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Abstract—With the ever-growing usage of batteries in the IoT
era, the need for more eco-friendly technologies is clear. RF-
powered computing enables the re-design of personal computing
devices in a battery-less manner. While there has been substantial
work on the underlying methods for RF-powered computing,
practical applications of this technology has largely been limited
to scenarios that involve simple tasks.

This article demonstrates how RFID technology, typically used
to implement object identification and counting, can be exploited
to realize a battery-free Smart Home. In particular, we consider
the coexistence of several battery-free devices, with different
transmission requirements — periodic, event based, and real-
time — and propose a new adaptive and quick-to-learn MAC
protocol, called APT-MAC, which dynamically collects informa-
tion from devices without requiring any a priori knowledge of
the environment. Extensive simulations clearly show the benefits
of using APT-MAC, which is able to successfully deliver 97.7%

of new data samples in complex scenarios, including several high
traffic demanding devices such as joysticks and cameras.

Index Terms—RFID, sensor augmented RFID tags, backscat-
tering, MAC, reinforcement learning

I. INTRODUCTION

Batteries in the IoT era have become ubiquitous, providing

energy for a wide range of wireless devices — home, office,

and personal devices — and enabling easy user movement.

As the number of devices increases in smart environments,

more and more batteries need to be replaced, posing significant

maintenance issues in terms of cost and replacement time.

Widespread battery usage also has a tremendous environmental

price to pay. Batteries guarantee only a limited power sup-

ply and after some time of daily recharging they lose their

charge in a significantly faster time frame than when they

were new, eventually becoming unusable. Despite remarkable

advancements in prolonging the lifetime of battery-assisted

devices through energy-efficient networking protocols [1] and

energy harvesting techniques [2], recent developments cannot

guarantee power delivery in a continuous (night and day) and

ubiquitous (indoor and outdoor) manner. Moreover, spent bat-

teries contain harmful chemicals and generate huge amounts

of toxic waste that has to be disposed. The need for more

eco-friendly wireless devices is evident.

The question is: Can we re-design smart objects in a battery-

less manner so that they can work without the need for battery

recharging or replacement? In particular, can we realize a
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smart home environment in which everything, from the TV

remote to wireless light switches operate without batteries?

The answer is backscatter communication. Many devices

that operate at a relatively low power budget can be remotely

powered through backscattering of RF signals: modulating

the reflection of existing RF signals. Backscattering offers a

considerably efficient and increasingly practical alternative to

active radio circuits in existing sensor systems [3].

Backscattered signals can be of two types: ambient [4]

or RFID [5] signals. Ambient backscattering harvests power

from signals available in the environment such as TV [6],

cellular [7], and Wi-Fi [8] transmissions. The main benefit

of ambient backscattering is the exploitation of existing RF

signals without requiring the deployment of a dedicated device

to transmit a high-power signal to nearby devices. The main

limitation is that ambient RF energy is not always available,

and this can lead to reliability issues. In addition, techniques

that have been demonstrated for ambient backscattering have

low data rate (1kbps in the best signal conditions [6][8]).

The low achievable data rate motivates applications involving

occasional (or spot) data transmission, such as money transfer

between smart cards or revealing misplaced objects in a

grocery store, but are not suitable for applications requiring

continuous and real-time communication. When the signal

is weak the data rate decreases significantly. For example,

when a WiFi station is not transmitting, the achievable data

rate using only periodic beacons reduces to 10 − 40 bps,

which is definitively not sufficient for smart home applications.

Signal availability is a related limitation. Although TV towers

broadcast uninterrupted and continuous signals at all hours of

the day and night, the ubiquity of the signal cannot be guaran-

teed, compromising the effectiveness of continuous and real-

time data transmission. If the signal is weak, sensors cannot

operate; they have to accumulate enough energy to perform the

required action. Even in metropolitan areas where TV signals

are supposed to be ubiquitous, they weaken significantly in

indoor environments positioned at more than 8− 10 km from

the TV tower.

RFID backscattering harvests power from signals emitted by

a dedicated RFID reader [5]. In traditional RFID technology,

the tags — battery free devices — absorb and reflect the

high-power constant signal generated by the reader — a

powered device — to send it their unique ID. With the

advent of IoT, new applications of RFID technology have

emerged: RFID tags can exploit the energy harvested from

the reader to run some low power sensors and transmit sensed

data [9][10][11][12]. However, the challenges in building

battery free smart objects by exploiting RFID backscattering
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Fig. 1. Battery free smart home.

are multiple.

1) How to make battery-free devices to sense and transmit

given that they cannot operate spontaneously on their

own energy;

2) How to guarantee enough energy for multiple battery

free devices at the same time;

3) How to simultaneously support heterogeneous sensor

types, sensor requirements, and their different uses; and

4) How to effectively cover an entire home.

In this paper we explore the design of a Battery-Free Smart

Home from a communication point of view and make the

following contributions:

1) Invented a new MAC protocol to collect information

from smart devices that improves response time and

data delivery. Our protocol, called APT-MAC, quickly

learns transmission rate requirements of active devices,

without having any a-priori knowledge on the type

of devices, and adapt information collection to such

requirements. This is critically important since smart

homes are outfitted with many heterogeneous devices

and people will not want to reconfigure their smart home

every time they add or delete devices or applications that

use these devices.

