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Milk is a complex emulsion of fat and water with proteins (such as caseins and whey), vitamins, minerals and lactose dissolved within. The purpose 

of this study is to automatically distinguish different dairy residues on substrates commonly used in the food industry using hyperspectral imag-

ing. Fourier transform infrared (FT-IR) and Raman hyperspectral imaging were compared as candidate techniques to achieve this goal. Aluminium 

and stainless-steel, types 304-2B and 316-2B, were chosen as surfaces due to their widespread use in food production. Spectra of dried samples 

of whole, skimmed, protein, butter milk and butter were compared. The spectroscopic information collected was not only affected by the chemi-

cal signal of the milk composition, but also by surface signals, evident as baseline and multiplicative effects. In addition, the combination of the 

spectral information with spatial information can improve data interpretation in terms of characterising spatial variability of the selected surfaces. 

Keywords: milk, Raman, FT-IR, hyperspectral imaging, aluminium, stainless steel, PCA, PLS-DA

Introduction
Milk is a complex emulsion of fat and water in which 
different nutrients are dissolved: proteins (caseins and 
whey protein), vitamins, minerals and carbohydrates, 
such as lactose.1 Its complex nature makes it difficult 
to completely and quickly characterise all components 
with a single analytical technique. Due to the impor-
tance of milk and its by-products in human nutrition, 
many research approaches are used. Two key research 

approaches, relevant to this study are (1) characterisa-
tion of the different components of milk and (2) hygienic 
studies of the surfaces in contact with the different 
components.

Milk’s composition can provide information about the 
production animal.2 Focusing on cow’s milk, the composi-
tion gives information about the quality of the products3 
as well as of adulteration,4 effects of homogenisation5 
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or other industrial applications.6 In addition, raw milk 
compositional information can be used to predict origin7 
and the lactation stage of the cow8,9 which produced it.

One of the most commonly applied techniques to char-
acterise milk composition is chromatography; however, 
in spite of its widespread use, it is difficult to deter-
mine common parameters, i.e. temperature, solvents, 
type of column and eluents to separate all milk compo-
nents. Chromatography can analyse liquid milk or dried/
powder milk, as often the samples are pre-treated or 
dissolved.10–13 Another problem is that chromatography 
is a destructive technique: samples are split into their 
components during the analysis and are separated and 
eluted at different time points based on specific chemical 
properties, i.e. polarity, chirality etc.14

To circumvent some limitations experienced with chro-
matography, e.g. sample destruction, time and porta-
bility, different types of spectroscopy have been applied. 
These include Raman,15–17 Fourier transform infrared 
(FT-IR)7,18,19 and near infrared (NIR).19,20 In addition, 
sampling techniques are also applied to analyse milk: 
attenuated total reflection (ATR),21 micro attenuated 
total reflection (μATR) and high throughput transmission 
(HTT) have also been compared.5 Unlike chromatography, 
spectroscopy is a non-destructive method which allows 
for the simultaneous characterisation of various compo-
nents with one analysis and samples can be analysed 
without being pre-treated.

Milk is a high nutrition food and supports a variety of 
microbial species.22,23 Assessment of the hygienic level 
of the surfaces that are used in milk production or in 
everyday life is complicated by  the complexity of milk’s 
composition. Stainless steel is widely used in the food 
industry due to its corrosion resistance. It can be cleaned 
and sterilised. The most used stainless steel types in 
the food industry are AISI-304, which is made of 18 % 
chromium and 10 % of nickel and AISI-316 composed 
of 17 % chromium, 12 % nickel and 2.5 % molybdenum. 
Stainless steel 316 is more resistant to chloride solu-
tions, so it is also used in medical devices. This type of 
stainless steel is used most frequently in food produc-
tion because it is a good compromise between price and 
hygiene. Aluminium should be avoided in the food chain, 
as it is not resistant to corrosion, though it is generally 
accepted in domestic kitchens.24 In the literature, there 
have been some studies which investigate the interac-
tion of surfaces and milk with respect to hygiene level25 
and their interactions with bacteria23,26 and biofilms.22 

From these studies, it appears that stainless steel has a 
long phase of adhesion for biofilm but produces a strong 
biofilm.22 In addition, the hygiene status of stainless steel 
is based on composition but not on the finish.25 Some 
milk protein absorption can inhibit bacteria adhesion.23

The purpose of this study is the characterisation of 
dried whole milk, skimmed milk, protein milk, butter milk 
and butter on stainless steel 316-2B, stainless steel 
304-2B (2B defines stainless steel surfaces with a pick-
ling finish) and aluminium with FT-IR and Raman hyper-
spectral imaging. The effect of the surfaces on the sample 
spectra is also investigated.

