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Abstract The attitude control of a spacecraft using magnetorquers can be

obtained by using attitude feedback, instead of state feedback, with the ad-

vantage of not requiring the installation of attitude rate sensors, thus saving

in cost, volume, and weight. In this work an attitude feedback with four design

parameters is considered. The practical determination of appropriate values

for these parameters is a critical open issue. We propose here to search for the

parameters’ values which minimize the convergence time to reach the desired

attitude. Such a systematic approach has several advantages but requires to

overcome a number of difficulties to be realized. First, convergence time cannot
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be expressed in analytical form as a function of these parameters. Therefore,

we develop a solution approach based on derivative-free optimization algo-

rithms. Secondly, design parameters may range over very wide intervals. As a

consequence, the feasible set cannot be explored densely in reasonable time.

Thus, we propose a fast probing technique based on local search to identify

which regions of the search space have to be explored densely. Thirdly, conver-

gence time depends also on the initial conditions of the spacecraft, which are

not known in advance. Hence, we formulate a min-max model to find robust

parameters, namely parameters aiming at minimizing convergence time under

the worst initial conditions.

Keywords Derivative-free Optimization · Attitude Control · Min-Max

Formulations · Strategy Integration · Magnetorquers

Mathematics Subject Classification (2000) 90C26 · 90C90 · 93D15

1 Introduction

The attitude control of a spacecraft that uses magnetorquers as torque actu-

ators is a very important task in astronautics. Many control laws have been

designed for this task, and a survey of various approaches is in [1]. Most of

them require measures of attitude, attitude rate, and geomagnetic field; how-

ever, control algorithms that do not require measures of attitude rate have

been proposed, too. Such algorithms have the important practical advantage

of not requiring the installation of attitude rate sensors on the spacecraft,

thus saving in cost, volume, and weight. In particular, [2] proposes a feedback
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control law that requires only measures of spacecraft attitude and of the geo-

magnetic field, which is inspired by a similar control law presented in [3]. The

first work contains a proof that attitude stabilization is achieved when the de-

sign parameters are positive. However, numerically different (positive) values

for the design parameters produce very different behaviors, and the practical

determination of appropriate values for these parameters is a critical open is-

sue. Note that this is not a classical optimal control problem, since the design

parameters are not control inputs. On the contrary, this is an example of the

many problems with the following features: 1) a control algorithm is available,

but it contains some parameters that should be determined before applying

the algorithm; 2) these parameters have a deep influence on the performances

of the control system; 3) no easy guidelines for choosing those parameters are

available.

In this work, we propose an innovative and systematic approach for deter-

mining the mentioned design parameters: they should be those which optimize

an appropriate control objective. In this case, we search for the design param-

eters that minimize the time needed to converge to the desired attitude. We

measure this time by considering the Integral Time Absolute Error (ITAE) of

the attitude, to avoid possible discontinuity issues given by other measures.

However, reaching this aim requires to overcome a number of difficulties,

as explained below. The relation between the above ITAE and the design

parameters cannot be expressed in analytical form, but only sampled by using

software simulations. For this reason, we propose a solution approach based
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on the use of derivative-free optimization algorithms. These algorithms use

no first order information on the objective function. In practice, they work

without the analytical expression of the objective function; they only need to

compute it in a number of points by using the above simulations.

Moreover, design parameters may range over very wide real intervals; hence,

the search space of the optimization problem is numerically wide. Conse-

quently, derivative-free optimization algorithms which rely on the dense explo-

ration of the search space would require excessive run times. Thus, we develop

a combination of global search strategy of the type of DIRECT [4,5] and of lo-

cal search strategy of the type of SDBOX [6,7]. In particular, the local strategy

is innovatively used in the first part of the procedure as a fast probing tech-

nique to identify the ‘promising’ region(s) of the search space, which are then

explored densely. The advantages of combining and correctly balancing local

and global information has been studied for global optimization in several pre-

vious works; for instance using: local tuning on the behavior of the objective

[8]; the explicit definition of two phases, global and local [9]; acceleration tech-

niques based on local improvements [10,11]. The DIRECT method has been

widely used in applications, either in its original form or modified to take into

account specific features of the application, see, e.g., [12,13].

Furthermore, the convergence time depends also on the initial conditions

of the spacecraft. This implies that control parameters that are efficient for

specific initial conditions are not able to guarantee efficiency for different initial

conditions. Clearly, there exist a large variety of possible initial conditions for
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a spacecraft, and they are not known a priori. Thus, we initially solve the

problem for a particularly meaningful tuple of initial conditions. Subsequently,

we define a set of all reasonably possible initial conditions, and we search for

the values of the parameters that minimize the ITAE obtained under the worst

initial conditions within this set. Such worst initial conditions are not defined in

general, but they in turn depend on the adopted design parameters. Therefore,

we formulate a min-max problem, whose solutions are robust optimal values

for the design parameters, in the sense that they provide the best possible

upper bound on the value of ITAE for variations of the initial conditions. This

problem is quite difficult, since the solution of the main minimization problem

(upper-level) needs the solution of a maximization problem (lower-level) at

every evaluation of its objective function, and a decomposition is not possible.

