefore, an especial care should be taken into account when selecting materials. 

Sometimes, the use of non-compatible materials could enhance building deterioration 

processes leading to the necessity of continuous structure reparations.  

 

To satisfy the growing need of innovative and eco-friendly materials in modern building 

industry and in the restoration field, the main research activity carried out within the frame 

of the present PhD thesis was focused on the study of basalt fiber reinforced cement 

matrices.  
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Among the large variety of cement materials, Portland cement is one of the most used. It 

was developed in the mid nineteenth century and was rapidly become the main choice in 

the building industry. It is a hydraulic binder primarily used in mortar and concrete. It is 

largely used as construction and repair material in the modern building industry although 

in certain cases it was used to restore ancient masonry structures or buildings [17–19].  

Restoration interventions that have employed cement-based mortars have shown several 

incompatibilities (high mechanical strength, efflorescence phenomena owing to the 

formation of large amounts of soluble salts by migrations of alkaline ions, low 

permeability with excessive water retention) causing extensive damage to the ancient 

masonry structures. Due to these problems, in the last years lime-based mortars have 

received special attention for restoration activities, looking for higher compatibility 

(physical, chemical and mechanical) with the original components [9].  

In this contest, special attention is dedicated to the Natural Hydraulic Lime (NHL). This is 

a hydraulic binder highly compatible with structures of great cultural interest since lime 

based-mortar have been used as construction material since ancient time. In addition, the 

interest of using NHL for new construction is recently growing because it is responsible of 

reduction of CO2 emission in comparison with the common Portland cement since less 

energy is required in the production process. Nevertheless, due to its lower mechanical 

properties NHL is not being widely used in comparison with Portland cement[16,20–25].  

 

On the other hand, considering the potential applications of these materials it is important 

to take into account some disadvantages. First of all, it should be point out that cement 

materials are classified as brittle materials and great problems might be due to shrinkage 

cracking phenomenon [18,26,27]. In general, random dispersion of short fibers within the 

cement-based matrices might contribute to reduce this problem since they should lead to 

more isotropic reinforcement limiting crack opening [28]. Up to the present moment, 

several studies refer on the use of commercial short basalt fibers to reinforce cement-based 

materials [6,29,30]. Among other interesting conclusions, experimental results pointed out 

that better performance of cement based materials could be obtained by the optimization of 

fiber-matrix interface through surface treatments [31–33]. 

 

In fact, it is well known that properties of composite materials are strongly dependent on 

the type of adhesion between the reinforcement and the matrix [34,35]. One of the methods 

to improve the interface in composite materials is through especial surface treatments of 
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the fibers. Among others, silane coupling agents are the most commonly used modifiers of 

fibers surfaces [35,36]. However, most of the studies concerning the modification of fibers 

surface are mainly oriented to improve specific interactions with polymeric matrices [37–

42]. In the present work, it is proposed to perform chemical coatings and study the 

particular interaction with cement matrices since the research is currently less widespread. 

 

Besides, other important issue that deserve especial attention is related to the effect of 

external agents or small molecules such as water since it may lead to materials failure by 

interphase hydrolytic degradation. When silane coupling agents are used to modify the 

fibers the siloxane bonds formed with fibers surface and/or with other silane molecules can 

be more or less easily hydrolyzed depending on pH [43–45]. Therefore, taking into account 

that manufacturing of cement-based composite needs mixing with water, the study of 

possible hydrolytic degradation processes that might occur at the interface in these 

materials is very important to conveniently design these materials to improve their final 

performance. In addition, cement matrices are characterized by alkaline pH [46]. 

Therefore, considering a possible application of these polyorganosiloxanes coatings in 

cement materials, the study of their behavior in alkaline environment is particularly 

important. 

 

1.2. Objectives 

The aim of this PhD thesis is to optimize the fiber-matrix interface in fiber reinforced 

cement based-composites through specific surface treatments of the fibers.  

The compatibility between as-received and modified natural basalt fibers and cement-

based matrices will be studied to finally understand possible improvements of final 

performance of the composites. These materials have potential use as plasters in the 

building industry and in the restoration and conservation of Cultural Heritage as alternative 

to traditional materials. 
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In order to achieve this goal, several specific objectives have been set during this research 

project: 

 

- To design and carry out controlled surface treatments on the basalt fibers 

In order to improve fiber-matrix interface different surfaces treatments based on 

chemical attachment of silane coupling agents are proposed. However, before 

silane coating, ideal surfaces of the fibers must be achieved by appropriate surface 

pre-treatments of the as-received fibers. 

 

- To characterize the surface of the as-received and modified fibers 

A proper characterization with several analytical techniques is necessary to 

evaluate the effectiveness of the surface treatments. Information about their 

structure, composition and morphology/topography will be useful to finally 

understand possible improvements of the resulting interphases in the composites 

and consequently their final performance. 

 

- To study degradation phenomena of the surface treatments 

Hydrolysis of the silane-based coatings will be studied by pH measurements and 

monitoring the fluorescence arising from fluorescent molecules chemically attached 

to the coatings.  

 

- To evaluate the influence of the presence of fibers and their modifications on 

mechanical performance of the cement-based composite materials  

Three-point flexural test and compressive strength test will be carried out to study 

the mechanical behavior of all the materials under study.  

 

- To study compatibility between the fibers and the matrix and the influence of the 

presence of fibers on the matrix.  

This objective is focused to understand the influence of the presence of the fibers 

and in particular, the interphases generated between the fibers and the cement-based 

matrices on the mechanical performance. Topographic analysis of the surface 

fractured materials will be carried out to study basalt fibers-cement based matrices 

adhesion and fracture mechanisms. Porosity and microstructure of the matrices, as 
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important factors influencing the mechanical properties, were evaluated under the 

presence or not of basalt fibers.   

 

A schematic representation of the working plan of the present PhD thesis is shown in 

Figure 1. 

 

To reach the goals above mentioned, the research activity has been developed in three 

main parts:  

 

1. DESIGN AND CHARACTERIZATION OF BASALT FIBERS SURFACES. 

2. HYDROLITIC DEGRADATION STUDY OF SILANE BASED COATINGS. 

3. CHARACTERIZATION OF FIBER-REINFORCED COMPOSITES. 

 

After this introduction, in Chapter 2 some concepts and basis necessary to help 

understanding the rest of the manuscript will be given. Then, in Chapter 3 a description of 

the materials and the experimental techniques and methods used to achieve the objectives 

above considered will be done. Next, Chapter 4 presents the topics related to the design 

and characterization of the fiber surface, and Chapter 5 discusses the hydrolytic 

degradation phenomena appearing in the polyorganosiloxanes coatings. Finally, Chapters 6 

and 7 are focused on the study of fiber-reinforced composite performance when Portland 

cement and Natural Hydraulic Lime, NHL, are used as matrices respectively. 
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Figure 1. Scheme of the working plan of PhD Thesis. 
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CHAPTER 2                                                                          
BASIS ABOUT BASALT FIBER-REINFORCED            

COMPOSITE MATERIALS 

 

In this Chapter an overview about the basalt fiber-reinforced composite materials will be 

done. In particular, general notions concerning production process, composition, properties 

and some problems related to this kind of materials will be discussed. Here it is important 

to highlight that specific problems and solutions proposed to solve them, will be later 

considered in the corresponding Chapters 4, 5, 6 and 7. 

 

2.1. Fiber-reinforced Composite Materials 

Many modern technologies require the use of materials that offer unique combinations of 

different properties that cannot be present simultaneously in traditional materials such as 

conventional metal alloys, ceramics and polymers. The possibility of combining different 

properties into a single material and extending the validity ranges (synergy) has been 

achieved and is continuously improved with the preparation of composite materials. 

  

In general, a composite material is defined as a material system composed of a mixture or 

combination of two different constituents which differ in their chemical form and 

composition leading, in addition, to clear phase separation [1,2].  

 

The two constituents or phases are the matrix, which is continuous and surrounds the other 

phase, known as dispersed phase or reinforcement. The latter represent the discontinuous 

phase, and usually is harder and tougher than the continuous phase. 

 

Composite materials are usually classified according to the scheme shown in Figure 1. This 

is a classification based on the type of reinforcement [2]. In fact, depending on the type of 

reinforcement used, it can be distinguished: 

 

- PARTICLE-REINFORCED COMPOSITES.  

- FIBER-REINFORCED COMPOSITES. 

- STRUCTURAL COMPOSITES. 



CHAPTER 2. BASIS ABOUT BASALT FIBER-REINFORCED COMPOSITE MATERIALS 

Chap.2-23 

 

 

Figure 1. General classification of composite materials. 

 

In this PhD thesis, attention is paid to fiber-reinforced composites. Among others, the main 

applications of these materials are found in several industrial fields (such as aeronautical, 

automotive, sporting goods, aerospace, marine, electronics, medical industry etc.). 

However, in the last decades the use of these materials in the building industry is receiving 

especial attention. In particular, in this work, fiber-reinforced materials focused to the 

construction sector and restoration are considered. 

 

A fiber-reinforced composite material consists of fibers of high strength and modulus 

embedded in a matrix. The synergy between these two constituents, fiber and matrix, 

confers to the whole material a large variety of good properties that cannot be achieved 

with either of the constituents acting alone. In general, the main goal of this type of 

materials is to achieve high resistance and/or stiffness with low weights [1,2]. 

 

In a fiber-reinforced composite material, the fiber and the matrix have specific roles. The 

fiber provides reinforcement to the matrix acting as the principle load transmitter. In 

general, fibers improve the total mechanical properties of the composites. On the other 

hand, the roles of the matrix are: i) to place and orient the fibers, ii) to transfer stresses to 

the fibers and iii) to protect the fibers form adverse environment (such as chemicals and 

moisture) and from mechanical degradation (e.g. by abrasion) [3]. 

Usually, the fibers can be incorporated to the matrix in continuous or discontinues forms 

(see Figure 1) and the matrix material can be a polymer, a metal or a ceramic. 



CHAPTER 2. BASIS ABOUT BASALT FIBER-REINFORCED COMPOSITE MATERIALS 

Chap.2-24 

 

In this project short randomly oriented fibers (basalt fibers) within ceramic matrices 

(cement-based matrices), are considered. Cement-based matrices are brittle materials and 

possess low resistance to crack propagation, which is manifested in their low fracture 

toughness. Therefore, the primary reason for the incorporation of basalt fibers to the 

ceramic matrices is to increase its mechanical performance mainly in terms of fracture 

toughness [2]. 

 

It should be point out that the final performance of a composite material mainly depends or 

is influenced by fiber length, fiber orientation, mechanical properties of the fiber and fiber 

content. However, it is well known that the final performance of fiber-reinforced materials 

not only depends on the properties of the main constituents (fiber and matrix) but also on 

other aspects such as the nature of fiber-matrix interface [2]. The term interface refers a 

two-dimensional border separating distinct phases (e.g., fiber, matrix, interphase, silane 

coating, etc.). This term sometimes should be confused with the term interphase that is a 

region in which the fiber and matrix phases are chemically and/or mechanically combined. 

The interphase may be a diffusion zone, a nucleation zone, a chemical reaction zone, etc., 

or any combination of the above [4,5].  

 

Specifically, this thesis project is mainly focused on the optimization of the fiber-matrix 

interface in fiber-reinforced materials through special surface treatments of the fibers (see 

section 2.1.3). Therefore, in this work the term interface will be used to refer a well 

definite region between fiber and matrix, while the term interphase will be used to describe 

the region between the matrix and the fiber, in which the fiber surface treatments are also 

included.  

 

2.1.1. Reinforcing Agents 

Nowadays, a large variety of synthetic and natural fibers is available in the market. This 

work is mainly focused on the use of natural fibers. The latter are obtainable from an 

animal, vegetal or mineral source [6,7]. In this project, basalt fibers classified as natural 

fibers of mineral origin are studied. Some peculiarities and characteristics concerning this 

type of fibers will be discussed below. 
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Basalt Fibers 

In the last decade, basalt fibers extruded from naturally fire-resistant basalt has emerged as 

reinforcing agents in fiber reinforced composite materials. They are natural fiber directly 

obtained from the melting of the basalt. Basalt is a solid, compact igneous rock which is 

formed when volcanic lava cools adequately to solidify, widespread worldwide [8]. As an 

example, in Figure 2 basalt columns present around the world are shown. 

 

 

Figure 2. Basalt Columns at Litlanesfoss-Iceland. 

  

The chemical structure of the basalt is similar to the conventional glass (Figure 3), in fact, 

it is mainly characterized by SiO2, Al2O3, CaO, MgO, Fe2O3 and FeO (Table 1) [8]. 

Depending on SiO2 content, basalts are classified as alkaline basalts (up to 42% of SiO2), 

slightly acidic basalts (43-46% of SiO2), acidic basalts (over 46% of SiO2). Moreover, 

depending on the chemical composition the color of the basalt could change from brown 

and gray to dull green [9].  

 

 

Figure 3. Network structure of basalt [10] 
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Table 1. Chemical composition of basalt [8]. 

 

 

 

 

 

 

 

 

 

 

Due to its great abundance in the world, basalt can be used for many applications and, 

among others, for fiber manufacturing. However, it is important to highlight that for fiber 

manufacturing not all type of basalt can be used for making continuous filaments with a 

diameter range from 9 to 24 microns. Basalt rocks with SiO2 content above 46% (the so 

named acidic basalt) are suitable for fiber production. Moreover, other criteria must be 

satisfied: ability to melt without solid residue, appropriate melt viscosity for fiber 

formation and ability to solidify in a glassy phase without noticeable crystallization  [9,11]. 

 

Production process of basalt fiber 

Usually, basalt continuous filaments are made from the basalt rocks by spinneret method 

like glass fibers. However, the basalt fibers production is simpler than glass fibers due to a 

less complex chemical composition. In fact, basalt fibers are obtained directly from melted 

basalt rock without additional additives [10,12]. A scheme of the process is shown in 

Figure 4. 

 

Figure 4. Scheme of basalt fibers production [12]. 

Chemical compound % 

SiO2 48.8-52.8 

Al2O3 14-17.5 

Fe2O3 7.3-13.3 

MgO 6.2-16 

CaO 8.59 

Na2O 3.34 

K2O 1.46 

TiO2 0.9-1.6 

P2O 0.28 

MnO 0.1-0.16 

Cr2O3 0.06 
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Crushed basalt rocks are charged into bath-type melting furnace by a dozing charger. They 

are converted into melt under 1460-1500 °C. Molten basalt flows from furnace through 

feeder channel through the platinum-rhodium bushing with minimum 200 holes. The fibers 

are drawn from the melt under hydrostatic pressure and subsequently cooled to get 

hardened filaments. In the next step, a silane based sizing liquid is applied on the fiber 

surface hereby the sizing components impart standard integrity, lubricity and resin 

compatibility [11–13].  

 

Moreover, the application of the sizing is necessary to avoid a decrease in the fiber strength 

values since it help to stops the development of micro-cracks on the filament surface. In 

addition, the sizing improve the adhesive properties of the fibers [8].  

In the frame of this research project the attention is focused especially on this step of the 

process (step 8 of Figure 4). Until now, most of the commercial sizing are produced for 

polimeric matrices. The developing of a sizing compatible with cement matrices is less 

widespread. One of the main goals of this thesis is the study of a new chemical coating to 

be applied on the fiber surface in this part of the production process. Therefore, the 

preparation of new surface treatments compatible with cement matrices is proposed.  

 

After sizing is applied, the filaments are collected together to form “strand” and forwarded 

to be wound on take up devices [11–13]. 

 

Different fiber morphologies can be obtained: continuous basalt fibers, chopped strands 

(by cutting continuous strands into short lengths), milled (produced by grinding continuous 

strands), fabrics, bars/rod. Chopped strands is the fiber morphology choose for the 

development of this research project. 

 

Properties of basalt fibers 

Basalt fiber present a large variety of good properties, due to this up to now they can be 

considered an interesting alternative to other types of fibers currently present in the fiber 

market. The main properties of basalt fibers are: 

 

- High tensile strength. 

- High E-Modulus. 

- High abrasion resistance since they are extremely hard (from 5 to 9 on Mohs scale). 
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- High temperature resistance. 

- Strong resistance to the action of fungi and microorganisms. 

- Good resistance to UV-light. 

- Anti-corrosion properties. 

- Excellent thermal and sound insulation. 

- Good chemical stability (they have good resistance against alkaline environment - 

pH up to 13-14 - but relatively less stability in strong acids) [8–14]. 

 

Safety and Toxicity of Basalt Fibers 

Safety and toxicity are two important parameters to be considered when handling fibers. 

Therefore, it is important to point out that basalt fiber arising from natural raw material 

(the basalt rock) does not cause any damage to the health since, in the production process, 

filaments are spun with a diameter between 9 and 13 µm. Moreover, they cannot split 

longitudinally and consequently they are characterized as no-respirable [8,11]. Studies 

about problems related to the fibers, indicate that only fibers having diameters smaller than 

3 µm are considerable inhalable, having no problems of inhalation fibers with length 

greater than 5 µm and length/diameter ratios greater than 3 [15]. Moreover, it should be 

point out that, the US and European occupational safety guidelines have labeled 

continuous basalt fibers and fabrics as safe materials [8,11]. In addition, it is important to 

mention that they have no toxic reaction with air or water, and they are non-combustible. 

When in contact with other chemicals they produce no chemical reactions that may 

damage health or environment. Moreover, they are easy to process (no additives are added 

to the melt) and to recycle. Therefore, basalts fibers are classified as ecological friendly 

material [7,10] . 

 

Comparison with other fibers and applications  

Most of the industrial applications are focused especially on the use of the common glass 

and carbon fibers. Because of the good range of excellent properties above mentioned, 

basalt fiber sometime can replace synthetic fibers. Table 2 describes some of the properties 

of the basalt fibers compared with E-Glass, S-Glass and carbon fibers, currently more 

widely used as reinforcement in composite materials. 
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Table 2. Comparison of basalt and some synthetic fibers [12]. 

 

From Table 2, it is possible to observe that basalt fibers could be an optimal alternative 

especially to E-glass fibers because of its higher tensile strength and elastic modulus 

values. Moreover, basalt fibers have excellent thermal properties compared to glass fibers. 

This make basalt fibers very attractive for several applications in composite materials with 

respect the common glass fibers. On the other hand, due to high tensile strength and low 

elongation at break sometimes could replace carbon fibers. Finally, another aspect to be 

considered is the lower price of basalt fibers with respect the glass and carbon fibers [12].  

 

Owing to the large variety of good advantages discussed above, basalt fibers have attracted 

attention for different industrial applications (such as in the automotive, electricity and 

electronics, chemical and petrochemical, aircraft, sporting goods etc.). Moreover, they also 

found application in the building industry as reinforcement in concrete [7,8,11,12,14]. 

About this issue and in particular, about the use of the basalt fibers as reinforcing agent for 

cement matrices, a more extended discussion will be given in the Chapters 6 and 7. 

 

2.1.2. Matrices 

In this research project two different ceramic matrices are considered: Portland cement and 

natural hydraulic lime. A brief description about the production process and their main 

properties and problems will be done. 

 

 Portland Cement 

Cement was discovered in 1824 by J. Aspin, but only from 1835 with L.C. Johnson, 

Portland cement becomes the dominant binder in the building industry, being the most 

common type of cement used around the world [16]. 

 

PROPERTIES CONTINUOUS 

BASALT 

E-GLASS S-GLASS CARBON 

Tensile Strength (MPa) 3000 – 4840 3100 – 3800 4020 – 4650 3500 – 6000 

Elastic Modulus (GPa) 79.3-93.1  72.5 – 75.5 83 – 86 230 – 600 

Elongation at break 3.1 4.7 5.3 1.5 ~ 2.0 

Temperature Withstand °C -260   +700 -50   +380 -50   +300 -50   +700 
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This building material is obtained by mixing two raw materials largely diffused: limestone 

(CaCO3) and clay (silica SiO2, alumina, Al2O3, and iron oxide Fe2O3). Through a complex 

production process the so-called clinker, that represent the base material of the cements 

currently available in the market, is obtained. In detail, the clinker is obtained by 

grounding and mixing limestone and clay in precise proportions and by heating the mixture 

to a temperature of about 1450°C in a rotary kiln. This process leads to the formation of the 

four principal compounds forming the clinker: 

 

- Tricalcium silicate (SiO2·3CaO). 

- Dicalcium silicate (SiO2·2CaO).  

- Tricalcium aluminate (Al2O3·3CaO). 

- Tetracalcicium ferroaluminate (4CaO·Al2O3·Fe2O3). 

 

Usually, these substances are also known as C3S, C2S, C3A and C4AF 1 respectively. 

 

C3S and C2S represent the silicate phase of the Portland cement, whereas C3A and C4AF 

the aluminous phase. The silicate phases are the most abundant. 

 

However, to make Portland cement, the clinker should be ground and mixed with a certain 

amount of calcium sulphate (usually gypsum up to 5%). It is important to grind the cement 

particles finely because, depending on this, its reactivity can change. The finer the cement, 

the more reactive it is.  

 

The process of setting and hardening the cement is the result of the reactions that take 

place between the water and the clinker. In this regard, it is important to point out that the 

principal four components of Portland cement, when mixed with water, shown different 

hydration kinetics and different hydration products. The most reactive compound is C3A. 

To reduce the rapid hydration of C3A that could lead to the “flash set” phenomenon (so-

called in the concrete industry) and to allow a certain period of workability before setting, 

                                                 

 

 

 

1Pseudo-chemical notations: C=CaO; S=SiO2; A=Al2O3; F=Fe2O3. 
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the gypsum should be added. Gypsum is added to retard the setting process. In fact, in 

contact with water, the gypsum reacts with C3A leading to the formation of ettringite, 

which precipitates on the C3A granules avoiding the penetration of water and therefore 

strongly delaying, the process of hydration of C3A and the formation of calcium aluminate 

hydrated (also known as C-A-H). The hydration of C4AF is similar to that of C3A, but 

much slower. However, although the C3A is the most reactive, the hydration process of 

Portland cement is dominated by the silicate phases. The C3S is the most important phase 

since it is the main component of cement (50-70%). The hydration of C3S is largely 

responsible for the beginning of the set and early strength development while the hydration 

of C2S is significant in terms of the final strength of the hardened cement. In fact, C2S 

hydrates much more slowly than C3S. However, the hydration products for both phases are 

the silicate calcium hydrate (better known as C-S-H) and portlandite (Ca(OH)2).  

 

The C-S-H is the main responsible of the mechanical properties and durability of the 

cement materials. The Ca(OH)2 production does not affect the mechanical properties. Its 

importance is due to the fact that it maintains high the pH of the cement. 

 

The hydration reactions, transform the hydrated cement paste more or less rapidly into a 

hardened material that continues to gain strength with time as long as there is enough water 

to hydrate all the cement particles [17–20]. The hardening of the mass is a long process 

that may continue for several years [2]. 

 

Another process important to be mentioned is the carbonatation process. During this 

process, the atmospheric CO2 can penetrate the porous structure of these materials and a 

carbonation reaction takes place. Thus, CO2 reacts with portlandite and the others cement 

hydration products, with a consequent pH lowering [21]. Generally, this process does not 

negatively affect the cement materials. Sometimes it reduces porosity and lead to a 

formation of a protective layer on the surface of the material [22,23]. In contrast, when 

steel is present in these materials, low values of pH contribute to their degradation [17]. 

 

Some considerations might be made on the different types of cement commercially 

available. All type of cement currently used, are regulated by the European Standard EN 

197-1 [24]. The latter provides 5 main classes of cements (CEM I Portland Cement, CEM 

II Portland-composite cement, CEM III Blastfurnace cement, CEM IV Pozzolanic 



CHAPTER 2. BASIS ABOUT BASALT FIBER-REINFORCED COMPOSITE MATERIALS 

Chap.2-32 

 

cement, CEM V Composite cement), 27 sub-types and 6 resistance class. In this study a 

CEM II/A- L 42.5 R is used. It corresponds to a Portland cement with a content of between 

6% and 20% by mass of limestone, with strength class 42.5 and high initial strength (R). 

 

 Natural Hydraulic Lime (NHL) 

Hydraulic lime are traditional building materials and represent a fundamental step in the 

history of the binders used in architecture before the advent of Portland cement. The use of 

the lime starts with the Greek civilization. However, the systematic use of lime is due to 

Romans who used this material for the preparation of mortars and concrete to build large 

buildings and exceptional size constructions or structures. However, Romans obtained 

hydraulic compounds by mixing air lime and hydraulic products (a volcanic sand know as 

pozzolan) and not directly with hydraulic lime [25,26].  

In fact, the hydraulic lime was developed staring from 1793 when J. Smeaton discovered 

that heating limestone containing impurities of clays produced a type of lime (the hydraulic 

lime) with characteristics like those of the lime-pozzolan mixture. 

 

Natural hydraulic lime is produced by calcination of more or less argillaceous or siliceous 

limestones at the temperature between 1100 °C and 1250 °C. During the calcination 

process, the reaction between lime (CaCO3) and aluminosilicates (SiO2+Al2O3) takes place 

leading to the formation of calcium oxide and calcium silicates and aluminates. They are 

subsequently reduced to a powder by the addition of controlled amount of water (slaking) 

with or without the need for further grinding.  

However, it is important to highlight some difference with the hydraulic phases of cement 

since they have important influence on the final properties of the binder. As described 

previously, cement is produced at higher temperature than natural hydraulic lime. This 

leads to the formation of different compounds. In fact, in natural hydraulic lime the mayor 

hydraulic phase is represented by the C2S whereas in cement the most abundant phases are 

C3S. Sometimes C3S is present because of local “hot spot” in the lime kiln. Moreover, in 

cement all the calcium oxide (CaO) is combined in calcium silicates (mainly C3S) and 

calcium aluminates (C3A and C4AF). In contrast in natural hydraulic lime a certain amount 

of free CaO remains that will convert to free Ca(OH)2 after slaking.  

 

However, as in the case of cement, the hydraulic reaction takes place. By chemically 

reaction with water, stable hydrates and insoluble compounds are formed (hydrated 
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calcium silicate, C-S-H, and aluminate, C-A-H). Besides, portlandite (Ca(OH)2) is also 

developed.  

 

These compounds allow the material to be to set and harden and remain stable even under 

water (hydraulic action). In this case, the hardening process takes place also by reaction 

with the atmospheric CO2. During this process part of CO2 is reabsorbed with the 

reconstitution of CaCO3 or limestone [16,26–29]. 

 

The different types of limes used as construction materials currently available in the 

market are regulated by the European Standard EN 459-1 [29]. In accordance with their 

chemical composition, two important class are considered: air limes (they have no 

hydraulic properties and are not able to harden underwater) and limes with hydraulic 

properties. Related to the latter the standard distinguishes between artificial hydraulic 

limes (HL), formulated limes (FL) and the above discussed natural hydraulic limes (NHL) 

in which the hydraulic properties derive from the natural raw material without any other 

additions. 

 

Natural hydraulic limes (NHL) are classified in accordance with their minimum 

compressive strength at 28 days as NHL 2, NHL 3.5, and NHL 5. In this PhD thesis the 

last one, NHL 5, is the class used. 

 

Cement and natural hydraulic lime are primarily used as hydraulic binders in mortar and 

concrete to bind aggregates of inert particles (sand and/or gravel) into a cohesive mass. 

These are considered to be composite materials [2].  

 

The term mortar generically indicates a mixture of several components that come 

appropriately mixed together in certain proportions, in order to give the mixture, in the 

fresh state, an appropriate workability and, in the hardened state, adequate physical-

mechanical, aesthetic and durability properties. In the most common sense, mortar is 

obtained by intimately mixing an aggregate (such as sand) with a binder (such as cement or 

lime) and adding water until a perfectly blended and homogeneous mixture is obtained, of 

the desired consistency, in relation to the use that must be made of it: substrates, plasters, 

decorations, etc. The same mixture, but with larger aggregates (such as gravel and crushed 

stone) takes the name of concrete [30].  
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Depending on the binder used, cement-based mortars and natural hydraulic lime-based 

mortars are distinguished. In this study cement matrices are mixed with sand and chopped 

basalt fibers to form the so-called fiber reinforced mortars. 

 

Shrinkage cracking phenomenon 

The main problem affecting mortar and concrete is the shrinkage cracking phenomenon. It 

represents a great problem in this type of materials. Therefore, it was found appropriate to 

consider this aspect more in detail. 

 

Shrinkage cracking phenomenon is due to volume changes in the materials and it is 

strongly depending of the properties of the cement matrix (such as composition and 

hydration reactions) and external factors related to the changes in moisture ambient. Due to 

these changes in the volume, tensile stress develops and consequently concrete and mortar 

cracking take place. It is responsible of the weakness and durability of the whole structure. 

In fact, these cracks can increase the penetration of water and other aggressive agents (such 

as chlorides) resulting in a faster degradation of the material. In addition, it is responsible 

of aesthetics damage since some cracks could appear on the construction surfaces. 

However, it should be pointed out that usually this phenomenon is more common in mortar 

than in concrete since the latter contain coarse aggregate which limit the shrinkage amount 

[31–33].  

 

Usually, four types of shrinkage cracking can be distinguished:  

 

- Autogenous shrinkage 

This type of shrinkage, also known as chemical shrinkage, takes place when cement 

products are mixed with water just at early stages of the cement hydration. The 

hydration reaction provokes a reduction in the volume of the mixture since the 

reaction products formed during the hydration of cement and lime occupy less 

space than the corresponding reactants. This is not due to external phenomena 

arising from environment.  

 

- Plastic shrinkage 

It occurs immediately the material is setting, when it is still in the plastic stage and 

it is due to the external factors (humidity, temperature, wind rate). It is associated to 
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the rapid evaporation of the water from the surface of mortars and concretes. 

Usually, the loss of water from the fresh paste due to external conditions, generate 

negative capillary pressures that cause the volume of the paste to contract and 

consequently cracks are developed. 

 

- Carbonation shrinkage 

It is associated to the carbonation process occurring in mortar and concrete when in 

contact with the atmospheric CO2. The chemical reaction between the latter and 

calcium hydroxide in the hardened matrix leads to a reduction in volume. This type 

of shrinkage is limited to the surface of mortar and concrete.  

 

- Drying shrinkage 

It is related to the drying of hardened cement-based materials due to the loss of 

capillary water. This is mainly caused from external factors (temperature and 

humidity) [31,34,35] 

 

However, these effects must be evaluated together as a total shrinkage phenomenon 

occurring in mortars and concrete leading to appearance of cracks that have a negative 

effect on the whole material. A solution to solve this problem is by introducing short 

fibers. This topic will be discussed more in detail in Chapter 6. 