Materials and methods
Sample preparation
Rectangular slides (37 mm × 25 mm × 1 mm) made from 
aluminium, stainless steel types 304-2B finished and 
316-2B finished [purchased from Rice Metals (Cornwall, 
United Kingdom)] were chosen as substrates in this study.
The surfaces were supplied covered with a protective tape. 
To remove any traces of glue, the surfaces were washed 
with a solution of ethanol [99 %, Absolute, Extra Pure, SLR 
purchased from Fisher Scientific (Dublin, Ireland), CAS 
Number: 64-17-5] and acetone [HPLC grade, obtained 
from Fisher Scientific (Dublin, Ireland), CAS Number: 
67-64-1] (1 : 1 v/v). Each slide was immersed for 10 min 
in the acetone/ethanol solution and was then rinsed for 
5 min with deionised (DI) water sourced from a Thermo 
Scientific™ Barnstead™ Smart2Pure™ water purification 
system (producing Type I ASTM water, with a resistance 
of 18.2 MΩcm at 24.7 °C).

An isolator (Grace Bio-Labs Press-To-Seal silicone 
isolator adhesive on one side. Round, 13 mm diameter, 
2.5 mm depth, CAT Number: GBL665307) was applied 
on top of each support to contain the dairy products. 
Selected dairy substrates were whole milk, protein 
milk, skimmed milk, butter milk and butter produced by 
Avonmore Ltd (Avonmore) purchased at a local shop. 
Table 1 shows the nutrients as declared by Avonmore27 
for each type of dairy product. The isolators were filled 
with 0.5 mL of each milk sample and were dried at room 
temperature (about 20 °C), for 48 h prior to analysis. In 
addition, a sample series of butter was prepared and 
analysed. In this case, the thickness of whole dried milk 
was reproduced with a layer of butter by applying a cover 
slip on top. The system was frozen to measure the thick-
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ness and to enable easy removal of the cover slip. The 
thickness of the butter plus glass slide was measured and 
compared with the untreated glass thickness to deter-
mine the smear thickness. The thickness (approximately 
0.15 mm) of both whole milk and butter was measured 
by a Vogel electronic micrometer (range 0–25 mm and 
resolution 0.001 mm).

Two experimental repetitions, from two different 
batches, were prepared and analysed for each combina-
tion of substrate and support. The dairy products were 
transferred from their packaging into 30 2 mL vials and 
stored in a fridge at 6 °C, over the sample preparation 
period. To avoid sample contamination, before applying 
the dairy products on the surfaces, two vials for each 
sample were removed from the fridge, one to measure 
the temperature and the other to pour the milk on the 
surface. After about 10 min, when the dairy products 
reached room temperature (20 °C), they were poured 
into the spacer.

Hyperspectral imaging systems and data 
collection
Raman hyperspectral imaging system
In this study a Renishaw InVia micro-Raman spec-
troscopy system with a Leica DM2500 M micro-
scope and NIR-enhanced deep depletion CCD array 
(1024 × 256 pixels) were used to analyse the samples. 
Two Raman shift ranges (range 1: 2410–190 cm–1 and 
range 2: 4000–2360 cm–1) were collected to cover a 
total range of 3900–190 cm–1. Preliminary tests were 
carried out to optimise the instrumental parameters. An 
edge 785 nm laser was chosen for the excitation in order 
to reduce the fluorescence caused by proteins present 

in milk. The laser was set to 5 % power (power meas-
ured at source was 306 mW) and 5 s acquisition time 
was selected for each spectrum. Images were obtained 
using a 10×, 0.25 NA objective lens. The average spectral 
resolution was 1.8778 cm–1. Each data cube contained 
200 spectra, collected as a 1.90 × 0.90 mm map with a 
step size of 100 µm. The data were encoded in Renishaw 
WDF format. The instrument was calibrated daily using 
an internal silicon reference. 

FT-IR hyperspectral imaging system
A Nicolet iN10 MX imaging microscope with LN2-cooled 
MCTA linear array detector was used to collected FT-IR 
spectra. The spectra were acquired point by point over 
the wavenumber range 7500–475 cm–1. 16 spectral 
acquisitions were collected per pixel with a total pixel 
acquisition time of 5 s. Spectra were collected in reflec-
tance. An aperture size of 150 × 150 µm and step size of 
150 µm was used to obtain a data cube of 300 spectra 
covering a spatial region of 3.00 × 2.25 mm. The spec-
tral resolution was 1.928 cm–1. The data were saved in 
Nicolet MAP file format and exported to ENVI format 
files. A background was collected every 300 minutes 
using a gold reference sample.