2) Showed through simulations that our MAC protocol is

able to self adapt to devices requirements, reporting very

low packet delay — 33ms in a scenario including up to

40 devices — and minimum data loss — below 5% for

each type of device.

3) Studied what is necessary to cover an entire smart home.

4) Addressed energy consumption and health issues.

II. BATTERY-FREE SMART HOME: ARCHITECTURE

Smart Homes are outfitted with a myriad of sensors and

smart devices — cameras, presence sensors, smoke sensors,

light sensors, thermostats, smart meters, etc. — that are used

to reduce resource consumption and improve the quality of

Fig. 2. Smart Home architecture: the system includes a RFID reader, equipped
with a transmitting (Tx) and a receiving (Rx) antenna for each room.
Temperature sensors are deployed in different rooms and send data to the air-
conditioning app — running on a smart phone — through the RFID reader
that is connected to a server. An IoT hub allows for interaction with home
devices from both inside and outside the home.

life. In a home there are also a variety of everyday devices,

such as TV remotes, cooling system remotes, light switches,

and video game controllers, that are not ”smart”, but are easily

used by a vast majority of people to control many home

devices/appliances. In this work, we consider both classes

of devices and make them operate without electric cords or

batteries in order to realize a battery free Smart Home (see

Fig. 1).

To achieve this goal we exploit RFID technology, which is

considered a key technology for identification of smart objects

and hence it is deployed in any smart environment [13]. In

RFID, battery free devices — the tags — send their unique

ID to a powered device — the reader — by reflecting the

high-power constant signal generated by it. In our system, the

reader interacts with sensor-augmented RFID tags, such as

the UMich Moo Computational RFID tag [14]. These tags are

equipped with on-board sensors and/or actuators to provide

not only static information such as their ID, but also dynamic

and real-time information about the state of the tagged object

or the environment where these objects reside. The energy

necessary for sensing and transmission is harvested from the

reader’s transmitted signal.

At the hardware level the system architecture includes

several battery-free smart devices and a RFID reader, equipped

with multiple antennas. Battery-free devices that can be real-

ized through sensor augmented RFID tags are: videogame con-

trollers [11], cameras [10], presence detectors, light switches,

remotes for appliances, temperature sensors. They are scattered

in different rooms of the home. The RFID reader is equipped

with multiple antennas, a transmitting and a receiving antenna

for each room. Each antenna has a transmission range that is

able to reach all devices in the same room. When the reader

issues a query, all the transmitting antennas broadcast the
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query at the same time, reaching all the devices in the home.

When tags receive a query, only the queried tag (whose ID is

indicated inside the query message) backscatters the received

signal to send its sensed data to the reader; all the other tags

use the received signal to power on-board sensors and store the

sensed data in a local buffer. At each query only one device

in the home is interrogated. Multiple receiving antennas may

receive its response (e.g., antennas in nearby rooms). However,

the energy emitted by tags naturally decreases with distance;

for example the rate of decrease is typically proportional to

the inverse fourth power of the distance between the tag and

antenna. Therefore, the closest antenna will receive the best

signal, while the others will receive a weak signal. The reader

will decode only the best signal and discard all the others.

In case the reader receives multiple decodable signals, it can

decode all of them, getting redundant information. Figure

2 depicts an example of our system architecture, showing

for clarity only two temperature sensors and a smart-phone

running the air-conditioning app. The reader is connected to

a local server that receives sensed data from the reader and

dispatches the data to recipient applications. The server can

interact with Smart Home applications running on several

devices. For example, in a videogame application the server

receives the joystick data from the reader and produces game

commands that are sent to the videogame console. In an air-

conditioning application the server can send commands to the

air-conditioning unit depending on the received temperature

data, or can show sensed data on a local screen. The server

can also interact with client apps running on smart phones,

allowing for interaction from both inside or outside the home

— through an Internet IoT hub.

III. ADVANTAGES AND LIMITATIONS OF A RFID BASED

APPROACH

A. Advantages

There are important advantages to make smart homes bat-

tery free.

E-waste reduction - the majority of batteries currently used

in houses and offices are eliminated, significantly reducing

electronic waste. The study in [15] reports that China produced

570’000 tons of batteries only in 2013; and this value is

growing year over year. The reduction of such an amount

of waste is imperative, as the toxic metal required to make

rechargeable batteries are harmful to the environment.

Energy consumption reduction - decreasing the need for

batteries implies diminishing also energy consumption for

their recharging. It is true that our system requires a con-

tinuously operating RFID reader — which consumes energy

(see Sec. VIII for consumption estimation) — but any smart

environment involves the deployment of a RFID reader, as

RFID is considered a key enabling technology for many IoT

applications [13]. The article in [16] remarks this aspect by

stating that RFID technology should be deployed as part of

a building’s physical infrastructure, just like running water,

lights and heat. Exploiting such readers, our proposed devices

can work with the emitted energy, without requiring batteries

or other sources of energy.

Time saving - There is no need for batteries charging and/or

replacing. Devices are always ready to work.