The problem of the optimal determination of the design parameters, in the

case of a spacecraft equipped also with angular rate sensors, has been studied

in [14]. However, in the case of [14], the control law is substantially simpler

than the control law analyzed here, and it contains only two design parameters

instead of the four parameters considered in the present work. Due to the

complexity of the control law used in this work, the time needed to compute

the objective function through simulation can become up to one hundred times

longer than the time required in [14]. In addition, since four parameters instead

of two must be optimized, the search space here is larger by several orders of

magnitude. As a consequence, the optimization problem studied here is much

more challenging than the problem solved in [14]. Indeed, the solution approach
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adopted in [14] is not able to solve the optimization problem considered here,

as showed by our experiments. Thus, we develop in this work a new and

more complex solution approach, which provides encouraging results. Finally,

we also integrate this approach with the innovative computation of a lower

bound to the optimization problem based on physical considerations, in order

to better evaluate the quality of the obtained solution.

To sum up, the main contributions of this work are: i) the definition of a

new systematic approach for the determination of the design parameters for a

magnetic attitude control algorithm not using attitude rate; ii) the develop-

ment of a combination of derivative free global and local search strategies to

tackle these very computationally demanding problems. Therefore, this work

constitutes a substantial advancement with respect to [14]. A preliminary ver-

sion of this paper appeared in [15].

The exposition is organized as follows: Section 2 defines the spacecraft

model and the control algorithm and contains the formulations of the problem

of determining optimal design parameters; Sections 3 describes the proposed

solution approach which integrates global and local strategies; Section 4 re-

ports computational results of the determination of the optimal parameters of

the magnetic attitude feedback presented in [2].

2 Control Algorithm and Optimal Design Parameters

To describe the attitude dynamics of an Earth-orbiting rigid spacecraft and

to represent the geomagnetic field, we use the following reference frames
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Earth-centered inertial frame Fi. It is a standard inertial frame for Earth

orbits. Its origin is in the centre of the Earth, its xi axis is the vernal equinox

direction, its zi axis coincides with the axis of rotation of the Earth and points

northward, and its yi axis completes an orthogonal right-handed frame (see

[16, Chapter 2.6.1]).

Spacecraft body frame Fb. The origin of this frame is in the centre of mass of

the spacecraft. Its axes are attached to the spacecraft and are picked so that

the (inertial) pointing objective is aligning Fb with Fi.

The goal is aligning Fb to Fi; thus, the focus will be on the relative kine-

matics and dynamics of the satellite with respect to the inertial frame. Let

q = [q1 q2 q3 q4]T = [qTv q4]T be the unit quaternion representing attitude of

Fb with respect to Fi. The corresponding attitude matrix is given by

C(q) = (q24 − qTv qv)I + 2qvq
T
v − 2q4q

×
v , (1)

where I is the identity matrix (see [17, Section 5.4]). Moreover, a superscript

× applied to any a ∈ R3 denotes the skew symmetric matrix

a× :=


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2)

that allows to express the cross product a× b as as the matrix multiplication

a×b. The attitude kinematics is given by q̇ = W (q)ω (see [17, Section 5.5.3]),

where ω ∈ R3 is the angular velocity of Fb w.r.t. Fi resolved in Fb and

W (q) :=
1

2

 q4I + q×v

−qTv

 . (3)
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The attitude dynamics in body frame is given by Jω̇ = −ω×Jω + T , where

J ∈ R3×3 is the spacecraft inertia matrix, and T is the control torque expressed

in Fb (see [17]).The spacecraft is equipped with three magnetic coils aligned

with the Fb axes, which generate the magnetic attitude control torque

T = mcoils ×Bb = −Bb× mcoils (4)

In this expression, mcoils ∈ R3 is the vector of magnetic dipole moments for

the three coils, and Bb is the geomagnetic field at spacecraft expressed in body

frame Fb (see [16, Section 7.4.1]). Let Bi be the geomagnetic field at spacecraft

resolved in inertial frame Fi. Note that Bi varies with time, at least because

of the spacecraft motion along the orbit. Then,

Bb(q, t) = C(q)Bi(t) (5)

which shows explicitly the dependence of Bb on both q and t. By grouping

together the previous equations, the following system is obtained

q̇ = W (q)ω

Jω̇ = −ω×Jω −Bb(q, t)× mcoils

(6)

in whichmcoils is the control input. We need to characterize the time-dependence

of Bb(q, t), which is the same as characterizing the time-dependence of Bi(t).

Assume that the orbit is circular of radius R; then, adopting the so called

dipole model of the geomagnetic field (see [18, Appendix H]), we obtain:

Bi(t) =
µm
R3

[3((m̂i(t))T r̂i(t))r̂i(t)− m̂i(t)]. (7)

In equation (7), µm is the total dipole strength, ri(t) is the spacecraft position

vector resolved in Fi, and r̂i(t) is the vector of the direction cosines of ri(t). The
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components of vector m̂i(t) are the direction cosines of the Earth’s magnetic

dipole resolved in Fi which can be expressed as follows

m̂i(t) =


sin(θm) cos(ωet+ α0)

sin(θm) sin(ωet+ α0)

cos(θm)

 (8)

where θm is the dipole’s coelevation, ωe = 360.99 deg/day is the Earth’s

average rotation rate, and α0 is the right ascension of the dipole at time t = 0.

We use µm = 7.746 1015 Wb m and θm = 170.0◦ as reported in [19].