Data pre-treatments and analysis
The two ranges collected with Raman were examined for 
cosmic rays and were corrected using an in-house func-
tion which detects cosmic rays and allows for manual 
inspection, correcting with the mean of five neigh-
bouring wavenumber intensities.28 The obtained Raman 
data from the two ranges were individually pre-treated 
(as described below) and the pre-treated spectra were 

Nutrient content of 
Avonmore dairy products

Whole milk 
(g/100 mL)

Skimmed milk 
(g/100 mL)

Protein milk 
(g/100 mL)

Butter milk 
(g/100 mL)

Butter 
(g/100 g)

Fat 3.5 1 1 3 81
of which saturates 2.2 0.6 0.6 1.6 53
Carbohydrate 4.7 4.8 4.8 5 0.8
of which sugars 4.7 4.8 4.8 5 0.8
Protein 3.4 3.5 5.1 3.4 0.5
Salt 0.11 0.11 0.11 0.1 1.8
Calcium (mg) 119 123 165 120 —
Vitamin B12 (µg) 0.4 0.4 0.4 — —
Vitamin D (µg) 1 — 1 — —

Table 1. Nutrient content of Avonmore dairy products utilised in this work.27
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concatenated to form a single spectrum of range of 
3900–190 cm–1 for each pixel.

In the case of FT-IR data, both the near infrared (NIR) 
and mid infrared (MIR) ranges were collected simulta-
neously. They were split into two ranges (MIR: 3580–
920 cm–1 and NIR: 6200–3700 cm–1) and pre-treated 
independently (as described below). Before re-concate-
nation, the spectra were normalised using the Euclidean 
norm.

The normalisation is necessary for FT-IR data because 
the collected spectra contain both NIR overtones and 
MIR molecular vibrations. Bands in the NIR range are 
10–100 times weaker than the MIR range, so in order 
to merge the two ranges, normalisation is necessary. 
In the case of Raman spectra, these differences are 
not present because the ranges are collected from the 
same detector (as FT-IR) and do not exhibit any physical 
differences.

Raman and FT-IR data set were both pre-treated 
by obtaining the Savitzky–Golay derivative and using 
standard normal variate normalisation. Later, principal 
components analysis and partial least squares-discrimi-
nant analysis were applied (as described below). 

The Savitzky–Golay (SG) derivative is a row pre-treat-
ment method which has various applications. In the case 
of Raman data, it corrects the fluorescence baseline,29 
while it improves the signal-to-noise ratio by smoothing 
the noise and emphasises peak features in FT-IR data. In 
this study, a window size of 15 was used. The second-
order polynomial was calculated, followed by calculation 
of the first derivative.30 In addition, the Savitzky–Golay 
derivative was used to identify the saturated pixels in 
Raman spectra. The derivative spectra with a maximum 
value greater than 4000 units were identified as satu-
rated and were subsequently masked.

Standard Normal Variate (SNV) was applied to the data 
in order to remove multiplicative and additive effects. 
The scattering between the spectra due to the irregular 
surface roughness was reduced using this technique.31

Principal Component Analysis (PCA) was applied to 
FT-IR and Raman mean centred data sets indepen-
dently. In the case of Raman, the analysis was carried 
out on pre-treated data sets after the concatenation 
of the two ranges. Pixels with saturation were masked 
as described in the Savitzky–Golay section above. 
The FT-IR data sets were also analysed using PCA 
after pre-treatment, normalisation and the concat-
enation of the two ranges. For each sample, and for 

each modality, both repetitions were included in the 
analysis.

Partial Least Squares-Discriminant Analysis (PLS-DA) is 
a widely used chemometrics tool in both hyperspectral 
imaging and data analysis. As a supervised technique, 
PLS-DA performance metrics can be investigated in 
order to evaluate predictive ability. In this study, PLS-DA 
was applied on pre-treated data in order to classify the 
different dairy residues, regardless of substrate used.

One experimental repetition was used to train and 
calibrate the model while the second repetition was 
used for validation. The number of latent variables 
(LVs) was chosen to minimise the misclassification error 
on the calibration set. To evaluate the built model, 
both pixel and object interpretation were applied. For 
pixel interpretation, the percentage of correctly classi-
fied pixels (% CC) were calculated as the ratio between 
the sum of the correctly classified pixels and the total 
number of pixels of the validation set. Sensitivity and 
specificity were evaluated for each class. Sensitivity is 
defined as the ratio of the correctly identified pixels 
divided by the total number of pixels for that class. On 
the other hand, the percentage of pixels from other 
classes correctly predicted as not belonging to the 
category corresponds to the specificity. Object inter-
pretation was carried out by considering the values of 
each predicted image that occurred most often (the 
mode).

