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ABSTRACT: Anionic adducts of 1,3,5-trinitrobenzene (TNB) with deprotonated pyrrolidine (Pyr), imidazole 

(Im), acetone (Ac) and acetylacetone (Acac) have been delivered into the gas phase by electrospray 

ionization. The so-formed ions, TNB-Nu- (Nu = Pyr, Im, Ac, Acac), have been interrogated by IRMPD 

spectroscopy in the fingerprint range. DFT calculations at B3LYP/6-311++G(d,p) level have been performed 

for a survey of candidate structures. All adducts conform to anionic -complexes (Meisenheimer 

complexes). The symmetric stretching modes of the nitro groups yield a dominant vibrational signature at 

1200-1250 cm-1, the red-shift with respect to the degenerate frequency of 1367 cm-1 in neutral TNB 

reflecting the extent of negative charge delocalization. The enol complexes TNB-Ac-  and TNB-Acac- are 

largely represented by C-bonded species. 

 
 
Highlights 

1. Anionic complexes of 1,3,5 trinitrobenzene are characterized in the gas phase. 

2. IRMPD spectroscopy points to a covalent Meisenheimer complex structure. 

3. Quantum chemical calculations are employed to assign experimental vibrations. 

4. Carbon versus oxygen attack by enolate anions is discussed. 
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1. Introduction 

 

The presence of electron withdrawing substituents on an aromatic ring renders this intrinsically electron 

rich system susceptible to react with nucleophiles. This interaction is at the basis of the well recognized 

aromatic nucleophilic substitutions occurring by displacement of a leaving group and representing a class of 

reactions of fundamental importance in organic chemistry [1]. For pioneering work on aromatic 

nucleophilic substitution by anionic nucleophiles in the gas phase we are indebted to Josè Riveros and his 

coworkers [2] who laid the foundations for a wealth of mechanistic studies about anion-arene reactions in 

an isolated state, extensively surveyed in comprehensive reviews [3-6].  Mechanistic facets have thus 

emerged that either are peculiar of the gaseous environment, such as the role of multistep reaction 

sequences occurring within the isolated ion-molecule complex [7-10], or disclose reactivity features typical 

of SNAr reactions in solution, for example the operation of the so-called element effect governing the 

leaving group ability of the halide series [11]. The key intermediate in SNAr reactions is an anionic -

complex, or Meisenheimer complex. A variety of anion-arene adducts observed in the gas phase are 

reported to conform to this structure although the structural evidence, typically based on collision induced 

dissociation (CID) experiments, is indirect [3,10,12-13]. However, vibrational spectroscopic information 

obtained by IR multiple photon dissociation (IRMPD) spectroscopy [14-16] has provided unambiguous 

indication about the -complex structure of anionic adducts of 1,3,5-trinitrobenzene (TNB) [17-20]. 

Hydroxide and alkoxide adducts (TNB-OR-, with R = H, CH3 and C2H5) are covalently bound species with a 

fully developed sp3 carbon at a formerly unsubstituted ring position [17-18]. Conversely, the halide series 

presents a transition from a covalent fluoride adduct, TNB-F-, to a weak -binding motif for the heavier 

halide adducts (TNB-X-, with X = Cl, Br, I) [18-19]. The three nitro groups are strongly electron-withdrawing 

and impart a highly electrophilic character as found also in 1,3,5-triazine, another example of symmetrical, 

electron-deficient arene forming anionic covalent-adducts [21-22]. The interest in polynitro-substituted 

aromatics stems also from their use as explosives and the formation of anionic adducts has been shown to 

provide a useful detection method for these hazardous compounds [23-25].     

In this contribution we focus on the characterization by IRMPD spectroscopy of gaseous anionic -

complexes of TNB with carbon- and nitrogen-centered nucleophiles. The complexes, henceforth indicated 

as TNB-Nu- where Nu is deprotonated imidazole (Im), deprotonated pyrrolidine (Pyr) and the enolate 

anions of acetone (Ac) and acetylacetone (Acac), are obtained by electrospray ionization (ESI) of an 

acetonitrile solution of selected precursors, as first demonstrated by Danikiewicz [26]. Vibrational features 

are obtained from the experimental IRMPD spectra and their interpretation supported by density 

functional theory (DFT) ab initio calculations. 