 

2.1.3. Surface Treatments 

Surface treatments of the fibers surfaces is a way to improve the bonding across fiber-

matrix interface in composite materials. The methods that could be employed to modify the 

fiber surface are different. Among others, the modification of fiber surface with silane 

coupling agents is receiving each time more attention [3,36–42].  

 

Silane Coupling Agents 

A coupling agent is a chemical usually with double functionality used to create a chemical 

bridge between the reinforcement and the matrix in composite materials. Their primary 

function is to confer a good adhesion between the reinforcement/filler (in the present case 

fiber) and the matrix. Moreover, as previously discussed in the section 2.1.1 of this 

Chapter, the application of a sizing based on silanes, during the manufacturing process, is 
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very important to enhance the fiber strength since it can reduce some defects present on the 

fiber surface. In addition, the sizing contributes to avoid damage during handling [42–44].  

 

The use of silane coupling agents presents several advantages. First of all, they are 

commercially available in a large scale. Moreover, they can improve the adhesion between 

the reinforcement and the matrix through favorable interactions. Generally silane coupling 

agents have hydrolizable groups (alkoxy in the present work) capable of reacting with 

silanols of the reinforcement surface (such as in the case of basalt fibers), and other 

functional groups more compatible or that can favorably interact with the matrix [45,46]. 

In addition, they can be used at room temperature, even under conditions of extreme 

humidity, and without losing effectiveness [40]. 

Among those silane, difunctional organosilicon compounds of general formula Y-Si(X)3, 

or R-(CH2)n-SiX3 are the most commonly used. Y or R represents a non-hydrolysable 

organo-functional group (such amino, mercapto or epoxy) physically or chemically 

compatible with the matrix. On the other hand, X represents a hydrolysable group (such as 

methoxy –OCH3, ethoxy –OCH2CH3 or chlorine –Cl). These groups, after hydrolyzing to 

silanol can react with other silanol groups present on the surface of the silicic material to 

form siloxane linkages. 

 

The main steps of the interaction between silane coupling agents and fibers can be 

described as follows: 

 

a) Hydrolysis: silane monomers are hydrolyzed in presence of water yielding to 

reactive silanol groups.  

 

                                       R-SiX3 + 3H2O  R-Si(OH)3 + 3HX 

 

b) Self-condensation: in concomitance the condensation reaction of silanols starts 

taking place with the formation of Si-O-Si bonds (Figure 5). 

 

Figure 5. Self-condensation process. 
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c) Hydrogen bond formation between fiber surface and silane: when fibers are 

added to the silane aqueous solution, the free reactive silanol groups of silanes can 

react with the hydroxyl groups of the silicic fiber’s surfaces (like basalt fibers) 

forming hydrogen bonds (Figure 6). 

 

 

Figure 6. Hydrogen bond formation between fiber surface and silane coupling agents. 

 

d) Chemical grafting: in general, at temperatures slightly higher than 100 ºC 

condensation between silanols of the silane and the silanols of the fibers takes place 

to yield siloxanes bonds with dehydration. Depending on the silane, the continuous 

condensation between silanol groups of the silane can generate a more or less 

crosslinked siloxanic structure of the coating (Figure 7) [37,41,42,47–51]. 

        

Figure 7. Chemical grafting and polyorganosiloxane structure formation. 

 

The role of the interface, the fibers and the silane coupling agents specifically in cement 

matrices and the use of these materials in the building industry and in the restoration and 

conservation, will be discussed more in detail in the following Chapters 4, 5, 6 and 7. 
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CHAPTER 3                                                       

EXPERIMENTAL PART 

 

In this Chapter a description of the most relevant characteristics of the materials employed 

in this work is done. Moreover, the preliminary characterization of the raw materials used 

will be shown. Besides, a brief description of the instrumental techniques and methods 

used to carry out the experiments proposed in this PhD thesis is also presented. In order to 

avoid repeating information and improve the manuscript clarity, description of samples 

preparation will be carried out in the corresponding Chapters 4, 5, 6 and 7. 

 

3.1. Materials 

3.1.1. Basalt Fibers 

In this work, basalt fibers were chosen as potential reinforcing agent to be modified with 

different surface treatments and, after that, to be used in cement-based materials. As-

received chopped basalt fibers with a commercial sizing compatible with cement matrices 

were used (Figure 1). 

 

 

Figure 1. Chopped Basalt Fibers. 

 

The main properties provided by the supplier are summarized in Table 1.  
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Table 1. Properties of Basalt Fibers. 

 

 

 

 

 

 

Scanning Electron Microscopy, SEM, with energy dispersive X-ray microanalysis, EDX, 

(see section 3.2.1) was used to obtain morphological and compositional information about 

the commercial basalt fibers. 

 

A field emission scanning electron Microscopy (FE-SEM), Zeiss AURIGA SEM was used. 

The fibers were sputter coated with chrome prior to examination. As an example, a SEM 

image of the as-received basalt fibers is shown in the Figure 2. Some heterogeneities 

(indicate by the arrows) due to the presence of commercial sizing are observed. 

 

 

Figure 2. SEM images of the as-received basalt fiber. 

 

Energy dispersive X-ray spectroscopy, EDX, allow identifying the elements expected 

taking into account the typical composition of a common basalt fiber (SiO2, Al2O3, CaO, 

MgO, K2O, Na2O, Fe2O3) shown in section 2.1.1 of Chapter 2. Moreover, Carbon (C) and 

Nitrogen (N) elements are also revealed. Their presence could be ascribed to the sizing 

applied on the fiber surface during the production process. 

 

 

CHOPPED BASALT FIBERS 

Filament diameter 17 µm 

Length 6.4 mm 

Specific weight (without sizing) 2.67 g/cm3 

Type of sizing Silane 

Sizing content 0.4-0.8 wt% 



CHAPTER 3. EXPERIMENTAL PART 

 
Chap.3-44 

 

Table 2. Data obtained from EDX elemental analysis of as-received basalt fiber. 

Element O Si C Al Ca Mg Fe Na K N 

wt% 52.30 21.61 7.78 6.11 4.06 1.51 3.28 1.04 1.06 1.25 

 

A more detailed characterization of the as-received basalt fibers will be shown in the 

Chapter 4 were a comparison with pretreated and amino-silane modified fibers is also 

considered. 

 

3.1.2. Silane Coupling Agents 

The surface modification of as-received basalt fibers was carried out using silane coupling 

agents, commonly used as surface modifying agents of fibers [1–9]. In order to obtain 

different molecular structure at the fiber-matrix interface three aminosilanes aqueous 

solutions were prepared using two different aminosilanes: 

 

a) γ-aminopropiltriethoxysilane (APTES)  

         

Figure 3. APTES chemical structure and their properties. 

 

 

b) γ-aminopropilmethyldiethoxysilane (APDES) 

 

Figure 4. APDES chemical structure and their properties. 

 

c) Mixture 50% by weight of the two silanes (APTES + APDES). 

 

 

Molecular Weight 221.37 g·mol-1 

Density 0.946 g/ml 

 

Molecular Weight 191.34 g·mol-1 

Density 0.916 g/ml 
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3.1.3. Fluorescent Label  

To study the hydrolytic degradation of the polyorganosiloxane coatings of the basalt fibers, 

the fluorescence arising from fluorescent labels was used. In particular, steady state 

fluorescence spectroscopy was performed to characterize the silane modified fibers and to 

monitor fluorescent intensity of the aqueous solution causing hydrolytic degradation.  

 

The silanized fibers were chemically labelled with a fluorescent molecule. The latter 

contains a group or fluorophore that can absorb electromagnetic radiation at specific 

wavelength and subsequently emit electromagnetic radiation at a higher wavelength 

(fluorescence). The fluorophore is chemically attached to the functional groups (amino 

groups) of the coating to be studied, providing very sensitive way of detecting its presence. 

Among others, fluorescein and its derivatives represent one of the most employed 

fluorescent labeling agents [10]. Fluorescein isothiocyanate (FITC) was selected for this 

study. The high molar absorptivity at the wavelength of the argon laser (488 nm), the large 

fluorescence quantum yield and high photostability of the fluorescein dyes points it as a 

good choice, expecting it to be a very sensitive fluorescent label [11]. The chemical 

structure and their properties are shown in Figure 5. 

      

Figure 5. FITC chemical structure and properties. 

 

The isothiocyanate group (–N=C=S) of the FITC easily reacts with the amino group (–

NH2) of the silane coupling agents to form a thiourea bond (Figure 6) [10,12]. Therefore, 

                                                 

 

 

 

1 At ph= 9 λmax = 520 nm 

 

Molecular Formula C21H11NO5S 

Molecular Weight 389.4  g·mol-1 

Excitation λmax = 495 nm 

Emission 1λmax = 525 nm 

https://www.sciencedirect.com/topics/neuroscience/functional-groups
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fluorescein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fluorescent-labelling
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the FITC can be covalently attached to the silane coating through a stable thiourea bond 

[13]. 

 

 

Figure 6. Aminosilanes coupling agents and their expected reaction with fluorescein 

isothiocyanate. 

 

Here it is important to highlight, for future interpretations and discussions, that fluorescein 

in aqueous solution may appear in its cationic, neutral, and dianonic forms what makes its 

absorption and fluorescence properties strongly dependent on the pH [11]. For this reason, 

the experiments of hydrolytic degradation in this work were carried out at controlled pH 

using buffer solutions. 

 

3.1.4. Cement Matrices 

Mortars samples were prepared using two different hydraulic binders as matrix: 

 

a) Portland Cement 

A common Portland cement was chosen as a matrix to study the interaction with the basalt 

fibers. In particular, Portland cement type PII/A-L 42.5 R according European Standard 

EN 197-1 was chosen as binder to prepare cement-based mortars [14]. This is a common 

cement largely used in the building industry for several applications. The specifications of 

the cement employed, provided by the supplier, are summarized in Table 3. 
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Table 3. Properties of commercial PII/A-L 42.5 R cement. 

 Standard 

Specification 

Usual 

Composition Clinker 88 % 80-94 % 

 Limestone (L) 12 % 6-20 % 

Calcium Sulfate -- 5 % 

 

Chemical 

Properties 

Sulfates (SO3) 3.3 % < 4.0 % 

 Chlorides 0.02 % < 0.10 % 

 

Mechanical 

Properties 

Compressive Strength at 7 days -- 43 MPa 

 Compressive Strength at 28 days 42.5-62.5 MPa 55 MPa 

 

Compositional and structural information of the commercial Portland cement used were 

obtained by Thermogravimetric Analysis, TGA, and X-Ray Diffraction, XRD (see section 

3.2.1). 

 

TGA analysis was performed using a Mettler Toledo TGA/SDTA 851e analyzer equipped 

with a TSO800GC1 flow gas controller and a TSO801RO universal samples robot. The 

analysis was carried out using a platinum crucible at 10 °C/min heating rate under inert 

atmosphere from 30°C to 1000°C. 

 

 

Figure 7. TGA and its derivative, DTGA, for PII/A-L 42.5 R Portland cement. 
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Figure 7 shows the presence of three endothermic processes: i) the first one at about 100 

°C is ascribed to the calcium sulfate (CaSO4 ·2H2O) dehydration; ii) the second one 

corresponds to a weight loss around 400 °C which is usually associated to the calcium 

hydroxide (Ca(OH)2) dehydration and iii) third one, at about 700 °C corresponds to the 

weight loss due to the CaCO3 decarbonation. From the weight loss data and considering the 

corresponding molar weight for each compound, the associated weight percentages of 

CaSO4 ·2H2O, Ca(OH)2 and CaCO3 were calculated. The results are given in the Table 4. 

 

Table 4. TGA results of PII/A-L 42.5 R cement. 

Temperature (°C) Weight Loss  

(%) 

CaSO4 ·2H2O 

(%) 

Ca(OH)2 

(%) 

CaCO3 

(%) 

~ 100 0.5 2.4 - - 

~ 400 0.3 - 1.2 - 

~ 700 3 - - 7 

 

X-Ray powder diffraction, XRD, was performed using a Philips X’Pert-MPD 

diffractometer, with Cu-kα radiation, step size of 0.020°, time per step of 2s from 5° to 80°. 

XRD difractogram (Figure 8) revealed the main crystalline phases typical of a Portland 

cement: dicalcium silicate, C2S, tricalcium silicate, C3S, tricalcium aluminate, C3A, 

tricalcium aluminate, C4AF, tetracalcium aluminoferrite and gypsum phases are also 

detected [15–17]. It is observed that the most abundant phase is C3S.  

 

Figure 8. XRD pattern of PII/A-L 42.5 R Portland cement. G = Gypsum, C3S = tricalcium silicate, 

C2S = dicalcium silicate, C3A = tricalcium aluminate, C4AF = tetracalcium aluminoferrite. 
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b)  Natural Hydraulic Lime 

A Natural Hydraulic Lime, NHL 5 according the European Standard EN 459-1, was 

chosen as the binder to realize lime-based mortars [18]. In Table 5 the main properties of 

NHL 5 according EN 459-1 provided by the supplier are shown.  

 

Table 5. Properties of Natural Hydraulic Lime, NHL 5. 

 Natural Hydraulic Lime, NHL 5 

Physical-Chemical Properties Sulfates (SO3) ≤ 2% 

 Ca(OH)2     ≥ 15 % 

 H2O ≤ 2% 

   

Mechanical Properties Compressive Strength at 7 days      ≥ 2 MPa 

 Compressive Strength at 28 days      5-15 MPa 

 

Commercial natural hydraulic lime was characterized by TGA and XRD analysis as was 

done for the commercial cement. 

 

From TGA and DTGA curves (Figure 9) the Ca(OH)2 dehydration and CaCO3 

decarbonation respectively at temperatures around 400 °C and 700 °C can be clearly seen. 

As in for the case of cement, the corresponding weight percentage for each component was 

calculated. The results are shown in Table 6. 

 

Figure 9. TGA and its derivative, DTGA, for Natural Hydraulic Lime, NHL 5. 
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Table 6. TGA results of Natural Hydraulic Lime, NHL 5. 

Temperature (°C) Weight Loss  

(%) 

Ca(OH)2  

(%) 

CaCO3 

(%) 

~ 400 6.6 27.1 - 

~ 700 8.1 - 18.6 

 

In the XRD pattern of NHL 5 (Figure 10), as expected, the dominant phases observed are: 

dicalcium silicate, C2S, calcite and portlandite [19,20]. 

   

  

Figure 10. XRD pattern for natural hydraulic lime, NHL 5. C = Calcite, C2S = dicalcium silicate,  

P = portlandite. 

 

3.1.5. Aggregate 

To prepare cement and natural hydraulic based mortars, a commercial sand was used as 

aggregate. In detail, a siliceous sand with a grain size between 0.2-0.5 mm was chosen. 

The corresponding granulometric curve and the physico-chemical properties provided by 

the supplier are given in Figure 11 and Table 7 respectively. 
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Figure 11. Granulometric curve for siliceous sand. 

 

Table 7. Physical-chemical properties of the siliceous sand. 

Siliceous Sand 

SiO2      > 98.0 % MgO    < 0.05 % 

Al2O3    < 0.80 % Na2O   < 0.06 % 

Fe2O3   < 0.05 % K2O     < 0.40 % 

CaO     < 0.10 % TiO2      < 0.02 % 

 

Hardness: 7 Mohs  

Apparent Density: 1.4-1.7 Kg/m3 

 

The aggregate was also characterized by XRD diffraction. The analysis was performed in 

the same conditions used for cement and natural hydraulic lime. 

 

Figure 12 shows the XRD pattern of the aggregate were the dominant phase is quartz. The 

analysis confirms the siliceous character of the aggregate in accordance to the data 

provided by the supplier. 
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Figure 12. XRD pattern for siliceous sand. 

 

3.1.6. Materials for molds preparation 

A commercial silicon was employed to prepare the molds to cast the mortar samples. 

Generally, European Standards recommend using steel molds of size 16 x 4 x 4 cm to cast 

the mortars before mechanical test. For this project of thesis, silicone molds of size 8 x 2 x 

2 cm, smaller than those suggested by the standard because of the difficulty of obtaining 

large amounts of modified fibers, were prepared. Figure 13 shows the steps for molds 

preparation. 

 

An aluminum mold of size 8 x 2 x 2 cm (Figure13 a) was previously designed, put in a box 

and filled up with the silicon (Figure13 b). Finally, the silicone mold is obtained (Figure 13 

c). 

 

 

Figure 13. Silicone molds preparation. 
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3.2. Instrumental Techniques and Methods 

In this section a brief description of the instrumental techniques and methods used in this 

thesis will be done. When necessary, an extended version of the description of a particular 

technique or method will be given in the corresponding Chapters 4, 5, 6 and 7. 

 

3.2.1. Characterization of the As-received and Modified Basalt Fibers Surfaces 

Structure, composition and morphology of the as-received and modified basalt fibers were 

studied using the instrumental techniques showed below. 

 

X-Ray diffraction (XRD) 

Structural characteristics of the as-received, calcinated and activated basalt fibers were 

studied by X-Ray Diffraction (XRD) to evaluate possible changes induced by surface pre-

treatments of fiber surface (calcination and the activation processes) respect to the structure 

of the commercial basalt fibers. 

 

XRD is a powerful technique used for the identification of crystalline phases of the 

materials. X-ray diffraction peaks arise from constructive interferences of a 

monochromatic beam of X-rays scattered at specific angles from the lattice planes 

characterizing the sample investigated. The result is a diffractogram that shows the X-ray 

diffracted intensity as a function of the radiation/sample incidence angle or directly the 

distance between the planes of the crystal structure of the sample. This distance is 

characteristic of each crystalline phase present in the sample [21]. 

 

Fourier transformed infrared spectroscopy (FT-IR) 

FT-IR spectroscopy is a widespread and powerful tool for the identification and 

characterization of a different range of materials allowing qualitative and the quantitative 

analysis of them. It is a vibrational spectroscopy that allows the identification of the 

functional groups that characterize organic and inorganic compounds. When IR radiation 

beam is sent through a sample, the beam passes through it and the sample absorbs radiation 

as a function of the wavelength. The absorption of the light at different wavenumbers 

corresponds to stimulation of the vibrational energy levels of a molecule or a group of 
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atoms covalently bonded. A FT-IR spectrum consists of absorption bands characteristics of 

the examined substance that appear at specific frequencies or wavenumbers [22,23]. 

 

In this work, FTIR analysis of as-received and modified basalt fibers were performed in 

transmission mode. To do this the fibers were grounded and mix with KBr to prepare easy 

to handle discs necessary to perform the analysis. This method of analysis was very useful 

to obtain information about the initial structure of the as-received basalt fibers and to 

evaluate structural variations of them in the modified fiber surfaces. Moreover, it allowed 

estimating the amount of polyorganosiloxanes grafted on the fiber surfaces. 

Besides, FT-IR analysis was always used to check the surface treatments given on the fiber 

surfaces before dispersing them in the cement matrices. 

 

Thermogravimetric analysis (TGA) 

In thermogravimetric analysis the mass of a sample under a controlled atmosphere is 

continuously recorded as a function of temperature or time while the sample is heated 

usually with constant ramp of temperatures. A diagram that shows the mass or the mass 

percentage as a function of temperature or time, known as thermogram or thermal 

decomposition curve, is obtained. The thermogram usually allows evaluating the thermal 

stability, the thermodegradation rate, the kind of reaction associated to the mass loss and 

the sample composition [24]. TGA analysis was performed on the as-received and 

modified basalt fibers to ensure the removal of the organic matter applied during the 

manufacturing process and the grafting of the silane coupling agents.  

 

Scanning electron microscopy (SEM-EDS) 

Morphological studies of the as-received and treated basalt fibers were carried out by 

scanning electron microscopy (SEM). This technique uses a focused beam of electrons that 

interact with the sample studied, producing various signals that can be used to obtain 

information about the surface topography/morphology and composition of the sample. 

Among all the signals that could be obtained, backscattered electrons (BSE) were chosen 

to obtain the SEM images of this work. Backscattered electrons provide topographic and 

compositional information. In fact, they allow to obtain general information on the 

differences in the average atomic number of the phases present in the sample under 

examination. The higher the atomic number of the observed phase, the greater the emission 
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of BSE electrons will be and therefore the brighter the phase will appear in the 

corresponding image. Moreover, characteristic X-rays produced by the interaction of 

electrons with the sample may also be detected in an SEM equipped with an energy 

dispersive X-ray detector (EDX). Through them it is possible to identify and even quantify 

elemental composition of sample [25]. 

 

Atomic force microscopy (AFM) 

Atomic force microscopy (AFM), which is one of the so-called scanning probe microscopy 

techniques (SPM), is a technique widely used in the field of materials science. This 

technique allows a characterization of materials in terms of topography/morphology at 

micro- and nanoscale.  

 

Using atomic force microscopy (AFM), a tip attached to a flexible cantilever is moved 

across the sample surface to scan the surface to obtain topographical and morphological 

information at nanoscale. The forces between the tip and the sample are measured during 

scanning by monitoring the deflection of the cantilever. Three operating mode are known: 

i) non-contact mode, ii) contact mode and iii) tapping mode. The latter is the operating 

mode used in this work to study the basalt fibers surfaces. In tapping mode, the cantilever 

is oscillated at or near its resonant frequency. It allows to obtain high resolution 

topographic images of surface samples avoiding problems arising from friction, adhesion, 

electrostatic forces and other difficulties [26,27]. The analysis was performed on single 

basalt fibers as it is shown in the Figure 14.  

 

 

Figure 14. AFM cantilever with tip scanning single basal fiber. 
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3.2.2. Hydrolytic Degradation Study of Surface Coatings  

The hydrolytic degradation of the silane coatings was monitored by pH measurements and 

steady state fluorescence spectroscopy. 

 

pH measurements 

To follow the processes occurring during the immersion of the silanized basalt fibers in 

pure water, the pH of the aqueous solution was measured as a function of the immersion 

time. In order to do this, silanized basalt fibers were introduced in a cellulose paper bag 

hanged by the use of a nylon thread and immersed in a beaker with distilled and deionized 

water. The aqueous solution was continuously stirred. In Figure 15 a representation of the 

experiment set-up is shown. 

 

 

Figure 15. Scheme of set-up based on pH measurements used to monitor hydrolysis degradation of 

the silanized basalt fibers. 

 

Fluorescence Spectroscopy 

Fluorescence spectroscopy is a technique of analysis where a beam of light excites the 

electrons of the molecules of certain compounds at a certain wavelength and causes them 

to emit radiation of longer wavelengths. Fluorescence measurements can be classified into 

two types of measurements: steady-state and time-resolved. The first one, used in this 
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work, is the most common type and is performed with constant illumination and emission 

detection. The sample is illuminated with a continuous beam of light at a certain excitation 

wavelength, and the intensity of light emitted is recorded as a function of the wavenumber. 

The result is a fluorescence spectrum generally presented as emission spectrum that is a 

representation of the fluorescence intensity versus the wavelength (nanometers) or the 

wavenumber (cm-1) measured at a constant excitation wavelength. On the other hand, 

excitation spectra can be also recorded; in this case the emission intensity is registered as a 

function of the excitation wavelength [28].  

 

In order to monitor the hydrolytic degradation of the polyorganosiloxane coatings, a 

thermostated cell holder was used, where a quartz cuvette with the buffer solution is 

placed. The FITC labeled fibers were introduced in a very small cellulose paper bag, 

hanged using a nylon thread and immersed in the aqueous solution continuously stirred 

with a magnetic bar. As the hydrolytic degradation is occurring, fragments of the labelled 

coating are released in the aqueous solution leading to fluorescence which is recorded as a 

function of time. In Figure 16 a scheme of the hydrolytic degradation experiment using 

fluorescence spectroscopy is shown. 

 

 

 

Figure 16. Scheme of the hydrolytic degradation experiment using fluorescence spectroscopy. 
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3.2.3. Characterization of Composite Materials 

Mechanical Tests  

As it is known, the stress-strain behavior of brittle materials (such as ceramic materials) is 

usually evaluated using three-point flexural test and compressive strength test [29,30]. 

 

In this study, these two tests were used to obtain information about the mechanical 

properties of the composite materials prepared. Due to the great heterogeneity 

characterizing ceramics materials, six specimens for each group of samples prepared were 

tested. Tests were performed on cement and natural hydraulic-based mortars without basalt 

fibers to evaluate possible change due to the contribution of the addition of the fibers. 

Moreover, specimens containing as-received and modified basalt fiber were tested to study 

the different mechanical behavior due to the different surface treatments. 

 

a) Three-point flexural test 

The three-point flexural test was conducted to test neat and fiber-reinforced mortars as 

shown in Figure 17. During these tests, a force is applied perpendicular to the longitudinal 

axis of the sample. The top surface of the specimen is placed in a state of compression, 

while the bottom surface is in tension. Stress is obtained from the load applied, the 

specimen thickness, the bending moment, and the moment of inertia of the cross-section. 

The maximum tensile stress exists at the bottom specimen surface directly below the point 

of load application. The stress at fracture using this test is known as flexural strength and it 

represent an important mechanical parameter in this type of materials.  

 

 

Figure 17. Three-point flexural strength test. 
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The flexural strength is obtained from the equation (1) (when a rectangular cross section is 

used) while the strain is obtained by the use of equation (2): 

 

Flexural Strength  𝜎𝑓 =
3

2

𝐹𝑙

𝑏𝑑2      (1) 

 

where F is the maximum load applied (N), l is the support span (mm), b is the width of test 

beam (mm) and d is the depth or thickness of tested beam (mm). 

 

Flexural Strain  𝜀 =  
6 ∆𝑙 𝑑

𝑙2  · 100     (2) 

 

where ∆𝑙 is the displacement (mm), d is the depth or thickness of tested beam (mm) and l 

is the support span (mm). 

 

Flexural Modulus, E, was also estimated according equation (3): 

 

Flexural Modulus 𝐸 =
1

4

𝑙3 𝑠

𝑏 𝑑3       (3) 

 

where l is the support span (mm), b is the width of test beam (mm), d is the depth or 

thickness of tested beam (mm) and s is the slope of the initial straight-line portion of the 

load (N) – deflection (mm) curve [30–33]. 

 

b) Compressive Strength test 

It is known that an important property of ceramic materials is their capacity to resist 

compressive stresses. Therefore, cubic portions arising from three-point flexural test were 

prepared and compressive strength tests were carried out. During the tests, a cube is placed 

between the platens of the testing machine and it is compressed between them by a 

gradually applied load. The maximum amount of compressive load a material can bear 

before fracturing is revealed.  

 

Below the equations used to calculate compressive strength (4) and strain (5) are given: 

 

Compressive Strength  𝜎𝑐 =
𝐹

𝐴
      (4) 
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where F is the maximum load applied (N) and A is the specimen area (mm). 

 

Compressive Strain  𝜀 =  
 ∆𝑙 

𝑙0
 · 100      (5) 

 

where ∆𝑙 is the displacement (mm) and l0 is the initial specimen length (mm) [30,32]. 

 

 

BET-BJH textural analysis 

In order to evaluate the textural properties of the composite materials prepared with cement 

matrix and basalt fibers with different surface treatments, BET-BJH analysis of data 

obtained from N2 adsorption/desorption measurements was carried out. This technique is 

based on the physisorption of a gaseous adsorbate (in this case nitrogen) on solid adsorbent 

(the mortar sample) [34,35]. 

 

The adsorption/desorption isotherms given by the analysis are plotted in a graph where the 

y-axis represents the adsorbed volume given in cubic centimeters of nitrogen (at STP 

conditions) per gram of adsorbent and the x-axis the relative pressure p/pº, where p is the 

measured equilibrium pressure, and pº is the vapor pressure of nitrogen at the temperature 

of the measurement. 

 

When the obtained desorption and adsorption curves do not coincide with each other, 

different hysteresis loops are generated. Besides, the hysteresis loop varies from one 

system to another and at each one corresponds a typical pore structure. It is influenced by 

many factors such as amount, geometry and size distribution of pores. 

 

According the International Union of Pure and Applied Chemistry, IUPAC, classification, 

the main gas physisorption isotherms can be grouped in six types and the hysteresis loops 

in four types (Figure 18) [36–38]. 
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Figure 18. IUPAC classification of the six main types of gas physisorption isotherms a) and the 

hysteresis loops and their corresponding pore shape b) [36,39]. 

 

Through the adsorption curve, by different mathematical models, information about 

surface area, total pore volume and pore size distribution can be obtained. In particular, the 

specific surface area is calculated according to Brunauer–Emmett–Teller (BET) multipoint 

method, while the total pore volume and the pore size distribution are determined from the 

adsorption curve by the Gurvitsch rule and the Barret–Joyner–Halenda (BJH) method [40–

42]. 

 

 

Surface profilometry measurements  

A fractographic analysis of mortar samples from the inspection of the fracture surfaces 

obtained after the three-point flexural tests was performed. In order to study differences in 

failure mechanism at different scale, two different no-contact profilometers were 

employed: laser and optical profilometers. 

 

a) Laser Profilometer 

Laser Profilometer is a non-contact, non-destructive testing instrument used to scan and 

map the surface of a sample. 3D topographical images and surface parameters can be 

obtained. The instrument used in this work uses a laser source and a triangulation detection 

system (the sensor, the emitted laser and the reflected light form a triangle). It operates on 
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the basic principle wherein a laser beam is projected on the surface of sample under 

measurement and a part of this beam is then reflected via focusing optics onto a detector. 

The laser moves on the detector according to the sample shift [43–45]. 

 

In this work the whole profile of fracture surface of mortars was investigated as shown in 

Figure 19. 

 

Figure 19. Laser Profilometry measurements on fracture surface of mortars. 

 

3D topographical images and surface parameters can be obtained. In this work, primary 

profile parameters, Pa and Pq where computed.  

 

According to EN ISO 4287:1997 [46], Pa and Pq are amplitude parameters calculated on 

the primary profile being the primary profile directly generate by the raw profile.  

In particular, Pa represents the arithmetical mean of the absolute ordinate values Z(x) 

within the sampling length (6):  

 

𝑃𝑎 =  
1

𝑙
∫ |𝑍(𝑥)| 𝑑𝑥

1

0
       (6) 

 

Whereas, Pq is the root mean square value of the ordinate values Z(x) within the sampling 

length (7): 

 

𝑃𝑞 =  √
1

𝑙
∫ 𝑍2(𝑥) 𝑑𝑥

1

0
      (7) 
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b) Optical Profilometer 

Optical profilometry is a rapid, nondestructive, and non-contact surface technique. It 

utilizes optical light interference principles to scan the surface of the samples. It allows to 

obtain morphological and topographical 3D images and information of the surface profiles 

without damaging the actual surface features [45,47–49]. In this work, 3D topographical 

images were obtained and primary profile parameters, Pa and Pq, discussed above, were 

evaluated.  