Increased device portability - most of devices become

highly portable as electric cords or wires are removed. Con-

sider the case of a light switch, realized through a tag equipped

with a pressure button. It can be moved wall to wall without

the need for cables and without batteries, with an almost

unlimited lifetime. It can send messages to smart connected

bulbs, in order to switch on and off. The smart bulb needs only

a power socket, but it does not need to be directly connected

with the switch as in current homes; power implants are much

simplified, as we just have to bring power without paying

attention to circuits.

No need for direct visibility - most of battery free devices

can trigger actions without being in the same room as the

actuators. For example the light switch can turn on a light

that is located in another room. Similarly, any remote for

appliances can power on devices that are located anywhere

inside the home (under the reader coverage).

Increased environmental sustainability - devices lifetime

becomes unlimited: there is no more need for battery recharg-

ing or replacement.

B. Limitations

The main disadvantages are related to RFID technology and

its operational limits.

Limited range - antennas coverage ranges between 1m and

3m depending on transmission power (around 0.5 − 1W for

current prototypes), significantly limiting the operational range

of devices. However, in sec.VII we discuss how to improve

this weakness.

No outdoor operation - battery-free devices cannot operate

outdoors (around the house), or inside where the reader’s

antennas are not deployed. Although this represents a signifi-

cant disadvantage, there are positive implications in terms of

privacy as none of these devices can be accessed (queried)

from outside.

IV. A ZERO CONFIGURATION MAC PROTOCOL

A. Protocol Description

A common vision for the IoT foresees a large number of

devices in smart homes in the near future [17]. The major

issues in dense sensing and actuation environments are system

configuration, reconfiguration, and management, as sensors

and applications are added and deleted. However, most of

people want to use systems without configuring them: manual

configuration is tedious and error-prone. Thus, the need for

automatic and configuration/management free protocols. We

propose a MAC protocol, called APT-MAC, which quickly

learns transmission rate requirements of active devices, with-

out having any a-priori knowledge on the type of devices.

We use reinforcement learning to build and continuously

update devices transmission behavior. Then APT-MAC adapts

information collection (and hence channel access) to such

requirements. This avoids configuration overhead.

We now describe the sequence of stages involved in the

APT-MAC protocol. At setup, the system sends inventory
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Algorithm 1 APT-MAC: pseudocode for slot assignment

1: Master M; ⊲ The reader

2: Set D; ⊲ All devices

3: Map R:(d∈D)→double; ⊲ Rewards Map

4: /* Initialization of the Rewards map */

5: for d ∈ D do

6: R[d] = 1.0;

7: end for

8: R = softmax(R);

9: /* Each cycle corresponds to a time slot */

10: while true do

11: Device next = chooseNext(R);

12: Bool goodQuery = M.query(next);

13: if goodQuery then

14: R[next]=updateReward(next,bonus);

15: else

16: R[next]=updateReward(next,malus);

17: end if

18: R = softmax(R);

19: end while

queries to discover how many devices — sensor-augmented

RFID tags — are in the house, and assigns each a unique

identifier. At this point the reader knows all devices in the

environment and can query them to collect data sensed by

their on-board sensors.

The key problem is: In which order should the reader query

tags? A TDMA approach with fixed slot assignment queries

tags sequentially without giving priority to most demanding

devices and does not scale. Our APT-MAC protocol respects

device transmission needs and properly rules channel access.

We employ reinforcement learning to learn sensor behavior

and requirements: it discovers environment patterns, changes

in those patterns, and required rates for reading. As an

example the protocol is able to understand when a video-

game controller is started, and to allow it to send data more

frequently than periodic-based devices (e.g., environmental

sensors or information displays). The main goal of the protocol

is to query tags so as to minimize the time between the

generation of new sensor data and its delivery to the reader.

To achieve this goal the reader implements the Multi-Arm

Bandit algorithm [18], a reinforcement learning algorithm,

based on the action-reaction paradigm. This algorithm involves

5 components: 1) the agent that performs the actions on the

environment, i.e., the reader; 2) the set A = ai, i = 1, ..., n,

(n is the number of sensors) of actions the agent can do, e.g.,

query tag i, query tag j, etc.,; 3) the set S of states in which

the agent can be (in our case the only state is ”ready to perform

a new query”); 4) the formula Q(ai) to evaluate the expected

reward of action ai and 5) The vector Q to store the expected

reward of each action.

Time is slotted and each slot, also called epoch, involves

a reader’s action, (to query a tag). The pseudocode for slot

assignment is given in Algorithm 1. The tag with the highest

expected reward is selected to be queried next (chooseNext

method). Let us suppose the reader is starting epoch n+1 by

querying tag next = i and thus taking action ai. When the

reader receives response from tag i, it updates the expected

reward Q(ai) for the taken action by summing the expected

reward Q(ai)(n) calculated at the previous query, and the

difference between the current outcome and the expected

reward at the previous query, as defined in eq. 1,

Q(ai)(n+ 1) = Q(ai)(n) + α(Reward−Q(ai)(n)) (1)

where α is the learning rate and is fixed to 0.1 (we empirically

found this as the best value). Reward is the outcome of

the current query: it is a positive value if the queried tag

sent fresh data (R[next] = updateReward(next, bonus)),
and negative if the sensor mounted on the queried tag did

not produce new data since the last query (R[next] =
updateReward(next,malus)). Specifically, the reward is

calculated as Reward = bonus−malus, where bonus = 0.4
and malus = 0.01. If the tag sent new data then Reward =
0.39. In case the reader queried a tag that did not have

new data since the last query, the reward is negative, i.e.,

Reward = −0.01. After each reward update, we perform

a Softmax [18] on the Q vector (R = softmax(R)). With

Softmax we compress the Q vector’s values into the range of

[0,1]. All the values of Q after Softmax add to 1.

