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Abstract

Summary: Here we introduce omiXcore, a server for calculations of protein binding to large RNAs

(> 500 nucleotides). Our webserver allows (i) use of both protein and RNA sequences without size

restriction, (ii) pre-compiled library for exploration of human long intergenic RNAs interactions and

(iii) prediction of binding sites.

Results: omiXcore was trained and tested on enhanced UV Cross-Linking and ImmunoPrecipitation

data. The method discriminates interacting and non-interacting protein-RNA pairs and identifies RNA

binding sites with Areas under the ROC curve > 0.80, which suggests that the tool is particularly use-

ful to prioritize candidates for further experimental validation.

Availability and implementation: omiXcore is freely accessed on the web at http://service.tartaglia

lab.com/grant_submission/omixcore.

Contact: gian.tartaglia@crg.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-binding proteins (RBPs) amount to a large number of heteroge-

neous molecules encompassing a vast array of biological functions and

binding modalities (Marchese et al., 2016). The identification of RNA

targets is important to characterize RBPs roles in physiological

(Tartaglia, 2016) and pathological (Bolognesi et al., 2016) conditions.

Considerable attention has been given to long non-coding RNAs that

are implicated in important cell functions (Guttman and Rinn, 2012)

but are difficult to characterize because of their tissue-dependent ex-

pression (Chen et al., 2016). Indeed, RNA interactions with RBPs re-

quire laborious experimental procedures such as chromatin isolation

by RNA purification to detect protein networks bound to the RNA of

interest (Chu et al., 2015). The development of enhanced UV Cross-

Linking and ImmunoPrecipitation (eCLIP) has recently provided a

wealth of information on RBPs-binding sites at the transcriptomic

level (Van Nostrand et al., 2016). The large and homogeneous amount

of data provided by eCLIP experiments represents an ideal dataset to

train methods for prediction of protein interactions with long non-

coding RNAs. Indeed, despite considerable efforts in RNA crystallog-

raphy (Zhang and Ferré-D’amaré, 2014), the paucity of structural in-

formation leads to an urgency in the implementation of high-

throughput approaches for identification of protein-RNA interactions.

Using the catRAPID approach (Bellucci et al., 2011), we developed

the uniform fragmentation procedure to predict interaction propen-

sities between protein and RNA fragments (Cirillo et al., 2017). Here,

we introduce omiXcore to perform predictions of long RNAs (500nt

and larger). Calibrated on eCLIP data, omiXcore allows fast and

quantitative prediction of RBP interactions with human long inter-

genic RNAs (lincRNAs), facilitating experimental design and analysis.

2 Workflow and implementation

The omiXcore server allows calculation of the interaction propen-

sities of a protein sequence against i) human lincRNAs (14 717
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entries available in http://www.ensembl.org/) or ii) a custom list of

transcripts (maximum of 30 K characters). Once the user submits a

protein of interest, the catRAPID signature algorithm (Livi et al.,

2015) estimates the RNA-binding ability. If the protein is predicted

to interact with RNA, its partners are calculated and the binding

sites visualized.

• To train the algorithm, we used the eCLIP interactomes of 96

RBPs (56 studied in HepG2 and 78 in K562; downloaded from

https://www.encodeproject.org/in July 2016). We mapped tar-

gets of RBPs to their canonical transcript isoforms. For each

RNA, we measured the overall affinity Aexp defined as the num-

ber of reads (average of two replicas) divided by isoforms abun-

dance (Trapnell et al., 2012).
• For each RBP, we ranked the transcripts by Aexp and computed

the local affinities aexp at each RNA site. To build the negative

set, we compiled a list of transcripts that do not interact with the

RBP of interest (i.e. they are not reported in the two eCLIP rep-

licas) but bind to at least one of the other RBPs. In total we used

12 234 positive and 12 717 negative interactions (balanced set

with 100 RNAs per RBPs).
• For each protein-RNA pair, we used the uniform fragmentation