 

 

Fractographic analysis was carried out also by SEM analysis to study the dispersion, the 

adhesion and the interface between fibers and cement matrices.  

 

Moreover, to evaluate possible changes due to the different surface treatments in the 

cement matrices, an estimation of the roughness at nanoscopic scale by AFM was also 

done. Especially, Ra and Rq roughness parameters were evaluated by AFM.  According to 

EN ISO 4287:1997, Ra and Rq are amplitude parameters calculated on the roughness 

profile.  

In particular, Ra represents the arithmetical mean of the absolute ordinate values Z(x) 

within the sampling length (8):  

 

𝑅𝑎 =  
1

𝑙
∫ |𝑍(𝑥)| 𝑑𝑥

1

0
       (8) 

 

Whereas, Rq represents the root mean square value of the ordinate values Z(x) within the 

sampling length (9): 

 

𝑅𝑞 =  √
1

𝑙
∫ 𝑍2(𝑥) 𝑑𝑥

1

0
      (9) 

 

 

Depending on the type of study performed, different conditions were used. Therefore, the 

latter will be reported in the corresponding Chapters 4, 5, 6 and 7. 
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CHAPTER 4.                                                           
SURFACE MODIFICATION AND CHARACTERIZATION           

OF BASALT FIBERS AS POTENTIAL                         

REINFORCEMENT OF MORTARS 

 

Abstract  

 Basalt fibers were surface treated with silane coupling agents as a method to enhance the 

adhesion and durability of fiber-matrix interfaces in cement- based composite materials. In 

particular, this work has been focused on the study of basalt fibers chemical coatings with 

aminosilanes and their subsequent characterization. Surface treatments were carried out 

after removing the original sizing applied by manufacturer and pretreating them with an 

activation process of surface silanol regeneration. Different samples were considered to 

make convenient comparisons: as received fibers (commercial), calcinated fibers (without 

commercial sizing), activated samples (calcinated fibers subjected to an acid process for 

hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-

aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep 

characterization was carried out in terms of structure using X-ray diffraction, XRD, and 

Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric 

analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology 

by scanning electron microscopy, SEM, and atomic force microscopy, AFM.  
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4.1.  Introduction  

Nowadays, the growing need to design materials able to enhance performance of 

traditional materials to be used in several industrial applications, is generating great 

interest. In this context, the use of basalt fiber-reinforced materials represents a promising 

and innovative alternative to traditional materials. 

The choice of basalt fibers lies in the fact that they are characterized from a large variety of 

excellent properties. A detailed description of basalt fibers has been previously presented 

in Chapters 1 and 2.  

 

One of the final use of fibers is as reinforcement of concrete or mortar in structural or non-

structural materials to reduce the adverse effects of shrinkage cracking of cement and 

natural hydraulic lime (NHL) mortars used in many historical structures and buildings 

which have significant cultural interest. 

 

Sarasini et al. in 2014 [1,2] investigated the effect of commercial basalt fibers in this type 

of matrices studying the mechanical properties in terms of fracture and damage mechanism 

highlighting the role played by the interface between the fiber and the cement matrices. 

However, they pointed out the necessity of carrying out more investigation focused on this 

issue trying to find out how inducing a better balance between two usually opposing needs, 

strength and toughness enhancement.  

 

It is well known that properties of composite materials are strongly influenced by the type 

of adhesion between the reinforcement and the matrix [3,4]. Depending on the 

characteristics of the fiber-matrix interfacial region, the composite subjected to different 

sorts of loads can be either brittle or damage-tolerant under the effect of several factors or 

even combination of them (temperature, radiation, humidity). Thus, in order to obtain 

composites with good mechanical properties it is important, among other things, to tailor a 

proper fiber-matrix interface to improve final performance of the composites avoiding, for 

instance, several failure mechanisms that could start at the interface such as fiber 

debonding and pull-out, fiber sliding and crack bridging [5]. 

 

The surface modification of reinforcements through special treatments is one of the most 

common strategies to overcome the later. Probably the most successful method to carry out 
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this lies on the creation or increment of particular functional groups to facilitate physical 

interactions or even chemical bonding between the constituents [6]. Therefore, it is 

reasonable to think that also, in the case of basalt fibers, one of the challenges must be 

optimizing the fiber-matrix interface through surface treatments of the fibers to finally 

increase the attractive interactions, reduce imperfections and, protect the fibers from the 

aggressive environment given by the matrix. The usual way to fulfill the latter is by 

generating: i) an adequate roughness, for instance, to increase the specific surface and ii) a 

surface with particular chemical functionalities. 

 

It is well known that coupling agents have a great effect on the interface structure and 

properties of composite materials [4,7]. Among them, the most commonly used are the 

silane coupling agents consisting on difunctional organosilicon compounds with general 

formula Y-Si(X)3 and previously described in Chapter 2 (section 2.1.3) [6]. In particular, 

aminosilanes are commonly used as surface modifying agents in fibers [6,8–21]. Besides, 

several studies shown that they can improve the composite performance in several matrices 

(as cement matrix) [22,23]. When modifying with this kind of silanes special attention 

must be paid on the interphase structure since it is quite well known that, because of the 

chemical and structural differences of this coupling agent interface layer can greatly 

influence in the mechanical properties of composite materials [6]. Thus, a good 

characterization of fibers surface along the whole process of their modification is a 

prerequisite to finally understand the last properties of the composites. 

 

The aim of this work is to modify basalt fibers surface under well controlled conditions 

using different model surface treatments and characterize them in such a way that the data 

collected (structure, morphology, etc.) were enough to finally understand possible 

improvements of the properties of cement based composite materials. The surface 

treatments will be based on chemical coatings of the basalt fiber with aminosilanes having 

different functionally order (triethoxysilane, 3, diethoxysilane, 2, and a mixture of them 

50% by weight). These choices were made looking for obtaining different molecular 

structure at the fiber surface and consequently at the interface of composites.  
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4.2.  Experimental 

4.2.1. Materials 

Basalt continuous filament (mean diameter 17 μm) chopped to a length of about 6.4 mm 

with a sizing compatible with cement and natural hydraulic lime (NHL) matrices was 

supplied by Incothelogy GmbH. A chlorydric acid aqueous solution (37% wt), Sharlab, 

was used to prepare pretreated basalt fibers. Two silanes, γ-aminopropiltriethoxysilane 

(APTES) and γ-aminopropilmethyldiethoxysilane (APDES), supplied by ABCR GmbH & 

Co.KG, were used in order to obtain different surface coatings of the basalt fibers.  

 

4.2.2. Samples Preparation 

Neat basalt fibers were obtained by a surface pretreatment of the as-received fibers 

following several steps: 

 

 Disgregation: Commercial basalt fibers were initially stirred within destilled and 

deionized water at room temperature to attain maximum separation between them. 

 

 Calcination: Disgregated fibers were heat treated at 120°C for 30 min to remove 

water and after that at 505°C for 1h to remove any organic substance, such as sizing 

or impurities. A thermocouple placed near the sample was used to control the 

temperature. 

 

 Activation: The calcinated fibers were subjected to an activation process with 

commercial chlorhydric acid aqueous solution (37% wt) for 1h to regenerate silanol 

groups, Si-OH, on the fiber surface. After that, all samples were washed with 

destilled and deionized water and finally dried at 110°C for 1 h and stored in a 

dessicator until silanization.  

 

 Silanization: The fibers were then chemically coated with the aminosilane coupling 

agents. 1g of basalt fibers was inmersed in 50 ml of silane 2% wt aqueous solution 

for 1h at room temperature. In order to obtain different molecular structures 

different silane aqueous solutions were used: i) γ-aminopropiltriethoxysilane 
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(APTES); ii) γ-aminopropilmethyldiethoxysilane (APDES) and iii) a mixture of 

them wirh a composition of 50% by weight (APTES+APDES).  

 

After squeezing the fibers, the adsorbed silane was cured at 110 °C for 1h to accelerate 

condensation reaction and to remove water. In order to eliminate some unreacted silane 

monomers or oligomers that could remain physisorbed on the basalt fibers surface the 

fibers were subjected to a Soxhlet extraction with dry toluene for 3 h. Finally, fibers were 

put in an oven at 110°C for 1h to remove adsorbed toluene [6,8,15,20,24].  

 

As an aproximation the structures expected for the basalt fibers surfaces using the different 

silane solutions would be those shown in Figure 1 [20]: i) smooth surfaces with low 

concentration of silanol groups for calcinated basalt fibers; ii) smooth surfaces with 

increased concentration of surface silanols groups for activated fibers; iii) surfaces with 

lineal or bowed siloxane coating when APDES is used and iv) crosslinked siloxane 

structures when APTES solutions are used being higher the crosslinking degree the higher 

the APTES concentration. Therfore when a mixture of silanes (APTES+APDES) is used a 

more open crosslinked structure is expected. 

 

 

Figure 1. Scheme of the expected basalt fiber surface structures expected for the different 

treatments considered. 
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4.2.3. Experimental Techniques 

4.2.3.1. X-Ray Diffraction (XRD) 

Structural characteristics of as-received, calcinated and activated basalt fibers were studied 

by X-Ray Diffraction (XRD) using a Bruker AXS D8 ADVANCE diffractometer with a 

CuKα1 radiation, step size of 0.020°, time per step of 1 s from 5° to 65°. 

 

4.2.3.2. Thermal Analysis 

Thermogravimetric analysis was carried out using a Mettler Toledo TGA/SDTA 851e 

analyzer equipped with a TSO800GC1 flow gas controller and a TSO801RO universal 

samples robot. The analysis of the as-received and treated basalt fibers were performed 

using a platinum crucible at 10°C/min heating rate under inert atmosphere from 30°C to 

800°C. 

 

4.2.3.3. Fourier Transform Infrared Spectroscopy (FT-IR) 

FT-IR spectra of as-received and modified basalt fibers were recorded with a FT-IR 

Spectrum GX (Perkin-Elmer). Basalt fibers (as-received and treated) was ground, mixed 

with KBr powder and pressed using a Specac Press to make discs of 1 cm of diameter to 

perform the FTIR studies in the transmission mode. In particular, discs with 1% and 5% by 

weight of fibers were considered to better visualized absorption bands in the low and high 

energy regions of the spectra respectively. As background, a pure KBr disc was used. 

Every spectrum was recorded from 400 to 4000 cm−1 using 2 cm−1 of resolution and 20 

scans for the corresponding interferogram averaging. Finally, taking into account the 

proportionality between absorbance and the amount of the absorbing species, to represent 

the spectra all of them were normalized respect to the well weighted amount of fibers used 

to prepare the KBr discs. 

 

4.2.3.4. Scanning Electron Microscopy (SEM) 

As-received and treated basalt fibers were inspected by scanning electron microscopy 

using a TENEO field emission scanning electron microscope, FESEM (FEI). The 

acceleration voltage was 2.0 kV and the T1 detector was used taking the signal coming 
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from backscattered electrons. As the samples are not conductive, prior to examination, they 

were sputter coated with gold using a low vacuum coater Leica EM ACE200. 

 

4.2.3.5 Atomic Force Microscopy (AFM) 

Atomic force microscopy, AFM, was used to inspect topographical characteristics of the 

basalt fibers. A microscope Multi-Mode Nanoscope IVA (Digital Instruments/Veeco 

Metrology Group) was used. All measurements were conducted at ambient conditions in 

tapping mode with antimony doped silicon probe (k = 1-5 N/m). The frequency was 

adjusted to the resonant frequency of the probe close to the surface of the sample to be 

analyzed. The initial amplitude of the probe oscillation and set-point amplitude applied for 

imaging were chosen to maximize the image contrast among the different constituents of 

the samples. 

 

4.3. Results and Discussion  

4.3.1. Characterization of As-Received Basalt Fibers 

In the Figure 2 XRD patterns of the as-received (a), calcinated (b) and activated (c) basalt 

fibers are shown. XRD analysis of the commercial basalt fibers reflects only an amorphous 

structure without any evidence of crystalline phases being in accordance with bibliography 

[25,26]. Besides, either the calcination or the activation processes do not seem to change 

the structure of the basalt fibers at least in terms of crystallinity. 

 

Figure 2. XRD patterns of as-received (a), calcinated (b) and activated (c) basalt fibers. 
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In Figure 3 TGA curves (top) and its corresponding derivatives DTGA (bottom) are shown 

for all the basalt fibers considered in the present work. In particular, for the as-received 

fibers, represented by the black curves, two clear observations can be made: the weight 

loss at about 100 ºC due to the adsorbed water on the fiber and a thermal degradation 

process in the range going from 200 to 550 °C with a weight loss of 0.4% by weight (Table 

1). This degradation can be ascribed to the presence of the organic coating associated to the 

sizing of the commercial fibers. It is important to point out that around the temperature of 

450 ºC the dehydroxilation process of silica occurs which involves the condensation of 

surface hydroxyl groups to form siloxane bonds releasing water molecules [21,27]. 

Therefore, the weight loss calculated in this range might include part of the water 

associated to this process. Nevertheless, this result points out that the conditions selected 

for the calcination process 505 ºC for 1 h should be enough to fully remove the commercial 

sizing avoiding simultaneously an excessive dehydroxilation of the surface.  

 

Figure 3. TGA curves (top) and their derivatives, DTGAs (bottom) for the fibers under study. 

 

The FT-IR spectrum of as-received basalt fiber is shown in the Figure 4. In the region of 

high energy the FTIR spectrum of the commercial basalt fibers (Figure 4a) shows a broad 

band from 3600-3200 cm-1 that usually is assigned to the hydrogen bonded O-H stretching 
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that can come either from water adsorbed on the fiber surface or  from the silanol groups, -

Si-OH [24,28].  

In the range from 3000 to 2800 cm-1 the characteristic CH stretching bands coming from 

the methylene, CH2, and methyl, CH3, groups can be observed. These bands ensured the 

organic character which is typical of the most common sizings used in the production 

process of glass and basalt fibers. In the low energy region of the spectrum (Figure 4b) the 

absorption bands at 1000 and 740 cm-1 corresponding to the Si-O vibrations typical of 

silane sizings and basalt fibers (they are mainly composed by SiO2) are detected. 

 

 

Figure 4. High (a) and low (b) energy regions of FTIR Spectrum of all fibers under study. 

 

The morphology and topography of the as-received basalt fibers were studied by SEM and 

AFM (Fig. 5a and 5b). Dark grey in the SEM and light yellow “islands” in the AFM height 

images reflect a heterogeneous surface of the fibers due to the presence of the sizing. 

Moreover, some regions in the SEM image (pointed by an arrow) suggest that the shape of 

the fibers is not perfectly cylindrical but it presents some imperfections. These 

imperfections, similar to a valley on the fiber surface are also clearly visible in the 3D 

AFM images (Figure 5c) of treated basalt fibers.  
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Figure 5. SEM (a), AFM Heigh (b) images of as-received basalt fiber and 3D AFM (c) images of 

APDES (left) and APTES+APDES (right) coated basalt fibers. 

 

4.3.2. Characterization of Modified Basalt Fibers 

XRD Analysis, Fig, 2b and 2c, shows that calcinated and activated basalt fibers are 

characterized by the same structure of as-received basalt fibers (Fig.2a). The amorphous 

structure of the as-received basalt fibers without any evidence of crystalline phases is 

preserved. It is possible to confirm that calcination and activation processes carried out in 

order to obtain an ideal surface necessary to apply the new chemical coatings based on 

aminosilanes, do not modify the structure of the original basalt fibers.  

 

From the TGA and DTGA curves (Figure 3) the thermodegradation process associated to 

the organic matter was analyzed within the range 200°C - 400°C in order to be sure that 

only organic coating is analyzed avoiding to count for the water release due to the 

deshydroxylation phenomenon. The weight loss in every case was calculated and gathered 

in the Table 1.  
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As can be seen and attending the accuracy of the thermobalance the data in the Table 1 

suggest that a treatment at 505 °C for 1 h is enough to remove the whole sizing of the 

commercial fibers. As it is shown, activation process helps to completely remove the 

original sizing. On the other hand, DTGA curves show (Figure 3) that the maximum rate of 

thermodegradation for the aminosilane coatings are shifted to higher temperatures respect 

to that observed for the sizing of the as-received basalt fibers indicating, as expected, 

different structures. Usually commercial sizings are formed by a mixture of several 

components, silanes, plasticizers, lubricants, etc. In Table 1 it can be seen that the order in 

terms of degree of coating is: APTES > APTES+APDES > APDES, as expected if higher 

functionality implies higher reactivity with higher amount of monomer incorporation. It is 

observed that the silane with a crosslinked structure is grafted in more amount on the fiber 

surface than the silane with a linear structure. 

 

Table 1. TGA results of as-received and treated basalt fibers. 

Sample Temperature Range 

(ºC) 

Weight loss 

(%) 

AS-RECEIVED 200 – 550 0.40 

AS-RECEIVED 200 – 400 0.28 

CALCINATED 200 – 400 0.04 

ACTIVATED 200 – 400 0.02 

APTES 200 – 400 0.21 

APTES+APDES 200 – 400 0.19 

APDES 200 – 400 0.03 

 

FTIR was also used to study structural variation of the basalt fiber surface with the 

different treatments considered. In the Figure 4 FTIR the spectra of all the modified or 

unmodified basalt fibers are represented. Paying attention to the high energy region (Figure 

4a) some clear observations can be made: a) after calcination there is a reduction of the 

broad band centered at about 3400 cm-1 that can be mainly associated to a decrease in the 

adsorbed water since no clear evidence of deshydroxilation at 505 ºC was observed by 

TGA (Figure 3). Besides, b) the absorption bands due to CH (CH2, CH3) stretching 

vibrations of the sizing disappear. c) When the activation process is carried out an increase 

of the band at about 3400 cm-1 occurs evidencing the existence of higher number of 

hydrogen bonded OH probably coming from more adsorbed water induced by a more 

hydrophilic surface with higher silanol groups content. In fact, the reason why the HCl 
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treatment was called activation is because a more reactive surface is created by means of a 

silanol groups regeneration as it was explained elsewhere [24,29]. Taking into account 

several reported assignations of absorption bands (see Table 2) [30], an easier analysis of 

the silane coated fibers FTIR spectra can be done. 

 

Table 2. Absorption Bands of Aminosilanes [30]. 

 (cm-1) Absorption bands of Aminosilane 

3400 (O-H) 

3400-3300 as (N-H) 

2970-2960 as (C-H) (CH3) 

2930-2920 as (C-H) (CH2) 

1600 (N-H) 

1450  (CH2) 

1440 (CH3) 

1410  (Si- CH2) 

1380  (CH3) 

1260 (Si-C) 

1160 (CH3) 

1100 as (Si-OSi) 

1100 as (Si-OC) 

1000 as (Si-OSi) 

950  (Si-OH) 

 

 

It is clear therefore that the presence of aminosilanes can be identified with absorption 

bands at 3400-3300 cm-1 due to N-H stretching modes. On the other hand, in the range of 

3000-2800 cm-1 the C-H stretching bands arising from the methylene, CH2, and methyl, 

CH3, groups are observed. In fact, as expected from the chemical structures of the 

hydrolyzed silanes used (Figure 6), only for the APTES coating the band at 2970 cm-1 does 

not appear which indicates the absence of methyl groups.  

 

 

 

Figure 6. Molecular structures of hydrolyzed APDES and APTES silane coupling agents. 
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Moreover, paying attention to the above-mentioned O-H stretching band at about 3400 cm-

1 for the unmodified and modified basalt fibers, some considerations in relation to the 

hydrophilicity/hydrophobicity of the fiber surface may be done. 

 

In fact, it can be inferred some reasoning in relation to hydrophobicity since, the stronger 

the band corresponding to the O-H stretching the higher the amount of hydroxyl groups or 

even adsorbed water which should point out lower hydrophobicity for the fiber surfaces.  

 

It can be clearly observed how the incorporation of aminosilanes highly reduces the 

relative absorbance of the O-H stretching bands respect to both the fibers with commercial 

sizing and the activated fibers, evidencing higher hydrophobicity. Finally, comparing 

between the three aminosilane coatings it can be seen that the order in terms of relative 

absorbance for the O-H stretching bands is the following: APTES > APTES + APDES > 

APDES. In other words, one would expect the same order in terms of hydrophilicity for the 

three aminosilane coatings. Besides, these observations are in agreement with contact 

angle data reported in a previous study about the wettability of surface treated glass fibers 

[24].  

 

Finally, from the FTIR results an estimation of the amount of silane grafted on the fibers 

surface was carried out. The amount of silane showing in the Table 3 was calculate from 

the measurement of absorbance of the band at 2930 cm-1 corresponding to the CH 

stretching band of the CH2 group using the following equation:  

 

c = A2930/3Kb  (1) 

 

where c is the silane concentration in mol/cm3, A2930 is the absorbance corresponding to the 

CH absorption band of the CH2 group, K is the specific absorptivity for the silane (1.7 x 

104 cm2/mol) and b is the optical path. Division by 3 is performed to take into account the 

three methyl groups contribution of each molecule hydrolyzed silane [30,31]. An 

estimation of the amount of silane in terms of percentage was at the same time carried out. 

Taking into account the volume of discs and the silane concentration in mol/cm3 

previously calculated according the equation mentioned above, the moles number of the 

CH2 group present in each disc and thus the moles number of each silane were calculated. 
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In this way considering the molecular weight of each silane used, the silane weight in the 

disc was obtained. In the case of the mixture of the two silanes, an average of the 

molecular weight was considered. Finally, knowing the initial weight of the discs 

(including fiber and silane weights), the percentage respectively of each silane was 

obtained.   

The results are shown in the Table 3. 

 

 Table 3. Estimation of the concentration of silane on the fiber surface by FTIR. 

Sample A2930 b (cm) c (mol/cm3) % weight 

by FTIR 

% weight 

by TGA* 

APTES 0.029 0.0451 1.26 X 10-5 0.30 0.21 

APTES+APDES 0.023 0.0453 9.95 X 10-6 0.23 0.19 

APDES 0.017 0.0512 6.51 X 10-6 0.17 0.03 

* Table 1 

 

According to TGA results, it is observed that the silane content seems to follow the order: 

APTES > APTES+APTES > APDES. The small differences found between the results 

provided by the two techniques could be ascribed to the associated error to the measuring 

instruments. 

 

Although relevant results are obtained from the high energy region of the spectra, not 

significant observations can be drawn from the low energy region of FTIR spectra. 

 

In Figure 7, the SEM images of treated basalt fibers compared to as-received basalt fibers 

are shown. Calcinated (b) and activated (c) basalt fibers look very similar each other; 

nevertheless, some differences due to the processes are better observed by AFM analysis 

(Figure 8). However, as a consequence of these two treatments a smoother surface due to 

the removal of original sizing can be observed. 

 

Finally, the images (d, e, f) of Figure 7, corresponds to the silanized basalt fibers after the 

heat cleaning and activation processes. As a result of the incorporation of the aminosilanes, 

some heterogeneities are observed on the fibers surfaces. In particular, these 

heterogeneities are more clear when the APTES, the aminosilane with a crosslinked 

structure, is applied. 
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Figure 7. SEM Images of as-received (a), calcinated (b), activated (c), APTES coated (d), APDES 

coated (e), APTES+APDES coated (f) basalt fibers. 

 

Changes on the fibers surface are better studied by AFM because the preliminary 

preparation of the sample to be analyzed is quite easy. Besides, the gold coating used to 

observe samples by SEM might hide some small superficial characteristics. In the Figure 8, 

3D AFM images of the as-received and treated basalt fibers are shown. A kind of “islands” 

are better observed on the commercial fiber surface arising from the sizing (Figure 8a). 

The images corresponding to the calcinated basalt fibers (Figure 8b) shows sometimes a 

kind of scratches which might reflect locations where fibers could be joined by the action 

of the sizing. However, the amount of remaining sizing is almost zero because no evidence 

of organic coating was detected by FTIR spectroscopy and only a small amount of organic 

substance (weight loss of 0.04%) was detected by TGA that might be considered 

negligible. On the other hand, according to TGA results shown in the Table 1 and the 

observations of 3D AFM images like in Figure 8c it is evidenced that the activation 
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process ensures total removal of those possible amounts of remaining sizing making the 

fiber surface clearly smoother.  

 

In comparison with the SEM images, the 3D AFM images of the silanized basalt fibers 

(Figures 8d and 5c) better show the heterogeneous topography given by the coating. It can 

be observed that the distribution of the coupling agents on the fibers is in the form of 

droplets; i.e. there is formation of islands on the fiber being in accordance with other 

results the scientific literature observed for E-glass fibers treated with aminosilanes [19]. 

Furthermore, it is interesting to highlight that the way of coating depends on the kind of 

silane used. The islands of sizing seem to be homogeneously distributed on the basalt fiber 

surface when they are treated with γ-aminopropilmethyldiethoxysilane (APDES) whereas 

“mountains-like” of sizing are better observed when the γ-aminopropiltriethoxysilane 

(APTES) is used. These observations suggest that topography due to the heterogeneities 

arising from the sizing deposition could be controlled and therefore parameters as the 

roughness which are essential to finally attain good adherence or interface properties when 

the fibers are used as reinforcements in composites. 

 

 

Figure 8. 3D AFM Images of as-received (a), calcinated (b), activated (c), APTES coated (d) 

basalt fibers. 
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4.4. Conclusions 

The modification of basalt fibers surface in a controlled way using model coatings or 

surface preparation was carried out in this work. In particular, a careful and detailed 

characterization of them, necessary to collect data in order to, subsequently, understand 

specific interactions with cement- based matrices, was done. 

 

The preliminary study about the structure, composition and morphology/topography of as-

received basalt fibers by several analytical techniques (XRD, TGA, FT-IR, FE-SEM and 

AFM) confirmed that commercial fibers are characterized by an amorphous structure and a 

heterogeneous sizing of organic nature applied on the fiber surface during the production 

process. 

Depending on the treatment given changes in the structure, composition and topography 

are observed. In particular, the calcination process removes the most of commercial sizing 

present on the fiber surface making the surface smooth.  

 

The activation process fully removes all residues of sizing that could remain on the 

calcinated fiber surface and makes the topography smoother than calcination process. 

Moreover, this process regenerates silanol groups on the fiber surface allowing the grafting 

of aminosilanes.  

 

The three chemical coatings based on aminosilane (APTES, APDES and APTES+APDES) 

make the surface rough. It was concluded that the higher the amount of triethoxysilane in 

the composition of the coating solution, the more organic matter deposited on the fibers, so 

as the topographical heterogeneity. This heterogeneity could be responsible of a most 

adhesion between the matrix and the fiber. 
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CHAPTER 5                                                                  
STUDY OF THE HYDROLYTIC DEGRADATION PROCESS OF 

THE POLYSILOXANE COATINGS OF BASALT FIBERS 

 

Abstract 

Basalt fiber surfaces were modified using different silane aqueous solutions to generate a 

variety of polyorganosiloxane coatings. After removing the commercial coating of the 

fibers by calcination and subsequent activation processes, polysiloxanes were grafted on 

the fiber surfaces. Three aqueous solutions were used for the silanization: i) γ-

aminopropyltriethoxysilane, APTES; ii) γ-aminopropylmethyldiethoxysilane, APDES, 

and iii) a mixture of 50% by weight of both APTES+APDES. The silanized fibers were 

chemically labeled with fluorescein isothiocyanate to be immersed afterwards in different 

aqueous solutions (pH=7 and pH=10) to study the hydrolytic degradation of the 

polysiloxane coatings. The hydrolysis phenomena were monitored by steady state 

fluorescence at different temperatures to subsequently study the kinetics of the process. 

The hydrolysis process was also studied by monitoring the pH of the solution in which the 

silanized fibers were immersed as a function of time. The data obtained from fluorimetry 

were fitted to an integrated expression arising from a first order kinetic process, which 

allowed estimation of the activation energies of the hydrolytic degradations. The results 

indicated that although the hydrolytic rate of the polysiloxane coatings increased in the 

order APDES < APTES+APDES < APTES, differences in the mechanism were not the 

cause of that order; the initial concentration of siloxane bonds able to be hydrolyzed was 

responsible. 
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5.1. Introduction 

It is well known that the performance of composite materials is greatly dependent on the 

interphases formed between the materials used as reinforcements and matrices [1,2]. In 

fact, the properties of composite materials are strongly influenced by the type of adhesion 

between the reinforcement and the matrix. Therefore, the surface modification of 

reinforcements through special treatments represents one of the most common strategies to 

improve the adhesion or interphase properties in composites [3,4]. In particular, when 

silicic materials are used to reinforce other materials such as plastics and cement-based 

materials, their surface treatments mainly consist of the application of silane coupling 

agents [5–7]. Among those, as was previously described in Chapters 2 and 4, difunctional 

organosilicon silane compounds of general formula Y-Si(X)3 are the most commonly used.  

 

Silane coupling agents are usually very effective in improving the interfacial region 

generated in the type of composites mentioned above [8–10]. In fact, a chemical bond 

between the constituents of the composite is usually formed, creating an interphase with 

intermediate properties between the reinforcement and the matrix, which may favor the 

load transfer from the matrix to the reinforcement through the interphase. In addition, it is 

generally stated that silane surface treatments of reinforcements provide a relatively water 

resistant bond [4,11,12].  

 

However, the siloxane bond is a hydrolyzable bond which is highly dependent on pH 

[13,14]. To obtain information about possible hydrolytic degradation processes occurring 

at the interphases of these composites, a thorough study would be necessary to fully 

understand the final performance of the materials. One of the agents that might cause an 

interface failure is water: through a simple hydrolytic process, water may lead to a weaker 

interaction between the reinforcement and the matrix, poorer transmission of loads 

between them and, consequently, higher probability of a catastrophic mechanical failure. 

 

In previous works, studies of the water effect on glass fiber/silane coupling agent interfaces 

were conducted [11,15]. It was stated that when glass fibers are treated with hydrolyzed 

silane solution, multilayers of the silane coupling agent (in particular when a trifunctional 

silane is used) are deposited on the fiber surface: the first is a chemically reacted layer, the 

second a chemisorbed layer and the third a physisorbed layer. It was shown that the 
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chemically reacted layer was characterized by a higher stability against hot water 

extraction, which conferred the silanized substrate with a high resistance to hygrothermal 

attack. The chemisorbed layer mainly consisted of oligomers with higher functionality in 

terms of siloxane bond formation. This three-dimensional or cross-linked layer possesses 

better resistance to hydrolysis. Generally, it could be extracted by boiling water after 

prolonged immersion. The outer part of the coating, the physisorbed layer, consisted of 

oligomers that did not form part of the siloxane network and that were easily hydrolyzed, 

able to be extracted with water even at room temperature [11,15,16].  