Equation (7) shows that, to characterize the time dependence of Bi(t),

one needs to determine an expression for ri(t) which is the spacecraft position

vector resolved in Fi. Define a coordinate system ap, bp in the orbital plane

whose origin is at the center of the Earth, and with ap axis coinciding with

the line of nodes. Then, the position of the center of mass of the satellite is

given by

ap(t) = R cos(nt+ ψ)

bp(t) = R sin(nt+ ψ)

(9)

where n is the orbital rate, and ψ is the argument of the spacecraft at time

t = 0. The coordinates of the center of mass of the satellite in inertial frame

Fi can be easily obtained from (9) by using an appropriate rotation matrix

which depends on the orbital inclination incl and on the value Ω of the Right

Ascension of the Ascending Node (RAAN) (see [16, Section 2.6.2]). Plugging

into (7) the equations of the latter coordinates, an explicit expression for Bi(t)

can be obtained.
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Since C(q) = I for q = [qTv q4]T = ±q̄ where q̄ = [0 0 0 1]T (see (1)),

then the goal is designing control strategies for mcoils so that qv → 0 and

ω → 0. The following stabilizing control law, obtained as modification of one

described in [3], is proposed in [2]

δ̇ = α(q − ελδ)

mcoils = −m?
coilssat

(
1

m?
coils

Bb×ε2
(
k1qv + k2αλW (q)T (q − ελδ)

))
.

(10)

In (10), δ ∈ R4 is an internal state of the controller, k1 k2 α λ ε are all

design parameters, m?
coils is the saturation limit on each magnetic dipole mo-

ment, “sat” denotes the standard saturation function, Bb× is defined through

(2), and W (q) was introduced in (3). Note that the previous equation de-

scribes an attitude feedback, since it requires only the measure of attitude q

and not of attitude rate ω. Thus, it is much more complex than the PD-like

feedback considered in [14] which uses measures of ω and contains only two

design parameters. As shown in [2], selecting k1 > 0, k2 > 0, α > 0, λ > 0,

and choosing ε > 0 small enough, local exponentially stability of equilibrium

(q, ω, δ) = (q̄, 0, 1
ελ q̄) is achieved for the closed-loop system (6) and (10) if the

orbit’s inclination incl is not too low.

However, there are no indications for choosing the feedback parameters k1,

k2, α, λ, and the scaling factor ε. We only know that k1, k2, α, λ have to

be greater than zero, and ε has to be greater than zero and smaller than an

upper bound ε∗ > 0 which is very difficult to compute. In practice, they are

mostly determined by a trial-and-error search, which suffers from the following

limitations. First, this approach is quite time-consuming. Second, and more



Combining Global and Local Strategies to Optimize Design Parameters 11

important, it is not systematic. This means that, when satisfactory values of

the gains are finally obtained, it is not known whether extending the search

could lead to new values of the gains that provide an overall better perfor-

mance of the closed-loop system. Moreover, in case the search is extended, it

is not known when it is appropriate to stop it, and not even the amount of the

possible improvements that this additional work could produce. In any case,

unless performing an exhaustive search for all the possible values of the gains,

it can easily happen that we neglect values providing an overall better perfor-

mance. On the other hand, an exhaustive search is almost always impossible

to perform, because the search space is too large to be explored in practice.

Consequently, we propose in this work the following approach to determine

the feedback parameters. Since the desired attitude is reached when qv = 0,

we define the settling time tsi for each component qi, with i ∈ {1, 2, 3}, as:

tsi := min t s.t. |qi(t)| ≤ ν ∀t ≥ tsi (11)

which represents the time needed for |qi| to become eventually smaller or equal

than ν. Value 0 < ν < 1 depends on how small we wish to keep qi. Then, we

define the settling-time ts for the whole quaternion q as that corresponding to

the slowest component of qv, hence

ts := max
i=1,2,3

tsi (12)

Furthermore, rather then expressing feedback (10) by using five design param-

eters k1, k2, α, λ and ε, we rewrite it in terms of only four design parameters
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κ1 = ε2k1 > 0, κ2 = εk2 > 0, α > 0, β = ελ > 0, obtaining

δ̇ = α(q − βδ)

mcoils = −m∗coilssat
(

1
m∗

coils
Bb×

(
κ1qv + κ2αβW (q)T (q − βδ)

))
.

(13)

Now, having set the spacecraft initial conditions to specific values, one can

determine the values of κ1, κ2, α, and β that minimize the settling time ts.

However, the objective function ts is not continuous with respect to the

design parameters, and this introduces numerical difficulties in solving the

optimization problem. Thus, as a novelty with respect to [14], here we consider,

as alternative objective function, the so called Integral Time Absolute Error

(ITAE) [20], denoted by Γ :

Γ =

∫ Tf

0

t‖qv(t)‖dt (14)

where ‖ · ‖ denote the Eucledian norm, and Tf is a time chosen sufficiently

large. The ITAE has the advantage of being continuous with respect to the de-

sign parameters. Continuous differentiability cannot be theoretically ensured.

However, since (q, ω, δ) = (±q̄, 0, 1
β q̄) are equilibria of the closed-loop system

(6) and (13), the occurring of qv = [0 0 0]T at some finite time is very unlikely.

Note that the latter event would make Γ not continuously differentiable with

respect to the design parameters since ‖qv‖ is not continuously differentiable

at qv = [0 0 0]T .