As mentioned in the PCA section, FT-IR and Raman 
data were analysed independently. In the case of Raman 
data, the two ranges were pre-treated, concatenated and 
masked before carrying out PLS-DA analysis. The FT-IR 
data were pre-treated, normalised and concatenated 
before carrying out PLS-DA analysis.

Results and discussion
An initial investigation of the samples included in the 
study was carried out based on the nutritional values 
presented in Table 1.27 The most influential nutrients (i.e. 
proteins, carbohydrates and fats) of Table 1 are plotted 
in Figure 1. It is evident that butter is distinct from the 
other samples. Whole milk, skimmed milk and butter milk 
have similar values. Protein milk, of course, has a higher 
protein content than the other products but, when only 
considering the fat and carbohydrates ratio it completely 
overlaps with skimmed milk. 
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The infrared (IR) spectrum of milk is complex due to 
the combination of a large number of milk components 
and their three-dimensional structure (i.e., fat micelles 
interact with some lipoproteins). In general, the ranges 
4500–4200 cm–1 and 4300–4000 cm–1 are assigned to 
CH aliphatic and aromatic groups, respectively. The range 
between 4000 cm–1 and 3200 cm−1 is assigned to amine 
(NH) and alcohol (OH) stretching signals which overlap.32 
Peaks between 3100 cm–1 and 2800 cm−1 are related to 
CH stretching vibrations due to both lipids and carbohy-
drates. The lower wavenumber region (1800–400 cm−1) 
is the most rich in information but also the most diffi-
cult to interpret due to overlapping signals.17 The range 
between 1800 cm–1 and 1400 cm−1 is used to study 
protein in milk.7 In addition, the 1200–800 cm−1 range 
is generally related to the vibrational modes of carbohy-
drates, where the lactose signal also appears.17,21,33 There 
are other typical bands used to identify different milk 
components as summarised in Table 2, which are used 
to interpret both Raman and FT-IR spectra and also the 
corresponding loadings obtained from PCA analysis.

Raman analysis
Raman spectroscopy is widely used to characterise 
different types of milk because it has well-defined peaks 
related to different components. In this study, Raman 
spectra were collected in two different ranges and pre-
processed as described previously in the Materials and 
methods section. Raman maps of dairy residue samples 
and clean substrates were both measured. Figure 2 shows 
the Raman spectra of both repetitions (first blue, second 
red) after cosmic ray correction and concatenation. Their 
mean is shown in Figure 3. Observing the collected data, 
it is difficult to recognise the typical liquid milk profile 
spectrum15 or any obvious trend between the different 
samples. Milk components, i.e. fat micelles or protein, 
do not preserve the same three-dimensional structure 
in a dried form. Figure 4 represents the mean spectra of 
the pure aluminium, stainless steel 304-2B and 316-2B 
samples before and after pre-treatments. Comparing 
these spectra with those of Figure 2 and Figure 3, there 
are no evident influences of substrate on the spectra of 
the dairy residues.

Figure 1. Natural log three-dimensional plots of main milk components (total fat, carbohydrates and protein) of samples 
included in this study presented in Table 1.
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To improve the interpretation, principal component 
analysis was carried out on the pre-treated, concate-
nated and masked map spectra as explained in materials 
and methods.

Score plot of PC1 vs PC2 vs PC3 and the loadings plot 
for these PCs are shown in Figure 5.

False colour red green and blue (RGB) image (Figure 6) 
was built with the same score values plotted in Figure 5, 

i.e., image scores value of PC1, PC2 and PC3 are rescaled 
between 0 and 1 and concatenated to make an image in 
which each red, green and blue (RGB) index corresponds 
to PC1, PC2 and PC3, respectively. In Figure 6, white 
pixels are due to the applied mask described in the mate-
rials and methods section.

The PCA scores plot and false RGB image of both 
repetitions together indicate a clear pattern, where the 

Peaks (cm−1) Chemical groups Components
1748 CO stretching ester Fatty acids34

1650~1640
Combination of: CO stretching mode, CONH group, 
CC stretching

Amide I, proteins and fatty 
acids35,36,5

1500 Combination of: NH deformation and CN stretching Amide II35,5

1450 CH2 deformation Fat and carbohydrates36,5

1340 CO stretching and COH deformation Carbohydrates17

1304 CH2 twisting Lipids17

1260 CH2 twisting mode Carbohydrates17

1050–1150 CO stretching Lipids32

1004 Ring breathing mode Phenylalanine17

Table 2. Definition of bands over the IR range.