 

Taking into account the abovementioned characteristics, it is reasonable to think that the 

behavior under the effect of water and temperature could be different depending on the 

chemical structures. Therefore, controlling the structure of the coating by the use of 

different silane systems grafted on the fibers may be a way of controlling hydrolysis 

phenomena. Consequently, a deep knowledge and a good understanding of the chemical 

mechanism of the hydrolytic degradation of silane-based coatings are crucial to advance 

materials design and processing technologies to improve the performance of materials 

against hydrothermal failure. All of these aspects are especially important in the case of 

fiber reinforced cement-based composites, since their manufacture implies the mixture of 

their components with water.  

 

Since cement matrices are characterized by alkaline pH [17,18] to evaluate the 

polysiloxane coatings degradation under the effect of water, understanding their behavior 

in alkaline environments should be also of primary importance. 

 

Due to the growing interest in understanding structural changes of the silane coupling 

agent on silicic surfaces - to consequently study the molecular mechanism of the hydrolytic 

degradation process - several studies regarding these questions were previously conducted. 

In particular, different techniques (such as radioisotope techniques, laser Raman 

spectroscopy, ion scattering spectroscopy (ISS), secondary ion mass spectrometry (SIMS), 

and Fourier transform infrared spectroscopy (FTIR) were employed for that purpose [11]. 

 

D. Olmos et al. [19] monitored the hydrolytic degradation of different polyorganosiloxane 

coatings of silica microfibers by using fluorimetry. The method consisted of labeling the 
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siloxane-based coatings with a fluorescent dye and then monitoring the fluorescence 

emission of an aqueous solution in which the microfibers were immersed. Compared to 

others, this experiment is a simple and especially sensitive method because fluorimetry 

allows detection of very small concentrations of the hydrolysis products. 

 

In the present work, basalt fibers (potential reinforcements of cement-based materials) 

were modified with different aminosilanes to generate a variety of polyorganosiloxane 

coatings. After that, they were labeled with fluorescein isothiocyanate (FITC). Once the 

fibers were labeled with fluorescein groups, the hydrolytic degradation of the polysiloxane 

coatings was monitored by fluorimetry. The influences of pH and temperature on the 

kinetics of the hydrolytic process were also studied. 

 

5.2. Experimental  

5.2.1. Materials 

Basalt continuous filaments with 17 µm mean diameter (Incothelogy GmbH) were used 

after being chopped to a length of approximately 6.4 mm. They were supplied with a 

commercial coating compatible with cement and natural hydraulic lime (NHL) matrices. 

Two silanes, γ-aminopropyltriethoxysilane and γ-aminopropylmethyldiethoxysilane 

supplied by ABCR GmbH & Co. KG, were used to silanize the basalt fibers to obtain 

different surface coatings. Fluorescein isothiocyanate isomer I supplied by Sigma-Aldrich, 

was used as fluorescent label. To prepare solutions of FITC, N,N-dimethylformamide 

(DMF) (Sigma-Aldrich) was used as solvent. It is important to remember that fluorescein 

in aqueous solution occurs in cationic, neutral, anionic and dianionic forms that makes its 

absorption and fluorescence properties strongly pH-dependent [20] . For this reason, the 

experiments were carried out at controlled pH by using buffer solutions of neutral pH 

(potassium dihydrogen phosphate, pH= 7.0 ± 0.02 at 20 ºC, Scharlau) and pH 10 (pH=10.0 

± 0.05 at 20 ºC, Panreac Química, S.A., Barcelona, Spain). 

 

5.2.2. Samples Preparation 

Considering that the commercial fibers are already commercially coated, a cleaning of 

their surface is necessary before applying a new coating in a controlled way. Indeed, a 

surface pretreatment (calcination and activation processes) of the received basalt fibers and 
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a silanization process were carried out according to the methods described in section 4.2.2 

of Chapter 4. After the silanization with aqueous solutions of i) APTES, ii) APDES and iii) 

a mixture of 50% by weight of both APTES and APDES, the coated fibers were labeled as 

follows: 0.4 g of each sample was immersed in 25 mL of FITC (10-4 M) solution in DMF 

and stirred for 20 min at room temperature.  

 

Finally, the labeled samples were washed with dimethylformamide (DMF) to remove all of 

the physisorbed or nonreacted FITC and then vacuum dried for at least 3 h at 40 ºC 

[19,21,22]. The surface characterization of the modified basalt fibers was already carried 

out in Chapter 4 (see section 4.3.2). 

 

5.2.3. Instrumental Techniques 

Degradation of the silane coatings was monitored by pH measurements at room 

temperature by using a Lab 745 pH-meter (SI Analytics) as described in Chapter 3 (section 

3.2.2). In particular, 0.35 g of silanized basalt fibers were introduced in a cellulose paper 

bag and hung using a nylon thread to be immersed in a beaker containing 30 mL of 

distilled and deionized water. The aqueous solution was continuously stirred while pH 

values were measured as a function of time for 23 hours.  

After the experiments, the water was evaporated from the remaining solutions and the 

residues were analyzed by Fourier transform infrared spectroscopy (FTIR) in the 

transmission mode using an FTIR Spectrum GX (Perkin-Elmer). FTIR spectra were 

recorded in the range of 400-4000 cm-1 from the average of 20 scans with a resolution of 4 

cm-1. 

 

On the other hand, the hydrolysis degradation was studied by steady state fluorescence 

spectroscopy using an Edinburgh Instruments Co. fluorimeter. However, before monitoring 

the coating hydrolyses, spectra of the FITC labeled fibers and activated fibers (without 

coating) were obtained via front face excitation using a solid sample holder placed at an 

angle of 15º with respect to the excitation beam. Every spectrum was recorded between 

500–700 nm, setting the excitation wavelength at 483 nm, with a dwell time of 0.1 s and 

excitation and emission slits at 10 and 7 nm. 

The hydrolytic degradation experiment of the polyorganosiloxane coatings, was described 

in detail in Chapter 3 (see section 3.2.2). The experiments were carried out at different 
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temperatures (25 ºC, 35 ºC, 40 ºC and 45 ºC) and pH (7 and 10). It must be pointed out that 

the experiments at pH=10 were performed only at temperature of 40 °C. 

Fluorescence spectra were recorded for 10 h between 490–700 nm, setting the excitation 

wavelength at 483 nm, the dwell time at 0.1 s and excitation and emission slits at 4 nm. 

Finally, the hydrolysis was studied from the representations of the integrated fluorescence 

intensity (area of the fluorescence spectra) as a function of the immersion time. 

 

5.3. Results and Discussion 

5.3.1. pH Measurments  

To monitor the processes occurring during the immersion of the modified basalt fibers in 

pure water, the pH of the aqueous solution was measured as a function of the immersion 

time (Fig. 1).  

The three plots showed similar profiles, although with slope changes occurring at different 

immersion times depending on the type of aminosilane grafted on the fibers. In general, the 

plots can be divided into two regions: in the first one, the pH increases due to the 

protonation of amino groups, and in the second one, the pH decreases due to the siloxane 

hydrolysis and subsequent silanol generation. Taking into account that both phenomena 

might occur simultaneously and that they have opposite tendencies in terms of pH, the 

appearance of a maximum should indicate the point when the pH variation begins to be 

controlled by the hydrolytic process.  

 

By considering the immersion times at the maxima of the pH plots in Figure 1, an order for 

the hydrolytic degradation rate may be inferred for the coatings under study: APTES > 

APTES+APDES > APDES.  

Here, it was considered that the faster the hydrolytic process, the sooner it will control the 

pH variation of the solution.  
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Figure 1. pH measurements of the silanized basalt fibers immersed in distilled and deionized 

water. 

 

To prove that the coatings were removed from the basalt fiber surfaces due to the 

hydrolytic fragmentation, FTIR spectra were recorded from the three residues remaining 

after evaporating the water (Fig. 2). The FTIR spectra showed the characteristic absorption 

bands (Table 1) attributed to the polyorganosiloxane generated on the fiber surfaces. In 

particular, in the high-energy region of the FTIR spectra (3800-2800 cm-1), some 

characteristic bands of the different aminosilanes are present: the N-H stretching of the 

amino groups and the C-H stretching bands of the methylene, CH2 and methyl CH3 groups. 

These results are in agreement with the FTIR spectra obtained for the three coatings on the 

fibers and reported in the section 4.3.2 of Chapter 4, indicating that fragments of the 

polyorganosiloxane coatings were incorporated in the solution due to hydrolysis during the 

water immersion of the fibers. 

 

However, this method allows only a qualitative analysis of the hydrolytic process to be 

considered since this phenomenon is expected to be dependent on the pH of the solution 

which, as it was shown, is continuously changing. For this reason, an additional hydrolytic 

phenomena study method should be considered. 
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Figure 2. FTIR spectra of the residues obtained from the pH experiment. 

 

Table 1. Absorption Bands of Aminosilanes [23,24]. 

ν (cm-1) 
Absorption bands of 

Aminosilane 

3400 ν (O-H) 

3400-3300 νas (N-H) 

2970-2960 νas (C-H) (CH3) 

2930-2920 νas (C-H) (CH2) 

1600 δ (N-H) 

1483 δ (CH2) 

1450 δ (CH2) 

1440 δ (CH3) 

1410 δ (Si-CH2) 

1380 δ (CH3) 

1260 ν (Si-C) 

1160 ρ (CH3) 

1100 νas (Si-OSi) 

1100 νas (Si-OC) 

1000 νas (Si-OSi) 

950 δ (Si-OH) 
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5.3.2. Fluorescence Experiments 

Figure 3 displays the normalized fluorescence spectra of the FITC when chemically 

bonded to the silanized basalt fibers.  

 

 

Figure 3. Normalized fluorescence spectra of activated and labeled silanized basalt fibers 

 

In all cases, a broad band centered at approximately 530 nm is observed - in accordance 

with the fluorescence emission characteristics of FTIC provided by the supplier of the dye 

--with a fluorescence maximum at a wavelength of λmax = 520 nm and pH = 9. However, 

slight variations can be observed throughout the entire profile of the fluorescence spectrum 

depending on the nature of the coating. It is observed that higher silane functionality 

(functionality order: APTES > APTES+APDES > APDES) corresponds to broader 

fluorescence bands. This result may be explained by considering the more heterogeneous 

surroundings for the fluorophore when using a silane with higher functionality. In 

principle, different crosslinking degrees can be obtained in a silane with high functionality 

regions, leading to different environments for the FITC fluorescent label or more 

heterogeneity at a molecular scale. In Figure 3, the emission spectrum of the activated 

fibers is also added as a control, evidencing an emission that can be considered negligible 

with respect to the fluorescence emission from the silanized fibers modified with FITC.  
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5.3.3. Hydrolysis Monitoring by Fluorimetry 

In Figure 4, the integrated fluorescence intensity of the aqueous solutions (pH = 7) in 

which the fibers were immersed is represented as a function of the immersion time for all 

the studied samples and at different temperatures.  

 

Figure 4. Integrated fluorescence intensity as a function of immersion time of the aqueous solution 

(pH = 7) in which the modified fibers were immersed: a) APTES, b) APTES+APDES and c) 

APDES. 

 

In all cases, the fluorescence intensity quickly increases and then stabilizes, reaching a 

plateau. It is observed that at the beginning of the process, the slopes of the curves are 

different depending on the nature of the polyorganosiloxanes and the temperature. In terms 

of the coating natures, the slopes increase in the following order: APDES < 

APDES+APTES < APTES. If a higher slope is associated with a faster hydrolytic process, 

the fluorescence results are in accordance with the results obtained from the pH 

measurements. However, in this case the measurements are obtained at constant pH 
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because a buffer solution was used. In addition, a higher temperature is translated into a 

higher hydrolytic rate, as expected. The effect of the increase of the temperature, in fact, 

promotes the breakage of a higher number of siloxane bonds. 

 

Considering that more amino groups are susceptible to reaction with the FITC moiety in 

the case of the APTES coating, one would expect increased fluorescence intensity in the 

aqueous solution after hydrolysis during the fluorescence experiments. However, the 

opposite result was observed. Apart from considering that total fluorescence can be 

dependent on several external factors such as lamp intensity, another possible explanation 

may be found in the consideration of lower yield of thiourea formation due to steric 

hindrance. A high crosslinking degree in the polysiloxane coating may lead to reduced 

accessibility to the amino groups and concomitant decreased FITC attachment. In fact, this 

is the expected situation for the γ-aminopropyltriethoxysilane chemical structure proposed 

by Wang et al. after being reacted on silica-based surfaces [16,25]. As those authors 

described, the structure of the γ-aminopropyltriethoxysilane is characterized by three 

different layers with different functionality in terms of the cross-linking degree. The outer 

part, which consists of a small molecular oligomer, is presumably the most accessible to 

allow the reaction between the amino groups and the isothiocyanate group of the 

fluorescent moiety. In contrast, a more linear and open chemical structure expected for the 

difunctional silane, APDES, should allow easier reaction with the fluorescent moiety. 

Therefore, the results in terms of total intensity may be interpreted simply according to the 

FITC concentration. Higher amounts of FITC fluorophores should yield higher 

fluorescence intensity after hydrolysis without influencing the hydrolysis mechanism, 

which should only depend on the nature of the siloxane coating and pH.  

 

5.3.4. Kinetic Study of the Hydrolytic Degradation Process 

To perform a kinetic study of the hydrolytic degradation process of the coatings of the 

basalt fibers, the following equilibrium reaction is assumed for the hydrolysis of the 

siloxane bonds in the polyorganosiloxanes: 

 

Si-O-Si + H2O 2 Si-OH     (1) 
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where Si-O-Si is the hydrolyzable siloxane bond, and Si-OH is the silanol group formed 

after the hydrolysis. 

 

Furthermore, another assumption is to consider that the direct and the reversed reactions of 

the equilibrium represented by the equation (1) are first order reactions. On the other hand, 

if the initial concentration of the reactant is named “a” or [Si-O-Si]0 = “a”, and the amount 

of siloxane reacted “x”, then the concentration of the siloxane groups at a given reaction 

time will be [Si-O-Si]t = (a - x) and the concentration of silanol groups generated will be 

[Si-OH]t = 2x. 

 

Consequently, for a first order reaction, the direct reaction rate could be expressed by v1 = 

k1 [Si-O-Si]t = k1(a - x) while the reversed reaction rate would be v2 = k2[Si-OH]t = k2 2x 

and, therefore, the hydrolysis rate should be described by the difference between the direct 

reaction rate and the reversed reaction rate, v1 – v2. If that hydrolysis rate is expressed as 

the variation of the silanol production as a function of time, d[SiOH]t/dt, the expression for 

the hydrolysis rate would be described by the equation (2): 

 

𝑣 =
1

2

𝑑[𝑆𝑖−𝑂𝐻]𝑡

𝑑𝑡
= 𝑣1 − 𝑣2 = 𝑘1 (𝑎 − 𝑥) − 2𝑘2𝑥   (2) 

 

Taking into account that there is no change in the silanol production when the equilibrium 

is reached, d[SiOH]t/dt = 0 and that the siloxane reacted is named as xe, the equation (2) 

could be written as: 

 

1

2

𝑑[𝑆𝑖−𝑂𝐻]𝑡

𝑑𝑡
= 0 = 𝑘1(𝑎 − 𝑥𝑒) − 2𝑘2𝑥𝑒     (3) 

 

By rearranging equation (3), an equilibrium constant, Kc, could be obtained as the ratio 

between the direct reaction rate and the reversed reaction rate, k1/k2: 

 

𝑘1

𝑘2
=  

2𝑥𝑒

𝑎−𝑥𝑒
= 𝐾𝑐      (4) 

 

Furthermore, by solving k2 from (4) and replacing it in (2), it can be written: 
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𝑑[𝑆𝑖−𝑂𝐻]𝑡

𝑑𝑡
=  𝑘1 

𝑎

𝑥𝑒
 (𝑥𝑒 − 𝑥)     (5) 

 

and, after variables separation in equation (5) and the corresponding integration, equation 

(6) is obtained: 

 

𝑘1 · 𝑡 =  
𝑥𝑒

𝑎
ln

𝑥𝑒

𝑥𝑒−𝑥
      (6) 

 

If the fluorescence intensity, I, is proportional to the number of fragments released from 

the coating by the hydrolysis, and these fragments are proportional to the concentration of 

siloxane groups that have been reacted at a certain time, x, then fluorescence intensity, I, 

should be proportional to x.  

 

x = D·I      (7) 

 

where “D” is a constant. Introducing this relation into the expression (6), it can be 

obtained: 

 

𝑘1 · 𝑡 =  
𝑥𝑒

𝑎
ln

𝑥𝑒

𝑥𝑒−𝐷∙𝐼 
      (8) 

 

After taking exponentials in Eq. (8) and rearranging an expression for fluorescent intensity 

as a function of reaction time is obtained: 

 

𝐼 =  
𝑥𝑒

𝐷
−  

𝑥𝑒

𝐷
 𝑒

−
𝑎𝐾1𝑡

𝑥𝑒       (9) 

 

Since for every sample xe is a constant, eq. (9) can be simplified by 

 

𝐼 = 𝐼𝑒 − 𝐼𝑒𝑒−𝑐𝑡      (10) 

 

where Ie and c are constants that only depend on temperature: 

 

𝐼𝑒 =
𝑥𝑒

𝐷
 and 𝑐 =

𝑎𝐾1 

𝑥𝑒
      (11) 
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To test the effectiveness of the mechanism proposed, the data of the fluorescence intensity 

as a function of reaction or immersion time were fitted by the use of equation (10). 

Regardless of the sample and temperature, the fitting was quite close as seen in Figure 5, 

where as an example, the fits for the samples at 25 ºC are shown. Therefore, as a first 

approximation, in the presence of water the degradation process of the three coatings 

studied can be described by a hydrolytic equilibrium reaction where both the direct and 

reversed reactions are first order reactions. 

 

 

Figure 5. Examples of fluorescence data fitting by the integrated rate equation (9). 

 

Considering this and accepting the mechanism proposed for the hydrolytic degradation, an 

estimation of the required time to reach equilibrium can be made. The criterion chosen 

might be the time for which the fluorescence intensity of the fitted curve does not change 

by more than 1%. Using this criterion, for different temperatures, the degradation times 

when the equilibrium was reached for all the samples were obtained (Table 2).  
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Table 2. Estimated hydrolytic degradation times at pH = 7 when equilibrium is reached. 

Temperature tAPTES (min) tAPTES+APDES (min) tAPDES (min) 

25 ºC 115 144 156 

35 ºC 117 140 170 

40 ºC 113 125 166 

45 ºC 103 122 137 

 

If faster hydrolytic degradation is translated to shorter time to reach the equilibrium, the 

hydrolytic degradation rates of the coatings could be ordered as follows: APTES > 

APDES+APTES > APDES. In principle, this result might have two possible explanations: 

i) different mechanism of the hydrolytic process as a function of the polyorganosiloxane 

structure and ii) differences in the initial concentration of the hydrolyzable Si-O-Si bonds. 

The last explanation is based on the consideration that the concentration of Si-O-Si bonds 

is expected to be dependent on the amount of attached silane and, especially, the 

crosslinking degree which, in fact, will be favored with the functionality of the silane. 

Therefore, more material quantity and greater crosslinking degree is expected when 

APTES is used to coat the fibers (Figure 6). Alternatively, when APDES (with a linear 

structure) solution is applied to the basalt fibers, reduced amounts of attached material and 

siloxane bonds are expected (Figure 6). The results from a deep characterization of the 

basalt fibers modified with APTES and APDES are in good agreement with the 

abovementioned conclusions (see section 4.3.2 of Chapter 4). 

 

 

Figure 6. Expected chemical structures of the basalt fiber coatings after the treatments with a) 

APTES and b) APDES aqueous solutions. 
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To evaluate whether a change of the mechanism is the main contribution to the variation in 

the hydrolytic degradation rate, the activation energy (Ea) values were estimated from the 

curve fittings as follows. From equation (7) it can be written that: 

 

xe = D·Ie      (12) 

 

where Ie is the fluorescence intensity at equilibrium that depends on temperature, Ie(T). On 

the other hand, the k1 was assumed as an Arrhenius-like kinetic constant 

 

𝑘1 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇       (13) 

 

where A is the pre-exponential factor, R the general gas constant, T the absolute 

temperature and Ea the activation energy of the process. Combining the equations (11), 

(12) and (13), it can be written: 

 

𝑐(𝑇) = (
𝑎

𝐷
)

1

𝐼𝑒(𝑇)
𝐴𝑒−

𝐸𝑎
𝑅𝑇      (14) 

 

Since c(T) and Ie(T) values can be obtained as fitting parameters by using the fitting 

function (10), activation energies can be obtained from the ratios between expressions such 

as the equation (14) at two different temperatures, Ti and Tj, respectively: 

 

𝑐(𝑇𝑖)

𝑐(𝑇𝑗)
=

𝐼𝑒(𝑇𝑗)

𝐼𝑒(𝑇𝑖)
𝑒

−
𝐸𝑎
𝑅

(
1

𝑇𝑖
−

1

𝑇𝑗
)
     (15) 

 

𝐸𝑎 =
𝑅

(
1

𝑇𝑖
−

1

𝑇𝑗
)

𝐿𝑛 [
𝐼𝑒(𝑇𝑗)

𝐼𝑒(𝑇𝑖)
·

𝑐(𝑇𝑗)

𝑐(𝑇𝑖)
]     (16) 

 

Considering that four temperatures were studied for each sample, six combinations of pairs 

of temperatures in expression (16) can be used to obtain six activation energies. Therefore, 

an apparent activation energy should be obtained from the average of those six values. 

Table 3 gathers the average values of the average activation energies obtained for the 

hydrolytic degradation of the three coatings under study. 
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Table 3. Averaged activation energy (Ea) values for the hydrolytic degradation of the three 

coatings under study. 

 

 

 

 

 

In principle, all of the results are in agreement with others reported in previous studies 

where an activation energy of 23.6 kcal/mol was obtained for the hydrolysis of siloxane 

bonds. 

Taking into account the error in the values of Table 3, it can be concluded that the 

activation energy of the hydrolytic process is the same for the three coatings, therefore 

suggesting that the corresponding chemical mechanism is the same. It follows that another 

reason exists for the different hydrolytic degradation rates observed for the three coatings.  

In general, regardless of the reaction order, the rate increases with the initial concentration 

of the reactants; therefore, it is reasonable to assume that the rate of the hydrolytic process 

was dependent on the initial concentration of siloxane bonds. From the results obtained by 

thermogravimetric analysis (TGA) for the same studied systems and showed in section 

4.3.2 of Chapter 4, it was possible to use the weight loss and molecular weight of the silane 

to estimate the number of moles of siloxane bonds, nSioSi, susceptible to being hydrolyzed 

(in the case of the APTES + APDES mixture, a mean value between the molecular weights 

of the two silanes was used) (Table 4). The estimated values of the number of moles are 

shown in Table 4. 

 

Table 4. Estimated values for the number of moles of Si-O-Si hydrolyzed bonds.  

Coating nºSi-O-Si 

(mol) 

APTES 4.7 x 10-5 

APTES+APDES 3.5 x 10-5 

APDES 4.5 x 10-6 

 

Assuming a first order reaction for the direct reaction of the hydrolytic process, at a 

hydrolytic reaction time, t = 0, the initial reaction rate, vo, must be directly proportional to 

the initial concentration of siloxane bonds or the initial number of moles at constant 

volume:  

Coating Ea (kcal/mol) 

APTES 24 ± 15 

APDES 29 ± 17 

APTES + APDES 22 ± 5 
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𝑣𝑜 = (
𝑑𝐼

𝑑𝑡
)

𝑡=0
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 · [𝑆𝑖𝑂𝑆𝑖]𝑜   (17) 

 

where the values of vo can be obtained from the initial slope of the curves of integrated 

fluorescence intensity as a function of immersion time, while the values of the initial 

number of moles of siloxane bonds can be taken from Table 4. If there were a clear 

dependence between the initial concentration of siloxane bonds and the hydrolytic rate, one 

would expect the same values for the ratios between the initial reaction rates for two 

coatings and the ratios between the corresponding initial numbers of moles of siloxane 

bonds. 

 

𝑣𝑜(𝐴𝑃𝑇𝐸𝑆)

𝑣𝑜(𝐴𝑃𝐷𝐸𝑆)
=

𝑛𝑆𝑖𝑂𝑠𝑖
𝑜 (𝐴𝑃𝑇𝐸𝑆)

𝑛𝑆𝑖𝑂𝑠𝑖
𝑜 (𝐴𝑃𝐷𝐸𝑆)

     (18) 

 

where 𝑛𝑆𝑖𝑂𝑆𝑖
𝑜 (𝑐𝑜𝑎𝑡𝑖𝑛𝑔)  represents the initial number of moles of siloxane bonds of a 

particular polysiloxane coating. 

For a better comparison, the ratios between initial reaction rates and the ratios between 

initial numbers of moles are compiled in Table 5. Their behaviors are coincident, 

suggesting that the initial concentration of siloxane bonds is the primary reason for the 

different hydrolytic degradation rates observed for the coatings under study.  

 

Table 5. Relationship between the concentration Si-O-Si bonds and the hydrolytic degradation rate. 

Coating nºSi-O-Si / nºSi-

O-Si 

(dI/dt) Coating i /(dI/dt) Coating j 

APTES/APDES 10.4 9.2 

APTES+APDES/APDES 7.8 4.2 

APTES/APTES+APDES 1.3 1.9 

 

5.3.5. Polysiloxane Coatings Degradation in Alkaline Environment (pH =10) 

In Figure 7 it is possible to observe the influence of the pH on the polysiloxane coatings 

degradation at 40 °C. It is found that, in all cases the fluorescence intensity rapidly 

increases, then stabilizes and finally seems to reach a plateau regardless the pH. 

 

Paying attention to the slopes of the first linear region of the curves in Figure 7, it could be 

said that, as a first approximation, the order in terms of coatings degradation rate is: 
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APDES < APTES+APDES < APTES. These results agree with the order observed when 

the hydrolysis experiments were carried out at pH = 7 (see Figure 4).  

 

 

Figure 7. Influence of the pH on the polysiloxane coatings degradation at 40 °C: a) APTES, b) 

APTES+APDES and c) APDES. 

 

Additionally, considering the integrated rate equation (9), it was possible to make an 

exponential fit for each curve when the pH was set at 10. These results suggest that the 

kinetics model proposed is useful to describe the hydrolytic degradation process 

independently on the pH. 

 

Consequently, the hydrolytic degradation times, when the equilibrium was reached at pH = 

10, were also estimated as described in section 5.3.4. Results are shown in Table 6.  
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Table 6. Estimated hydrolytic degradation times at pH = 10 when equilibrium is reached. 

 tAPTES (min) tAPTES+APDES (min) tAPDES (min) 

pH = 10 110 138 160 

 * pH = 7  113 125 166 

               * Table 2.  

 

Considering that a faster hydrolytic degradation should lead to a shorter time to reach the 

equilibrium, the results obtained point out that the hydrolytic degradation rates of the 

coatings studied at pH=10 follow the order: APTES > APTES+APDES >APDES. The 

same order was observed when modified fibers were immersed in the aqueous solution at 

pH=7 (see Table 2). Finally, it can be observed (Table 6) that there are not significant 

differences in terms of hydrolysis rates as a function of the pH’s studied. 

  

5.4. Conclusions 

The use of fluorescein isothiocyanate fluorescence is an appropriate method to evaluate the 

hydrolytic degradation of exceedingly small concentrations of polyorganosiloxane coatings 

grafted on the basalt fibers. The kinetic mechanism of the hydrolysis process was proposed 

in this work, which allowed information about the activation energy of the three systems 

studied to be obtained. Furthermore, an evaluation of the equilibrium degradation times for 

the different polyorganosiloxanes is determined. It must be pointed out the goodness of the 

kinetic model proposed for the hydrolytic degradation process independently on the pH 

used. The results obtained with different systems and different measurements are in good 

agreement.  

 

These results demonstrate that the mechanism of the hydrolytic process is very similar for 

the three systems studied. Nevertheless, some differences in the rate of the hydrolytic 

degradation process are observed. Indeed, the hydrolytic degradation rate is related to the 

initial concentration of the Si-O-Si bonds and, consequently, to the number of the 

hydrolyzed siloxane bonds. This number is higher when a silane with a cross-linked 

structure is used. Furthermore, the hydrolytic degradation of the silane coupling agents 

quickens depending on the increase of the siloxane crosslinking degree.  

It could be assumed that one method to reduce the rate of hydrolytic degradation at the 

interface in the fiber reinforced cement-based composites would be to minimize the degree 
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of coating. A polyorganosiloxane with a lower crosslinking degree and correspondingly 

reduced amount of Si-O-Si bonds, such as the APDES coating, could be the most effective 

strategy to resist possible water attack mainly in the alkaline environment characteristic of 

the cement matrix.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5.  HYDROLYTIC DEGRADATION PROCESS OF THE POLYSILOXANE COATINGS  

 
Chap.5-109 

 

References 

[1] J.-K. Kim, Y.-W. Mai, Engineered Interfaces in Fiber Reinforced Composites, 1st 

Editio, 1998. doi:https://doi.org/10.1016/B978-008042695-2/50000-2. 

[2] M.J. Salkind, The Role of Interfaces in Fiber Composites, in: Surfaces Interfaces II, 

1968: pp. 417–445. doi:10.1007/978-1-4757-0178-4_14. 

[3] A.T. DiBenedetto, Evaluation of fiber surface treatments in composite materials, 

Pure Appl. Chem. 57 (1985) 1659–1665. doi:10.1351/pac198557111659. 

[4] N. Suzuki, H. Ishida, A Review on the Structure and Characterization Techniques of 

Silane/Matrix Interphases, Macromol. Symp. 108 (1996) 19–53. 

doi:https://doi.org/10.1002/masy.19961080105. 

[5] Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Composites : Part A Silane coupling 

agents used for natural fiber / polymer composites : A review, Compos. Part A. 41 

(2010) 806–819. doi:10.1016/j.compositesa.2010.03.005. 

[6] S.J. Park, J.S. Jin, J.R. Lee, Influence of silane coupling agents on the surface 

energetics of glass fibers and mechanical interfacial properties of glass fiber-

reinforced composites, J. Adhes. Sci. Technol. 14 (2000) 1677–1689. 

doi:10.1163/156856100742483. 

[7] S. Shokoohi, A. Arefazar, R. Khosrokhavar, Silane coupling agents in polymer-

based reinforced composites: A review, J. Reinf. Plast. Compos. 27 (2008) 473–485. 

doi:10.1177/0731684407081391. 

[8] J.G. Iglesias, J. González-Benito, A.J. Aznar, J. Bravo, J. Baselga, Effect of Glass 

Fiber Surface Treatments on Mechanical Strength of Epoxy Based Composite 

Materials, J. Colloid Interface Sci. 250 (2002) 251–260. doi:10.1006. 