It is known that minimizing the ITAE leads to nearly-optimal solutions

w.r.t. the settling time objective. Indeed, in very simple cases, it is proved

analytically that minimizing the ITAE leads to solutions that are optimal

in terms of settling time minimization. In more complex situations, it was
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empirically shown that minimizing the ITAE gives solutions that are very

close to the optimal ones in terms of settling time minimization (see [20]).

By defining physically reasonable upper bounds κ̂1, κ̂2, α̂, β̂ for the design

parameters, we obtain the feasible set K = {(κ1, κ2, α, β) : 0 ≤ κ1 ≤ κ̂1,

0 ≤ κ2 ≤ κ̂2, 0 ≤ α ≤ α̂, 0 ≤ β ≤ β̂}. Now, our optimization problem is:

min
(κ1, κ2, α, β) ∈ K

Γ. (15)

Given specific initial conditions of the spacecraft, problem (15) can be solved

by a suitable use of derivative-free techniques, as described in the following

section. However, when changing the initial conditions of the spacecraft, that

solution may be no longer optimal. Since many different initial conditions for

the spacecraft may occur in practice, a robust approach would be to search for

the optimal solution to problem (15) under the worst initial conditions for the

spacecraft. Such a worst case optimization is widely used in similar scenarios,

because in this manner we can provide an efficient bound on the objective

value notwithstanding the uncertainty regarding the initial conditions of the

spacecraft. However, the worst initial conditions for the spacecraft is not a

priori computable, since it depends on the chosen values of κ1, κ2, α, β, so the

problem cannot be decomposed and should be solved as a whole. The initial

conditions of the spacecraft are given by q0 = q(0), ω0 = ω(0), 0 ≤ ψ < 2π,

and 0 ≤ α0 < 2π. We chose the set of their possible values as:

S =
{

(q0, ω0, ψ, α0) : ‖q0v‖ ≤ 1, q04 = (1− qT0vq0v)1/2,

|ω01| ≤ ω̂01, |ω02| ≤ ω̂02, |ω03| ≤ ω̂03, 0 ≤ ψ < 2π, 0 ≤ α0 < 2π} .
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Note that S includes any possible initial attitude, any possible initial argument

ψ for the spacecraft, and any possible right ascension of the Earth’s magnetic

dipole at time t = 0. It only limits the magnitude of the initial angular rate.

Now, minimizing Γ under the worst initial conditions for the spacecraft cor-

responds to the following min-max problem:

min

(κ1, κ2, α, β) ∈ K

max

(q0, ω0, ψ, α0) ∈ S

Γ. (16)

To apply the techniques described in the next section, we convert the feasible

set of each optimization problem into a hyperrectangle. Since S has not that

shape, we express the set ‖q0v‖ ≤ 1 in spherical coordinates (ρ, φ, θ):

S = {(q0, ω0, ψ, α0) : q01 = ρ sin θ cosφ, q02 = ρ sin θ sinφ, q03 = ρ cos θ,

q40 = (1− qT0vq0v)1/2, 0 ≤ ρ ≤ 1, 0 ≤ φ < 2π, 0 ≤ θ ≤ π,

|ω01| ≤ ω̂01, |ω02| ≤ ω̂02, |ω03| ≤ ω̂03, 0 ≤ ψ < 2π, 0 ≤ α0 < 2π} .

The dependence of Γ on q0 can now be expressed as dependence on the vari-

ables (ρ, φ, θ). Consequently, after having introduced the hyperrectangle

H = {(ρ, φ, θ, ω0, ψ, α0) : 0 ≤ ρ ≤ 1, 0 ≤ φ < 2π, 0 ≤ θ ≤ π,

|ω01| ≤ ω̂01, |ω02| ≤ ω̂02, |ω03| ≤ ω̂03, 0 ≤ ψ < 2π, 0 ≤ α0 < 2π} ,

the min-max problem (16) can be equivalently reformulated as follows

min
(κ1, κ2, α, β) ∈ K

max

(ρ, φ, θ, ω0, ψ, α0) ∈ H

Γ. (17)
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3 Proposed Solution Approach

To simplify and generalize the description of the proposed approach, that

could also be applied to different problems sharing the same structure, we

now rename the set of design parameters (κ1, κ2, α, β) as x belonging to a

feasible set Fx = {lbxi ≤ xi ≤ ubxi, i = 1, . . . , n} ⊂ Rn (in our case Fx = K

and n = 4), and the set of initial conditions (ρ, φ, θ, ω0, ψ, α0) as y belonging

to a feasible set Fy = {lbyj ≤ yj ≤ ubyj , j = 1, . . . ,m} ⊂ Rm (in our case

Fy = H and m = 8, since ω0 has 3 components). Denote by f(x, y) the

function providing the objective value (in our case Γ ). When y is fixed (initial

conditions assigned) we simply write ȳ in it, when x is fixed (design parameters

assigned) we write x̄ in it. Problem (15) is expressed as

min
x ∈ Fx

f(x, ȳ)

and may be tackled by a global derivative-free optimization algorithm of the

type of DIRECT [4]. Those methods work without the need for analytically

writing the objective function; they only need to compute it in a number

of points by using simulations. In more detail, Direct-type algorithms work as

follows. The feasible region starts as a single hyperrectangle that is normalized

to a unit hyperrectangle. At the generic iteration k, the algorithm partitions

the hyperrectangles obtained from the previous (k − 1)th iteration to form a

collection of smaller hyperrectangles H(k) = {H1, . . . ,Hp(k)}, and evaluates

each of them. Potentially optimal hyperrectangles within H(k) are identified,
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and only these hyperrectangles are further partitioned and investigated in the

next (k + 1)th iteration of the algorithm.