A positive reward allows a tag to gain and keep channel

access: a videogame controller (i.e., joystick) just started will

send new data every time it is queried and thus will have a very

high reward, accessing the channel very often. However, no

sensor is so fast to generate new data every slot (experimental

results [11] show that slots last 6ms). Furthermore, tags need

a query to read data from on-board sensors and record new

values. As a consequence, a tag cannot be queried at each

slot, and thus we fixed a Minimum Query Delay (MinQD),

that is the minimum interval of time at which tags can be

queried (MinQD is fixed at 50ms based on empirical study).

To avoid any starvation problem, in which a tag is never

queried because the others have always higher reward values,

we also set a Maximum Query Delay (MaxQD), that is the

interval of time at which tags have to be queried regardless the

expected reward, meaning that each tag will not wait longer

than this time between two consecutive queries.

MaxQD time guarantees fairness. While MinQD can be

fixed to a common value for all devices, MaxQD depends on

devices sampling rate requirements — a joystick or a camera

needs to send data more frequently than an environmental

sensor. Thus, MaxQD is dynamically set for each device

during the start-up phase. When the system starts, MaxQD

is fixed at 2000ms for each device. While the system is

operating, the reader updates the MaxQD based on the data

loss it observes for each device. Data loss is calculated over

intervals of 50 queries (per device) as the number of new data

samples received by the reader over the number of new data

samples produced by the device (this information is provided

by the device that is able to keep a counter of changes, i.e.,

the number of new samples between two consecutive queries).

If the number of sample changes is greater than the number

of new data samples received by the reader, then the reader

should query the tag more frequently. Specifically, we set a

15% the tolerable data loss. When the reader loses more than
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15% of new samples it reduces the MaxQD of 150ms. This

process continues until the data loss is below 15% or the

system reaches the MinQD (i.e., 50ms).
To allow new tags to join the system and at the same

time less demanding tags to be queried more often than once

every the MaxQD, action selection is probabilistic: the reader

queries the device with the highest expected reward with high

probability, 1 − ǫ, and with a small probability, ǫ, it queries

another randomly chosen device. The epsilon value is set to

0.1 based on an empirical tuning.

The APT-MAC protocol can be deployed on any RFID

reader running EPC Global standard [19], by exploiting EPC

primitives. The inventory command can be adopted to

discover devices in the environment, the read command

can be used to query devices, and the write command to

send commands to actuators devices. The reader continuously

sends commands to devices. In case of sensors readings,

commands are scheduled through the mechanism based on

reinforcement learning. In the case of an actuator writing

instead, the command is scheduled based on requirements

coming from the application: the reader receives a request from

the application and interleaves the write command between

scheduled readings.

B. Computation time

In terms of time, APT-MAC protocol costs O(n), where n
is the number of devices. At each slot, the reader chooses the

next device to query by executing the chooseNext method that

searches for the maximum value in R, analyzing in the worst

case all n devices (|R| = n). Even the softmax operation can

be executed in O(n), as it goes by every element in R and

performs a constant time operation for each (i.e., division),

while the updateReward function can be executed in O(1).
Thus at each time slot, the time complexity of APT-MAC is

O(n). With respect to TDMA, the choice of the next device

to query is slower in APT-MAC, as TDMA has a predefined

slot assignment that has constant cost O(1). However, APT-

MAC’s cost is negligible if we consider that in smart homes

the number of devices is in the order of tens.

V. PERFORMANCE EVALUATION

We perform simulations to evaluate the performance of our

APT-MAC protocol and compare it with a TDMA protocol

that sequentially queries all tags, and the optimal query

strategy, called Optimum, that always knows the best action

to perform (i.e., which device to query next to avoid any data

loss). At each epoch, the Optimum knows which sensor has

produced new data, and queries exactly that device, performing

optimal data collection.

A. Scenarios

We considered a wide range of use of devices that should

cover most homes: the number of battery-free devices ranges

from 20 to 40 (n = 20, 30, 40), including different types of

devices to realize different workloads. Specifically, for each

number n of devices we simulated four different cases. Table I

TABLE I
WORKLOAD SCENARIOS DESCRIPTION

(ENV. SENSORS INCLUDE TEMPERATURE AND PRESENCE SENSORS)

# of Sensors Scenario Joystick Remote Env. Sensors

Case 1 1 2 17
20 Case 2 2 3 15

Case 3 3 3 14
Case 4 4 4 12

Case 1 1 2 27
30 Case 2 2 3 25

Case 3 3 3 24
Case 4 4 4 22

Case 1 1 2 37
40 Case 2 2 3 35

Case 3 3 3 34
Case 4 4 4 32

details the numbers of different types of devices included

in each case. Environmental sensors include temperature and

presence sensors, as their transmission rate requirement is

similar and very low. Complexity increases from case 1 to

case 4 and from 20 to 40 sensors, as the number of real-time

devices increases.

B. Metrics

In our performance evaluation we focus on the following

metrics: packet delay and data loss rate.