[9] D. Olmos, J. González-Benito, Visualization of the morphology at the interphase of 

glass fibre reinforced epoxy-thermoplastic polymer composites, Eur. Polym. J. 43 

(2007) 1487–1500. doi:10.1016/j.eurpolymj.2007.01.004. 

[10] M. Afroz, I. Patnaikuni, S. Venkatesan, Chemical durability and performance of 

modified basalt fiber in concrete medium, Constr. Build. Mater. 154 (2017) 191–

203. doi:10.1016/j.conbuildmat.2017.07.153. 

[11] H. Ishida, J.L. Koenig, A Fourier-Transform Infrared Spectroscopic Study of the 

Hydrolytic Stability of Silane Coupling Agents on E-Glass Fibers, J. Polym. Sci. 

Polym. Phys. Ed. 18 (1980) 1931–1943. 

doi:https://doi.org/10.1002/pol.1980.180180906. 

[12] C.C. Le-Huy, L.G. Britcher, J.G. Matisons, The effect of silane concentration on the 

adsorption of poly ( vinyl acetate-co-maleate ) and γ -methacryloxypropyl- 

trimethoxysilane onto E-glass fibers, Silicon Chem. 3 (2002) 195–205. 

[13] H. Ishida, J.L. Koenig, The Reinforcement Mechanism of Fiber-Glass Reinforced 

Plastics Under Wet Conditions: A review, Polym. Eng. Sci. 18 (1978) 128–145. 

doi:10.1002/pen.760180211. 



CHAPTER 5.  HYDROLYTIC DEGRADATION PROCESS OF THE POLYSILOXANE COATINGS  

 
Chap.5-110 

 

[14] H. Ishida, J.L. Koenig, Effect of Hydrolysis and Drying on the Siloxane Bonds of a 

Silane Coupling Agent Deposited on E-Glass Fibers, J. Polym. Sci. Polym. Phys. 

Ed. 18 (1980) 233–237. doi:https://doi.org/10.1002/pol.1980.180180206. 

[15] J.-K. Kim, Y.-W. Mai, Surface treatments of fibers and effects on composite 

properties, in: Eng. Interfaces Fiber Reinf. Compos., Ltd, Elsev, 1998: pp. 171–237. 

doi:http://dx.doi.org/10.1016/B978-008042695-2/50006-3. 

[16] D. Wang, F.R. Jones, Surface analytical study of the interaction between y-amino 

propyl trethoxysilane and E-glass surface-Part II X-ray photoelectron spectroscopy, 

J. Mater. Sci. 28 (1993) 2481–2488. doi:https://doi.org/10.1007/BF01151683. 

[17] V.D. Pizzol, L.M. Mendes, H. Savastano, M. Frías, F.J. Davila, M.A. Cincotto, 

V.M. John, G.H.D. Tonoli, Mineralogical and microstructural changes promoted by 

accelerated carbonation and ageing cycles of hybrid fiber-cement composites, 

Constr. Build. Mater. 68 (2014) 750–756. doi:10.1016/j.conbuildmat.2014.06.055. 

[18] A. Hakamy, F.U.A. Shaikh, I.M. Low, High-performance natural fiber-reinforced 

cement composites, Adv. Ceram. Matrix Compos. Second Ed. (2018) 277–305. 

doi:10.1016/B978-0-08-102166-8.00012-8. 

[19] D. Olmos, A.J. Aznar, J. Baselga, Hydrolytic damage study of the silane coupling 

region in coated silica microfibres : pH and coating type effects, J. Mater. Process. 

Technol. 144 (2003) 82–86. doi:10.1016/S0924-0136(03)00325-X. 

[20] R. Sjback, J. Nygren, M. Kubista, Absorption and fluorescence properties of 

fluorescein, Spectrochim. Acta Part A. 51 (1995) L7–L21. 

doi:https://doi.org/10.1016/0584-8539(95)01421-P. 

[21] D. Olmos, A.J. Aznar, J. Baselga, J. González-Benito, Kinetic study of epoxy curing 

in the glass fiber/epoxy interface using dansyl fluorescence, J. Colloid Interface Sci. 

267 (2003) 117–126. doi:10.1016/S0021-9797(03)00620-9. 

[22] J. González-Benito, A. Aznar, J. Baselga, Solvent and Temperature Effects on 

Polymer-Coated Glass Fibers . Fluorescence of the Dansyl Moiety, J. Fluoresc. 11 

(2001). doi:https://doi.org/10.1023/A:1013974907580. 

[23] M. Iorio, M.L. Santarelli, G. González-Gaitano, J. González-Benito, Surface 

modification and characterization of basalt fibers as potential reinforcement of 

concretes, Appl. Surf. Sci. 427 (2018) 1248–1256. 

doi:10.1016/j.apsusc.2017.08.196. 

[24] C.-H. Chiang, H. Ishida, J.L. Koenig, The structure of γ-aminopropyltriethoxysilane 

on glass surfaces, J. Colloid Interface Sci. 74 (1980) 396–404. 

doi:https://doi.org/10.1016/0021-9797(80)90209-X. 

[25] D. Wang, F.R. Jones, P. Denison, Surface analytical study of the interaction 

between y-amino propyl trethoxysilane and E-glass surface Part I Time-of-flight 

secondary ion mass spectrometry, J. Mater. Sci. 27 (1992) 36–48. 

doi:https://doi.org/10.1007/BF00553834. 



 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

STUDY OF THE INTERACTIONS BETWEEN 

BASALT FIBERS AND CEMENT MATRIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



CHAPTER 6. INTERACTIONS BETWEEN BASALT FIBERS AND CEMENT MATRIX 

Chap.6-111  

CHAPTER 6                                                                
STUDY OF THE INTERACTIONS BETWEEN BASALT FIBERS 

AND CEMENT MATRIX 

 

Abstract 

Basalt fibers-reinforced cement-based mortars with potential use as plasters for modern 

buildings were prepared. To optimize compatibility between reinforcement and matrix, 

interactions between basalt fibers and cement matrix were studied. Different characteristics 

of the reinforcement surface were considered looking for the best interphase respect to the 

final performance of the composite materials. As-received, calcinated, activated and 

silanized (by three different silane aqueous solutions: i) -aminopropyltriethoxysilane, 

APTES; ii) -aminopropylmethyldiethoxysilane, APDES and iii) a mixture 

APTES+APDES 50 % by weight) basalt fibers were dispersed in Portland cement matrix. 

Mechanical behavior of the resulting composites were evaluated by three-point flexural 

tests and compressive strength tests. Final correlation between the fiber surface 

characteristics and mechanical performance was carried out taking into account possible 

induced microstructural changes and adhesion at the interface. In the first case, porosity 

studies by BET-BJH textural analysis were carried out, while in the second case 

fractographic analysis by SEM analysis and laser and optical profilometry were performed. 

A clear improvement in mechanical properties was obtained when basalt fibers were 

dispersed in cement matrix. In general, results from the analysis performed suggest that 

better behavior is achieved when APTES+APDES silanized basalt fibers are dispersed in 

cement matrix (APTAPD+CEM sample). 
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6.1.  Introduction 

Portland cement, developed in the mid nineteenth century, has rapidly become the 

preferred material for building and architectonical restoration. Portland cement-based 

materials have the advantages of being widely available, relatively inexpensive compared 

to many other materials and usually have stiffness and thermal expansion compatible with 

the material to be repaired, being relatively easy to apply and cure. However, its brittleness 

is a great problem so as its relatively high modulus and low tensile strength. Moreover, 

other disadvantages come from the effect of reactions with some aggregates or chemical 

agents in the environment and the poor resistance to crack propagation. However, as it was 

previously discussed in the Chapter 2, most of the problems related to this type of 

materials, are due to shrinkage cracking phenomena [1,2].  

To reduce this problem the use of short and randomly dispersed fibers may be a solution 

since they have an important function transmitting properly stresses to the matrix and 

limiting crack openings. In addition, fibers may act as attachment points crossing cracks, 

making difficult their propagation. Therefore, it is expected fiber reinforcement limit the 

extent of shrinkage cracking by decreasing the width of the cracks.  

 

The presence of the fibers can improve properties such as tensile, flexural, impact, fatigue 

and abrasion strength, elongation at break and toughness in composite materials. In 

particular, one of the major roles of the fibers in concretes and mortars is to increase the 

fracture energy, which is directly related to cracks formation and propagation. The 

effectiveness of fibers to improve the fracture energy  depends on  the mass, aspect ratio 

and nature of the fibers, the nature of the matrix and the adhesion between fibers and the 

matrix among other factors [3,4]. In general, the mass of fibers used in these materials is 

limited to 1–3% by volume. When this so low mass of fibers is used, there is only an 

improvement in terms of fracture toughness of concretes and mortars in most of the 

practical cases. Mechanical strength of the whole material can be increased when higher 

mass of fibers is used [3,5–7]. On the other hand, since the size and aspect ratio of fibers 

influences the crack formation and propagation, some important issues should be 

considered. Indeed, in a cementitious material the matrix cracking occurs first at the micro 

level, consequently the presence of short and relatively closer fibers acts on the 

microcracks avoiding the coalescence in macrocracks. Although large fibers (up to 50 or 

80 mm) may stop macrocracks propagation, they only contribute to increase the toughness 
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with a relatively small improvement in the strength of the composite. Furthermore, short 

fibers could enhance the strength of the resulting material providing a little improvement in 

post-peak toughness because they have to be pulled out after that macrocracks are being 

propagated (Figure 1) [2,8].  

 

 

Figure 1. Effect of short and large fibers on the crack propagation [2,8]. 

 

The fiber-matrix interactions have a great influence on the mechanical properties in this 

type of materials since the fiber-matrix interface is crucial in the ability of fibers to transfer 

loads to the matrix and stabilize cracks propagation. If fiber-matrix interactions are too low 

there is not continuity along the composite material, being responsible for its weakness [9]. 

For these reasons, a good adhesion between fiber and matrix should be achieved in order to 

avoid failure mechanisms that could occur at the interface such as debonding, pull-out, 

fiber sliding and crack bridging phenomena (Figure 2). These phenomena have a 

significant influence on the total energy consummation during crack propagation [5,10,11]. 

 

Figure 2. Mechanism occurring at the fiber-matrix interface [11]. 
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In order to enhance the fiber-matrix interfacial adhesion, several methods have been 

proposed. Among them, modification of fiber surfaces through chemical treatments is one 

of the most used [11,12].  

Various types of fibers have been used to reinforce mortars and concretes. The first 

example well known of an inorganic fiber reinforced building material was cement mixed 

with asbestos fibers. However, since 1970 its use decreased due to the risk to human health 

associated to fiber breathing [6]. Other types of fibers used as reinforcement are: steel, 

glass and carbon fibers, synthetic polymeric fibers (such as polypropylene, polyethylene 

and polyolefin, polyvinyl alcohol (PVA) etc.) and natural vegetable fibers (applied only in 

ordinary concretes and not in high performance structural concrete [2]). Vegetable fibers 

have disadvantages under humid and alkaline environments leading to reduction in 

strength and toughness of the cement matrix [13]. 

 

Currently, a great interest is in the use of basalt fibers that for their good mechanical and 

chemical properties could be applied as reinforcements in cement materials. As previously 

described in Chapter 2, they represent an economic and sustainable alternative to the other 

type of fibers. In fact, their surface properties and morphology avoid any harmful or 

carcinogenic impacts and cause no hazard to people [14]. Moreover, basalt fibers offer 

performance similar to glass fibers at lower price and may be less-expensive alternative to 

carbon fibers. They can replace steel and carbon fibers due to its high rigidity and low 

elongation or extension at break [12].  

Furthermore, the higher resistance to corrosion make basalt fibers more effectiveness than 

steel in concrete structure. In fact, the use of basalt fibers is optimal for marine 

environments for example. Studies refers also on the highest chemical stability of the 

basalt fibers respect to the common glass fibers in cement materials [7].  

 

In recent years, the use of basalt fibers in concrete engineering has been developing 

increasingly. Due to this, several studies were carried out about commercial basalt fibers 

reinforced cement-based materials. The presence of basalt fibers in concrete and mortar 

can control non-structural concrete cracks and reduce the early dry shrinkage, improving 

the early crack resistance of the concrete; furthermore, they can enhance the elongation at 

break and impact and frost resistance.  

Most of the studies are focused on the influence of different amount, length and diameter 

of chopped basalt fibers in cement matrix.  In general, when adding fibers an increase in 
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the mechanical properties and a reduction of the shrinkage phenomenon could be achieved 

[7,14]. Moreover, Branston et al. [15] have found that the presence of basalt fibers only 

clearly increases pre-cracking strength.  

Jiang et al. [16] showed that after adding chopped basalt fibers to a cement matrix tensile 

strength, flexural strength and toughness index were improved while, compressive strength 

did not increase significantly. High et al. [17], studying the use of chopped basalt fibers for 

concrete structures, have found that the fibers enhanced the flexural modulus but they had 

only a little effect on the compressive strength. However, it is also important to mention 

that previous studies stated that better performance of basalt fiber-reinforced cement 

composites can be achieved by improving the fiber-matrix interface through surface 

treatments of the fibers [18,19]. 

 

Limited research about new surface treatments of basalt fibers to finally improve matrix-

reinforcement adhesion in cement-based materials is available. In this regard, the aim of 

the present work is to improve the performance of cement-based materials by optimization 

of fiber-matrix interface through fibers surface treatments.  

Fiber-reinforced cement-based mortars formed by chopped basalt fibers and a common 

Portland cement were prepared looking for their potential use as materials for plaster in 

modern buildings. In particular, commercial basalt fibers were modified by several surface 

treatments as described in Chapter 4. Different composite materials were prepared by 

dispersing the different fibers (as-received, calcinated, activated and silanized with 

different aminosilanes) within the cement matrix. Mechanical performances of the 

resulting composites materials were evaluated by mechanical tests (three-point flexural 

tests and compressive strength tests) and finally a correlation between possible 

microstructural changes and adhesion at the interface was considered.  

It is well agreed that the role of porosity of a mortar is important in terms of moisture 

transport, mechanical properties, durability and compatibility of the mortar to the masonry 

where it will be applied. Due to this, porosity measurements were carried out. Although 

different techniques can be used to determine porosity in this type of materials, in the 

present work BET analysis by N2 adsorption/desorption measurements was used. In 

particular, the determination of the surface area by nitrogen adsorption-desorption give 

more information than the most commonly used mercury intrusion porosity (MIP) because 

greater range of porosity (from micro to macro porosity) can be studied [20–22].  
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On the other hand, studies about the adhesion were carried out by fractographic analysis 

using scanning electron microscopy (SEM) and laser and optical profilometry trying to 

understand the interaction existing between the fibers and matrix so as the failure 

mechanism. Besides, the evaluation of the fiber surface roughness at nanoscopic scale by 

atomic force microscopy (AFM) was also used to interpret fiber-matrix adhesion in terms 

of a mechanical join. 

 

6.2. Experimental 

6.2.1. Materials  

In this study, the binder used to prepare mortar samples was a Portland cement PII/A-L 

42.5 R according to European Standard EN-197 [23]. It was provided by Cementos 

Portland Valderrivas (Madrid, Spain). As aggregate, a siliceous sand, with a grain size 

between 0.2-0.5 mm, provided by Arenas Silíceas Gómez Vallejo (Segovia, Spain) was 

used. Basalt continuous filament (mean diameter 17 μm) chopped to a length of about 6.4 

mm with a sizing compatible with cement matrix was supplied by Incothelogy GmbH. A 

chlorhydric acid aqueous solution (37% wt), Sharlab, and two silanes, γ-

aminopropiltriethoxysilane (APTES) and γ-aminopropilmethyldiethoxysilane (APDES), 

supplied by ABCR GmbH & Co.KG, were used to prepare pre-treated and silane coated 

basalt fibers. 

A commercial silicone (Silastic 3481 Base +Curing Agent S81, Feroca, S.A.) was used to 

prepare the molds for the mortar samples. 

 

6.2.2. Samples Preparation 

Mortar samples were prepared with a binder/aggregate ratio of 1:2. Distilled and deionized 

water was used in a water/binder ratio of 0.45. To obtain the composites, as-received or 

modified basalt fibers were added to the reactive mixture at 1% by weight. The methods 

used to modify basalt fibers are described in Chapter 4.  

To ensure the effectiveness of the surface treatments given to the fibers their incorporation 

to the reactive mixture, the structure of the coatings was checked by Fourier transformed 

infrared spectroscopy, FT-IR. 
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The standard UNI EN 196-1:2005 [24] was used as a guide for the preparation of mortar 

samples. The mixing was done in a standard mixer (IIC S.A., Amasadora Automàtica 

Multinorma). The process started mixing the cement and water for 30 s at low agitation 

speed. After that, the aggregate was added, blending the system for 30 s at high speed 

(when fibers are added, firstly they must be manually mixed with the aggregate to ensure a 

better dispersion in the cement paste). Then, the mixer stops for 90 s to subsequently 

continue rotating for other 60 s.  

Finally, fresh mixtures were cast in 20 × 20 × 80 mm silicon molds (Figure 3). Molds were 

half filled and compacted to avoid voids formation. Afterward, a second layer of mixture 

was poured, and the sample was compacted again. 

 

Samples were cured and tested according to the standard UNI EN 1015-11:2007 [25]. 

Specimens are prepared by subjecting the mixture at temperature 25 ºC and RH 95±5% for 

7 days in the polyethylene bags (Fig.4b) and finally, they were stored in a climatic 

chamber for 21 days at 25 °C and RH 65±5% (Fig.4c) before performing the mechanical 

tests. Therefore, the specimens were tested 28 days after their preparation and immediately 

after they have been removed from the curing conditions as the UNI EN 1015-11:2007 

states. 

 

In the Table 1 are gathered the samples codes and the components of the corresponding 

mixtures (six specimens were prepared for each mixture). 

 

Table 1. Sample codes of the cement-based mortars prepared and components of the mixtures. 

Code Components of Mixtures 

REF CEM cement + sand  

ASR + CEM cement + sand + as-received basalt fibers 

CAL + CEM cement + sand + calcinated basalt fibers 

ACT + CEM cement + sand + activated basalt fibers 

APT + CEM cement + sand + silanized APTES basalt fibers 

APD + CEM cement + sand + silanized APDES basalt fibers 

APTAPD + CEM cement + sand + silanized APTES+APDES basalt fibers 
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Figure 3. 20×20×80 mm silicon molds. 

 

 

Figure 4. Mixing (a) and curing (b-c) of cement-based mortar samples. 

 

6.2.3. Instrumental Techniques  

6.2.3.1. Mechanical Tests 

Mechanical tests were performed according to standard UNI EN 1015-11:2007 using a 

MICROTEST EM2/200/FR (Madrid, Spain) universal testing machine. Three-point 

flexural tests and compressive tests were carried out on six specimens for each type of 

sample.   

 

For three-point flexural test a 5 kN load cell was used. The support span was set at 50 mm 

and the load was applied with a rate of 2 mm/min. Cubic portions (20×20×20 mm) of each 

specimen resulting from the fractured specimens were mechanical tested by compression 

using a 20 kN load cell and applying the load at rate of 2 mm/min. 

 

Finally, the flexural and compressive strength data were statistically treated using Weibull 

distribution that is one of the most widely used distributions functions to describe the 

fracture strength of ceramics [26,27].  
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The statistical theory of brittle fracture proposed by Weibull is represented by the equation 

(1): 

 

 𝑃𝑓 = 1 −  𝑒
[−(

𝜎

𝜎0
)

𝑚
]
       (1) 

 

where Pf  is the probability of failure of the material, σ is the strength applied on the 

material, σ0 is the scale parameter or the characteristic strength for which the Pf  is 63.2% 

(it is analogous to the median strength) and m is the shape parameter or Weibull modulus 

or a measure of the data scatter (the higher this value, the narrower the distribution). 

 

The parameter m and σ0 are calculated from the linear regression of Eq. (1) when linearized 

by means of logarithms: 

 

ln ln [
1

(1−𝑃𝑓)
] = 𝑚𝑙𝑛(𝜎) − 𝑚𝑙𝑛(𝜎0)     (2) 

 

where 𝑃𝑓 is: 

 

𝑃𝑓 =  
(𝑖−0.5)

𝑛
       (3) 

 

where i is the i-th datum and n is the total number of data points (for this study n=6) [26–

30]. 

 

The way of obtaining the Weibull strength distribution plots for each group of samples can 

be found in Appendix A. 

 

6.2.3.2. BET-BJH Textural Analysis 

To evaluate mortar microstructural changes due to the presence of the fibers in the matrix 

so as their surface treatments, BET-BJH analysis by N2 adsorption/desorption 

measurements was carried out. In particular, the specific surface area was calculated 

according to Brunauer–Emmett–Teller (BET) multipoint method while the total pore 
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volume and the pore size distribution were determined from the adsorption curve by the 

Gurvitsch rule and the Barret–Joyner–Halenda (BJH) method respectively [31–33]. 

 

In this study BET-BJH textural analysis were carried out by N2 adsorption/desorption 

measurements at the liquid nitrogen temperature (-196 °C) using a 3-Flex 3500 analyzer 

(Micromeritics, Norcross, GA, USA). The analysis was performed on small pieces arisen 

from the samples previously three-point flexural tested. Only one representative sample for 

each batch was investigated. Before performing the analysis, the samples were vacuum 

dried at 110 °C for 3 h to remove from the pores water and other adsorbed contaminants. 

 

6.2.3.3. Scanning Electron Microscopy (SEM) 

To investigate the interaction between as-received and modified fibers with cement matrix, 

the fracture surfaces of specimens were inspected by scanning electron microscopy using a 

TENEO field emission scanning electron microscope, FESEM (FEI). The acceleration 

voltage was 4.0 kV and 5.0 kV and the T1 detector was used taking the signal coming from 

backscattered electrons. As the samples are not conductive, prior to examination, they were 

sputter coated with gold using a low vacuum coater Leica EM ACE200. Before SEM 

inspections, samples were vacuum dried at 40 °C for 48h. SEM images were collected at 

different magnifications to obtain information about the dispersion of the fibers in the 

matrix (120×), the adhesion of the matrix to the fiber surface and to study the fiber-matrix 

interface (2000× and 3500×). SEM observations were carried out on small regions of only 

one of the facture surfaces of the specimens taking a representative one according 

mechanical tests results.  

 

6.2.3.4. Surface Profilometry Measurements 

Another fractographic analysis of the of composite materials was carried out by laser and 

optical profilometry. In principle, these two methods should give fracture mechanism 

information at different scale.  

 

 Laser Profilometry 

Laser profilometry was carried out using a Talyscan 150 (Taylor-Hobson) instrument. 

The 3D surface profile and the corresponding surface parameters (Pa and Pq) of the 
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composite materials were evaluated. Pa and Pq, primary profile parameters, were 

chosen to know the whole heterogeneity and irregularities of the fractured surfaces 

(e.g voids due to the pull-out of the fibers, cracks, height differences on fracture 

relief).  

The surface inspection was carried out on only one surface of fracture of the 

specimens. Three surfaces for each sample were analyzed in order to obtain averaged 

data. An area of about 20 mm × 20 mm was scanned at 2500 µm/s taking horizontal 

profiles each 5 µm and vertical profiles each 20 µm. 

 

 Optical Profilometry 

Optical profilometry was performed using an OLYMPUS DSX 500 instrument. Only 

one surface of fracture of each specimen was inspected. Three surfaces for each 

sample were analyzed in order to obtain averaged data. The investigated area (1994 

µm × 1994 µm) was chosen in five different regions of each fractured surface (one in 

the center and four near the corners as it is shown in Figure 5 a). 

Pa and Pq parameters were also obtained to evaluate heterogeneities and irregularities 

at higher magnification (10× magnification). Ten profiles were taken from each of the 

five areas (five vertical and five horizontal, Figure 5 b). 

 

 

Figure 5. Inspected regions by optical profilometry a) and profiles taken b) to carry out the surface 

analysis. 

 

6.2.3.5. Atomic Force Microscopy (AFM) 

An evaluation of the roughness of as-received and modified fibers surface was performed 

by atomic force microscopy, AFM, using a microscope Multi-Mode Nanoscope IVA 
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(Digital Instruments/Veeco Metrology Group). The measurements were conducted at 

ambient conditions in tapping mode with antimony doped silicon probe (k = 1-5 N/m). The 

frequency was adjusted to the resonant frequency of the probe close to the surface of the 

sample to be analysed. The initial amplitude of the probe oscillation and set-point 

amplitude applied for imaging were chosen to maximize the image contrast among the 

different constituents of the samples. 

 

Ra and Rq roughness parameters were obtained to study the topography at nanoscale. Due 

to the heterogeneity of the fiber surface, the roughness was calculated in several 

representative regions of the fiber surface: in smooth areas and in the areas with a high 

amount of sizing (Figure 6). The red squares show the representative areas where 

roughness measurements were done. A 2nd order flatten1 was used before estimate surface 

roughness parameters. 

 

Figure 6. AFM Height Image of as-received basalt fibers. 

 

6.3.  Results and Discussion 

6.3.1. Mechanical Tests 

 Three-point flexural strength test 

Figures (7-11) show the stress-strain curves and representative images of fractured 

specimens of each group of tested samples. The curves were modified since the original 

                                                 

 

 

 

1 The flatten is a filter useful prior to roughness analysis. It eliminates unwanted features from scan lines (e.g. 

noise, bow and tilt) from the image. Each line is fit individually to center data (0th order) and remove tilt (1st 

order), or (2nd or 3rd) order bow.  



CHAPTER 6. INTERACTIONS BETWEEN BASALT FIBERS AND CEMENT MATRIX 

Chap.6-123  

curves displayed some artifacts arising from the testing machine (the method employed to 

modify curves is described in the Appendix B). 

 

 

Figure 7. Stress-strain curves and representative images of fractured specimens of REF CEM 

samples. 

 

 

 

Figure 8. Stress-strain curves and representative images of the fractured specimens of the 

ASR+CEM samples. 

 

 

 

Figure 9. Stress-strain curves and representative images of the fractured specimens of the 

CAL+CEM samples. 
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Figure 10. Stress-strain curves and representative images of the fractured specimens of the 

ACT+CEM samples. 

 

 

 

Figure 11. Stress-strain curves and representative images of fractured specimens of the APT+CEM 

samples. 

 

 

 

Figure 12. Stress-strain curves and representative images of fractured specimens of the 

APD+CEM samples. 
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Figure 13. Stress-strain curves and representative images of fractured specimens of the 

APTAPD+CEM samples. 

 

 

Considering the fracture behavior of the samples tested (Fig. 7-13), for the neat mortar 

more homogeneous fracture is observed leading to complete separation between the two 

pieces resulting from the fracture. On the other hand, the region of fracture for the samples 

reinforced with the fibers point out more tortuous crack development and the pieces 

resulting from the tests after the corresponding fracture, are not completely separated each 

other.  

However, flexural strength plots suggest that specimens containing fibers failed in the 

same brittle manner as the neat mortar (REF CEM). Only slight differences are observed 

for samples containing modified fibers (Fig.9-13). 

 

In order to study possible changes between each group of samples, a deeper analysis of the 

three-point flexural test data was done. For instance, the flexural strength (σf) values 

obtained for each batch were discussed according Weibull distribution (when necessary 

and after applying the Grubbs method [34] some datum was not considered for the 

statistical analysis). In the Figure 14 the Weibull probability plots for the flexural strength 

for all the samples studied are shown. 
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Figure 14. Weibull probability plots for the flexural strength of every sample under study: a) REF 

CEM, b) ASR+CEM, c) CAL+CEM, d) ACT+CEM, e) APT+CEM, f) APD+CEM and g) 

APTAPD+CEM. 

 

The statistical properties of the averaged flexural strength values for the different 

composites applying Weibull statistics are summarized in the Table 2. 

 

Table 2. Parameters obtained after the Weibull fitting of the data obtained from the three-point 

flexural tests. 

 

Considering the low number of data (n = 6) used to carry out Weibull analysis, a quite 

good linear relationships between lnln [1/(1−P)] and lnσ, in the most of cases are observed. 

Samples Averaged 

Flexural Strength,  

σf (MPa)  

Weibull 

Characteristic 

Strength,  

σ0 (MPa) 

Weibull 

Modulus, 

 m 

Correlation,  

(r) 

REF CEM 5.8 ± 0.9 6.4 6.1 0.80 

ASR+CEM 7.5 ± 0.3 7.6 28.7 0.97 

CAL CEM 6.8 ± 0.9 7.1 9.0 0.97 

ACT+CEM 7.3 ± 1.1 8.0 7.5 0.76 

APT+CEM 7.2 ± 1.1 7.6 7.7 0.87 

APD+CEM 6.0 ± 0.8 6.3 8.1 0.96 

APTAPD+CEM 7.9 ± 0.9 8.3 10.8 0.91 
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Therefore, it can be considered that the σf values obtained are statistically significant and 

the Weibull distribution fit is reliable. Poorer fits observed might be ascribed to the 

presence of pores and microcracks with various orientations. Besides, the Weibull moduli 

obtained are within the range of values found for other similar ceramic materials [29]. On 

the other hand, it is important to remember that a high Weibull modulus is associated to 

narrow strength distributions. This is usually desirable, because a material with high 

Weibull modulus is more predictable in terms of its mechanical failure, being less likely to 

break at a stress much lower than a mean value. Moreover, the Weibull characteristic 

strength values, σ0, obtained are comparable to the mean flexural strength values obtained 

experimentally for each sample.  

 

Toughness (in terms of fracture energy) was evaluated by integrating the total area under 

the flexural stress-strain curve to evaluate a possible effect of the fibers. In this work, the 

post-cracking behavior was also considered for the toughness determination. Moreover, the 

flexural modulus, E (calculated considering the elastic part of the curve, Equation (3) of 

the Chapter 3) and the elongation at break, ε (deflection at the maximum stress) were 

determined in order to have an idea of the rigidity and brittleness of the materials 

respectively. 

 

Averaged values of the results obtained for each sample are given in the Table 3 and 

plotted in Fig. 15.  

  

Table 3. Flexural parameters of the studied cement-based mortar samples. 