 

2. Experimental methods 

 

2.1. Mass spectrometry and IRMPD spectroscopy 

 

TNB-Im- , TNB-Pyr-  and TNB-Acac-  complexes were obtained by ESI in negative ion mode from an 

acetonitrile solution containing TNB and the selected nucleophile, either imidazole, pyrrolidine or 

acetylacetone, respectively. In the case of the TNB-Acac-  adduct, the solution was basified adding NH3.  The 

TNB-Ac- complex was obtained from a basic (NH3) solution of TNB in CH3CN/acetone (1:1). All chemicals 

were commercial products and used as received.  

IRMPD experiments were performed at the European CLIO (Centre Laser Infrarouge d’Orsay ) FEL (free 

electron laser) facility,  where the FEL beamline is coupled to a modified commercial 7 T Fourier transform 
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ion cyclotron resonance (FT-ICR) mass spectrometer (Bruker, Apex Qe) [27-28]. For the present study the 

FEL was operated at an electron energy of  42 and 45 MeV to inspect the frequency region of interest (900-

2000 cm-1). The laser beam is delivered in 9 s macropulses at a repetition rate of 25 Hz. Each macropulse 

comprises 500 micropulses lasting a few picoseconds and separated by 16 ns. The laser power was ca. 0.9 - 

1W during each run. The ions to be submitted to IRMPD experiments were generated by an Apollo II ESI 

source and sample solutions were infused at a typical rate of 2-3 μL min-1. The anionic complexes were 

mass selected in the quadrupole and thermalized by multiple collisions with argon in a linear hexapole, 

prior to their transfer into the ICR cell [29]. The isolated charged complexes were then irradiated for 200 ms 

to 2s with the IR FEL light, after which the mass spectrum was recorded. IRMPD spectra are obtained by 

plotting the photofragmentation yield R (R = -ln[Iparent/(Iparent + ΣIfragment)]), where Iparent and Ifragment are the 

integrated abundancies of the mass peaks of the precursor and of the fragment ions, respectively) as a 

function of the wavenumber of the IR radiation. 

 

2.2. Computational details  

DFT calculations were performed using the Spartan’16 program package. A preliminary inquiry of isomeric 

structures and conformers was run at the B3LYP/6-31G(d) level of theory. The most stable geometries were 

then further optimized at B3LYP/6-311++G(d,p) level. Frequency analysis, carried out at the same level, 

confirms the obtained geometries to lie in an energy minimum and provides the respective IR spectra. 

Hybrid DFT methods, such as B3LYP, are known to perform well in yielding infrared frequencies and 

intensities, provided a scaling factor is adopted to account for anharmonicity [15]. Computed IR absorption 

spectra are plotted using a scaling factor of 0.976 and assuming a Gaussian shape with a full width at half 

maximum of 20 cm-1 to display a pattern directly comparable with the experimental IRMPD spectrum. 

Reported relative energies are enthalpies at 298 K. 

 

 

3. Results and discussion 

 

3.1. Meisenheimer complexes bonded at nitrogen 

 

When the intensely red-colored  solution of TNB and pyrrolidine  is analyzed in ESI negative-ion mode, the 

major ionic species at m/z 283 is consistent with the formation of a TNB-Pyr-  complex [TNB-NC4H8]
-. The 

fragmentation of TNB-Pyr- upon irradiation by IR photons in resonance with an active vibrational mode 

leads to a major product ion at m/z 213, corresponding to TNB radical anion (TNB.-) [Eq. (1 a)]. A second, 

minor fragment ion at m/z 183 is due to further loss of NO [Eq. (1b)]. This fragmentation pattern was also 

observed in CID experiments on negatively charged adducts of TNB with various amines [26].  

 

 

 

 

 

 

The TNB-Im- complex at m/z 280 presents a distinct fragmentation pattern, yielding two fragment ions with 

approximately the same abundance, namely an ion at m/z 212, deprotonated TNB formed by loss of 
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imidazole [Eq. (2 a)], and an ion at  m/z 204, involving loss of dinitrogentrioxide (or combined loss of NO 

and of NO2) [Eq. (2 b)]. 