Usually, each hyperrectangle Hh is evaluated by sampling the objective

function at its central point. This choice, combined with the subsequent tri-

partition of Hh in case Hh is among the potentially optimal ones, aims at

reducing the number of function evaluations. The algorithm stops when the

size of the hyperrectangles becomes too small, or when it reaches the maximum

number of iterations. Due to the so-called everywhere dense property, such an

algorithm converges to a global optimum of the function if the sampling is

dense enough. However, a dense search may require a very large number of

function evaluations.

In our case, all lbxi = 0, since design parameters cannot be negative. Values

ubxi can be set after considerations on the physical problem, typically at very

high values. For instance, κ̂1 may easily reach 109, since its maximum feasible

value can be determined knowing the saturation level of the dipole moment of

the coils, the minimum amplitude of the geomagnetic field, and the attitude

sensor’s resolution. However, by using these bounds, a sufficiently dense ex-

ploration of the feasible set Fx requires a number of function evaluations such

that the corresponding run time is impracticable. Conversely, a sampling that

uses a practically affordable number of function evaluations does not reach so-

lutions sensibly better than random solutions. Indeed, our problem has a large

number of local minima, which strongly affect the difficulty of the overall op-

timization task. In this case, the evaluation of the generic Hh using only one
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point may be very inaccurate at the first iterations of the algorithm, because

the initial size of those hyperrectangles is too large. By proceeding with the

iterations, their size becomes smaller, but their number, and consequently the

run time, increases exceedingly.

Therefore, we would need a fast but more effective probing technique to

early identify the ‘promising’ Hh. Then, the problem could be tackled if the

span of such promising regions is small enough to be explored densely in rea-

sonable time. Hence, we develop a probing technique based on the use of the

local derivative-free optimization algorithm SDBOX. This algorithm was ini-

tially proposed in [6] as a globally convergent algorithm for the minimization

of a continuously differentiable function, but it can be practically used to opti-

mize different types of functions as a good compromise between efficiency and

convergence properties (see also [21]). It is a derivative-free algorithm inspired

by the strategy underlying gradient-based methods: finding a good feasible de-

scent direction for the objective function, and performing a sufficiently large

step along such direction. It needs no information on the first order derivatives,

because a good feasible descent direction is determined by investigating the

local behavior of the objective along different directions. Most interestingly for

our case, given a starting point (κ′1, κ
′
2, α
′, β′) = x′, this algorithm is aimed at

quickly finding good solutions in the vicinity of x′.

A solution approach combining the above described global and local strate-

gies to solve problem (15) is described below.
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Procedure 1: Solve min combining Global and Local search

Input A vector ȳ ∈ Fy and a function f(x, ȳ) computable by means of a soft-

ware simulation for any x ∈ Fx. Values for the parameters p, maxeval,

maxsubsets, maxiter, maxpost.

Output A solution x∗∗ approximating one vector in arg min
x∈Fx

f(x, ȳ).

1. Normalize and grid partition the whole feasible set Fx into a collection

of hyperrectangles H(1) = {H1, . . . ,Hp} similarly to the initial phase of

DIRECT.

2. For each Hh ∈ H(1), compute the value fh of the solution obtained by

maxeval iterations of SDBOX in Hh starting from its central point. This

is an upper bound on the value of the best solution in Hh and constitutes

our ‘evaluation’ of Hh.

3. Take a number maxsubsets of hyperrectangles corresponding to the small-

est of the above fh values.

4. Take the region given by the union of those subsets, and ‘convexify’ it by

including also the additional subsets required to convert it into an hyper-

rectangle Fx
∗.

5. Switch to DIRECT algorithm to continue the search in Fx
∗ allowingmaxiter

function evaluations. This search can now be dense using reasonable time

and it gives a solution x∗.

6. Try to improve x∗ by using maxpost iterations of a local search method,

finally obtaining a solution x∗∗ to problem (15).
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The number of hyperrectangles p in the partitioning phase (step 1) and the

number of iterations maxeval in the evaluation phase (step 2) should be cal-

ibrated on the considered practical case, so that the evaluation phase is exe-

cuted for a given amount of time. Indeed, there is a trade off between speed

and effectiveness of this phase. Also, such parameters should be balanced by

considering that the accuracy of the evaluation of each Hh depends not only

on maxeval, but also on the span of each Hh, which in turn depends on p .