Figure 2. Raman spectra of both repetitions (first blue, second red) of whole milk, skimmed milk, butter milk, protein milk 
and butter on stainless steel 316-2B, stainless steel 304-2B and aluminium after cosmic ray correction.
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Figure 3. Raman spectra of whole milk, skimmed milk, butter milk, protein milk and butter on stainless steel 316-2B, stain-
less steel 304-2B and aluminium. Mean spectra of raw and pre-treated [SG derivative (window size = 15, second-order 
polynomial and first derivative) followed SNV normalisation].

Figure 4. Raman spectra of stainless steel 316-2B, stainless steel 304-2B and aluminium. Mean spectra raw and pre-
treated [SG derivative (window size = 15, second-order polynomial and first derivative) followed by SNV normalisation].
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different types of dairy residue form clusters in the 
PC1–3 space.

Comparing the loadings plot in Figure 5 with the typical 
milk peaks reported above, it is evident that the first prin-
cipal component (PC1), which explained 44.09 % of the 
variance, is a combination of the contributions of proteins 
and carbohydrates. It is strongly connected with the lipid 
and carbohydrates signals around 3100–2800 cm−1. The 
second principal component (PC2) (explained variance 
11.32 %) seems to be more influenced by the fat signal. 
PC2 has a very clear signal around 2800 cm−1 which 
may be due to both lipids and carbohydrates but, unlike 
PC1, it seems not to contain much information below 
1200 cm−1. Figure 6 supports this interpretation: butter 
is distinguishable from the other dairy products mainly 
due to the contribution of scores of PC2 (green compo-
nent of the false RGB image). In spite of a considerable 
explained variance (5.61 %), the third principal compo-
nent (PC3) does not seem to bring any new chemical 
information related to the major nutrients. The peak 

around 2800 cm−1 in PC3 may still be related to lipids and 
carbohydrates. However, Figure 6 seems to show that 
PC3 contributes only in combination with PC1, in the 
case of the purple pixels. These are outliers in the images, 
and they can be associated with less thick milk zones on 
the surface. In addition, from the same figure, it is evident 
that there is little contribution of the substrates: it is 
not possible to distinguish between aluminium, stainless 
steel 316-2B and 304-2B in the false colour RGB images. 
Indeed, it was not possible to identify any trend in the 
score scatter plot with respect to surface type (Appendix 
Figure A1).

In order to classify the samples based on their spectra, 
a PLS-DA model was built using the two independent 
repetitions, one as calibration set and one as validation 
set. 14 latent variables (LVs) were chosen based on the 
minimum misclassification value. Observing Figure 7, it 
is evident that there are some misidentifications at the 
pixel level. This model presented a value of total correct 
classification of 92.47 %. The lowest sensitivity was for 

Figure 5. Scores and loadings plots PC1, PC2 and PC3 of Raman spectra. PCA was performed using all the image spectra 
pre-treated SG derivative (window size = 15, second-order polynomial, first derivative) and followed by SNV normalisation.
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the butter milk (89.19 %) where some pixels were clas-
sified as whole milk. This also affects the specificity of 
whole milk (96.67 %), which was the lowest of all the 
samples. One possible explanation is that whole milk 
and butter milk are very similar in carbohydrates and fat 
composition. Whole milk has a slightly higher sensitivity 
than butter milk, 90 %, and some pixels are classified as 
skimmed milk. In this case, it is necessary to consider 
that whole and skimmed milk have a comparable quan-
tity of proteins and carbohydrates. The misclassification 
between skimmed and protein milk can be explained by 
the nutrients plot shown in Figure 1, where it is clear that 
they present the same carbohydrates/fats ratio. Butter is 
totally distinguishable from the other dairy products with 
a sensitivity of 100 % and specificity of 99.96 %. When 
representing each image as an object, the model seems 
to correctly predict all the dairy products (Table 4).

FT-IR analysis
In Figure 8, the raw FT-IR spectra are plotted of both 
repetitions (first blue, second red), separated by type 
of surfaces and dairy product. Some plots (aluminium: 
butter and butter milk, stainless steel 304: whole milk 
and butter, stainless steel 304: whole milk) in Figure 8 
present different baseline heights attributable to the 
height of the gold signal used for calibration. The spectra 
were split into two ranges (MIR, 3580–920 cm–1, and 
NIR, 6200–3700 cm–1, see black lines in the plots) and 
were pre-treated independently. As described in the 
materials and methods section, SG (window size = 15 
points, second-order polynomial and first derivative 
and) was applied to improve the signal-to-noise ratio 
and to emphasise peak features. SNV was applied to 
remove the multiplicative and additive effects. Before 
the spectra were concatenated  back together, they 

Figure 6. False RGB (red, green and blue) image built with score values of PC1, PC2 and PC3 (independently normalised 
between 0 and 1).