 

 

 

 

 
 
 
 
 

 
Mass spectrometric analysis has thus shown that both pyrrolidine (c-C4H8NH a cyclic secondary amine) and 

imidazole (C3H4N2 powerful heterocyclic nucleophile) yield anionic adducts with TNB. The so-formed TNB-

Pyr- and TNB-Im- complexes formally involve addition of the deprotonated nucleophiles. However, SNAr 

reactions between amine nucleophiles and activated aromatics in solution involve a stepwise mechanism 

occurrig via a zwitterionic intermediate which is deprotonated to give the anionic adducts [30]. In this 

report the focus is on the actual structural features of the anionic species, once delivered by negative ESI to 

the gas phase. To this end, IRMPD spectra have been recorded and are plotted in panel (a) of Figs. 1 and 2 

for TNB-Pyr- and TNB-Im-, respectively.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Experimental IRMPD spectrum of TNB-Pyr- ions (a) and computed IR spectrum of 1a (b). 
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Fig. 2. Experimental IRMPD spectrum of TNB-Im- ions (a) and computed IR spectrum of 2a (b). 
 
 
The IRMPD spectra of TNB-Pyr- and TNB-Im- are remarkably similar, both characterized by a wide 

absorption centered at ca. 1250 cm-1 and weaker bands at 1042-1050, 1492-1495, and 1596 cm-1 (Tables 1 

and 2). One may thus infer that (i) the two ions share a common structure and (ii) modes pertaining to the 

bound nucleophile present either scant or quite comparable contribution to the IR spectrum. In particular, 

the wide band at 1250 cm-1 represents a highly diagnostic feature, characteristic of a strongly covalent 

anionic -complex. Indeed, a comparable distinct absorption at 1253 cm-1, assigned to NO2 symmetric 

stretching, has been reported for example for the methoxide adduct TNB-OCH3
- [18]. 

As commonly practiced, mode assignment of the IRMPD bands and structural insight are gained by 

comparing the experimental spectrum with the calculated IR spectrum of candidate structure(s). Both TNB-

Pyr- and TNB-Im- are found to conform to stable anionic -complexes characterized by a covalent C-N bond 

engaging an unsubstituted carbon of TNB. The structures of TNB-Pyr- (1a) and of TNB-Im- (2a) are depicted 

in panel (b) of Figs. 1 and 2, respectively, while the Supplementary Data (SD) presents a list of 

thermodynamic data (Table S1) and Cartesian coordinates (Table S2) of all calculated structures. 

Interestingly, TNB-Pyr- (1a) presents an approximately perpendicular arrangement of the pyrrolidine unit 

with respect to the TNB ring with a CpyrNCipsoCpara dihedral angle of 15°. The optimized geometry of a 

“parallel” rotamer 1b (CpyrNCipsoCpara dihedral angle of 119°) is shown in Fig. S1 in the SD. It lies 9 kJ mol-1 

higher in energy relative to 1a, as shown in Table S1. The IR spectrum of 1b (Fig. S1) is quite similar to the 

one of 1a, reported in Fig. 1(b). The experimental IRMPD bands are then interpreted by referring to 1a, as 

shown in detail in Table 1 listing the vibrational data. 
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Table 1: Experimental IRMPD bands observed for TNB-Pyr- complex and computed vibrational modes for 
the TNB-Pyr- (1a) rotamer. 
 

Experimental IRMPDa Calculateda,b Vibrational mode 
1042 1043(211), 1045 (122) CH bending (in plane) 

- 1088 (64) C-N(Pyr) stretch 

1240-1260 1225 (1679), 1248 (1755) NO2 symm stretch 

- 1353(52), 1358 (51)  Wagg CH2 (Pyr) 

- 1409 (244) NO2 asymm stretch and CCTNB stretch 

1495 1468 (254), 1499 (395) NO2 asymm stretch and  C-N (NO2)  stretch 

1596 1597 (183) CCTNB stretch 
 

a Frequency in cm-1 
bCalculated vibrational modes at the B3LYP/6-311++G(d,p) level of theory. The computed intensities (km 
mol-1) are given in parenthesis. Bands with intensity lower than 40 km mol-1 are not included.  

 
 
 
 
Table 2: Experimental IRMPD bands observed for TNB-Im- complex and computed vibrational modes for the 
TNB-Im- (2a) rotamer. 
 