 

 

Samples Flexural 

Strength, 

σf (MPa) 

Flexural 

Modulus, 

E (MPa) 

Toughness 

(MPa) 

 

Elongation at 

Break, 

ε (%) 

REF CEM 5.8 ± 0.9 180 ± 45 1041 ± 456 3.7 ± 0.9 

ASR+CEM 7.5 ± 0.3 257 ± 20 1210 ± 150 3.1 ± 0.3 

CAL CEM 6.8 ± 0.9 252 ± 54 997 ± 294 3 ± 0.6 

ACT+CEM 7.3 ± 1.1 206 ± 50 1535 ± 542 4 ± 0.9 

APT+CEM 7.2 ± 1.1 263 ± 82 1224 ± 503 3 ± 1.4 

APD+CEM 6.0 ± 0.8 222 ± 59 1066 ± 239 2.7 ± 0.7 

APTAPD+CEM 7.9 ± 0.9 228 ± 34 1592 ± 487 3.8 ± 0.8 
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Figure 15. Comparison of flexural behavior from the values of different parameters for all the 

samples under study. 

 

It can be observed that the standard deviation obtained in every parameter for this type of 

materials is in general very high. However, it seems that there is a tendency to increase the 

flexural strength (σf), when fibers are added to the mortar. The APD+CEM sample shows a 

flexural strength value similar to that obtained for the neat mortar while, the samples 

containing as-received, activated and silanized with APTES or the mixture 

APTES+APDES basalt fibers present the highest values of σf. Here again it is confirmed 

that a surface treatment seems to be responsible of a better adhesion with the matrix 

enhancing the resistance of the whole material. However, regarding our results only when 

a trifunctional silane is used the mechanical performance is enhanced, being even 

improved if a more opened structure is generated at the interface with the addition of the 

difunctional silane. In fact, the APTAPD+CEM sample showed a highest value of the 

flexural strength. 

 

APTAPD+CEM and ACT+CEM samples showed the highest flexural toughness values. In 

these cases, higher toughness is related to higher resistance to crack propagation. Probably, 

in the case of ACT+CEM and APTAPD+CEM samples, the presence of high number of 
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OH groups and/or easier accessibility to those OH on the fibers, might be responsible of 

better interaction with the cement matrix preventing fiber sliding respect to the matrix 

during mechanical test and even after material facture has occurred. For the other samples, 

the toughness values are not significantly different than the neat mortar. 

 

Considering the flexural modulus, E, it can be said that it increases when adding fibers to 

the cement matrix, which it has sense taking into account the higher modulus of the basalt 

fibers respect to the cement matrix.  

 

On the other hand, considering the values of elongation at break, ε one could conclude that 

the samples APTAPD+CEM and ACT+CEM are less brittle than the others pointing out 

another possible contribution to their higher toughness.  

 

As a main conclusion extracted from the flexural results it seems that a better compatibility 

(in terms of adhesion) exists between the APTES+APDES basalt fibers and the cement 

matrix.  

 

 

 Compressive strength test 

The stress-strain curves corresponding to the compressive tests for all the samples under 

study are shown in Figure 16. As previously described for the three-point flexural strength 

tests plots, in this case, a modification of the original curves was carried out using the data 

treatment described in appendix B. 
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Figure 16. Stress-strain curves for all the samples under study: a) REF CEM, b) ASR+CEM, c) 

CAL+CEM, d) ACT+CEM, e) APT+CEM, f) APD+CEM and g) APTAPD+CEM. 

 

Here, Weibull statistical analysis was also performed. The Weibull probability plots for the 

compressive strength results are given in the Figure 17 and the corresponding statistical 

properties are summarized in the Table 4. 
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Figure 17. Weibull probability plots for the compressive strength of every sample under study: a) 

REF CEM, b) ASR+CEM, c) CAL+CEM, d) ACT+CEM, e) APT+CEM, f) APD+CEM and g) 

APTAPD+CEM. 

 

Table 4. Parameters obtained after the Weibull fitting of the compressive strength tests data. 

 

As in the case flexural strength results, a good linear fit was also observed for the 

compressive strength results. Consequently, the compressive strength experimental data 

can be also described with the Weibull distribution function, being the compressive 

strength values statistically significant. 

 

Samples Averaged 

Compressive 

Strength, σc 

(MPa)  

Weibull 

characteristic 

strength, σ0 

(MPa) 

Weibull 

modulus,  

m 

Correlation 

 (r) 

REF CEM 29.1 ± 3.0 30.6 10.2 0.80 

ASR+CEM 23.4 ± 3.5 25.2 7.3 0.94 

CAL+CEM 30.6 ± 5.4 33.4 6.0 0.94 

ACT+CEM 36.6 ± 7.8 40.4 5.2 0.99 

APT+CEM 31.9 ± 5.9 35.0 5.8 0.85 

APD+CEM 26.6 ± 6.6 29.5 4.4 0.94 

APTAPD+CEM 31.9 ± 6.6 34.7 5.2 0.91 
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The Weibull compressive modulus values are slightly lower compared to the values of 

Weibull modulus obtained from the flexural strength tests. In general, an increase in the 

Weibull modulus is related to a decrease in the standard deviation or data dispersion [29]. 

For the compressive strength values, higher dispersions were observed; however, taking 

into account the values of the averaged compressive strength, compressive experiments 

seem to be subjected to a similar relative error than flexural experiments (Table 4). 

 

To better understand the compressive behavior of the studied mortars, other important 

mechanical parameters were considered as well.  

Compressive strength, c, Modulus, E, toughness and elongation at break, , were 

estimated from maximum compressive stress, the slope of the elastic part of the stress-

strain curves, the area below the compressive curves until the maximum compressive 

strength value and the specimens deformation at break (deflection at the maximum stress), 

respectively.  

 

The results are summarized in Table 5 and the corresponding trends are shown in Figure 

18. 

 

Table 5. Compressive behavior of the cement-based mortar samples studied. 

 

 

Samples Compressive 

Strength, 

σc (MPa) 

Compressive 

Modulus, 

E (MPa) 

Toughness 

(MPa) 

 

Elongation 

at Break, 

ε (%) 

REF CEM 29.1 ± 3.0 1062 ± 216 5683 ± 1902 3.4 ± 0.5 

ASR+CEM 23.4 ± 3.5 1091 ± 306 3420 ± 769 2.9 ± 0.6 

CAL CEM 30.6 ± 5.4 1482 ± 495 3885 ± 617 2.6 ± 0.5 

ACT+CEM 36.6 ± 7.8 1755 ± 432 4822 ± 971 2.7 ± 0.6 

APT+CEM 31.9 ± 5.9 1308 ± 361 4852 ± 954 3.1 ± 0.6 

APD+CEM 26.6 ± 6.6 1500 ± 436 2985 ± 650 2.2 ± 0.3 

APTAPD+CEM 31.9 ± 6.6 1445 ± 285 4407 ± 801 2.8 ± 0.4 
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Figure 18. Comparison of compressive behavior from the values of different parameters for all the 

samples under study. 

 

In the case of the compressive strength, it is observed how slightly higher values were 

obtained for samples containing activated (ACT+CEM) and silanized APTES 

(APT+CEM) and APTES+APDES (APTAPD+CEM) basalt fibers. In terms of strength 

these results are in accordance with those obtained from the flexural tests. Here again it 

might be said that the higher accessibility to the OH groups generated by the activation 

process seems to induce a better compatibility with the cement matrix.  

 

Considering the trend of the other mechanical parameters it can be said that, the 

compressive modulus, E, increases for all samples containing fibers, except when 

commercial fibers are used, respect to REF CEM, and the elongation at break, ε, decreases. 

This result is in accordance with the consideration of an increase in the modulus of any 

material when another with higher modulus is added.  

 

The unexpected value of the modulus when as-received fibers (ASR+CEM sample) are 

used might be due to a different disposition of the fibers when they are mixed with the 

cement reactive components. The sizing of the commercial basalt fibers makes them very 
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flexible which might cause their collapse in the form of random coil that could not confer 

the opportune resistance in terms of rigidity to the whole material. On the contrary, the 

surface treatments proposed in this work make the fibers less flexible. This could suggest 

that when they are mixed with the components of the mortars, they remain in their more 

extended form, being more separated each other and consequently leading to more 

effective reinforcement.  

A representation of the explanation of this different behavior between commercial fibers 

and treated fibers is done in Figure 19.  

 

 

Figure 19. As-received a) and aminosilanes treated b) basalt fibers after stirring with water and 

expected compressive behavior. 

 

In addition to the above discussed, it should be pointed out that in general the sample 

containing as-received fibers (ASR+CEM) shows slightly lower values than the neat 

mortar. These results are in accordance with other studies, showing that commercial fibers 

does not increase significantly the compressive strength [16,17]. 

 

On the other hand, in general, toughness decreases for all samples with fibers respect to the 

neat mortar (REF CEM). 
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Here, it is expected to be less effective the reinforcement due to the load transmission form 

the matrix to the fibers and therefore only the small contribution due to the modulus 

increase associated to the incorporation of fibers should account. 

 

6.3.2. BET-BJH Textural Analysis 

According to IUPAC, pores can be classified as micro-pores (≤ 20 Å), meso-pores (20–500 

Å), macro-pores (> 500 Å) [35]. Pores studied at different scales give different 

information. Indeed, in a cement paste, usually capillary pores (larger than 100 Å) and gel 

pores (smaller than 100 Å) are present. The first ones mostly influence the strength and 

permeability while gel pores influence the shrinkage phenomena and creep [36,37]. In this 

work, the investigation of pores by BET analysis is mainly focused on mesopores since 

they, among others, determine the durability of the whole material [38]. 

 

Fig. 20 shows the N2 adsorption-desorption isotherms for all the samples prepared. 

According to the IUPAC classification (see section 3.2.3 of Chapter 3) the adsorption 

curves obtained could be classified as Type IV with an hysteresis loop that is usually 

associated with the filling and emptying of the mesopores by capillary condensation [39]. 

Furthermore, the shape of the hysteresis loops can be assigned to the Type H3, that refers 

to aggregates of plate-like particles giving rise to slit-shaped pores  [35,39]. 

 

Mikhail et al. [40] refers that tobermorite gel (C-S-H), which is largely responsible for the 

pore structure of the hardened cement paste, consists of very thin sheets that may well 

produce plate-like or slit-shaped pores. Regarding to this, even though the pore distribution 

calculated by BJH method refers to a pore system with cylindrical pore, the validity of a 

pore analysis can be extended also to solid materials containing different pore shapes. 
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Figure 20. Nitrogen adsorption-desorption isotherms of cement-based mortars. 

 

Starting from the adsorption curves, specific surface area (SA) and pore volume values 

were obtained. The results are shown in the Table 6. The standard deviation obtained in 

every case was smaller than the instrumental error, therefore, the standard deviation 

assigned to SA (BET) values was the instrumental error. 

 

Table 6. SA and Pore Volume results of cement-based mortars. 

 

 

 

 

 

 

 

 

The REF CEM sample showed a  pore volume value of 0.0391 cm3·g-1 according to the 

value found in bibliography [16]. Considering the obtained values, except for the sample 

APT+CEM, there is a decrease in the SA (BET) results for the fiber-reinforced materials 

and as a consequence, in general it seems that the presence of fibers induces a decrease in 

the total pore volume of the materials under consideration except for APT+CEM and 

APTAPD+CEM samples 
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REF CEM 14.7  0.5 0.0391 

ASR+CEM 10.1  0.5 0.0296 

CAL+CEM 6.6  0.5 0.0260 

ACT CEM 9.7  0.5 0.0295 

APT+CEM 19.1  0.5 0.0493 

APD+CEM 10.6  0.5 0.0303 

APTAPD+CEM 14.1  0.5 0.0464 
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On the other hand, an estimation of the distributions of pore diameters of the samples 

analyzed was carried out which results are represented in the Figure 21. 

 

 

Figure 21. Pore diameter distributions of cement-based mortars. 

 

The samples are characterized by similar porous structure with substantial presence of 

mesopores (with a diameter between 20-500 Å) and macropores (with a diameter greater 

than 500 Å). Regardless the sample, the pores distribution curves show maxima at around 

20 Å. 

  

Considering the micro-mesopores range (~17-500 Å), a decrease in the amount of pores is 

observed for the samples with fibers except in the case APT-CEM, being in accordance 

with the results shown in Table 6. The decrease of the number of pores is quite modest 

until 200 Å for the sample realized with silanized APTES+APDES basalt fibers 

(APTAPD+CEM sample) compared to the REF CEM. On the contrary, starting from about 

200 Å in diameter, higher pore amounts are observed. 

 

When the range of macrospores (500-2000 Å) is considered, an increase of porosity is 

observed (see inset of Figure 21) for the samples with fibers silanized with APTES 
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(APTAPD+CEM and APT+CEM). Finally, if the whole range of pore sizes is considered, 

it is observed that the porosity shows the following trend for the materials reinforced with 

silanized fibers: APTES > APTES + APDES > APDES. This trend suggests that the higher 

the crosslinking degree of the fiber coating the higher the porosity in the whole composite 

material. 

 

Several studies referred that the presence of fibers in cement increased the porosity of the 

materials in terms of large pores. Jiang et al. [16] studied the microstructure of chopped 

basalt fiber-reinforced concrete by MIP analysis showing an increase in the porosity for the 

samples prepared with fibers. According to our results, it is clear therefore that it is not 

only important the presence of fibers but also the nature of their surfaces. Variations in the 

total pore volume of cement-based materials depending on the surface treatment of the 

fibers used as reinforcement were observed (Table 6 and Figure 21). However, slight 

differences were actually found in the results, therefore, the presence of fibers so as their 

surface treatments do not seem to change significantly the meso and micro structure of the 

neat mortar. 

 

In order to show the reproducibility of the porosity measurements, the analysis was 

performed on two different specimens arising from the same mixture (APTAPD + CEM). 

The results obtained (Fig.22) are indicative of the goodness of the measurements and, in 

addition, of sample preparation. 

 

 

Figure 22. Nitrogen adsorption-desorption isotherms. 
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6.3.3. Fractographic Analysis  

6.3.3.1. Scanning Electron Microscopy (SEM) 

Fracture surfaces were observed by scanning electron microscopy to study the failure 

mechanism of the composites when they are subjected to the three-point flexural strength 

tests.  

 

 

Figure 23. SEM images for all fiber reinforced mortar samples at 120× magnification. 

 

In Figure 23 the fracture surfaces of the fiber reinforced mortar samples at 120× 

magnification are showed. From these SEM images, information about the dispersion of 

the fiber in the matrix is obtained. A heterogeneous dispersion of the fibers in the matrix 

and evidences of pull-out phenomena are observed for all samples.  

The chopped fibers are mixed with the reactive components of the mortar in the form of 

bundles. It seems therefore that the process of mixing did not allow separating the fibers 

each other in the bundle leading to the corresponding not uniform dispersion within the 

cement matrix. 
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Figure 24. SEM images for all fiber reinforced mortar samples at 2000× magnification. 

 

 

Figure 25. SEM images for all fiber reinforced mortar samples at 3500× magnification. 

 

The SEM image at 2000× and 3500× of magnification (Figures 24 and 25) provided 

information about the type of failure at the fiber-matrix interface. When using as-received 

fibers and calcinated fibers (Figures 24 a and b, figures 25 a and b) smooth fibers surfaces 

can be observed in general indicating an adhesive failure at the interface. However, when 

activated or silanized fibers were used part of the cement matrix remained adhered to the 
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fibers surfaces which suggests a higher contribution of cohesive matrix failure. These 

results point out that silanized fibers or simply activated fibers enhance adhesion between 

the reinforcement and the matrix as expected attending the mechanical behavior already 

discussed. In fact, the samples, which present more cementitious material remaining on the 

fibers after the failure, are ACT+CEM and APTAPD+CEM also present the highest 

mechanical properties in terms of mechanical strength and toughness. 

 

6.3.3.2. Surface Profilometry Measurements 

 Laser Profilometry 

To better understand the failure mechanism in the neat and fiber-reinforced cement-based 

mortars, 3D topographic images and the corresponding surface parameters (Pa and Pq) were 

evaluated. With this technique, information at a higher scale than that given by the SEM 

was obtained. Fractographic analysis was performed on the fracture surface of the 

materials resulting from the three-point flexural tests. A representative 3D topographic 

image for each sample is shown in Figure 26. In addition, linear profiles were extracted 

from the surfaces recorded. As an example, in Figure 27 the linear profile extracted from 

the fracture surface of the REF CEM sample is shown (blue line represents the mean 

profile). 

 

The mean values of the profile parameters Pa and Pq for each sample are gathered in Table 

7 and the corresponding trends are shown in Figure 28. 
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Figure 26. Representative 3D topographic images of fracture surfaces of the cement-based mortars 

under study. 
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3D profile images (Fig.26) point out that the RER CEM sample shows a smoother fracture 

surface than the other samples with fibers. Indeed, more tortuous fracture surfaces are 

evident for the mortars containing fibers. Studies about the influence of aggregates size 

indicate that, in general,  tortuous fracture surfaces denote a less brittle behavior in 

concrete and mortars [41]. Consequently, and being in accordance with the mechanical 

studies, the results obtained point out that the presence of the fibers should lead to less 

brittle behavior since more topographic heterogeneity was obtained.  

 

 

Figure 27. Example of linear profile extracted from a 3D image of a fracture surface of the REF 

CEM sample. 

 

 
Table 7. Profile parameters obtained by laser profilometry. 

 

 

 

 

 

 

 

 Pa 

(µm) 

Pq 

(µm) 

REF CEM 556 ± 233 643 ± 251 

ASR+CEM 942 ± 316 1108 ± 345 

CAL+CEM 613 ± 145 736 ± 162 

ACT+CEM 868 ± 393 1052 ± 540 

APT+CEM 678 ± 416 864 ± 396 

APD+CEM 1180 ± 354 1376 ± 426 

APTAPD+CEM 817 ± 386 956 ± 452 
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Figure 28. Pa (µm) and Pq (µm) profile parameters trend by laser profilometry for cement-based 

mortars. 

 

On the other hand, Pa and Pq increase for the fiber reinforced samples compared to the neat 

sample. Considering the high standard deviation obtained due to the great heterogeneity of 

these materials in terms of defects, only qualitative consideration can be made. The 

presence of the fibers and the nature of their surface seems to slightly affect the interface 

adhesion and the meso and microstructure of the matrix and, as a consequence, the fracture 

mechanism that will be reflected in the final fracture surface of the whole materials. 

  

 Optical Profilometry 

In order to evaluate possible change on the failure mechanism at higher magnification, 3D 

profile images and the primary profile parameters (Pa and Pq) were collected by optical 

profilometry. 

 

As an example, representative 3D images of all groups of investigated samples is shown in 

the Figure 29.  
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Figure 29. Representative 3D topographic images of fracture surfaces of the cement-based mortars 

under study. 
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In this case, the topographic characteristics (such as the presence of pores) of the fracture 

surfaces are more pronounced than the 3D profile images obtained with Laser 

Profilometry. However, the differences in surface irregularities between neat and 

reinforced samples are more clearly observed when lager regions of observations are taken 

into account as it happens using laser profilometer which allows inspecting the whole 

fracture surface of the speciments. The average of the profile parameters is given in Table 

8 and plotted in Fig. 30. 

 

Table 8. Profile parameters obtained by optical profilometry. 

 

 

 

 

 

 

 

 

 

Figure 30. Pa (µm) e Pq (µm) profile parameters obtained by optical profilometry as a function of 

type of sample. 

 

Results given in Table 8 and Figure 30 show similar tendencies to those obtained by laser 

profilometry. In fact, again, there was an increase in the Pa and Pq values for all the fiber 

reinforced mortar samples respect to the reference material. On the other hand, in general, 

the trends observed for the samples containing fibers with different surface treatment was 

the same to that observed in Figure 28. 

 Pa 

(µm) 

Pq 

(µm) 

REF CEM 56 ± 11  68 ± 13 

ASR+CEM 74 ± 15  89 ± 17 

CAL+CEM 76 ± 22  92 ± 26 

ACT+CEM 70 ± 13  84 ± 15 

APT+CEM 64± 16  77 ± 18 

APD+CEM 72 ± 16  87 ± 20 

APTAPD+CEM 61 ± 12  74± 13 
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6.3.4. Atomic Force Microscopy (AFM) 

AFM characterization of the as-received and modified fibers surfaces was done. An 

estimation of surface roughness at nanoscopic scale is interesting to evaluate possible 

influences on the final interactions with the matrix. From AFM topographic images, the 

roughness parameters Ra and Rq of each kind of fiber were extracted (Table 9 and Figure 

31).  

 

Table 9. Roughness parameters (Ra and Rq) obtained for as-received and modified basalt fibers. 

 

 

 

 

 

 

 

 

Figure 31. Roughness parameters as a function of the type of fibers (as-received and 

modified basalt fibers). 

 

Observing the results and the high standard deviations obtained, only a few qualitative 

considerations can be taken into account. It is observed a decrease in Ra and Rq from the 

as-received fibers the calcinated and activated ones. When commercial sizing is removed 

by the calcination process and subsequent activation process (calcinated fibers subjected to 

an acid process for hydroxyl regeneration) smoother surfaces were obtained. On the other 

hand, when aminosilane are applied on the fibers surfaces an increase in Ra and Rq is 

shown. The highest values of the roughness parameters obtained for APTES coating is due 

 Ra 

(nm) 

Rq 

(nm) 

AS-RECEIVED 2.2 ± 1.0 2.7 ± 1.0 

CALCINATED 1.7 ± 0.7 2.3 ± 1.0 

ACTIVATED 1.1 ± 0.7 2.1 ± 1.7 

APTES 2.4 ± 1.3 3.2 ± 1.7 

APDES 2.1 ± 0.2 2.6 ± 0.3 

APTES+APDES 2 ± 1.5 2.7 ± 2.1 
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to the high amount of organic matter deposited on the fibers surfaces. These results are in 

accordance with morphologic and topographic observations carried out by SEM and AFM 

(Chapter 4). The higher surface roughness observed for fibers treated with the trifunctional 

silane might contribute to improve the adhesion between the fiber and the matrix. 

However, in this sense there is not any correspondence with SEM fractographic analysis 

nor the mechanical behavior of the samples. Therefore, the roughness differences at 

nanoscale of the surfaces of the reinforcement do not seem to influence the final adhesion 

and mechanical performance of the cement-based composites. 

 

6.4. Conclusions  

The study about interactions and therefore compatibility between as-received and modified 

basalt fibers with cement matrix allows to draw some interesting conclusions. 

 

 The results obtained from mechanical tests shown that the presence of the fibers so 

as their surface treatment is a potential way to improve performance in cement-

based mortars:  

- Results from three-point flexural test suggests that better performance are 

achieved for samples containing activated (ACT+CEM) and APTES+APDES 

basalt fibers (APTAPD+CEM). Probably, the presence of high number of OH 

groups and/or easier accessibility to those OH on the fibers, might be 

responsible of better interaction with the cement matrix. However, as a main 

conclusion extracted from the flexural results it seems that a better 

compatibility exists between the APTES+APDES basalt fibers and cement 

matrix. The latter, in fact, showed a lesser brittle behavior with an increase in 

the flexural strength and toughness values. 

- In the case of compressive behavior, it was observed that, although not relevant 

changes compared to the neat mortar were observed slightly higher compressive 

strength values were obtained for samples containing activated (ACT+CEM) 

and silanized APTES (APT+CEM) and APTES+APDES (APTAPD+CEM) 

basalt fibers. Here again it might be said that the higher accessibility to the OH 

groups generated by the activation process seems to induce a better 

compatibility with the cement matrix. However, here it is expected to be less 

effective the reinforcement due to the load transmission form the matrix to the 
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fibers and therefore only a small contribution due to the modulus increase for 

all samples containing fibers (except for ASR+CEM) associated to the 

incorporation of fibers was observed. 

 The small differences in the results obtained by BET-BJH analysis, point out that 

the presence of the fibers and the surface treatments does not significantly change 

the micro and meso structure of the neat mortar. 

 SEM images highlight a more cohesive failure mechanism for the samples 

containing activated (ACT+CEM) and APTES+APDES (APTAPD+CEM) basalt 

fibers. These results point out that silanized fibers or simply activated fibers 

enhance adhesion between the reinforcement and the matrix according to the 

mechanical behavior. 

 Profilometry measurements have demonstrated that a more tortuous fracture 

surfaces are evident for the mortars containing fibers. Consequently, and being in 

accordance with the mechanical studies, the results obtained point out that the 

presence of the fiber confer a less brittle behavior. 

 AFM results shown that the roughness differences at nanoscale of the surfaces of 

the reinforcement do not seem to influence the final adhesion and mechanical 

performance of the cement-based composites. 
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APPENDIX A. Weibull probability plot preparation 

The Weibull strength distribution graphs for each group of samples were prepared as 

follow:  

- The data were ordered from lowest to highest mechanical strength values, . When 

a certain value was repeated several times, it was eliminated and consequently only 

one value it was considered. 

- The natural logarithms of the mechanical strength, ln(σ) were computed.  

- The probability of fracture, Pf, was estimated and assigned to each datum. A 

common way to estimate Pf with low bias when used with linear regression 

analyses is Pf = (i−0.5)/n, where i is the i-th datum and n is the total number of data 

points (for this study n=6). 

- The double natural logarithm of [1/(1−Pf)] was calculated.  

- A graph is prepared by representing lnln[1/(1−Pf)] as a function of ln(σ).  

- The Weibull modulus was obtained from the slope of the straight line arising from 

the linear fit of the later plot. 
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APPENDIX B. Method used to obtain the final stress-strain curves 

In the load-displacement original curves as those shown in the Figure 1 a) it is possible to 

observe some artifacts in the initial part of them arising from certain adjustments of the 

universal testing machine during the tests.   

Therefore, to obtain the real stress-strain curves that finally were used to evaluate the 

parameters use to describe the mechanical behavior of these materials, a simple 

modification of the load-displacement original data was done. 

 

The point considered as the beginning of the elastic part of the curve was estimated by 

extrapolation from a linear regression of the elastic region of the original plots. Therefore, 

in the initial part of the original plots, some intervals of clamps displacement for which 

values of stress remained constant (considered artifacts) were eliminated (Figure 1 b). 

 

 

Figure 1. Load-displacement original curves a) and stress-strain curves b) for cement-based 

mortar sample 
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CHAPTER 7                                                                 
STUDY OF THE INTERACTIONS BETWEEN BASALT FIBERS 

AND NATURAL HYDRAULIC LIME MATRIX 

 

Abstract 

In order to contribute to the development of sustainable materials in the building industry 

and to increase their use for restoration and conservation of Cultural Heritage, fiber-

reinforced natural hydraulic lime-based mortars were prepared. A study on the 

compatibility in terms of interactions between basalt fibers and natural hydraulic lime, 

NHL, is proposed. Different characteristics of the reinforcement surface were studied 

looking for the best interphase respect to the final performance of the composite materials. 

As-received, calcinated, activated and silanized (by three different silane aqueous 

solutions: i)-aminopropyltriethoxysilane, APTES; ii) -aminopropylmethyldiethoxysilane, 

APDES and iii) a mixture APTES+APDES 50 % by weight) basalt fibers were dispersed 

in natural hydraulic lime (NHL 5) matrix. Performances of the resulting composites 

materials were evaluated by mechanical tests (three-point flexural test and compressive 

strength test). The mechanical performances were interpreted taking into account possible 

interactions between the fiber surface characteristics and the matrix that could be 

responsible of microstructural changes in the material. Aimed to study this, porosity 

measurements by BET-BJH textural analysis were carried out. On the other hand, the 

adhesion at the fiber-matrix interface was also studied with a fractographic analysis by 

SEM analysis and laser and optical profilometry.  

The results obtained indicate that the presence of basalt fibers so as a surface treatment can 

improve mechanical performance in natural hydraulic lime-based mortar. In general, 

results from the analysis performed suggest that better behavior is achieved when 

APTES+APDES silanized basalt fibers are dispersed in natural hydraulic lime matrix 

(APTAPD+NHL sample). 
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7.1.  Introduction 

The use of materials non-compatible with the original structures for recovering and 

restoring ancient buildings and monuments represents one of the most risk for the 

preservation of the historic-architectural Cultural Heritage. Indeed, the use of improper 

binders, such as cement-based mortars represents one of the main problems to be faced in 

the restoration field. Although the modern architecture and the most of modern buildings 

could not exist without the presence of Portland cement, is nowadays recognized that it 

should never be used in the restoration of historical-artistic heritage because of its different 

physical, chemical and mechanical properties.  

 

Sometimes cement-based mortars have been used in several restoration interventions 

causing failure and acceleration of damage to the monuments [1–8]. Occasionally, also 

polymer-based materials have been used to restoration interventions showing several 

incompatibilities with ancient materials due to the different behaviours in the 

environmental conditions [9].  

 

In the Figure 1 an example of a restoration intervention is shown where the use of 

improper materials caused a great damage to the ancient structure. Indeed, an ancient 

mosaic of the Roman Villa of Silin (Leptis Magna-Libya) was damaged from the corrosion 

of the metallic bars (indicated by the red arrows) of the reinforced concrete. The latter was 

the material chosen in the 70s to restore the mosaic pavement. The oxidation of the bars 

has caused the detachment of tesserae [10]. 

 

 

Figure 1. Intervention restoration of the mosaic pavement of the Roman Villa of Silin (Lepcis 

Magna- Libya) (photos ISCR-Istituto Superiore per la Conservazione e il Restauro). 
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In addition to the improper use of materials for restoration interventions, climatic 

conditions and catastrophic events (such as floods and earthquakes) could contribute to 

damage ancient masonries and buildings. In the Figure 2, as an example, the historical 

Library of the University of L’Aquila (Italy) damaged for the earthquake can be observed. 

 

 

 

Figure 2. Historical Library of the University of L’Aquila (Italy) damaged for the earthquake 

(photo Prof. F.Bontempi). 

 

During a restoration, the compatibility between the new mortars and the original materials 

is requested and natural hydraulic lime-based mortars are normally used, especially to 

recover plasters.  

 

As discussed in the Chapter 2 (section 2.1.2), hydraulic lime mortars have been used as 

construction materials since ancient times and they characterized the most of building of 

great cultural interest.  

Therefore, this material fulfils the compatibility conditions required in the restoration 

intervention. Among them, i) chemical compatibility, ii) physical compatibility, iii) 

structural and mechanical compatibility [2–4].  

 

Generally, the lime-based mortars are characterized by good breathability due to its high 

porosity and permeability. Usually, mortar permeability is desirable since vapor transport 

have to be maintained in a masonries to avoid salt crystallization (efflorescence and 

subflorescence) and mold [11,12]. In a restoration mortar, moreover, the strength is an 

important parameter to be considered. In fact, usually, masonry structures could be 

subjected to movements arising from creep or thermal effects. Consequently, a mortar 
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should be considerably weaker than original materials for supporting the slight movements 

occurring in the building. Despite, if the restoration mortar is too strong, stress 

development is possible causing failure in the original masonry. In this way, lime-based 

mortars have to show structural and mechanical properties compatible with ancient 

structure [2,4,11,13].  