Pixel level % CC = 92.47 Whole milk Skimmed milk Butter milk Protein milk Butter
% Sensitivity 90.00 90.55 89.19 96.66 100
% Specificity 96.67 97.74 99.20 98.06 99.96

Table 3. Values of PLS-DA analysis. It reports the values of sensitivity and specificity for each class based on a pixel-wise 
approach. Model built with Raman data pre-treated with a SG derivative (window size = 15, second-order polynomial, first 
derivative) followed by SNV normalisation. One repetition was used as calibration set and another as validation. LVs = 14 and 
92.47 % CC.
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were normalised using the Euclidean norm. As can be 
seen in Figure 9, this selection of pre-treatments elimi-
nated the scattering between the two repetitions and 
showed a similar trend.

Observing the mean of pre-treated spectra separated 
by the different surfaces (Figure 10), it appears that in 
FT-IR the substrates also did not have a clear effect on 
the dairy residue spectra.

Similar to the approach carried out using the Raman 
data, PCA was applied to the pre-treated images (as 
described in the materials and methods section). A PCA 
score plot of PC1 vs PC2 vs PC3 and the corresponding 
loading plots for these PCs are shown in Figure 11. In 
addition, a false colour RGB image (Figure 12) was built 
as described previously for the Raman data. In this case 
no pixels were masked.

PCA analysis on the FT-IR data seems to give a better 
representation than the one carried out on Raman 
profiles, in that it allowed easy identification of the 
different types of dairy products from both the score plot 
in three-dimensional space and the false RGB image built 
with PC1, PC2 and PC3 (Figures 11–12).

In FT-IR PCA analysis, PC3 seems to contribute to 
the differentiation. However, it is difficult to attribute a 
specific constituent to each PC. The information in the 
NIR range seems to have more of an effect on PC1 and 
PC2 than on PC3. PC3 better represents the MIR range.

The range between 1200 cm–1 and 920 cm–1, typical of 
carbohydrates, affects PC2 (explained variance 24.93 %) 
and PC3 (explained variance 12.39 %) more than 
PC1 (explained variance 42.29 %). The protein bands 
between 1800 cm–1 and 1400 cm–1, i.e. amide signals, 

Object level Whole milk Skimmed milk Butter milk Protein milk Butter
Object identification Whole milk Skimmed milk Butter milk Protein milk Butter

Table 4. Object identification of PLS-DA analysis. Model built with Raman data pre-treated with a SG derivative (window size 
= 15, second-order polynomial, first derivative) followed by SNV normalisation. One repetition was used as calibration set and 
another as validation. LVs = 14 and 97.51 % CC.

Figure 7. Pixel level prediction maps of PLS-DA analysis (validation set). Model built with Raman data pre-treated with a 
SG derivative (window size = 15, second-order polynomial, first derivative) followed by SNV normalisation. One experi-
mental repetition was used as calibration set and another as validation. LVs = 14 and 97.51 % CC.
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Figure 8. FT-IR raw spectra of both repetitions (first blue, second red) of whole milk, skimmed milk, butter milk, protein 
milk and butter on stainless steel 316-2B, stainless steel 304-2B and aluminium.

Figure 9. FT-IR spectra of both repetitions (first blue, second red) of whole milk, skimmed milk, butter milk, protein milk 
and butter on stainless steel 316-2B, stainless steel 304-2B and aluminium pre-treated with SG derivative (window size = 
15, second-order polynomial, first derivative) and SNV normalisation.
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are present in both PC1 and PC2. The clear signal of 
CH for both lipids and carbohydrates (3100–2800 cm–1) 
observed in the Raman loadings (see Figure 5) has a 
lower influence here: just in PC1 and PC2. The band 
around 3830~3840 cm–1, present in all three loadings, 
is in the range (4000–3200 cm–1) assigned to both NH 
(ammine) and OH (alcohol) groups. The signal of CH due 
to aromatic and aliphatic groups seems to affect only 
PC2 (4500–4000 cm–1). From this analysis is evident 
that it is difficult to define the contribution of specific 
milk components in each PC. Indeed, all of the false RGB 
images in Figure 12 are obtained from the contribution 
of the three different PCs in combination. For example, 
butter is described by an equal contribution of PC3 (blue) 
and PC1 (red): magenta is obtained from the mixing of 
red and blue in equal parts.

In the score plot in Figure 10, high score values 
between PC1 and PC2 define butter milk. The score 
values of skimmed milk, butter and butter milk, whole 
milk and protein milk appear as separated clusters. 
Skimmed milk and protein milk maintained a similar 

trend, but they are well defined in three-dimensional 
space. 