• Packet delay: the time between the generation of new

sensor data and its delivery to the reader. In case a tag

reads new data multiple times before being queried, the

packet delay is measured since the first, undelivered, data

collection.

• Data Loss: the amount of new data samples delivered to

the reader over the amount of new data samples generated

by the sensor. Thus data loss reflects how much new

data is lost because tags are not queried on time. As

tags have a small memory when they read new data from

the on-board sensors they have to overwrite the previous

data to store the new one. However, they can maintain a

counter of changes that keeps the number of data updates

performed since the last data transmission.

C. Device model

Smart homes include mainly three types of devices: real-

time (e.g., joysticks, cameras), periodic (e.g., temperature

sensors) and event based (presence detectors, remotes for ap-

pliances). To build a realistic simulation environment we mod-

eled devices behavior through Markov Chains. We watched

real operation for a temperature sensor, a TV remote, and

a joystick, and built devices models based on the observed

behavior. The goal of our model is to focus on state changes

rather than on specific device states — values sampled by

the on-board sensors. In the case of a temperature sensor,

the model represents if the current value is different (it may

be higher or lower) with respect to the previous reading, but

does not keep track of the sampled value. Thus a temperature

sensor model includes only two states: Temperature X and

Temperature Y with a transition from a state to the other
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Fig. 3. Temperature sensor model.

Fig. 4. Presence sensor model.

whenever a new temperature value is observed. To introduce

randomness in device behavior, state transition is probabilistic

and is calculated as the number of expected changes over time.

Each state is characterized by a stand-by time, intended as

the minimum amount of time in which the state cannot change

due to physical aspects and users speed in performing actions.

For example, we measured the user speed to press buttons on

a device, and we found that the interval of time between two

consecutive pressures on the same button does not last less

than 70ms. This time increases to about 98ms in the case of

two different buttons. Environmental devices, not sensing user

actions, present also a stand-by time, due to physical sensor

aspects (e.g., sensing resolution, refresh rate, ADC conversion,

etc.). Considering these factors we fixed the stand-by time at

50ms: if at time x the sensor has sensed value y then the

sensor will report the value y for the following 50ms (up to

time x+50ms). This time motivates also the choice of fixing

the MinQD at 50ms (see Sec. IV).

a) Temperature Sensor: The model for this sensor (see

Fig. 3) has only two states — Temperature X and Temperature

Y — and the transition probability between them is 3/(3600∗
1000), where 3 represents the number of times we expect the

temperature to change, and 3600∗1000 represents the interval

of time — one hour — in milliseconds in which we expect

these 3 changes to happen (3600 is the number of seconds in

an hour and 1000 is the number of milliseconds in a second).

This model is confirmed by results we obtained measuring

temperature with our sensor: on average temperature may

change of 1 degree three times per hour, not only due to

Fig. 5. TV Remote model.

Fig. 6. Joystick model.

changes in daily climate, but also to temporarily opening of

windows/doors.

b) Presence Sensor: The model for this sensor (see Fig.

4) has 3 states: No Presence, Short Presence, Long Presence.

From the No Presence state, we may transit in the Short

Presence state 10 times a day (10/(24 ∗ 3600 ∗ 1000)), or

in the Long Presence 4 times a day (4/(24 ∗ 3600 ∗ 1000)).
As a presence sensor detects people movements, there is a

permanence for each state, that we modeled as Short Presence

state for a number of seconds less than or near to ten

(1/(10 ∗ 3600)) seconds, and as Long Presence for times near

to 10 minutes (1/(60 ∗ 3600 ∗ 1000)).

c) TV Remote: For the simulation of a TV remote we

modeled 4 states: Not in Use, Configuration A, Configuration

B and Not Pressing (see Fig. 5). From the Not in Use state

we expect to start using the TV Remote 8 times per day.

Remote buttons can be pressed with the same probability, and

a button pressure makes the system to transit in a different

state. After pressing a button, it is possible to move only to

the Not Pressing state, which is different from the Not in Use

state, as it represents the situation in which the user is going

to press another button. We expect the user to change state

about every second, and to perform around 8 pressures before

stopping using the TV Remote.

d) Joystick: The joystick represents the most complex

device to model (see Fig. 6). It includes five states: Not Play-

ing, Playing, Configuration A, Configuration B, Not Pressing.
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Although having only five states may lead to the consideration

of an oversimplified model, they are sufficient to realistically

represent the behavior of such a device, as we are interested

in changes and not in values. The state Configuration A

represents a state in which multiple buttons may be pressed

and the analog joystick reports some coordinates. When there

is a change in the sensed values (even just one pressure

buttons reports a different value) the system transits in the

Configuration B state — something has changed, we do not

care what. Then, if there is another change (for example the

joystick sensed a new value while buttons reports the same

last values) the system transits again in Configuration A. This

means that each state, Configuration A and Configuration

B, correspond to different instances of values. If the system

transits from Configuration A to Configuration B and then

again to Configuration A, the current sensors values may be

different from the values sensed when transiting the previous

time to Configuration A. This model has been created to

simulate a user who uses the controller three times a day and

each time plays for one hour or less. These values have been

validated by observing real players.

e) Camera: The camera is the most demanding device in

terms of required data rate. Shot images need to be fragmented

before being transferred. We modeled a camera that takes a

shot and sends the image fragmented in multiple packets at

the highest rate allowed by the network. Only after sending

the last fragment it can take a new shot. If the image size

is 25KB [10], and time slots last 6ms, the camera can send

40 bits at each query. Thus it can take a new shot every 30s
(if the number of slots required to send the entire image is

(25 ∗ 103 ∗ 8)b/40b = 5000, then it takes 5000 ∗ 6ms =
30000ms = 30s to send an entire image). As other devices

also need to access the channel and send their data, the camera

takes a few seconds more to send an image, depending on how

many devices are active at the same time (see sect. V-D).