 

In contrast a cement-based mortar is too hard and rigid and lesser flexible to accommodate 

the building movements. In addition, they are lesser permeable and contains more soluble 

salts, which can be harmful for the historic building. These salts not only produce 

unaesthetic layers owing to efflorescence phenomena on the buildings, but can also 

develop large crystallization pressures, damaging the building materials [1–4,11,14,15]. 

For these reasons cement-based mortars have caused several damages to the ancient 

structures and it is important to avoid their use in the restoration field. 

 

Nevertheless, often cement was used as repair material since lime based-mortars present 

some disadvantages such as: i) slow setting that could delay the restoration works, ii) lower 

strength than cement mortars, iii) take long time to harden and consequently to reach 

strength.  

In fact, in cement, the setting is a consequence of the hydration of calcium silicates, which 

starts quickly owing to the hydration of the C3S and continues more slowly because of the 

hydration of the C2S. The hydration of both compounds gives strength to the mortar 

[2,4,11]. As described in Chapter 2 (section 2.1.2), natural hydraulic lime only contains 

C2S phase with some trace of C3S, therefore its final mechanical properties are lower. 

Another aspect that has increased the use of cement compared to the lime has been the lack 

of studies about the latter in contrast with a largely standardization of cement products 

[1,2,4]. 

 

Currently, the interest in the use of natural hydraulic lime is growing also in the modern 

building industry were the use of eco-friendly materials is rising. In this green approach, 

the natural hydraulic lime is responsible of a reduction of CO2 emission in comparison 

with the common Portland Cement for different reasons: i) lesser energy is required in the 

NHL production process ii) the most of setting and hardening process in NHL occurs for 

carbonation process (section 2.1.2 of Chapter 2). Therefore, considering the life cycle of 
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the lime, most of the CO2 produced during production process is reabsorbed during 

carbonation process [5,11,16–18].  

However, as mentioned above, the main problem of NHL is due to its lower mechanical 

properties than Portland cement. In order to increase their mechanical performances, 

different types of natural and synthetic fibers have been used as reinforcements of lime 

based-mortar [11,19,20]. In addition, the presence of fibers, especially short fibers, could 

contribute to reduce the shrinkage cracking phenomena affecting mortars as for cement 

based-mortars (see section 6.1 of chapter 6). The presence of short fibers is limiting crack 

opening and distributing the stress to the nearby matrix, moreover, they are able to 

suppress strain localization and to prevent therefore microcracks from developing into 

macrocracks [5,21]. 

 

However, studies focused on the study of fibers reinforced natural hydraulic lime-based 

mortars are very not widespread today. Less widespread are the studies about the use of 

basalt fibers in this type of matrix. Recently, Iucolano et al. [5] studied the effect of basalt 

and glass fibers on natural hydraulic lime (NHL 3.5) mortars. They found that the presence 

of the fibers modified the mechanical behavior of the hydraulic lime based-mortars. A 

significant improvement of toughness and flexural post-cracking behavior have been 

observed in reinforced mortars. In contrast, a decrease in compressive strength value 

compared to the neat mortar was found. Santarelli et al. [6,7] investigated on the use of 

chopped basalt fibers in natural hydraulic lime (NHL 3.5) mortars. They refer that basalt 

fibers can affect the mechanical behavior of the mortars. However, they pointed out the 

need to investigate on the role of fiber-matrix interface and the need to improve it through 

surface treatments of the fibers to balance two opposing needs, strength and toughness.  

 

In order to increase the scientific research in this sector, in this work a study about the 

compatibility in terms of interactions between as-received and modified chopped basalt 

fibers in natural hydraulic lime matrix is proposed. For improving fiber-matrix 

performance in this type of materials, surface treatments of the fibers surface are proposed 

(for the methods used to modify commercial basalt fibers surface see section 4.2.2 of 

Chapter 4). Despite this, it seems that until now there is not previous research about the 

effect of modified basalt fibers incorporated in this type of matrix. 

The performances of the resulting mortars samples prepared were evaluated by mechanical 

tests (three-point flexural test and compressive strength tests). Porosity measurements by 



CHAPTER 7. INTERACTIONS BETWEEN BASALT FIBERS AND NATURAL HYDRAULIC LIME MATRIX 

Chap.7-161 

 

BET-BJH textural analysis were performed to study possible microstructural changes in 

the material. A fractographic analysis by SEM and laser and optical profilometry was 

carried out to study failure mechanism and the adhesion at the fiber-matrix interface. 

 

7.2.  Experimental 

7.2.1. Materials  

In this study, a commercial natural hydraulic lime (NHL) provided by St.Astier (C.T.S., 

Madrid, Spain) was used as binder to prepare mortar samples. In particular the NHL used 

in this work is designed as NHL 5 according to European Standard UNI EN 459-1 [22].   

As aggregate, a siliceous sand, with a grain size between 0.2-0.5 mm, provided by Arenas 

Silíceas Gómez Vallejo (Segovia, Spain) was used. Basalt continuous filament (mean 

diameter 17 μm) chopped to a length of about 6.4 mm with a sizing compatible with 

cement matrix was supplied by Incothelogy GmbH. A chlorhydric acid aqueous solution 

(37% wt), Sharlab, and two silanes, γ-aminopropiltriethoxysilane (APTES) and γ-

aminopropilmethyldiethoxysilane (APDES), supplied by ABCR GmbH & Co.KG, were 

used to prepare pretreated and silanes coated basalt fibers. A commercial silicone (Silastic 

3481 Base +Curing Agent S81, Feroca, S.A.) was used to prepare the molds for the mortar 

samples. 

 

7.2.2. Samples Preparation 

Mortar samples were prepared with a binder/aggregate ratio of 1:2. Distilled and deionized 

water was used in a water/binder ratio of 0.88. Compared to the mixtures prepared with 

cement matrix (see section 6.2.2 of Chapter 6), higher amount of water is necessary to 

allow the workability of the mixtures when lime is used.  As-received and modified basalt 

fibers were added to the mixture at 1% by weight. The preparation methods of the 

modified basalt fibers are described in Chapter 4. The mixtures preparation and curing 

(Figure 3) were done in accordance to the standard UNI EN 196-1:2005 and UNI EN 

1015-11:2007 as for cement-based mortars (section 6.2.2 of Chapter 6) [23,24]. In the 

Table 1 the samples codes and the components of the corresponding mixtures (six 

specimens for each mixture were prepared) are shown.  
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Table 1. Sample codes of the natural hydraulic lime-based mortars prepared and components of the 

mixtures. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mixing (a) and curing (b-c) of natural hydraulic lime-based mortars. 

 

7.2.3. Instrumental Techniques 

The experimental techniques and methods, as well as the conditions, used to test and 

investigate natural hydraulic lime-based mortars, were the same used for cement based-

mortars and described previously in the chapter 6 (see section 6.2.3). In particular, 

mechanical tests (three-point flexural test and compressive test), BET-BJH textural 

analysis, fractographic analysis by scanning electron microscopy (SEM) and surface 

profilometry measurements (laser and optical profilometry) were carried out. Therefore, to 

avoid repetitive information, in this Chapter will proceed directly the discussion of the 

results obtained. 

 

 

Code Components of Mixtures 

REF NHL NHL + sand 

ASR + NHL NHL + sand + as-received basalt fibers 

CAL + NHL NHL + sand + calcinated basalt fibers 

ACT + NHL NHL + sand + activated basalt fibers 

APT + NHL NHL + sand + silanized APTES basalt fibers 

APD + NHL NHL + sand + silanized APDES basalt fibers 

APTAPD + NHL NHL + sand + silanized APTES+APDES basalt fibers 
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7.3.  Results and Discussion 

7.3.1. Mechanical Tests 

 Three-point flexural strength test 

The fracture and mechanical behavior of the mortar samples can be studied by the stress-

strain curves and representative images of the fractured specimens (Figure 4-10).  

 

Sometimes, the flexural curves obtained for each group of samples investigated showed 

irregular behavior. Therefore, and attending the complexity to analyze and interpret them, 

the method described in the Appendix B of Chapter 6 was used to eliminate artifacts 

arising from the testing machine.  

Only some representative curves of the flexural behavior of these materials are given in 

Figures 4-10.  

 

 

Figure 4. Stress-strain curves and representative images of fractured specimens of REF NHL 

samples. 

 

 

 

Figure 5. Stress-strain curves and representative images of fractured specimens of the ASR+NHL 

samples. 
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Figure 6. Stress-strain curves and representative images of fractured specimens of the CAL+NHL 

samples. 

 

 

 

Figure 7. Stress-strain curves and representative images of fractured specimens of the ACT+NHL 

samples. 

 

 

 

Figure 8. Stress-strain curves and representative images of fractured specimens of the APT+NHL 

samples. 
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Figure 9. Stress-strain curves and representative images of fractured specimens of the APD+NHL 

samples. 

 

 

 

Figure 10. Stress-strain curves and representative images of fractured specimens of the 

APTAPD+NHL samples. 

 

Observing the fracture behavior of neat and fiber-reinforced mortar samples in the photos 

of Figures 4-10, some differences can be noted. The neat mortar specimens (Figure 4) 

shown more homogeneous fracture leading to complete separation between the two pieces 

resulting from the fracture. Whereas, the samples reinforced with fibers (Figures 5-10) 

present more tortuous fracture development and the two pieces resulting from the fracture 

are not completely separated each other. 

 

In addition, observing the stress-strain curves of Figures 4-10, the fiber-reinforced samples 

failed in a different way compared to the reference mortars (REF NHL). A brittle behavior 

is observed for the neat mortars (Figure 4). In fact, a toughness enhancement in the post-

cracking behavior is apparently observed when fibers are added to the mixtures especially 

when as-received and aminosilanes treated basalt fibers are present (Figure 2, 7-10). In 
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fact, these samples failed in a more gradual way where it is possible to appreciate more 

signals of different points of mechanical failure. Probably, this behavior is due to a better 

interaction between the fibers and the natural hydraulic lime matrix conferring a lesser 

brittle behavior with an increase in toughness effect.  

 

In contrast, when samples are prepared with activated and calcinated fibers (Figure 6-7), 

less brittle behavior is observed, showing a little improvement in post-peak toughness 

effect to finally fail catastrophically. In this case signals of different points of failure are 

not observed. 

 

In order to better understand the flexural behavior of the samples prepared, a deeper 

analysis of the data obtained was done. The flexural strength (σf) values obtained for each 

sample were statistically analyzed by the Weibull distribution function (see section 6.2.3.1 

of Chapter 6). In Figure 11 the Weibull probability plots for the flexural strength for all 

samples studied are shown. 

 

 

Figure 11. Weibull probability plots for the flexural strength of every sample under study: a) REF 

NHL, b) ASR+NHL, c) CAL+NHL, d) ACT+NHL, e) APT+NHL, f) APD+NHL and g) 

APTAPD+NHL. 
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The statistical properties of the averaged flexural strength values for the natural hydraulic 

lime-based mortars applying Weibull statistics are summarized in Table 2. 

 

Table 2. Parameters obtained after the Weibull fitting of the data obtained from the three-point 

flexural tests. 

 

Paying attention to the plots of Figure 11, a good linear relationship between lnln [1/(1−P)] 

and lnσ is observed. Moreover, being the correlation coefficient, r, a measure of the 

goodness of fit and observing the values in Table 2, it could be assumed that the 

experimental data obtained can be well described with the Weibull distribution.  

 

Furthermore, observing the obtained results in Table 2 the Weibull characteristic strength 

σ0, values are very similar to the mean flexural strength σf, values obtained experimentally. 

In addition, high Weibull moduli were obtained. This is very important since, as previously 

discussed in Chapter 6 with cement materials, a material with high Weibull modulus is 

more predictable in terms of its mechanical failure and less likely to break at a stress much 

lower than the mean value [25–27].   

 

To better understand the flexural behavior of the materials tested, other mechanical 

parameters were considered. Toughness was evaluated in terms of fracture energy 

considering the total integrated area under the stress-strain curves to evaluate the effect of 

the basalt fibers. In this work, the post-cracking behavior was also considered for the 

toughness determination. Flexural modulus, E (calculated considering the elastic part of 

the curve and Equation (3) of Chapter 3) and the elongation at break, ε (deflection at the 

maximum stress) were calculated.  

 

Samples Averaged Flexural 

Strength,  

σf (MPa)  

Weibull 

Characteristic 

Strength,  

σ0 (MPa) 

Weibull 

Modulus, 

 m 

Correlation,  

(r) 

REF NHL 0.9 ± 0.1 0.9 10.3 0.99 

ASR+ NHL 1.4 ± 0.2 1.5 7.6 0.99 

CAL+NHL 1.2 ± 0.1 1.2 7.4 0.99 

ACT+ NHL 1.2 ± 0.2 1.3 7.4 0.95 

APT+ NHL 1.3 ± 0.2 1.4 6.9 0.88 

APD+ NHL 1.4 ± 0.1 1.4 12.1 0.99 

APTAPD+ NHL 1.5 ± 0.2 1.5 9.9 0.94 
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However, the toughness, flexural modulus and elongation at break values were estimated 

only for the curves shown in Figure 4-10. Therefore, the values gathered in Table 3 and 

plotted in Figure 12 are averaged values of the most representative curves.  

 

Table 3. Flexural parameters of the studied natural hydraulic lime-based mortar samples.  

 

 

 

Figure 12. Comparison of flexural behavior from the values of different parameters for all the 

samples under study. 
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Samples  Flexural 

Strength, 

σf  (MPa) 

Flexural 

Modulus, 

E (MPa) 

Toughness 

(MPa) 

 

Elongation at 

Break, 

ε (%) 

REF NHL 0.9 ± 0.1 102± 20 69 ± 22 0.8 ± 0.2 

ASR+NHL 1.4 ± 0.2 104 ± 19 463 ± 124 1.3 ± 0.3 

CAL+NHL 1.2 ± 0.1 125 ± 42 142 ± 36  0.9 ± 0.2 

ACT+NHL 1.2 ± 0.2 110 ± 42 193 ± 41 1.5 ± 0.7 

APT+NHL 1.3 ± 0.2 153 ± 39 329 ± 103 0.9 ± 0.1 

APD+NHL 1.4 ± 0.1 121 ± 49 193 ± 40 1.1 ± 0.6 

APTAPD+NHL 1.5 ± 0.2 160 ± 37 264 ± 52 0.9 ± 0.2 
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As previously observed for cement materials in Chapter 6 (section 6.3.1), also in this case 

high standard deviations in every parameter were obtained due to the great heterogeneity 

of these materials in terms of defects. Nevertheless, some considerations can be made.  

 

The mechanical properties summarized in Table 3 and in Figure 12, highlighted 

differences between the neat mortars (REF NHL) and the samples containing fibers. In 

fact, an increase in flexural strength, σf values is observed for all samples compared to the 

neat mortar (REF NHL) with higher values for specimens containing as-received 

(ASR+NHL) and aminosilanes treated basalt fibers (APT+NHL, APD+NHL and 

APTAPD+NHL samples). However, the highest value is shown for samples containing 

APTES+APDES silanized basalt fibers (APTAPD+NHL sample).  

 

Furthermore, observing the flexural modulus, E values, an increase for the fiber-reinforced 

samples in comparison with the REF NHL mortar is observed. ASR+NHL show a value 

comparable with the neat mortar while higher values are obtained for APT+NHL and 

APTAPD+NHL samples.  

 

Toughness increases for all samples containing fibers compared to the neat mortar. 

However, a high increase in toughness values is shown for ASR+NHL sample and when 

APTES silanized fibers (APT+NHL sample) and APTES+APDES silanized fibers 

(APTAPD+NHL sample) are dispersed in natural hydraulic lime matrix. On the other 

hand, as received fibers (ASR+NHL sample) seems to confer a good toughness effect but 

low flexural modulus, E value very similar to the REF NHL sample which suggests a 

lower resistance for these materials, compared to APT+NHL and APTAPD+NHL samples. 

 

Elongation at break, ε increases for all samples containing fibers compared to the neat 

mortar (REF NHL) suggesting that the presence of fibers confers less brittle behavior in all 

cases. 

 

The flexural results obtained suggest that the presence of the fibers and the presence of a 

surface treatments enhance the mechanical performance of the final materials. Better trend 

in terms of strength and toughness is observed when a trifunctional silane and a mixture of 

the two silanes are used as the basalt fibers coating (APT+NHL and APTAPD+NHL 

samples).  
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In addition, it should be highlighted that APDES silanized basalt fibers seem to show 

better compatibility when dispersed in natural hydraulic lime matrix and consequently 

better flexural behavior in contrast with the results observed for cement-based mortars in 

Chapter 6 (see section 6.3.1). Probably this different behavior could be ascribed to a 

different reactivity between the fibers and the corresponding matrices (cement and natural 

hydraulic lime). 

 

 Compressive strength test 

The typical compressive behavior of natural hydraulic lime-based mortars is shown in 

Figure 13. In spite of the irregular curves obtained from the three-point flexural test, the 

compression stress-strain curves showed a homogenous trend. The compressive curves 

were also modified to eliminate possible artifacts using the method described in the 

Appendix B of Chapter 6.   

 

 

Figure 13. Stress-strain curves for all the samples under study: a) REF NHL, b) ASR+NHL, c) 

CAL+NHL, d) ACT+NHL, e) APT+NHL, f) APD+NHL and g) APTAPD+NHL. 
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Compressive strength, σc, values were statistically treated using Weibull distribution. The 

results are shown in Figure 14 and Table 4.  

 

Figure 14. Weibull probability plots for the compressive strength of every sample under study: a) 

REF NHL, b) ASR+NHL, c) CAL+NHL, d) ACT+NHL, e) APT+NHL, f) APD+NHL and g) 

APTAPD+NHL. 

 

Table 4. Parameters obtained after the Weibull fitting of the compressive strength tests data. 

 

 

The obtained results showed, could be well fitted by a straight line function. Therefore, it 

can be considered that compressive strength, σc, values are statistically significant showing 

Samples Averaged 

Compressive 

Strength, σc 

(MPa)  

Weibull 

Characteristic 

Strength, σ0 

(MPa) 

Weibull 

modulus,  

m 

Correlation 

 (r) 

REF NHL 1.8 ± 0.2 1.9 8.2 0.99 

ASR+ NHL 2.2 ± 0.5 2.3 3.7 0.95 

CAL+NHL 3.3 ± 0.4 3.5 8.0 0.78 

ACT+NHL 3.0 ± 0.3 3.1 13.5 0.94 

APT+NHL 2.6 ± 0.3 2.8 12.1 0.94 

APD+NHL 3.0 ± 0.3 3.1 10.6 0.91 

APTAPD+NHL 3.6 ± 0.4 3.7 9.7 0.97 
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high Weibull moduli, m, values. Besides, the characteristic strength, σ0, values are very 

similar to the mean compressive strength, σc associated to each sample. 

 

The compressive behavior of the mortars was studied considering other mechanical 

parameters such as toughness, compressive modulus, E and elongation at break, ε. In this 

case, toughness values were estimated considering the area under the stress-strain curves 

until the maximum compressive strength value. Elongation at break, ε, was estimated as 

well. Compressive Modulus, E, was estimated by the slope of the elastic part of the stress-

strain curves. 

  

The results are gathered in Table 5 and the corresponding trend is shown in Figure 15.  

 

Table 5. Compressive behavior of the natural hydraulic lime-based mortar samples under study. 

 

 

Samples Compressive 

Strength, 

σc (MPa) 

Compressive 

Modulus, 

E (MPa) 

Toughness 

(MPa) 

 

Elongation 

at Break, 

ε (%) 

REF NHL 1.8 ± 0.2 100 ± 50 421 ± 231 3.4 ± 1.4 

ASR+NHL 2.2 ± 0.5 101 ± 66 829 ± 680 5.1 ± 3.4 

CAL+NHL 3.3 ± 0.4 145 ± 71 1986 ± 721 7.5 ± 2.7 

ACT+NHL 3.0 ± 0.3 141 ± 31 1748 ± 731 7.4 ± 3.1 

APT+NHL 2.6 ± 0.3 150 ± 78 1584 ± 414 7.2 ± 1.5 

APD+NHL 3.0 ± 0.3 190 ± 63 948 ± 328 4.3 ± 1.3 

APTAPD+NHL 3.6 ± 0.4 207 ± 105 1575 ± 634 5.6 ± 2.2 
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Figure 15. Comparison of compressive behavior from the values of different parameters for all the 

samples under study. 

 

Evaluating the compressive behavior for all sample studied (Table 5 and Figure 15) and 

considering that, also in this case, high standard deviations values were obtained, some 

observations can be drawn. 

 

When basalt fibers are added, compressive strength σc, values increase with respect to that 

obtained for the neat mortar (REF NHL). However, the sample ASR+NHL showed similar 

value to that obtained for REF NHL, whereas the highest value was obtained for 

APTAPD+NHL sample, which, in addition, showed the higher flexural strength, σf, value.  

 

Toughness values increase with the presence of fibers and their corresponding surface 

treatment, conferring to the mortar a less brittle behavior.  

 

Attending the elongation at break, ε, it is observed that there is an increase in the values 

when basalt fibers are present in the samples. 

 

R
E
F N

H
L

A
S
R
+N

H
L

C
A
L+

N
H
L

A
C
T+N

H
L

A
P
T+N

H
L

A
P
D
+N

H
L

A
P
TA

P
D
+N

H
L

0

1

2

3

4

5

 Compressive Strength, 
c
(MPa)

 Compressive Modulus, E (MPa)

 Toughness (MPa)

 Elongation at break, (%)

0

50

100

150

200

250

300

350
 

0

1000

2000

3000

 

0

2

4

6

8

10

12

 



CHAPTER 7. INTERACTIONS BETWEEN BASALT FIBERS AND NATURAL HYDRAULIC LIME MATRIX 

Chap.7-174 

 

Considering the compressive modulus, E, it increased respect to the reference mortar (REF 

NHL) due to the addition of the fibers and the corresponding surface treatment. The 

highest value was obtained for APTAPD+CEM sample.  

Moreover, as was previously observed for the flexural behavior, the mortars containing 

commercial fibers (ASR+NHL) showed a value similar to the neat mortar. As discussed in 

the Chapter 6, this unexpected result could be attributed to a different disposition of the 

fibers when dispersed in the reactive mixture. Probably, the sizing of the commercial basalt 

fibers makes them flexible which might cause their collapse in the form of random coil that 

could not confer the opportune resistance in terms of rigidity to the whole material. On the 

contrary, the surface treatments proposed in the present work make the fibers less flexible. 

Therefore, it is reasonable to think that when they are mixed with the components of the 

reactive mortar, they remain in their more extended form, being more separated each other 

and consequently, leading to more effective reinforcement. 

 

Therefore, in agreement with the obtained results for cement materials (Chapter 6) and 

previous results found in bibliography [28,29], when natural hydraulic lime is used, the 

presence of the commercial basalt fibers do not increase significantly the compressive 

behavior of the composites showing a behavior quite similar to the neat mortar. Iucolano 

et. al [5], studying the behavior of commercial basalt fiber in natural hydraulic lime-based 

mortar (NHL 3.5 was used as matrix) observed a decrease in compressive strength values 

respect to the reference (without fibers). In contrast, Santarelli et al. [6,7] found that for 

most of neat mortars compressive strength (a NHL 3.5 was used as matrix) increased with 

the addition of commercial basalt fibers. 

 

As main conclusions extracted from the results obtained, it is found that the presence of 

fibers and the surface treatments affect the final performance of the material. In general, a 

better compressive behavior is shown for samples containing APTES+APDES 

(APTAPD+NHL) basalt fibers.  

 

7.3.2. BET-BJH Textural Analysis 

The N2 adsorption-desorption isotherms for all the samples prepared are shown in Figure 

16. Type IV adsorption curves and Type H3 hysteresis loops according to IUPAC 

classification are observed (see section 3.2.3 of Chapter 3). As previously described for 
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cement based-mortars (section 6.3.2 of chapter 6) the Type H3 shape hysteresis loops, 

refers to aggregates giving rise to slit-shaped pores due to the presence of C-S-H gel [30–

32]. 

 

 

Figure 16. Nitrogen adsorption-desorption isotherms of natural hydraulic lime-based mortars. 

 

BET specific surface area (SA) and total pore volume values obtained are given in Table 6. 

The standard deviations assigned to SA (BET) values are associated to the instrumental 

error. 

 

Table 6. SA and Pore Volume results of natural hydraulic lime-based mortars. 

 

 

 

 

 

 

 

 

From results of Table 6, it is observed that higher SA (BET) and total pore volume values 

are obtained for samples prepared with fibers treated with a trifunctional silane 

(APT+NHL), with a mixture of the two silanes used (APTAPD+NHL) and with activated 
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fibers (fiber subjected to activation process through chlorhydric acid) compared to the 

reference mortar (REF NHL). 

 

An estimation of the distributions of pore diameters of the samples investigated was 

carried out. The results are plotted in Figure 17. 

  

Figure 17. Pore diameter distributions of natural hydraulic lime-based mortars. 

 

Figure 17 shows that the mortar samples investigated are mainly characterized by 

mesopores (with a diameter between 20-500 Å) and macropores (with a diameter greater 

than 500 Å). For all the samples, the pore distribution curves shown maxima at around 20 

Å of pore diameter. 

 

Comparing the porosity of the samples, there is an increase of porosity in the whole range 

investigated (~17-2000 Å) for the samples containing activated (ACT+NHL), 

APTES+APDES (APTAPD+NHL) and APTES (APT+NHL) treated basalt fibers respect 

to the reference (black curve) sample. 

 

On the other hand, observing the range of macropores (500-2000 Å), an increase in the 

porosity compared to the reference (REF NHL) is shown for all samples containing fibers. 

 

20 100 500 1000 2000100 1000

0,0

5,0x10
-5

1,0x10
-4

1,5x10
-4

2,0x10
-4

2,5x10
-4

3,0x10
-4

500 1000 1500 2000
0

1x10
-5

2x10
-5

3x10
-5

4x10
-5

d
V

/d
D

 P
o

re
 V

o
lu

m
e

 (
c
m

³/
g

·Å
)

Pore Diameter (Å)

 REF NHL

 ASR+NHL

 CAL+NHL

 ACT+NHL

 APT+NHL

 APD+NHL

 APTAPD+NHL

d
V

/d
D

 P
o

re
 V

o
lu

m
e

 (
c
m

³/
g
·Å

)

Pore Diameter (Å)



CHAPTER 7. INTERACTIONS BETWEEN BASALT FIBERS AND NATURAL HYDRAULIC LIME MATRIX 

Chap.7-177 

 

Furthermore, the order in terms of porosity is APTES > APTES+APDES > APDES 

suggesting that the higher the crosslinking degree of the fiber coating the higher the 

porosity in the whole composite material. This observation agrees the results obtained 

when cement is used as a matrix (see section 6.3.2 of Chapter 6). 

 

However, slight differences in the obtained results indicates that, as was also found for 

cement materials (see section 6.3.2 of Chapter 6) the presence of fibers so as their surface 

treatments do not seem to change significantly the meso and microstructure of the neat 

mortar. 

 

7.3.3. Fractographic Analysis 

7.3.3.1. Scanning Electron Microscopy (SEM) 

The failure mechanisms of the mortar samples were studied by scanning electron 

microscopy (SEM). Especially, the fracture surfaces of samples arising from three-point 

flexural test were observed at different magnifications to obtain information about the 

dispersion of the fibers in the matrix (Figure 18), the adhesion of the matrix to the fiber 

surface and to study the fiber-matrix interface (Figures 19 and 20). 

 

 

Figure 18. SEM images for all fiber-reinforced mortar samples at 120× magnification 
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The SEM images at 120× magnification (Figure 18), show that basalt fibers are 

heterogeneously dispersed in the matrix and pull-out phenomena are evident for all 

samples. Some voids due to the fiber pull-out are visible. As previously discussed in 

Chapter 6 for cement-based mortars, this non-uniform dispersion of the fibers in the matrix 

could be attributed to the process of mixing that does not allow separating fibers each 

others. 

However, observing APTAPD+NHL micrograph (Figure 18 f) it seems that the fibers were 

less pulled-out from the matrix. This observation suggests a better compatibility between 

the fibers and the matrix through higher attractive interactions between the modified 

surface (mixture of the two silanes used) and the natural hydraulic lime matrix. 

 

 

Figure 19. SEM images for all fiber reinforced mortar samples at 2000× magnification. 
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Figure 20. SEM images for all fiber reinforced mortar samples at 3500× magnification. 

 

SEM images in Figures 19 and 20 provide information about the adhesion of the matrix to 

the fiber surface in terms of interfaces. In general, when using as-received, calcinated and 

activated basalt fibers (Figures 19 a-c, Figures 20 a-c) smooth surfaces with some matrix 

fragments adhered to the fiber surface are observed. This suggest that an adhesive failure at 

the interface take place for this sample. Instead, a more cohesive failure mechanism for the 

mortar samples prepared with fibers treated with aminosilane coupling agents (images d-f 

of Figures 19 and 20) is observed. In fact, several matrix fragments are present on the 

fiber’s surfaces. In particular, better compatibility in terms of fiber-matrix adhesion is 

observed for samples containing fibers modified with the trifunctional silane and with the 

mixture of the two silanes used (Figures 19 d and f, Figures 20 d and f). For these last two 

samples, especially for the APTAPD+CEM sample, also better mechanical performance 

was observed. 

 

In addition, an irregular and non-homogenous microstructure is observed. Two possible 

explanations of this behavior could be made: i) necessity of more time of mixing, ii) slower 

hydration and hardening processes when natural hydraulic lime is used could make the 

matrix not enough compact after 28 days of curing.  
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7.3.3.2. Surface Profilometry Measurements 

 Laser Profilometry 

Laser profilometry was performed to obtain information at higher scale than that given by 

SEM about the failure mechanism of the natural hydraulic lime-based mortars. Three 

fracture surfaces resulting from three-point flexural tests. A representative 3D topographic 

image for each sample is shown in Figure 21.  

Furthermore, the profile parameters Pa and Pq were also evaluated (Table 7, Figure 22). 
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Figure 21. Representative 3D topographic images of fracture surfaces of the natural hydraulic 

lime-based mortars under study. 
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As previously observed for cement-based mortars in Chapter 6 (section 6.3.3.2), in this 

case a smoother fracture surface is observed for the neat mortar (REF NHL) compared to 

the fiber-reinforced mortar samples. As for cement-based mortars, the presence of fibers in 

natural hydraulic lime matrix is responsible of more tortuous fracture surfaces and 

consequently of a less brittle behavior [33]. 

 

Table 7. Profile parameters obtained by laser profilometry. 