In Figure 12, it is possible to see some intensity trends 
probably due to the surfaces, especially in the case of 
skimmed milk. However, when trying to plot the score 
values based on surfaces, no significant trend appeared 
(Appendix Figure A2). Therefore, despite some spatial 
trends which appear to be detectable, aluminium, stain-
less steel 304-2B and 316-2B do not affect the separa-
tion in PCA.

Three PLS-DA models were built and compared: inde-
pendently pre-treated NIR and MIR ranges, and their 
combination. For the FT-IR model on the combined 
range, five LVs were selected and the total correct clas-
sification by pixel is 98.73 % (Table 5). The combination of 
MIR and NIR provides better results than using the two 
ranges independently. In fact, for the MIR range five LVs 
(Table 7) were used, obtaining correct classification by 
pixel of 97.41 %. In this case, only whole milk has a sensi-
tivity of 100 %, in fact it is the only dairy product always 
predicted correctly. In addition, only butter and butter 

Figure 10. FT-IR spectra of whole milk, skimmed milk, butter milk, protein milk and butter on stainless steel 316-2B, stain-
less steel 304-2B and aluminium. Mean spectra corrected with SG derivative (window size = 15, second-order polynomial, 
first derivative) and SNV.
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Figure 11. Scores and loadings plots PC1, PC2 and PC3 of FT-IR data. PCA was built using all the image spectra pre-
treated with SG derivative (window size = 15, second-order polynomial, first derivative) followed by SNV normalisation.

Figure 12. False RGB (red, green and blue) image built with scores values of PC1, PC2 and PC3 independently normalised 
between 0 and 1.
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milk are never falsely predicted with a specificity of 100 % 
(maps in Appendix, Figure A3). In the NIR range, six LVs 
were necessary to minimise the misclassification with an 
overall correct classification rate of 95.56 % (Table 9). The 
corresponding model correctly predicts butter, protein 
milk and skimmed milk. Some pixels in whole milk are 
predicted as skimmed milk and some pixels in butter milk 
are predicted as whole milk (maps in appendix, Figure A4). 
The combination of the two ranges greatly improved the 
model: in fact, whole milk, protein milk and butter have 

a sensitivity of 100 % and whole milk, butter milk and 
butter have a specificity of 100 % (Table 5). Following the 
object interpretation (Tables 6, 8 and 10), all the models 
correctly predict all the dairy products.

Comparing the total FT-IR range with the Raman model, 
the misclassifications between skimmed and protein milk 
are similar: due to having the same carbohydrates and 
fat ratio. Excluding these few pixels the total FT-IR range 
model seems more robust and has higher values in both 
sensitivity and specificity. 

TOTAL RANGE:  
Pixel level % CC = 98.73 Whole milk Skimmed milk Butter milk Protein milk Butter
% Sensitivity 100 94.18 99.47 100 100
% Specificity 100 99.87 100 98.54 100

Table 5. Values of PLS-DA analysis. It reports the values of sensitivity and specificity for each class based on pixels approach. 
Model built with FT-IR data pre-treated with SG derivative (window size = 15, second-order polynomial, first derivative) fol-
lowed by SNV normalisation. One repetition was used as calibration set and another as validation set. LVs = 5 and 98.73 % CC.

TOTAL RANGE: Object level Whole milk Skimmed milk Butter milk Protein milk Butter
Object identification Whole milk Skimmed milk Butter milk Protein milk Butter

Table 6. Object prediction of PLS-DA analysis. Model built with FT-IR data pre-treated with SG derivative (window size = 15, 
second-order polynomial, first derivative) followed with SNV normalisation. One repetition was used as calibration set and 
another as validation set. LVs = 5.

MIR RANGE: Pixel level % CC = 97.41 Whole milk Skimmed milk Butter milk Protein milk Butter
% Sensitivity 83.07 100 94.71 100 100
% Specificity 98.68 95.77 100 100 100

Table 7. Values of PLS-DA analysis. It reports the values of sensitivity and specificity for each class using a pixel-wise approach. 
Model built with FT-IR-MIR data pre-treated with SG derivative (window size = 15, second-order polynomial, first derivative) 
and SNV. One repetition was used as calibration set and another as validation set. LVs = 5 and 97.41 % CC.

MIR RANGE: Object level Whole milk Skimmed milk Butter milk Protein milk Butter
Object identification (mode) Whole milk Skimmed milk Butter milk Protein milk Butter

Table 8. Object prediction of PLS-DA analysis. It reports the values of sensitivity and specificity for each class based on using a 
pixel-wise approach. Model built with FT-IR-MIR data pre-treated with SG derivative (window size = 15, second-order poly-
nomial, first derivative) followed by SNV normalisation. One repetition was used as calibration set and another as validation 
set. LVs = 5.