Note, however, that the hyperrectangles in the initial partition H(1) do not

need to have the same size; their size can be increasing with the absolute

values of the coordinates so that p is kept smaller. The number maxsubsets

in the selection phase (step 3) should be chosen so that Fx
∗ is smaller than

Fx by several orders of magnitude, otherwise the advantages of the proposed

procedure lessen. The number of function evaluations maxiter in the stan-

dard DIRECT phase (step 5) is selected so that the search in Fx
∗ is dense

enough; this search can now be accomplished in practice because of the size

reduction in Fx. The post-optimization phase (step 6) can be performed with

SDBOX or with CS-DFN [7], another linesearch based method which uses a

dense set of search directions, instead of only the coordinates ones. For this

reason, CS-DFN does not require the hypothesis of f continuously differen-

tiable, but may be more computationally expensive on smooth problems. In

the case of our application, for instance, Γ is at least continuous. There are

no theoretical arguments to ensure its continuous differentiability, even if this

may often occur in practice. In conclusion, by choosing between SDBOX or
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CS-DFN depending on the presence or absence of the continuous differentia-

bility of f , and by setting maxpost sufficiently large, we find a solution x∗∗

which satisfies necessary conditions for a local optimum. Moreover, x∗∗ should

approximate one of the global optima, because, given the dense search in F ∗,

it should provide one of the global minima of F ∗, and the regions of F \ F ∗,

which were less ‘promising’, should not contain better solutions. Clearly, de-

pending on the computational demand of the practical case, the accuracy and

the properties of the evaluation phase can be modified, either by changing the

number of iterations, or even by using a different evaluation algorithm, still

remaining within the same algorithmic framework.

On the other hand, problem (17) is composed of an upper-level minimiza-

tion problem and a lower-level maximization one. By renaming the set of

variables as described at the beginning of the section, the problem has the

following form,

min
x ∈ Fx

(
max
y ∈ Fy

f(x, y)

)
= min
x ∈ Fx

g(x)

with function g such that its value on the generic point x̄ is given by the

solution of the lower-level problem:

g(x̄) = max
y ∈ Fy

f(x̄, y).

We solve the upper-level problem by means of an external loop applying the

combination of local and global search described as Procedure 1. This loop

computes, using a parameter maxeval ext to define the overall maximum num-

ber of function evaluations, the value of g corresponding to different points
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of Fx. Let x̄ be one of them; then the evaluation of g(x̄) needs the solution

of one lower-level maximization problem max
y∈Fy

f(x̄, y). Thus, the lower-level

problem must be solved up to maxeval ext times. Consequently, solving it in

a few seconds is crucial.

For this problem, the global strategy either would perform a very poor

search or would require excessive time. Therefore, the local strategy appears

the only feasible choice for the lower-level problem. However, taking as starting

point the center of the feasible set Fy does not lead to good solutions of the

maximization problem within the limited available time.

In this case, by using our knowledge of the physics of the problem, we are

able to suppose that good solutions of the maximization problem are in the

vicinity of extremal values of angular velocity. Hence, we solve the lower-level

problem in a nested loop by using a local search with multi-start, using as

starting points the eight combinations of extreme values for the three compo-

nents of the angular velocity ±ω̂01, ±ω̂02, and ±ω̂03. This can be performed

by means of SDBOX or CS-DFN, depending on the presence or absence of the

continuous differentiability of f . In the case of our application, for instance, Γ

is at least continuous also w.r.t. the initial conditions of the spacecraft. Again,

there are no theoretical arguments to ensure its continuous differentiability,

even if this may often occur in practice. For each solution of the lower-level

problem, we allow a necessarily small maximum number of function evalua-

tions maxeval int. We obtain in this way a solution x∗R to problem (17). The

whole procedure is as follows:
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Procedure 2: Solve min-max combining Global and Local search

Input A f(x, y) computable by means of a software simulation for any x ∈ Fx

and y ∈ Fy. Values for the parameters maxeval ext, maxeval int, s.

Output A robust solution x∗R approximating one vector in arg min
x∈Fx

( max
y∈Fy

f(x, y)).

External loop:

Solve the upper-level problem min
x∈Fx

g(x), with g(x̄) = max
y∈Fy

f(x̄, y) ∀x̄ ∈ Fx

by using Procedure1 with maxeval ext total evaluations of g and return x∗R.

Given x̄, the evaluation of g(x̄) is performed by the internal loop.

Internal loop:

Take x̄ and solve the lower-level problem max
y∈Fy

f(x̄, y)

by using multistart local search with s starting points,

performing
maxeval int

s
evaluations of f for each of them.

4 Computational Results

We apply our approach to solve the case study presented in [2]. The spacecraft

inertia matrix is J = diag[27, 17, 25] kg m2, and the saturation level for

each magnetic dipole moment is m∗coils = 10A m2. The inclination of the

orbit is incl = 87◦, and the orbit’s altitude is 450 km; the value Ω of Right

Ascension of the Ascending Node is 0. Upper bounds κ̂1, κ̂2, α̂, β̂ are set at

(109, 109, 104, 10−3).
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We initially consider the easier case of known initial conditions for the

spacecraft, and we present, in Section 4.1, the results of our Procedure 1 in

solving this problem. We also provide there a comparison with the classical

DIRECT method. Subsequently, in Section 4.2, we consider the more realis-

tic case of a spacecraft having variable initial conditions. Since the standard

DIRECT method could not solve the former case, which is much easier, even

allotting quite large run times, we consider useless to apply it to this more

demanding case, and we solve the problem only with Procedure 2.

4.1 Spacecraft operating from Fixed Initial Conditions

We consider here the case of the above described spacecraft with known fixed

initial conditions, thus we deal with problem (15) using the following values:

(ρ, φ, θ, ω0, ψ, α0) = (0, 0, 0, 0.02, 0.02,−0.03, 0.9416, 4.5392) (18)

The best solution obtained by trial and error search in [2] has a value of

ITAE=3.7 × 107, while the vast majority of the solutions reach a limit value

for ITAE of about 1.2× 109. This upper limit is due to the value of Tf in the

definition of ITAE (14), which is chosen equal to 56,009 secs. that corresponds

to 10 orbital periods. This means in practice that, when we reach the limit

value of ITAE, the corresponding settling time would be greater than roughly

10 orbital periods. Then, that solution is not a good one and we are not

interested in determining it with further precision. Even if this choice causes
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a flattening in the values of ITAE, the use of such a finite Tf is necessary to

practically run the simulations that compute the ITAE.