D. Results

The evaluation looks at the speed and reliability of our APT-

MAC protocol. In terms of speed we first evaluate the ”start-

up” transient time — where devices have larger losses and

then they settle into great performance — and then the packet

delay at steady state.

The ”start-up” transient time is the time the protocol takes

to learn transmission device requirements and minimize data

losses (tuning the MaxQD value). Fig. 7 shows a snapshot of

the number of lost data samples per device, when devices are

started for the first time. Each device keeps a counter of sample

changes since the last query and sends this value together with

the last sample when queried by the reader.

The joystick and the presence sensor take very short time —

respectively 1.5s and 1.29s — to settle into great performance,

eliminating sample losses. The remote instead needs longer

time to reduce sample losses — after 20s it loses on average

1 sample every 200ms. As working sessions for remotes last

on average 20s, at the end of the first session the remote has

reduced data loss, but has not reached the minimum MaxQD,

so it will need another session to reach tolerable data loss.

Fig. 7. Devices transient time.

Fig. 8. Packet Delay with 20 devices.

The packet delay is a measure of the system speed to deliver

sensed data to the reader in the steady state (once the reader

has tuned the MaxQD per device). We estimate the transient

state as the first 12 hours of operation, as the user may start

a device, such as TV remotes, joysticks, light switches, even

few hours after the system is launched.

Figure 8 shows the packet delay for 20 devices by varying

device complexity (see Table I). The Optimum shows the

minimum achievable delay, i.e., 7.5ms regardless the case

complexity. APT-MAC takes on average between 29ms and

35ms. Compared with TDMA, APT-MAC is up to 2.8 times

faster (in Case 3, TDMA takes on average 85.56ms to deliver

data to the reader while APT-MAC is able to send data

on average in only 29.9ms). Although both solutions seem

reasonable from an application requirements point of view —

at the user level the difference in time is not noticeable —

there is significant improvement by using APT-MAC in terms

of data loss. As shown in Fig. 9, TDMA loses between 38.61%
(Case 1) and 40.46% (Case 4) of new data samples, while

APT-MAC does not lose more than 1.8% of new data in the
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Fig. 9. Data Loss with 20 devices.

Fig. 10. Packet Delay with 30 devices.

worst case scenario (Case 4), being very close to the Optimum

— whose data loss is always 0 — in the other three cases.

Figures 10, 12, and figures 11, 13, report, respectively,

packet delay and data loss for 30 and 40 devices. The results

do not deviate from those that we have seen for 20 devices

— irrespective of the number of devices and their complexity,

we generally see that APT-MAC is always superior to the

TDMA. In the case of 40 devices, TDMA doubles the packet

delay (164.38ms in Case 4) with respect to the scenario with

20 devices, while APT-MAC takes no more than 35.8.5ms in

the same case to deliver new data to the reader (4.59 times

faster than TDMA). Also data loss increases significantly with

TDMA, up to 56.74% (Case 4 with 40 devices), while it

increases slightly with APT-MAC, which loses 2.3% of the

new data samples. Thus, our first set of results clearly shows

the benefits of using a reinforcements learning based approach.

The second set of simulations investigates system perfor-

mance in case of stressed conditions. We fix the number

of devices at 40 and add a camera for home surveillance,

which always has new data to send (continuous burst of data).

Fig. 11. Packet Delay with 40 devices.

Fig. 12. Data Loss with 30 devices.

Specifically, we consider three different cases. In the first

the camera sends data at the maximum allowed rate, almost

saturating the channel. In this case the reader gets a new

image about every 33s. This value decreases to 30s in case

the camera is the only active device in the system, meaning

that the system cannot support cameras with higher shooting

frequency. In the other two cases the camera reduces its

shooting frequency to 45s and 60s, giving more chance to the

other devices to access the channel. Table II reports the average

percentages of packet losses per type of devices in absence and

presence of camera. The global data loss does not include data

generated by the camera because it never experiences loss: it

takes a new shot only after having sent all data related to the

previous shot. When the camera is off, the system loses 2.61%
of data samples, with comparable loss for the different types

of devices (i.e., 1.18% for environmental devices, 2.86% for

remotes and 2.61% for joystick). When the camera is on the

global data loss increases as the shooting frequency increases

(from 2.88% of data loss with shots every 60s to 4.91% for

shots every 30s). In the last case, joysticks experience the
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Fig. 13. Data Loss with 40 devices.

highest data loss (i.e., 5.10%), that however remains tolerable

to the user. The system degrades its performance if the number

of cameras increases. In the case of 2 cameras with a shooting

frequency of about 30s each, the system data loss grows

to 10.5%, becoming more difficult to tolerate from a user

perspective.