Experimental IRMPDa Calculateda,b Vibrational mode 

1050 1038(200), 1047(130), 1069 (80) CH bending (in plane) 

 

1250  

1198 (107)  

1235 (1683), 1258 (1697) 

C-N(Im) stretch 

NO2 symm stretch 

1365 1360 (67) C-N (NO2)  stretch 

1429 1419 (200) CCTNB stretch 

1492 1465.1 (61), 1475 (151), 1478 (205), 

1505 (463) 

NO2 asymm stretch, C-N(Im) stretch, 

NO2 asymm stretch and CCTNB stretch 

1596 1604.9 (218) CCTNB stretch 
 

a Frequency in cm-1 
bCalculated vibrational modes at the B3LYP/6-311++G(d,p) level of theory. The computed intensities (km 
mol-1) are given in parenthesis. Bands with intensity lower than 40 km mol-1 are not included.  

 
 

 

 

The 2a geometry of the TNB-Im- complex is characterized by a perpendicular orientation  of the two rings. 

In this case a parallel type of arrangement does not correspond to a local minimum, rather evolving to 2a 

on geometry optimization. A rotamer can however be envisioned with the imidazole aza group pointing 

away from the TNB ring (2b). Energies and IR spectra of the two isomers are practically the same as shown 

in Fig. S2 and Table S1 in the SD. Furthermore, a TNB-Im- complex involving attack at a nitro-substituted 

carbon, however kinetically unfavourable, has been taken into consideration. Upon geometry optimization, 

the starting geometry evolves by C-NO2 bond cleavage, as already reported for comparable species [18,20]. 

The  NO2 group then binds to an adjacent carbon and structure 2c is finally reached, corresponding to an 

NO2
- -complex with two o,p-nitro groups and an Im group in ortho position to the tetrahedral carbon (see 
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structure depicted in the SD). The calculated IR spectrum, also shown in Fig. 2, does not account well for 

the experimental IRMPD spectrum. 

Because the vibrational spectra  of TNB-Pyr- and TNB-Im- complexes are remarkably similar they are 

discussed together. In order to appreciate fine differences one may refer to Tables 1 and 2. As stated 

earlier, the dominant band centered at 1250 cm-1 is due to the highly active resonances involving NO2 

symmetric vibrations. The corresponding resonance in neutral TNB is found at 1367 cm-1 and the 

pronounced red-shift in the anionic complex is ascribed to charge delocalization onto the nitro groups [19]. 

They become non-equivalent and the N-O bonds are weakened, thus accounting for band splitting and 

shifting to lower frequency. Where only a ‘weakly’ covalent -character is present , as in the heavier halide 

TNB complexes, the effect is less pronounced and in fact these complexes present a rather narrow band at 

higher frequency (1332-1345 cm-1) indicating a scantly perturbed TNB unit [19]. Thus, the absorption at 

1250 cm-1 can be regarded as clear signature of the anionic (Meisenheimer) -complex.  

For comparison purposes, one may note that when a nitro group is in direct conjugative interaction with a 

negative charge placed in benzylic position as in deprotonated 2,4-dinitrotoluene, the red shift of the NO2 

symmetric stretching mode is even more pronounced yielding a strong IRMPD band at 1180 cm-1 [31].  

Resonance structures delocalizing the negative charge and weakening the NO bond are also responsible for 

the comparatively low frequency of the NO2 symmetric stretch observed in the IRMPD spectrum of the 

nitrobenzene radical anion [32]. 

The band at 1042-1050 cm-1 is associated to the TNB CH in plane bending. In the 1400-1500 cm-1 

wavenumber range one expects NO2 asymmetric stretchings and TNB ring deformation modes. Only one 

band is observed at 1492-1495 cm-1. Modes of lower intensity are apparently missing, likely due to the non-

linear character of the IRMPD process [14-16]. The band at 1596 cm-1 is associated to TNB C-C stretching 

vibrations. 