NIR RANGE: Pixel level % CC = 95.56 Whole milk Skimmed milk Butter milk Protein milk Butter
% Sensitivity 100 92.86 98.15 99.74 96.30
% Specificity 99.07 99.47 100 98.21 100

Table 9. Values of PLS-DA analysis. It reports the values of sensitivity and specificity for each class based on pixels approach. 
Model built with FT-IR-NIR data pre-treated with SG derivative (window size = 15, second-order polynomial, first deriva-
tive) followed by SNV normalisation. One repetition was used as calibration set and another as validation set. LVs = 5 and 
95.56 % CC.
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Conclusion
The objective of this study was to discriminate different 
types of dairy residues (whole milk, skimmed milk, butter 
milk, protein milk and butter) on surfaces (aluminium, stain-
less steel 304-2B and 316-2B) using FT-IR and Raman 
spectroscopy. The Raman spectra collected in two ranges 
were pre-treated independently. SG (second-order poly-
nomial, first derivative) derivative was applied to remove 
the fluorescence signal that affected the spectra baseline. 
SNV removed the multiplicative and additive effects, and 
the spectra were successively concatenated. The FT-IR 
spectra were split into two ranges (MIR and NIR) and 
pre-treated independently. In this case, SG was applied 
to improve the signal-to-noise ratio and to emphasise 
peak features and SNV again to remove the multiplicative 
and additive effects. Before re-concatenating, they were 
normalised using the Euclidean norm. PCA and PLS-DA 

were applied to these two data sets independently. PCA 
was applied to inspect for patterns in the data that might 
show separation between the different dairy products. 
For both Raman and FT-IR spectroscopy, PCA shows a 
good separation between the different dairy products. 
Despite that, observing the Raman spectra, it is easier to 
identify the signals of chemical groups and their effect 
on the loadings of PCA. In addition, PLS-DA was applied 
to classify each dairy product. The results of PLS-DA 
were evaluated from both a pixel-wise and object-wise 
perspective. Both spectroscopic techniques also give 
good results in prediction. However, Raman spectros-
copy results are less precise at recognising different prod-
ucts. In fact, the PLS-DA model built using Raman data 
has 97.51 % correct pixels in 14 LVs. On the other hand, 
FT-IR gives a better model with 98.73 % of correctly clas-
sified pixels in 5 LVs.

NIR RANGE: Object level Whole milk Skimmed milk Butter milk Protein milk Butter
Object identification (mode) Whole milk Skimmed milk Butter milk Protein milk Butter

Table 10. Object prediction of PLS-DA analysis. Model built with FT-IR-NIR data pre-treated with SG derivative (window size 
= 15, second-order polynomial, first derivative) followed by SNV normalisation. One repetition was used as calibration set and 
another as validation set. LVs = 5

Figure 13. Prediction map of validation set of PLS-DA analysis. Model built with FT-IR data pre-treated with SG derivative 
(window size = 15, second-order polynomial, first derivative) followed by SNV normalisation One repetition was used as 
calibration set and another as validation. LVS = 5 and 99.58 % CC.
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In conclusion, from this study it is clear that both FT-IR 
and Raman spectroscopy, in combination with chem-
ometrics approaches, are suitable to discriminate the 
various dairy product types.

One additional aim of this study was to also char-
acterise the contributions due to the surfaces. In this 
respect, no influence due to the substrates was observ-
able. This is probably due to the thickness of the sample 
(approximately 0.15 mm). Accordingly, testing different 
sample thicknesses to study the surface influence may be 
an interesting future investigation.
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Appendix

Figure A1. Scores plots PC1, PC2 and PC3 of Raman data based on surfaces. PCA was built using all the image spectra pre-
treated with SG derivative (window size = 15, second-order polynomial, first derivative) followed by SNV normalisation.

Figure A2. Scores plots PC1, PC2 and PC3 of FT-IR data based on surfaces. PCA was built using all the image spectra pre-
treated with SG derivative (window size = 15, second-order polynomial, first derivative) followed by SNV normalisation.
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Figure A3. Prediction map of validation set of PLS-DA analysis. Model built with FT-IR-MIR data pre-treated with SG 
derivative (window size = 15, second-order polynomial, first derivative) followed by SNV normalisation. One repetition was 
used as calibration set and another as validation set. LVs = 5 and 97.41 % CC.
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Figure A4. Prediction map of validation set of PLS-DA analysis. Model built with FT-IR-NIR data pre-treated with SG 
derivative (window size = 15, second-order polynomial, first derivative) followed by SNV normalisation. One repetition was 
used as calibration set and another as validation set. LVs = 6 and 95.56 % CC.