TABLE II
GLOBAL AND PER-DEVICE PERCENTAGE OF DATA LOSS IN PRESENCE OF A

CAMERA.

Global Env Remote Joystick

Camera OFF 2.61 1.18 2.86 2.61

Camera ON (60sec) 2.88 1.30 4.04 3.68

Camera ON (45sec) 3.19 1.38 4.07 3.07

Camera ON (30sec) 4.91 1.23 4.77 5.10

In conclusion, a reinforcement learning based approach,

employing the bandit algorithm, is able to efficiently manage

systems of 40 battery free smart devices, including up to

4 joysticks and 4 remotes, and a camera with a shooting

frequency of one image every 30s, without requiring any

reconfiguration when devices enter and leave. Our approach

is less suitable to more complex systems, involving multiple

cameras — the algorithm becomes less efficient in assigning

transmission slots to devices — or video cameras — due to

limitations of the involved RFID technology, which does not

allow sending images more frequently than every 30s[10].

E. Evaluation in noisy environment

Our discussion so far assumes that the communication chan-

nel is free of errors. However, as battery-free smart devices

rely on backscattering, the signal they reflect back to the reader

is weak and subject to interference from any nearby device

operating on the same frequency, such as IEEE 802.11ah,

amateur radio, ISMs, walkie talkies, and old cordless phones,

(depending on the regional allocation of the radio spectrum).

The obvious question is how APT-MAC behaves in presence

of a noisy channel. RFID transmissions — both reader-to-tag

and tag-to-reader — include a cyclic redundancy check (CRC)

code that allows to detect accidental changes to raw data [19].

If the CRC verification fails the received packet is discarded,

without sending any feedback to the sender.

To evaluate the impact of a noisy channel, we evaluate

protocol performance in the case of 40 devices (Case 1 as

defined in table I) by including a packet error rate, PER =
{5%, 10%, 20%} on the communication channel. Fig. 14

presents data loss by varying PER. The Optimum shows

no impact regardless the PER value. APT-MAC experiences

an increasing (+2.9%,+3.9%,+6.9%) but still tolerable data

loss, with respect to the case of no error, while TDMA worsens

its performance achieving almost 50% of lost packets.

The main ability to tolerate data loss of APT-MAC is

motivated by data redundancy: the reader queries sensors at a

higher frequency than that one at which sensors generate new

data samples. For this reason, a lost packet does not imply a

lost data sample. In case instead a new data sample is lost,

the APT-MAC protocol automatically reacts by querying the

sensor more frequently, diminishing the amount of lost data.

In addition, in many cases, applications that use such data are

implemented to be robust to some data loss.

Results on packet delay (see Fig. 15) show how the time

between the generation of new sensor data and its delivery to

the reader keeps below 40ms, which is reasonable for most

of home applications. A commercial joystick, one of the most

demanding devices inside a smart home, can work with a delay

of about 100ms, as found in [20].

F. Fairness

We now show that APT-MAC protocol guarantees a fair

access to the channel, fairly distributing data loss among all

devices. We define the fairness index — based on Jain’s

fairness [21] — as described in eq. 2.

ψ(x1, x2, ..., xn) =

(
∑

n

i=1
xi
)2

n ·
∑

n

i=1
x2
i

(2)

where xi is data loss for device i.
Results (see Fig. 16) confirm that APT-MAC protocol is fair

independently of channel noise, presenting a fairness index

equal to 1 when PER varies from 0% to 10% and equal

to 99% when PER = 20%. This is because the MaxQD

time avoids any starvation problem, guaranteeing that even less

operating devices are queried at regular intervals. In presence

of channel errors this mechanism remains effective. TDMA

instead decreases its fairness from 96% in absence of noise to

94.23% when PER = 20%.

VI. RELATED WORK

We discuss related work that we have not touched upon in

the previous sections.

Information Collection from sensor-augmented RFID

tags - A few solutions have been proposed to collect in-

formation from sensor-augmented RFID tags. A couple of

recent solutions are based on Hash functions [22][23]. The

idea behind these works is to make the reader send only one

query. Many of the devices in the environment will answer
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Fig. 14. Data Loss in noisy environment.

Fig. 15. Delay in noisy environment.

subsequently, without the need of a query for each of them.

Exploiting a hash function as an index, the reader is able to

understand in which frame it will receive no answer, one an-

swer or a collision. With this information available the reader

can send a bit vector in which a 1 means that the tag with that

index should transmit, otherwise it should not. In this way the

reader is able to avoid collisions and optimize transmission.

Differently from our system, these protocols can only reduce

the number of empty slots and optimize transmissions, but they

are not able to adapt to current tags needs (e.g., give priority to

more demanding devices). The vector index is defined by the

hash function, and can not be defined depending on the device

need to transmit. Furthermore, as the reader can send only one

query which contains information regarding many successive

slots, these protocols are not able to dynamically adapt to

burst data. The backscatter concept appears also in [24], but

the paper presents mainly a modeling contribution, based on

Poisson assumptions, stochastic geometry, and evaluated only

via simulation.

MAC protocols for Smart Homes - Current smart home

Fig. 16. Fairness on data loss.

devices are mainly based on technologies such as Zigbee

and Wi-Fi, or mainstream systems like Amazon Echo. At the

MAC layer, these technologies operate according to a CSMA

approach, that cannot be adopted in the context of this work,

because RFID tags can not communicate spontaneously: they

need a centralized entity (e.g., the reader) that energizes and

queries them.