 

 

 

 

 

 

 

 

 

 

Figure 22. Pa (µm) and Pq (µm) profile parameters trend by laser profilometry for natural 

hydraulic-based mortars. 

 

The values in the Table 7 and their trends (Figure 22) point out that Pa and Pq increase for 

the samples containing as-received and modified basalt fibers compared to the neat mortar 

(REF NHL). However, due to the high standard deviations only few qualitative 

considerations can be done. It seems that the presence of the fibers and their treatments 

affects the interface adhesion and the meso and microstructure of the natural hydraulic 

 Pa 

(µm) 

Pq 

(µm) 

REF NHL 267± 24 325 ± 36 

ASR+NHL 824 ± 215 999 ± 234 

CAL+ NHL 683 ± 272 855 ± 244 

ACT+ NHL 1259 ± 604 1454 ± 638 

APT+ NHL 584 ± 65 717 ± 122 

APD+ NHL  877 ± 389 1049 ± 462 

APTAPD+ NHL  482 ± 90 592 ± 120 
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lime matrix. Consequently, the fibers affect the failure mechanism of the mortars 

conferring a lesser brittle behavior. 

 

 

 Optical Profilometry 

An evaluation at higher magnification (10x) of the failure mechanism of the mortar 

samples were carried out also by optical profilometry. After performing the three-point 

flexural tests, the corresponding fracture surfaces were studied. Three specimens for each 

sample and five different regions (see section 6.2.3.4 of Chapter 6) were investigated.  

Representative 3D topographic images of the fracture surface for each sample are shown in 

Figure 23. Here, the profile parameters, Pa and Pq were also evaluated. The mean value of 

the profile parameters collected for each sample are shown in Table 8 and plotted in Figure 

24. 
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Figure 23. Representative 3D topographic images of the fracture surfaces of the natural hydraulic 

lime-based mortars under study. 
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As was already observed in Chapter 6 (section 6.3.3.2), in the 3D topographic images 

obtained using optical profilometry (in Figure 23), the surface characteristics are sharper 

compared to 3D images obtained with laser profilometer. However, differences in surface 

irregularities between the samples, are more clearly observed when larger regions of the 

fracture surfaces are considered. Nevertheless, in agreement with the observation by laser 

profilometry, more irregular and tortuous topography is observed when fibers are dispersed 

in the natural hydraulic lime matrix. 

 

Table 8. Profile parameters obtained by optical profilometry. 

 

 

 

 

 

 

 

 

 

Figure 24. Pa (µm) e Pq (µm) profile parameters obtained by optical profilometry as a function of 

type of sample. 

 

Observing the profile parameters values in Table 8 and Figure 24, it can be said that there 

is the same tendencies found from the results obtained by laser profilometry. In fact, again 

an increase in Pa and Pq values of the reinforced mortar compared to the REF NHL sample 

is found.  

 Pa 

(µm) 

Pq 

(µm) 

REF NHL 56 ± 8 67 ± 10 

ASR+NHL 79 ± 21 95 ± 24 

CAL+ NHL 69 ± 8 82 ± 9 

ACT+ NHL 59 ± 23 72 ± 27 

APT+ NHL 59 ± 11 72 ± 12 

APD+ NHL  66 ± 15 80 ± 18 

APTAPD+ NHL  64 ± 12 77 ± 14 
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7.4.  Conclusions 

The study about interactions and therefore compatibility between basalt fibers (as-received 

and modified) and natural hydraulic lime matrix allows to draw some conclusions that 

opens a new scientific research field. 

 

  The obtained results confirm that the presence of basalt fibers so as their surface 

treatment is revealed as potential ways of improving mechanical performance in natural 

hydraulic lime-based mortar: 

- The incorporation of commercial basalt fiber to the matrix shown high flexural 

strength and toughness values but a slower flexural modulus values compared to the 

other samples containing modified fibers that could be responsible of a lower 

resistance of the resulting material. On the other hand, higher strength and toughness 

was observed when a trifunctional silane and a mixture of the two silanes used 

interact with the matrix (APT+NHL and APTAPD+NHL samples). Besides, the 

APTAPD+NHL sample showed the highest flexural strength value. 

- It was evidenced the positive role played by the basalt fibers in improving the 

compressive behavior. However, the compressive behavior of the sample with 

commercial basalt fibers (ASR+NHL) did not show significant enhancement of 

compressive resistance compared to the rest of samples. The best compressive 

behavior was obtained when the basalt fibers are modified with a mixture of APTES 

and APDES silanes (APTAPD+NHL). 

 The small differences shown by the BET-BJH results point out that the presence of 

fibers does not change significantly the micro and meso structure of the neat mortar. 

 The investigation of fracture surface by SEM analysis points out more adhesive failure 

for mortar samples containing as-received, calcinated and activated basalt fibers. On the 

contrary, a more cohesive failure is observed when fibers treated with aminosilanes are 

used to reinforce the natural hydraulic lime matrix. However, better compatibility in 

terms of fiber-matrix adhesion is observed for samples containing fibers modified with 

the trifunctional silane (APT+NHL) and with the mixture of the two silanes used 

(APTAPD+NHL). For these samples, especially for the APTAPD+CEM sample, a 

better mechanical performance was also observed. SEM analysis revealed a non-

homogenous microstructure, explained as follow: i) necessity of more time of mixing, 
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ii) slower hydration and hardening processes when natural hydraulic lime is used could 

make the matrix not enough compact after 28 days of curing.  

 The fractographic study by laser and optical profilometry shows more tortuous fracture 

surface for samples containing fibers. Consequently, and being in accordance with the 

mechanical studies, the presence of the fibers confers a less brittle behavior. 
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                                                       CHAPTER 8                                                                                
CONCLUSIONS AND FUTURE WORKS 

 

8.1. Conclusions and Future Works 

In the present PhD thesis, cement-based composites reinforced with basalt fibers were 

studied. In particular, the study was focused on the optimization of the fiber-matrix 

interface through specific surface treatments of the natural basalt fibers. Therefore, the 

compatibility between chopped basalt fibers (commercial and modified) and the selected 

matrices (Portland cement and natural hydraulic lime) was studied to understand and 

define possible improvements of the final composite materials. 

 

Different surface treatments were designed and characterized, the hydrolytic degradation 

phenomena of the surface treatments based on silane coupling agents were studied and 

finally, fiber-reinforced composite materials were designed and characterized. 

 

The most relevant conclusions that can be drawn from this research project are the 

following: 

 

 It was found that the study on the design and characterization of surface 

treatments of basalt fibers is crucial to understand possible interactions in terms of 

better adhesion between basalt fibers and cement matrices and/or natural hydraulic 

lime. The detailed characterization of commercial and modified fiber surfaces 

carried out by several analytical techniques (XRD, FT-IR, TGA, SEM and AFM) 

showed that, depending on the treatment given, changes in the structure, 

composition and morphology were observed.  

In particular, it was observed that calcination process (elimination of the sizing 

applied during the production process on the commercial fiber) and the subsequent 

activation process (process with chlorhydric acid to regenerate silanol groups on the 

fiber surface) removed the sizing present on the commercial fiber surface making 

the surface smooth.  
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In addition, the activation process regenerated silanol groups allowing the grafting 

of aminosilanes (silane coupling agents) on the fibers surface. 

 

The morphological analysis of the fibers chemically coated with aminosilanes 

(APTES, APDES, APTES+APDES), revealed surface heterogeneity due to the 

presence of the organic matter deposited on the fibers. These heterogeneities made 

the surface rough. It was observed that the higher the amount of triethoxysilane in 

the composition of the solution used to perform the coating, the higher the surface 

heterogeneity (topographical). These surface heterogeneities were subsequently 

confirmed by the surface roughness results obtained by AFM. 

 

These superficial heterogeneities suggest that they could be responsible of a better 

adhesion between the fibers and the matrix. However, the fractographic analysis 

carried out on the images obtained by SEM and the results of mechanical tests, 

pointed out that a good or poor interfacial adhesion could be attributed to other 

causes. Therefore, it can be concluded that the roughness at the nanoscale does not 

seem influence the adhesion between the fibers and the matrix and, consequently, 

the mechanical performance of the cement-based composite materials. 

 

 The study of hydrolytic degradation of the polysiloxane coatings seems to be 

crucial to understand the behavior of these coatings in the cement-based composite 

materials. 

 

A kinetic study of the hydrolytic degradation process was carried out. It allowed to 

obtain information about the activation energy depending on the considered type of 

coating (APTES, APTES+APDES, APDES) and to evaluate the equilibrium 

degradation times. The results obtained with different measurements, indicated that 

the hydrolytic rate of the three coatings increased according to the order in which 

the crosslinking degree increases: APDES < APTES+APDES < APTES. It was 

found that the mechanism of the hydrolytic process is the same for the three studied 

systems; therefore, it was concluded that the rate of the hydrolytic degradation 

process is related to the initial concentration of siloxane bonds (-Si-O-Si-) able to 

be hydrolyzed.  

 



CHAPTER 8. CONCLUSIONS AND FUTURE WORKS 

 

Chap.8-193 

 

Consequently, this study demonstrated that, in fiber-reinforced cement-based 

composites, the use of a polyorganosiloxane with a lower crosslinking degree, such 

as the APDES coating, could be the most effective strategy to resist a possible 

attack of water, especially in the alkaline environment characteristic of the cement 

matrix. 

 

It should be highlighted that the results obtained could be interesting not only in the 

sector of ceramic matrix composites but also to understand the behavior of these 

coatings in other applications in the field of engineering and materials science. 

 

 The study of fiber-reinforced composite materials allowed to obtain information 

about the effect of chopped basalt fibers and their coatings in cement and natural 

hydraulic lime matrices respectively. 

 

In particular, the results indicated that, in general, the presence of basalt fibers and 

the surface treatments, enhance the mechanical performance of the materials 

compared to the reference mortar (without fibers). Independently of the matrix 

used, the best results in terms of fiber-matrix adhesion and consequently better 

mechanical performance, were obtained for the mortars reinforced with basalt 

fibers treated with the mixture of the two silanes (APTES + APDES). 

 

From the results obtained for the system corresponding to the cement matrix, it was 

possible to have an idea of the cause responsible of the best interactions at the fiber-

matrix interface. For example, the good compatibility shown between the activated 

fibers and the cement matrix suggested that the OH groups generated during the 

activation process were probably responsible for the best adhesion.  

In addition, the presence of a surface coating based on aminosilanes could 

contribute further to improve this adhesion due to interactions by hydrogen bonds 

between the amino groups (-NH2) and the cement matrices. 

 

In addition, the molecular structure with an intermediate crosslinking degree that 

could be generated at the fiber-matrix interface (cement and natural hydraulic lime) 

when using the mixture of the two silanes (APTES + APDES), could be responsible 

for higher accessibility to the OH groups on the fiber surface and, in addition, to the 
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amino groups. This could help to increase the favorable interactions between the 

reinforcement and the matrix. 

 

The variations found in the obtained results (especially in the activated fibers) for 

the second studied system (natural hydraulic lime mortars) compared to the results 

found for cement mortars, could be attributed to a different reactivity between the 

fibers and the matrix with a different chemical composition. 

 

For example, the lower number of hydration products (hydrated calcium silicate, C-

S-H) in natural hydraulic lime mortars could be responsible for the lower 

interactions between the matrix and the OH groups of the fibers. 

 

In order to better understand this type of interactions, it would be necessary to 

further investigate about this topic with more specific studies, for example through 

research proposals associated to future works. 

 

In addition, it should be noted that the materials studied in this work, may be possible 

candidates for applications within the framework of the construction industry and the 

sector of restoration and conservation of Cultural Heritage. However, for both areas it 

would be necessary to further optimize the materials. 

 

For this reason, as future works, it is proposed, to optimize the surface treatments of the 

fibers in terms of morphological and chemical nature. Options as future works could 

include adding nanoparticles that could confer higher surface roughness enhancing 

mechanical joint that could contribute to the physico-chemical interactions generated 

between the aminosilanes treated fibers and the matrix. In addition, it is proposed to use a 

method of application of the coatings by "spray" that would help in the corresponding 

production systems. 

 

Finally, it is proposed, to optimize the preparation and consequently the final performance 

of the composite materials improving the dispersion process of the fibers and adding 

higher percentage of fibers in the matrix. In addition, the use of fibers with different 

morphologies (short and large) could also contribute to improve the mechanical behavior 

of the final materials. 
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8.2. Conclusiones y Trabajos Futuros 

En esta tesis doctoral se han estudiado materiales compuestos de matriz cerámica 

reforzados con fibras de basalto. En particular, el estudio se ha centrado en la optimización 

de la interfase fibra-matriz a través de tratamientos superficiales de las fibras naturales de 

basalto. Para ello, estudió la compatibilidad existente entre las fibras cortas de basalto 

(comerciales y modificadas) y las matrices seleccionadas (un cemento Portland y una cal 

hidráulica natural) con el fin de comprender y definir posibles mejoras futuras en el 

rendimiento final del material compuesto. 

 

Se diseñaron y caracterizaron diferentes tratamientos superficiales, se estudiaron los 

fenómenos de degradación hidrolítica de los tratamientos superficiales con agentes de 

acoplamiento propuestos y finalmente se diseñaron y caracterizaron los materiales 

compuestos reforzados con fibras. 

 

Las conclusiones más relevantes que se pueden extraer de este proyecto de investigación 

son las siguientes: 

 

 Se ha demostrado que el estudio sobre el diseño y caracterización de tratamientos 

superficiales de fibras de basalto es fundamental para poder comprender posibles 

interacciones en términos de mejor adhesión entre las fibras de basalto y las 

matrices de cemento y/o cal hidráulica natural. La detallada caracterización 

realizada, a través de la utilización de diferentes técnicas analíticas (DRX, FT-IR, 

TGA, SEM y AFM), de las superficies de las fibras comerciales y modificadas ha 

mostrado que dependiendo del tratamiento realizado se han generado cambios en la 

estructura, composición y morfología.  

 

En particular, se observó que el proceso de calcinación (eliminación del ensimaje 

superficial aplicado durante la fase producción, fibras comerciales) y el siguiente 

proceso de activación (proceso con ácido clorhídrico para promover la regeneración 

de los grupos silanoles de superficie) eliminaban el recubriemiento presente en la 

fibra comercial y suavizaban la superficie.  

 



CHAPTER 8. CONCLUSIONS AND FUTURE WORKS 

 

Chap.8-196 

 

Además, el proceso de activación ha favorecido la regeneración de grupos silanol 

que fueron fundamentales para el injerto de los aminosilanos (agentes de 

acoplamiento) en la superficie de las fibras.  

 

A través del análisis morfológico sobre las fibras recubiertas químicamente con 

aminosilanos (APTES, APDES, APTES+APDES) se encontraron heterogeneidades 

superficiales debidas a la presencia de la sustancia orgánica depositada sobra las 

fibras que hacía que sus superficies fueran más rugosas. Se encontró que cuanto 

mayor era la cantidad de trietoxisilano en la composición de la disolución empleada 

para realizar el recubrimiento, mayor era la heterogenidad superficial (topográfica). 

Estas observaciónes morfologícas se confirmaron a partir de los resultados de 

rugosidad superficial obtenidos del análisis de imágenes obtenidas por AFM.  

 

Estas heterogeneidades superficiales hacen pensar que podrían ser las responsables 

de una mejor adhesión entre las fibra y la matriz. Sin embargo, el análisis 

fractográfico realizado sobre las imágenes obtenidas por SEM y resultados de 

pruebas mecánicas apuntan a que parecen ser otras las causas fundamentales de la 

mejor o peor adhesión interfacial. Por lo tanto, se puede concluir que la rugosidad a 

escala nanoscópica no parece ser determinante en la mejor adhesión entre las fibras 

y la matriz y, en consecuencia, en las posteriores prestaciones mecánicas de los 

materiales compuestos de matriz de cemento. 

 

 El estudio de degradación hidrolítica de los recubrimientos polisiloxánicos parece 

ser de vital importancia para poder comprender el comportamiento de dichos 

recubriementos en materiales compuestos de matriz de cemento.  

 

Se realizó un estudio cinético de dicho proceso de degradación que permitió 

obtener información sobre la energía de activación en función del tipo de 

recubrimiento considerado (APTES, APTES+APDES, APDES) así como estimar 

los tiempos de degradación hidrolítica en el equilibrio. Los resultados obtenidos 

con diferentes mediciónes indicaron que la velocidas de degradación de los tres 

recubrimientos aumentaba según el orden en el que el grado de reticulación 

aumenta: APDES < APTES+APDES < APTES.  
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Se ha encontrado que el mecanismo del proceso de degradación hidrolítica es el 

mismo para los tres sistemas estudiados, por lo que se ha podido concluir que la 

velocidad de hydrolysis depende de la concentración inicial de los enlaces de 

siloxano (-Si-O-Si-) susceptibles de ser hidrolizados. 

 

Por lo tanto, este estudio demonstró que, en compuestos a base de cemento 

reforzado con fibras, el uso de un poliorganosiloxano con un bajo grado de 

reticulación, como el recubrimiento APDES, podría ser la estrategia más eficaz 

para resistir un posible ataque de agua, especialmente en el ambiente alcalino 

característico de la matriz de cemento. 

 

Cabe destacar, además, que los resultados obtenidos podrían ser interesantes no 

solo en el sector de los materiales compuestos de matriz cerámica si no también 

para comprender el comportamiento de estos recubriementos en otras aplicaciones 

en el sector de la ingeniería y ciencia de materiales. 

 

 En cuanto al estudio de los materiales compuestos renforzados con fibras, se ha 

podido tener una idea del efecto de las fibras cortas de basalto y de sus 

recubrimientos en matriz de cemento y cal hydraulica natural respectivamente. 

Concretamente, los resultados indicaron que, en general, la presencia de las fibras 

de basalto y los tratamientos superficiales mejoran las prestaciones mecánicas de 

los materiales en comparación con el mortero de referencia (sin fibras).   

Independientemente de la matriz utilizada, se obtuvieron mejores resultados en 

términos de adhesión fibra-matriz y, en consecuencia, mayores prestaciones  

mecánicas, para los materiales contituidos por mortero reforzado con fibras de 

basalto modificadas con la mezcla de los dos silanos (APTES+APDES).  

 

A partir de los resultados obtenidos para el sistema correspondiente a matriz de 

cemento se ha podido tener una idea de la causa responsable de la mejores 

interacciones en la interfase fibra-matriz. Por ejemplo, la buena compatibilidad 

mostrada entre la fibras activadas y la matriz de cemento, hizo pensar que 

probablemente los grupos OH generados durante el proceso de activación eran los 

responsables de la mejor adhesión. La presencia de un recubrimiento superficial 

basado en aminosilanos además parece contribuir a mejorar aun más esta adhesión 
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debido entre otras cosas a interaciones por enlaces de hidrogeno entre los grupos 

aminos (-NH2) y las matrices de cementos. 

 

Además, la estructura molecular con una reticulación intermedia que se podría 

generar en la interfase fibra-matriz (cemento y cal hidráulica natural) cuando se 

utiliza la mezcla de los dos silanos (APTES+APDES), podría ser responsable de 

mayor accesibilidad a los grupos OH sobre la superficie de la fibra y, además, a los 

grupos aminos. Esto podría ayudar a aumentar las interacciones favorables entre el 

refuerzo y la matriz. 

 

Las variaciones encontradas en los resultados obtenidos (especialmente en las 

fibras activadas) del segundo sistema estudiado (morteros de cal hidráulica natural) 

respecto de los resultados encontrados para los morteros de cemento, podrían ser 

atribuidas a una diferente reactividad entre las fibras y la matriz con diferente 

composición química.  

Por ejemplo, el menor numero de productos de hydrataciòn (silicato de calcio 

hidratado, C-S-H) en los morteros de cal hidráulica natural, podría ser responsable 

de las menores interaciones entre la matriz y los grupos OH de las fibras. 

 

Para comprender mejor este tipo de interacciones específicas se requeriría 

profundizar más sobre este tema con estudios más concretos, por ejemplo 

mediantes propuestas de investigación asociadas a líneas de trabajo futuras. 

 

Además, cabe destacar que los materiales estudiados a lo largo de este trabajo, pueden ser 

posibles candidatos en aplicaciones dentro el marco de la industria de la construcción y del 

sector de la restauración y conservación del Patrimonio Cultural. No obstante, para ambas 

áreas se requeriría optimizar aún más los materiales. 

 

Por ello, como líneas futuras se puede plantear, optimizar los tratamientos superficiales de 

las fibras tanto en términos morfológicos como en términos de naturaleza química. Se 

podría pensar en añadir nanopartículas que podrían conferir mayor rugosidad superficial y 

favorecer un anclaje mecáanico más efectivo que se sumaría a la contribución debida a las 

interacciones fisico-químicas generadas entre las fibras tratadas con aminosilanos y la 
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matriz. Además, se podría pensar en utilizar un método de aplicación de los recubrimientos 

mediante “spray” que ayudaría en los correspondientes sistemas de producción. 

 

Por ultimo, se puede plantear optimizar la preparación y por tanto las prestaciones finales 

de los materiales compuestos mejorando el proceso de dispersión de las fibras y añadiendo 

mayor porcentaje de fibras en la matriz. Además, el uso de fibras de diferentes morfologías 

(cortas y largas) podría contribuir también a mejorar el comportamiento mecánico de los 

materiales finales.  

 

8.3. Conclusioni e Sviluppi Futuri 

Nella presente tesi di dottorato di ricerca, sono stati studiati materiali compositi a matrice 

cementizia rinforzati con fibre di basalto. In particolare, lo studio si è incentrato 

sull’ottimizzazione dell’interfase fibra-matrice attraverso trattamenti superficiali delle fibre 

naturali di basalto. E’ stata studiata la compatibilità esistente tra le fibre corte di basalto 

(commerciali e modificate) e le matrici selezionate (un cemento Portland e una calce 

idraulica naturale) per comprendere e definire possibili miglioramenti nelle prestazioni 

finali del materiale composito. 

 

Sono stati preparati e caratterizzati diversi trattamenti superficiali, sono stati studiati i 

fenomeni di degradazione idrolitica dei trattamenti superficiali a base degli agenti di 

accoppiamento silano proposti e infine, sono stati preparati e caratterizzati i materiali 

compositi fibrorinforzati. 

 

Le conclusioni più rilevanti che possono essere tratte da questo progetto di ricerca sono le 

seguenti: 

 

 È stato dimostrato che lo studio relativo alla preparazione e caratterizzazione dei 

trattamenti superficiali delle fibre di basalto è fondamentale per poter 

comprendere possibili interazioni in termini di migliore adesione tra le fibre di 

basalto e la matrice di cemento e/o di calce idraulica naturale. La dettagliata 

caratterizzazione realizzata attraverso diverse tecniche analitiche (XRD, FT-IR, 

TGA, SEM e AFM) delle superfici delle fibre commerciali e modificate, ha 
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mostrato che, in base ai diversi trattamenti realizzati, sono stati evidenziati cambi 

nella struttura, composizione e morfologia. 

 

In particolare, è stato osservato che il processo di calcinazione (eliminazione del 

rivestimento superficiale applicato durante il processo di produzione delle fibre 

commerciali) e il successivo processo di attivazione (trattamento con acido 

cloridrico per promuovere la rigenerazione dei gruppi silanoli superficiali) 

eliminavano il rivestimento superficiale presente sulla fibra commerciale, rendendo 

la superficie liscia. 

 

Inoltre, il processo di attivazione ha permesso la rigenerazione dei gruppi silanoli, 

fondamentali per l’innesto degli amminosilani (agenti di accoppiamento) sulla 

superficie della fibra. 

 

Attraverso l’analisi morfologica effettuata sulle fibre trattate chimicamente con 

amminosilani (APTES, APDES, APTES+APDES), sono state rilevate eterogeneità 

superficiali dovute alla presenza della sostanza organica depositata sulla superficie 

della fibra che rendeva la superficie della fibra più rugosa. È stato osservato che 

quanto maggiore era la quantità del trietossisilano nella dissoluzione utilizzata per 

la realizzazione del rivestimento, tanto maggiore era l’eterogeneità superficiale 

(topografica). Queste eterogeneità superficiali sono state successivamente 

confermate dai risultati di rugosità superficiale ottenuti mediante AFM. 

 

Queste eterogeneità superficiali, fanno pensare che potrebbero essere la causa 

responsabile di una migliore adesione tra fibra e matrice. Ad ogni modo, 

dall’analisi frattografica realizzata attraverso il SEM e dai risultati delle prove 

meccaniche si è potuto constatare che sembrerebbero essere altre le cause 

responsabili di una migliore o peggiore adesione all’interfaccia fibra-matrice. 

Pertanto, si può concludere che la rugosità a scala nanoscopica non sembra essere 

determinante della migliore adesione tra fibra e matrice, e di conseguenza, delle 

prestazioni meccaniche dei materiali compositi a matrice cementizia. 
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 Lo studio di degradazione idrolitica dei rivestimenti polissilossanici sembra 

essere di fondamentale importanza per poter comprendere il comportamento dei 

presenti rivestimenti nei materiali compositi a matrice cementizia. 

 

È stato realizzato uno studio cinetico del processo di degradazione idrolitica che ha 

permesso di ottenere informazioni sull’energia di attivazione in funzione del tipo di 

rivestimento considerato (APTES, APDES, APTES+APDES) e di stimare i tempi 

di degradazione idrolitica all’equilibrio. I risultati ottenuti con diversi metodi di 

misurazione, hanno indicato che la velocità di degradazione dei tre rivestimenti 

aumentava secondo l’ordine in cui aumenta il grado di reticolazione: APDES < 

APTES+APDES < APTES.  

Il seguente studio ha rilevato che il meccanismo del processo di degradazione 

idrolitico è lo stesso per i tre sistemi studiati; pertanto, è stato possibile concludere 

che la velocità di idrolisi dipende dalla concentrazione iniziale dei legami 

silossanici (-Si-O-Si-) in grado di essere idrolizzati. 

 

Pertanto, questo studio ha dimostrato che nel caso di materiali compositi 

fibrorinforzati a matrice cementizia, l’uso di un poliorganosilossano con un basso 

grado di reticolazione, come il rivestimento APDES, potrebbe essere la soluzione 

più efficace per resistere ad un possibile attacco dell’acqua, specialmente 

nell’ambiente alcalino della matrice cementizia. 

 

Bisogna sottolineare, inoltre, che i risultati ottenuti potrebbero essere interessanti 

non solo nel settore dei materiali compositi a matrice ceramica ma potrebbero 

essere utili anche per comprendere il comportamento di questi rivestimenti in altre 

applicazioni nel settore dell'ingegneria e scienza dei materiali. 

 

 Per quanto riguarda lo studio dei materiali compositi fibrorinforzati, è stato 

possibile ottenere informazioni sull’effetto delle fibre corte di basalto e dei loro 

rivestimenti rispettivamente sulla matrice cementizia e sulla calce idraulica 

naturale. Nello specifico, i risultati hanno indicato che, in generale, la presenza di 

fibre di basalto e trattamenti superficiali migliorano le prestazioni meccaniche dei 

materiali rispetto alla malta di riferimento (senza fibre). 
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Indipendentemente dalla matrice utilizzata, sono stati ottenuti risultati migliori in 

termini di adesione fibra-matrice e, di conseguenza, maggiori prestazioni 

meccaniche, per la malta rinforzata con fibre di basalto modificata con la miscela 

dei due silani (APTES + APDES). 

 

Dai risultati ottenuti per il sistema corrispondente alla matrice cementizia, è stato 

possibile ottenere informazioni sulla possibile causa responsabile delle migliori 

interazioni all'interfaccia fibra-matrice. Ad esempio, la buona compatibilità 

mostrata tra le fibre attivate e la matrice di cemento ha suggerito che i gruppi OH 

generati durante il processo di attivazione erano probabilmente responsabili della 

migliore adesione. Inoltre, la presenza di un rivestimento superficiale a base di 

amminosilani sembra, contribuire a migliorare ulteriormente questa adesione a 

causa di interazioni da legami idrogeno tra i gruppi amminici (-NH2) e le matrici 

cementizie. 

 

Inoltre, la struttura molecolare con una reticolazione intermedia che potrebbe essere 

generata all'interfaccia fibra-matrice (cemento e calce idraulica naturale) quando si 

utilizza la miscela dei due silani (APTES + APDES), potrebbe essere responsabile 

di una maggiore accessibilità ai gruppi OH sulla superficie della fibra e, inoltre, 

anche ai gruppi amminici. Ciò potrebbe aiutare ad aumentare le favorevoli 

interazioni tra il rinforzo e la matrice. 

 

Le variazioni riscontrate nei risultati ottenuti (specialmente nel caso delle fibre 

attivate) per il secondo sistema studiato (malte di calce idraulica naturale) rispetto 

ai risultati ottenuti per le malte cementizie, potrebbero essere attribuite a una 

differente reattività tra le fibre e la matrice con composizione chimica diversa. 

Ad esempio, il minor numero di prodotti di idratazione (silicato di calcio idrato, C-

S-H) nelle malte di calce idrauliche naturali, potrebbe essere responsabile delle 

minori interazioni tra la matrice e i gruppi OH delle fibre. 

 

Per poter comprendere meglio questo tipo di interazioni, sarebbe necessario 

approfondire questo argomento con studi più specifici, ad esempio attraverso 

proposte di ricerca associate a linee di sviluppi futuri. 
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Inoltre, è importante sottolineare che i materiali studiati durante questo progetto, 

potrebbero essere utilizzati per applicazioni nell’ambito del settore delle costruzioni e del 

restauro e conservazione dei Beni Culturali. Tuttavia, per entrambe le aree sarebbe 

necessario ottimizzare ulteriormente i materiali. 

 

Per questo motivo, come sviluppi futuri, si propone di ottimizzare i trattamenti superficiali 

delle fibre sia in termini morfologici che in termini di natura chimica. Si potrebbe pensare 

di aggiungere nanoparticelle che potrebbero conferire maggiore rugosità superficiale e 

favorire un ancoraggio meccanico più efficace che si aggiungerebbe al contributo dovuto 

alle interazioni fisico-chimiche generate tra le fibre trattate con amminosilani e le matrici 

cementizie. Inoltre, si potrebbe pensare di utilizzare un metodo di applicazione dei 

rivestimenti mediante "spray" che aiuterebbe nei corrispondenti sistemi di produzione. 

 

Infine, si propone di ottimizzare la preparazione e di conseguenza le prestazioni finali dei 

materiali compositi, migliorando il processo di dispersione delle fibre e aggiungendo una 

percentuale maggiore di fibre alla matrice. Inoltre, l'uso di fibre di morfologie diverse 

(corte e lunghe) potrebbe contribuire ulteriormente a migliorare il comportamento 

meccanico dei materiali finali. 

 