procedure to calculate interaction propensities between protein

and RNA fragments (Cirillo et al., 2017). The uniform fragmen-

tation approach is based on the division of protein and RNA se-

quences into overlapping segments [100 fragments for each

molecule] (Cirillo et al., 2013). This analysis is particularly useful

to identify protein and RNA regions involved in the binding.
• We computed mean l and SD r of the interaction propensities

between each RNA fragment i and the protein fragments, which

we combined in the position-dependent vector Fi ¼ l;rð Þi.
• To predict the binding sites aexp

i of a specific RNA fragment i,

we in tegrated the interaction propensities Fi using the formula

hk ¼ tanh xi
kFi

� �
and calculating apred

i ¼ tan h Xk
i hk

� �
. Similarly,

Aexp is computed using hk ¼ tanh xi
kFi

� �
and

Apred ¼ tanh Xkhk

� �
: Both apred

i and Apred are defined in the

range [0,1] and fitted to the experimental aexp
i and Aexp optimizing

the internal weights xi
k and Xk (neural network architecture with

i¼ 100 and k ¼ 50; total of 1.2� 106 binding regions used).

3 Performances

omiXcore builds on top of catRAPID algorithms that have been previ-

ously validated on a large number of interactions (Agostini et al., 2013;

Cirillo et al., 2017; Livi et al., 2015): to evaluate omiXcore perform-

ances, we employed a leave-one-out procedure on the 96 individual

subsets, each one corresponding to one RBP with its positive and nega-

tive interactors. Performances on RBP partners (Area under the ROC

curve AUC ¼ 0.83; Sensitivity ¼ 0.75; Specificity ¼ 0.78; Matthews

correlation coefficient of 0.55; Fig. 1A) and RNA binding sites (AUC ¼
0.78; Sensitivity¼ 0.70; Specificity¼ 0.90; Fig. 1B) were assessed using

a binary classification of interacting versus non-interacting pairs (aexp

and Aexp cut-offs at 0.25). Cut-off points for Apred and apred (0.5 and

0.1, respectively) were set maximizing the distance of the ROC curve

from diagonal line (Fig. 1A and B). The 0.65 correlation (Spearman’s

Rho) between aexp and apred allows to quantify binding sites in the con-

tinuum range (Fig. 1B and C), which is useful to detect low-affinity

interactions (Jankowsky and Harris, 2015). On the testing set,

omiXcore shows higher AUCs (in the range of 0.93–0.99) than binary

classifiers such as RPIseq [RPIseq-RF:0.50–0.60; RPIseq-SVM:0.46–

0.66] (Muppirala et al., 2011) and Global Score [0.55–0.88; see also

Supplementary Material for other performances] (Cirillo et al., 2017).

4 Conclusions

In this work, we introduced the omiXcore tool for predicting RBP

interactions with large RNAs. The algorithm allows detection of

RNA binding sites by evaluating local physicochemical properties of

polypeptide and nucleotide sequences (Bellucci et al., 2011).

omiXcore was calibrated on eCLIP data (Van Nostrand et al., 2016)

and is useful to prioritize coding and non-coding RNA targets for

further experimental validation. We optimized the webserver to

perform fast calculations of lincRNAs, for which we provide a pre-

compiled library. Indeed, lincRNAs are poorly abundant and

regulated in a precise spatiotemporal manner, which makes their

characterization particularly difficult in the wet lab.
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Fig. 1. omiXcore performances. (A) Binding partner prediction. For each RBP, the algorithm discriminates between interacting and non-interacting RNA pairs

(Apredcut-off of 0.25). (B) Within each RNA sequence, binding sites can be identified in a binary way (apred cut-off of 0.1) or in the continuum range (average cor-

relation of 0.65). (C) Example of correlation between experimental and predicted binding sites: Y-box-binding protein 3 and nuclear receptor corepressor tran-

script (correlation of 0.80)
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