 

3.2. Meisenheimer complexes bonded at carbon 

 

Sampling  of TNB-Ac- complex  (m/z 270) by IRMPD spectroscopy has shown photofragmentation occurring 

along two channels. The major one is associated with loss of HNO2 giving an ion at  m/z 223 [Eq. (3 a)]. This 

product ion has been ascribed the structure of a nitrobenzyl-substituted acetonyl anion when the TNB-Ac-

precursor is obtained using APCI mass spectrometry [24].  The second channel corresponds to the loss of 

neutral acetone, to generate the deprotonated TNB at m/z 212. [Eq. (3 b)].  Nitrite anion (NO2)
-  (m/z 46) 

and enolate anion of acetone (m/z 57), fragments found in the CID spectra of the σ-adduct of 1,3 

dinitrobenzene with acetone, were not observed in the current IRMPD experiments in line with the higher 

acidity of TNB [26].  

 

 
 
 
 
 
 
 
 
 
 
 
 

 [TNB-C3H5O]- 

    m/z 270                            
                                    
 

[TNB-H]-     +   C3H6O
         (5%)        [Eq.( 3b)] 

 m/z 212 
 

[C9H7N2O5]
-     +    HNO2  (95%)        [Eq.(3a)] 

   m/z 223 
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The TNB-Acac- complex (m/z 312) undergoes photofragmentation yielding ions at m/z  185, 186 and 240 

according to processes involving extensive bond breaking and rearrangement [Eq. (4 a-c)].    

The IRMPD spectra of TNB-Ac- and TNB-Acac- are reported in Figs. 3 and 4 (panel (a)), respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Experimental IRMPD spectrum of TNB-Ac- ions (a) and computed IR spectra of 3a (b) and 3e (c). 
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[C7H2N3O7]
-     +   [C4H8O]       (16%)        [Eq.( 4c)] 

 m/z 240 
 

 [TNB-C5H7O]- 

    m/z 312                           
                                    
 

[C6H6N2O5]
-     +  [C5H4NO3]

 
   (44%)       [Eq.( 4b)] 

 m/z 186 
 

[C6H5N2O5]
-   +  [C5H5NO3]      (40%)       [Eq.(4a)] 

   m/z 185 
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The general pattern of the spectra shows remarkable similarity with the spectra of TNB-Pyr- and TNB-Im-, 

supporting a common structure with characteristic signatures dominated by the TNB component. Thus, the 

strong,  wide  band at 1196-1240 cm-1 is accompanied by weaker features at 1046-1050, 1490, 1596-1600 

cm-1. An additional band recorded at  1718-1744 cm-1 is in the range expected for a carbonyl C=O stretching 

frequency, therefore a distinct signature of the nucleophile. At variance with the nitrogen nucleophiles 

used, enolate anions present potential ambident reactivity, involving either the carbon or the oxygen 

nucleophilic center. Systematic studies have revealed a range of selectivities varying from exclusive 

reaction at oxygen to sole attack at carbon in the reaction enolate anions with a variety of gaseous 

electrophiles [3,5,33]. In the present study, the sampled TNB-Ac- and TNB-Acac- are formed in solution and 

the complexes are likely kinetically trapped in their original structure. 

Isomeric species have been examined computationally, obtained by either carbon or oxygen attack by the 

acetone enolate ion. Fig. 3 (b) shows the structure and IR spectrum of 3a, a carbon-bonded TNB-Ac- 

complex. In this species the CH3COCH2 group is anti-oriented with respect to the TNB ring. A syn-type 

geometry in 3b yields a conformer only slightly higher in energy (at 6 kJ mol-1) shown in Fig. S3 together 

with 3c, another anti-type conformer at 9 kJ mol-1 relative energy. The calculated IR spectra, also shown in 

Fig. 3(b) and Fig. S3(b-c), are quite comparable, both in terms of frequencies and intensities, and, as shown 

by the superimposed IRMPD spectrum, account well for the experimentally observed features. A detailed 

matching and mode assignment is illustrated in Table 3.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Experimental IRMPD spectrum of TNB-Acac- ions (a) and computed IR spectrum of 4a (b). 
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Table 3: Experimental IRMPD bands observed for TNB-Ac- complex and computed vibrational modes for the 
TNB-Ac- (3a) isomer. 
 