As reported in Table 1, we preform two solution attempts by using the

standard DIRECT algorithm on the feasible setK with respectively 50,000 and

100,000 iterations, followed by 1,000 iterations of local search refinement using

CS-DFN. Notwithstanding the substantial computational effort (the running

times of these experiments respectively correspond to about 3 days and 1

week), the solutions obtained have values of ITAE greater than 1.1×109, that

is not much different from a random solution. Indeed, even with such a large

number of iterations, the search was not dense enough to satisfactory explore

the feasible set. Other similar attempts with standard DIRECT do not reach

better results. On the other hand, by using Procedure 1 of Section 3, we obtain

a much better solution, with a value of ITAE of about 8 × 106, which is also

considerably better than the best solution obtained by trial-and-error in days

of work. The evolution of Procedure 1 is described below in detail.

To identify the promising region of the feasible set K, we use the described

probing technique. The values of maxelav and p should be such that this step

can be performed in reasonable time. One single function evaluation takes

a time which is extremely variable, and varies from fractions of seconds to

several tenths of seconds; a very rough average function evaluation time can

be assessed as equal to 1 sec. We select maxeval = 10, and consequently we

estimate that the evaluation of each hyperrectangle requires roughly 10 sec.

Thus, to finish within 2 or 3 days of computation, we select p = 40, 960,
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Table 1 Comparison of Procedure 1 and standard DIRECT with 50,000 or 100,000 itera-

tions.

Algorithm Solution Obj Value Time

DIRECT 50,000 +

CS-DFN 1,000

κ1= 913405022.139

κ2=195426826.870

α= 9794.170752422

β= 0.000000000000

1,142,470,478.101 262,000 + 5,460 sec.

DIRECT 100,000 +

CS-DFN 1,000

κ1= 500798437.500

κ2= 159788790.177

α= 9996.679486501

β= 0.000000000003

1,129,234,873.703 565,200 + 5,040 sec.

Procedure 1:

combining global and

local strategies

κ1=246494.579020

κ2= 233333315.349

α= 92.5925925927

β= 0.000129629629

8,021,573.4077 201,500 + 15 + 4 sec.

which is obtained by making 64 partitions on the domain of κ1, 64 partitions

on the domain of κ2, and 10 partitions on the domain of α. The intervals

corresponding to these partitions are not of the same size; they increase with

the absolute value of the coordinates. We obtain the following hyperrectangle

as convexification of the collection of the most promising regions, as in Step 4

of Procedure 1:

K∗ = {(κ1, κ2, α, β) : 200000 ≤ κ1 ≤ 260000,

200000000 ≤ κ2 ≤ 310000000, 0 ≤ α ≤ 100, 0 ≤ β ≤ 0.001}.
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The determination of K∗ actually requires 409,600 iterations of SDBOX and

201,500 sec. of computations (about 56 hours). Note that the time required by

each function evaluation is generally much faster in K∗, where it can be less

than 0.01 sec., than in the rest of K. A complete analysis of the simulation

run time is however out of the scope of this work. Now, by applying standard

DIRECT strategy over the feasible set K∗, as in Step 5 of Procedure 1, after

3,007 iterations and only 15 sec., we obtain the solution:

κ1 = 200781.893004, κ2 = 226268861.454, α = 39.3004115226, β = 0.0005

(19)

whose value is ITAE = 9.072×106. Note that the volume of the set K∗ is

considerably smaller than that of K: it is only 1/15151515.15 of the volume of

K. Consider that, as an example, an exploration of K with the same degree of

density used on K∗ would require 15× 15, 151, 515.15 = 227, 272, 727.25 sec.,

that roughly corresponds to more than 7 years, if the simulation times on K

were the same as on K∗. Since they are often much slower, the time needed

would be even more.

Solution (19) can be further improved by using the local search strategy,

as in Step 6 of Procedure 1. By performing 1000 iterations of the local search

CS-DFN, which can move along a dense set of directions [7], the solution (19)

is improved in 4 sec. to ITAE = 8.021× 106 with the solution:

κ1 = 246494.579020, κ2 = 233333315.349, α = 92.5925925927,

β = 0.000129629629. (20)
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As a comparison, we also tested the local search SDBOX, which moves only

along the coordinate directions [6], for this post-optimization phase. When

performing 5000 additional iterations of SDBOX, solution (19) is improved in

11 sec. with the solution reported below, which has ITAE = 9.062×106

κ1 = 200781.893004, κ2 = 226268812.597, α = 39.3004115226,

β = 0.000500000024.

Solution (20) corresponds to x∗∗ of Procedure 1. Since this is actually an

approximation of an optimal solution, and there are no provably optimal so-

lutions available for comparison, we further evaluate its quality as follows.

We compute the settling time (see (11) and (12)) corresponding to (20),

that is ts = 6, 280 sec. Then, we compute a lower bound ts on the the minimum

settling time of the considered case, on the basis of physical considerations.