VII. TECHNOLOGY POTENTIAL OVER TIME

Fig. 17 shows the range of devices that can be handled

today with RFID technology, by varying the sensing frequency

and the data rate. A reader that has a transmission power of

Pt = 0.5W achieves less than one meter of distance between

the antennas and the tags. With this technology we can realize

several smart devices (e.g., videogame controller, light switch),

but we cannot realize a videocamera. A more powerful reader

(e.g., with Pt = 1W ) allows for longer distance (up to

3 meters) between the reader’s antennas and the tags, but

cannot satisfy a real-time frequency. WiFi technology achieves

the best results, allowing for data transmission also from a

videocamera, but is it not battery free.

Many constraints of our RFID based solution are related

to technology, and introduced by our prototypical implemen-

tation. There are a number of improvements that may be

employed in a real environment in order to achieve better

results in term of bit rate, distance, and energy available.

a) Transmission Power: In our scenario we exploit an

USRP RF daughterboard modified in order to transmit 500mW

of power, only half of a commercial reader. Exploiting the Friis

Equation and the work [25] we can predict an operative range

of 3.3m, just changing the utilized reader (e.g., with transmis-

sion power equal to 1W ) and without hardware modification

to RFID devices.

b) Exploiting hybrid harvesting (RF + light): In [26] we

can find an example of a RFID device powered from both RF

harvesting and a small solar panel(3cmx3cm). In this case it

was shown to reach a distance of 21 feet and a maximum

bitrate of 21.7kbps. In our specific case, the smart home,
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Fig. 17. Devices that can be handled today with RFID (compared with Wi-
Fi) technology depending on the distance between devices, datarate and data
frequency required by applications.

we should consider the energy harvested inside a room. The

minimum amount of Lux required in this case in order to

operate is 150 Lux, which is less than standard natural indoor

light.

VIII. ENERGY CONSUMPTION AND HEALTH ISSUES

We now evaluate the energy consumed by a continuously

transmitting reader and its impact on users’ health.

With the help of an amperometer, we quantified the energy

consumption of our prototypal RFID reader in 1.32A, with 6V,

for a total of about 8W. In one year, our reader consumes less

than 70KW/h. In USA, the maximum price for one KW/h is

always less than 20 cent, involving a cost of less than 20$ per

year. We should even note that consumption of a commercial

reader is expected to be less than that of our prototype.

From a health standpoint, the work in [27] studied the

absorption rates in the human head and shoulder for Passive

UHF RFID Systems at 915 MHz and found that in an ideal

absorption environment, an RFID reader located within 10

centimeters (3.9 inches) from the human head presents a

specific absorption rate above the maximum value allowed

by the United States’ Federal Communications Commission

(1.6W/kg for both the spatial-peak 1 g and 10 g cube of

tissue). Consequently, really close proximity to UHF RFID

readers has potential health issues, particularly when close to

the eyes. To avoid any potential harm to humans, UHF RFID

transmitting antennas should be set back at least 0.5 meter (1.6

feet) from anyone who might receive constant exposure. If the

antenna is within legal power output limits, and is kept at least

1 meter (3.3 feet) from the human body, the incident radiation

- even on the eyes - is at a level well below maximum

allowable levels. In a battery free smart home there is one

transmitting antenna per room, typically located on walls. A

user inside a smart home rarely walks or resides next to the

walls. In addition, RFID antennas can be placed far away from

sofas or tables with chairs.

IX. OPEN ISSUES AND FUTURE WORK

Besides the issues related to the RFID technology (discussed

in sect. III), open issues related to the APT-MAC protocol

are mainly related to specific use cases. The protocol has

been designed for environments with heterogeneous devices:

in smart homes we expect to find a set of real time devices, a

set of event based devices and a set of periodic devices. In such

a case, APT-MAC outperforms TDMA, as it is able to differen-

tiate channel access based on estimated devices behavior. But

when the environment is atypical — featuring only real time or

periodic devices — APT-MAC loses effectiveness, converging

to a TDMA-like protocol with slots equally allocated. We

believe that although very rare, these situations should be

properly addressed by the protocol, to guarantee high data

collection performance. We leave this issue as future work.

X. CONCLUSIONS

In this paper, we show how RFID technology can be

employed to realize a variety of battery-free smart devices,

performing real-time, periodic, and event based sensing. Con-

sidering a wide set of battery-free devices, we defined a

system to realize a battery-free smart home, specifying the

system architecture — at both the hardware and software

level — and the MAC protocol — called APT-MAC, that

dynamically allocates transmission slots to devices without

requiring any a priori knowledge of the environment. The

key aspect in APT-MAC is the use of reinforcement learning

that allows to dynamically adapt to user and environmental

behavior. Results clearly show the benefits of our approach.

The system efficiently handles scenarios with 40 different

devices including a camera shooting a new image every 30s.
We believe that our battery-free smart home offers a path

forward for practical use of RFID technology in the develop-

ment of battery free devices, motivating further work aimed

at investigating techniques to support more demanding devices

(videocameras) and more powerful technology (getting longer

transmission ranges).
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