Experimental IRMPDa
 Calculateda,b

 Vibrational mode 

1046 1045(229),1060 (79) CH bending (in plane), CH3 Wag  
1196 1207 (1370),1215 (557), 1228 (100) NO2 symm stretch, CH bending (in 

plane),  
1230 1246 (2049) NO2 symm stretch 
1365 1351(61),1361(59). CH3 umbrella , C-N stretch 
1414 1412 (260) NO2 asymm stretch and CCTNB 

stretch 
1488 1454 (77), 1462 (271), 1500 (419) CH3 Rock, NO2 asymm stretch, CCTNB 

stretch 
1600 1606 (222) CCTNB stretch 
1718 1716 (252) CO stretch 
 
a Frequency in cm-1 
bCalculated vibrational modes at the B3LYP/6-311++G(d,p) level of theory. The computed intensities (km 
mol-1) are given in parenthesis. Bands with intensity lower than 40 km mol-1 are not included.  

 
Table 4: Experimental IRMPD bands observed for TNB-Acac- complex and computed vibrational modes for 
the TNB-Acac- (4a) isomer. 
 

Experimental IRMPDa
 Calculateda,b

 Vibrational mode 

1050 1047 (203), 1060 (72) CH bending (in plane), CH3 Wag 
1128 1135 (58) CCAcac stretch, CH3 Wag  
1196-1240 1200 (1274), 1216 (567), 1230 (359), 

1249 (1753) 
NO2 symm stretch, CH bending (in 
plane) 

1198 1274 (116) CH bending 
1367 1360 (82) CH3 Umbrella , C-N stretch, CH bending 
1420 1419 (333) NO2 asymm stretch CCTNB stretch 
1491 1440(79), 1458 (248), 1508 (374) Rock CH3, NO2 asymm stretch CCTNB 

stretch 
1596 1606 (218) CCTNB stretch 
1744 1711(200), 1751 (132) CO stretch 
 
a Frequency in cm-1 
bCalculated vibrational modes at the B3LYP/6-311++G(d,p) level of theory. The computed intensities (km 
mol-1) are given in parenthesis. Bands with intensity lower than 40 km mol-1 are not included.  

 
 
 
 
The CH3COCH2 group may conceivably rearrange to an enol structure and the ensuing CH3C(OH)=CH2 group 

is represented in TNB-Ac- isomer 3d (at 33 kJ mol-1 relative energy)  whose structure and IR spectrum are 

depicted in Fig. S3(d). The IR spectrum is once again quite similar to the ones of the former species, only 

differing for the absence of the C=O stretching band and the presence of a COH bending coupled to C-C 
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stretching mode at 1670 cm-1. Finally, an oxygen-bonded isomer 3e (Fig. 3(c)) has been calculated to lie at 

84 kJ mol-1 relative energy. However, its IR spectrum, characterized by symmetric NO2 stretching modes at 

somewhat higher frequency than experimentally observed, by the C=C stretch of the CH3C(OH)=CH2 group 

calculated at 1643 cm-1 and the obvious lack of a C=O stretch matching the experimental band at 1718 cm-1, 

does not support a significant presence of this isomer. In view of the wide width of the band at 1196-1240 

cm-1 it is possible, though, that multiple conformers may contribute to the sampled ion population. For 

example 3d presents a wider separation of the NO2 symmetric stretch bands though still centered relative 

to the experimental absorption feature. However its presence, as well as that of 3e is unlikely to be 

significant due also to their considerably higher energy content. 

The acetylacetone enolate is stabilized by two carbonyl groups and carbon bonding at the highly activated 

methylene position has been taken into consideration to account for the structure of the assayed TNB-

Acac- complex.  The 4a conformer  depicted in Fig. 4(b) presents one acetyl  group in syn-like orientation 

relative to the TNB ring while the second one is anti-like oriented with a dihedral angle measuring the 

mutual orientation of  the two carbonyl groups of 71°. The IR spectrum  is in fair agreement with the 

experimental IR spectrum, as also testified by the vibrational frequencies listed in Table 4. Once again the 

major features in the observed portion of the IR spectrum are associated to the TNB moiety of the  TNB-

Acac- complex and their assignment is common to the previously described anionic complexes. The 

characteristic signature of  TNB-Acac-  is the carbonyl stretch band at 1744 cm-1 in the IRMPD spectrum. This 

relatively wide band is probably a convolution of the two C=O stretch resonances calculated at 1751 and 