We stress that this bound is extremely conservative, in the sense that the

spacecraft evolution surely cannot require less time than that, though it could

very easily require more. The initial conditions (18) correspond to having

the spacecraft with the desired attitude but with a nonzero initial angular

rate ω(0) = [0.02 0.02 − 0.03]T . Consider now simple rotations about each

single body axis, and for each simple rotation compute lower bounds tsx, tsy,

tsz of the times necessary to move to the desired attitude with final zero

angolar rate. Then, a rough lower bound for the settling time is given by

ts = max{tsx, tsy, tsz}. Value tsx can be computed using the equation which
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describes rotation about the x body axis, which is given by

φ̈ = JxTx (21)

where φ is the roll angle. The amplitude of torque Tx is limited by an upper

limit T ∗, which can be found using (4). Indeed, numerical simulations show

that ‖Bi‖ ≤ B∗ = 5 · 10−5 T. Since ‖Bb‖ = ‖Bi‖ (see (5)), then ‖Bb‖ ≤ B∗.

Moreover, each component of mcoils is bounded by m∗coils = 10 A m2 then

‖mcoils‖ ≤
√

3 m∗coils. Thus, T ∗ =
√

3 B∗ m∗coils = 5
√

3 · 10−4 N m. Next,

the minimum time to bring the state of system (21) subject to the constraint

|Tx| ≤ T ∗, from the initial state φ = 0 φ̇ = ωx(0) to the final state φ = 0 φ̇ = 0,

is given by (see [22, Section 7.2])

tsx =
Jx
T ∗

(1 +
√

2)|ωx(0)| = 1, 505 sec.

Similar considerations hold for rotations about y and z axes leading to

tsy =
Jy
T ∗

(1 +
√

2)|ωy(0)| = 948 sec.

tsz =
Jz
T ∗

(1 +
√

2)|ωz(0)| = 2, 091 sec.

Then, ts = max{tsx, tsy, tsz} = 2, 091 sec. Therefore, solution (20) only takes

about 70 minutes more than the minimum time necessary to rotate the space-

craft about a single body axis at the maximum speed allowed by the available

magnetorquers so that it goes to the desired rest position. Thus, solution (20)

does not appear to be too far from an optimal solution.
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4.2 Spacecraft operating from Variable Initial Conditions

We now solve problem (17) by using the above described Procedure 2. We

select 20 partitions on the domain of κ1, 20 on that of κ2, and 10 on that

of α. We therefore perform 40,000 evaluations of g(x) for the identification of

the new K∗, and then another 3000 + 1000 evaluations of g(x) to solve the

problem on this K∗, for a total of maxeval ext = 44, 000.

For the internal loop, as explained in Procedure 2, we use as starting points

the eight combinations of extreme values for the three components of the

angular velocity ±ω̂01, ±ω̂02, and ±ω̂03. We allow 64 iterations per point, for

a total of 512 iterations per single lower-level problem, which requires slightly

less than 3 sec. in average within K∗. Run times are greater in the rest of K,

however we try to keep them under control by allowing to exit the internal

loop when the value of f(x̄, y) is large enough to reach the limit value for

ITAE of about 1.2× 109. Then, the whole nested loop procedure provides the

following solution in about 342,000 sec. (about 95 hours)

κ1 = 227777.777778, κ2 = 294444444.444, α = 83.3333333333,

β = 0.00061095869532.

This solution has value ITAE= 2.176 × 107 for the initial conditions (18)

instead of ITAE = 8.021× 106 of solution (20), but it is a robust solution: by

varying the initial conditions in H, the worst value that can be obtained is

ITAE = 1.357 × 108, that is still considerably better than average solutions,

whose vast majority has the limit value for ITAE of 1.2×109. As a comparison,
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the worst value obtainable by varying the initial conditions in H for solution

(20) is ITAE = 1.103× 109, that is very near to the limit value for ITAE.

Indeed, the above limit value for ITAE is very easily obtainable for almost

any generic tuple (κ̄1, κ̄2, ᾱ, β̄) by simply searching for difficult initial condi-

tions. Note also that this value of ITAE is obtained in some attempts in solving

problem (17) by using standard DIRECT algorithm on the whole feasible set

K allowing no more than 1 day of computation. We did not perform more

time consuming attempts in solving problem (17) using standard DIRECT

algorithm, since, considering the results already obtained in Section 4.1 allo-

cating one week of computation, and that in this case we have an internal loop

requiring 512 function evaluations instead of one single function evaluation,

a serious attempt would need to allocate months of computation, and would

obtain results probably similar to those obtained in Section 4.1.

5 Conclusions

The attitude control of a spacecraft using only magnetorquers can be achieved

by an attitude feedback. However, four design parameters must be assigned.

They have a deep influence on the spacecraft’s behavior, and their determina-

tion is a critical open issue. Here, we formulate this problem as the selection

of the parameters that minimize the Integral Time Absolute Error (ITAE),

either for fixed initial conditions of the spacecraft or under the worst initial

conditions. This latter choice gives an upper bound on the minimum value of

the ITAE obtainable by varying the initial conditions. This formulation of the
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problem precisely represents the practical aims; however, it turns out to be a

very difficult min-max problem. To practically solve these extremely compu-

tationally demanding problems, we have presented here a solution approach

based on an innovative integration of global and local derivative-free optimiza-

tion techniques. The proposed approach is able to provide robust solutions to

the considered application in reasonable times.
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