1711 cm-1.  Because the vibrational spectrum is dominated by the TNB unit bearing the negative charge, 

conformational variability in the  Acac group is not expected to produce significant changes. Indeed, 

conformer 4b, differing for the rotation of the two acetyl groups and lying 14 kJ mol-1 higher in energy 

relative to 4a, presents quite comparable spectral features (Fig.S4(b)).  Tautomerization of the Acac group 

via hydrogen migration from the methine carbon to a carbonyl oxygen yields a stable enol isomer, 4c, at -25 

kJ mol-1 relative to 4a, displaying an intramolecular hydrogen bond. As shown in Fig. S4(c) the hydrogen 

bond weakens the force constant of the remaining carbonyl now absorbing at 1573 cm-1. However, given 

the relatively weak calculated intensity of this mode and the remaining features of the spectrum sharing 

similar frequency and intensity with the keto isomer, one cannot exclude a contribution of this species in 

the sampled ion population. Finally, also a complex involving attack by the less activated methyl carbon of 

acetylacetone has been conceived, corresponding to isomer 4d (Fig.S4(d)). Complex 4d turns out to be 

more stable than 4a by 12 kJ mol-1, which may be partly attributed to diminished steric congestion at the 

tetrahedral ring carbon. While its formation will be kinetically disfavored in solution, its IR spectral features 

are once again largely dominated by the TNB moiety making it difficult to discard its potential contribution. 

   
 

4. Conclusions 

 

Nucleophilic aromatic substitution reactions display a variety of reactivity patterns in the gas phase, 

depending on the nucleophile, the leaving group and the activation of the aromatic substrate, as recently 

illustrated in a thorough computational survey [34]. Anionic-complexes may occur as reaction 

intermediates or transition states. An example of Meisenheimer complex representing a transition state 

rather than a local energy minimum is reported by Riveros in the unusually fast nucleophilic aromatic 

displacement reaction of nitrobenzene with fluoride ion, studied by FT-ICR mass spectrometry [35]. The 

three nitro groups of TNB provide considerable stabilization on Meisenheimer complexes and the selected 

TBN-Nu-  (Nu = Pyr, Im, Ac, Acac) adducts formed in solution and assayed in the gas phase all conform to an 

anionic covalent structure. This conclusion is supported by the vibrational signatures recorded in the 
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fingerprint range of the IR spectrum and by DFT computational data providing geometries, energies and IR 

spectra of plausible stable structures. The covalent -complex structure is characterized in particular by the 

band associated to strongly active NO2 symmetric stretching modes that are significantly red-shifted 

relative to neutral TNB. The extent of this shift as well as the separation of the resonances for the non-

equivalent ortho and para groups may be considered a reflection of the -covalent character of the 

complex.  The IRMPD bands for the TBN-Nu-  (Nu = Pyr, Im, Ac, Acac) complexes are centered at 1240-1260, 

1250, 1196-1230 and 1196-1240 cm-1, respectively. Unfortunately, only a convoluted envelope of the NO2 

symmetric stretching modes is experimentally observed. According to the calculations though, the most 

active resonances pertaining to ortho (at lower frequency) and ortho/para (higher frequency) nitro group 

symmetric stretching are separated by a gap of 23, 23, 39, and 30 cm-1 in the Pyr, Im, Ac, and Acac series of 

adducts (see computed data in Tables 1-4). These values may be compared with 23 and 26 cm-1 gaps 

obtained for methoxide and cyanide complexes, respectively [18,20]. In marked contrast, the 

corresponding difference is calculated to be ca 4 cm-1 for the bromide complex, TNB-Br-, characterized by a 

weakly covalent bond of Br- with a nearly unperturbed TNB unit.  An inference my thus be suggested that 

the enol anions impart an even more strongly covalent  -complex character, relative to other tested 

nucleophiles. TBN-Nu-  complexes with enolate ions conform to carbon-bonded species, in agreement with 

the presence of a C=O stretching signature. The formation of a carbon-bonded adduct of acetone enolate 

anion with m-dinitrobenzene in an ESI source had been proposed on the basis of the common CID pattern 

with a complex formed in solution [10]. Forthcoming efforts will be devoted to exploit IRMPD spectroscopy 

to gain insight into the structure of anionic complexes of electron-deficient arenes obtained from reactions 

conducted in different media. 
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