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Abstract

A model has two main aims: predicting the behavior of a physical system and understanding

its nature, that is how it works, at some desired level of abstraction. A promising recent

approach to model building consists in deriving a Langevin-type stochastic equation from a

time series of empirical data. Even if the protocol is based upon the introduction of drift and

diffusion terms in stochastic differential equations, its implementation involves subtle con-

ceptual problems and, most importantly, requires some prior theoretical knowledge about

the system. Here we apply this approach to the data obtained in a rotational granular diffu-

sion experiment, showing the power of this method and the theoretical issues behind its lim-

its. A crucial point emerged in the dense liquid regime, where the data reveal a complex

multiscale scenario with at least one fast and one slow variable. Identifying the latter is a

major problem within the Langevin derivation procedure and led us to introduce innovative

ideas for its solution.

Introduction

The Langevin equation is surely one of the pillars of non equilibrium statistical mechanics [1].

Such a stochastic process has been introduced more than one century ago by Langevin in his

seminal paper on the Brownian motion of colloidal particles in a fluid. In a nutshell the basic

idea is the following: in a system with some slow variables it is possible to model the dynamics

of these observables with an effective stochastic equation containing a systematic drift and a

noisy term.

The study of Brownian motion played a crucial role to establish, in a conclusive way, the

physical validity of the atomic hypothesis [2]. In his celebrated work Langevin had been able to

write the Brownian evolution law with a deep intuition and a clever combination of macro-

scopic and microscopic ingredients (namely the Stokes law and energy equipartition). This

work had been one of the starting points of the mathematical theory of continuous stochastic

processes, namely stochastic differential equations, which are basically a generalisation of the
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Langevin equation [3–5]. In the following we will use “Langevin equation” with the loose

meaning of stochastic differential equation, an identification broadly accepted in the literature.

Unfortunately a stochastic differential equation can be derived from a microscopic descrip-

tion with a systematic approach just in few cases. One important example is the diffusion of a

big heavy intruder in a diluted gas of light particles: the kinetic theory allows to determine the

stochastic differential equation ruling the evolution of the velocity of the heavy particle in

terms of the microscopic parameters [6].

Another system where it is possible to build the Langevin equation with an analytical

approach is a large harmonic chain containing N particles, one of which much heavier than

the others, in the limit N� 1 [7].

As far as we know, the origin of the (few) successes in the derivation of a stochastic differen-

tial equation with a non phenomenological approach can be always related to the high dilution

of the system or to its linear character.

On the other hand, typically, it is necessary to adopt a more pragmatic attitude combining

mathematics (if possible), intuition, suggestions from the data, and a preliminary understand-

ing of the system under investigation. The present paper aims at applying a recently developed

method to derive a Langevin equation from a time series of data [8, 9]. This method relies

upon the basic textbook definitions of drift and diffusion coefficients of a stochastic differential

equation, but in its applications it has been refined under many aspects, which are not only

technical but also conceptual. Some difficulties are related to the coexistence of two properties

of the Langevin equation, i.e. continuity and Markovianity. The most relevant conceptual issue

is that of determining the proper variables for a complete Markovian description, which is not

trivial when the available data are constituted by a single variable time series: in the theory of

dynamical systems the so-called embedding theorem (due to Takens) provides a procedure—

in principle of general validity—to reconstruct the correct phase space [10], once one assumes

that the system is deterministic. Unfortunately such a procedure in many specific cases,

including the one discussed here, is not useful and must be replaced by new ideas. Methods

based on a stochastic approach are widely used in order to model and analyse complex features

in a general setting, e.g. 1/f noise, see for instance [11–13]; our aim here is to find effective

Markov models, with quantitative determination of parameters, for a specific system.

The present paper is organized as follows. In the Materials and Methods section we first dis-

cuss the procedure of Langevin derivation from data, with its practical and conceptual difficul-

ties and, second, we revise the experimental setup (rotational diffusion in diluted and dense

granular gases) and some previous phenomenological models adopted to understand such

experiment. In the Results section we apply the method to the data, in particular in a dilute

and a dense case, which are extremely different cases. In the Conclusion section the reader can

find general and conclusive remarks.

Materials and methods

Langevin equation from data

Let us present a direct approach to build a Langevin equation from data. As far as we know, in

spite of its (relatively) easy use, there has been just few attempts in such a direction. Likely it is

due to the fact that, although the method can appear quite obvious and easy at a first glance,

there are some rather severe difficulties both at conceptual and technical level.

Let us assume that we know that the slow “good” variables are the component of a vector

X(t) 2 RN. In the following we will see that this is a rather subtle point, and the choice of the

proper X is not easy at all. Let us also suppose that we have measured, e.g. in an experiment or

a simulation, a long time series of these variables, {X(t)}. With these assumptions, one can
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determine the N Langevin equations (n 2 [1, N])

dXn

dt
¼ FnðXÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DnðXÞ

p
Zn; ð1Þ

where ηn(t) are white noises i.e. Gaussian processes with hηn(t)i = 0 and hηn(t)ηn0(t 0)i = δnn0δ(t −
t 0), following the definitions found in textbooks on stochastic processes [3–5], that is in terms of

the statistical features of

DXnðDtÞ ¼ Xnðt þ DtÞ � XnðtÞ:

In fact the drifts and diffusion coefficients are given by the following formula:

FnðXÞ ¼ lim
Dt!0

1

Dt
hDXnðDtÞjXðtÞ ¼ Xi

DnðXÞ ¼ lim
Dt!0

1

2Dt
hðDXnðDtÞ � FnðXÞDtÞ

2
jXðtÞ ¼ Xi

ð2Þ

It is easy to realize, see Ref. [9], that the limit Δt! 0 must be considered in a proper physical

sense, i.e. smaller than typical time, but not too small. Sometimes the term “Langevin equation”

is used with different meanings, here it indicates Eq (1) where F is not necessary linear and the

noise may be multiplicative, i.e. D can depend upon X.

The practical procedure to extract the {Fn} and {Dn} from data is not trivial; however it is

not the most difficult problem one has to face: the main conceptual trouble is indeed given by

the absence a general method for choosing the “right” variables, an aspect that is too often

overlooked. For instance, Onsager and Machlup are explicit in raising the question [14]:

How do you know you have enough variables, for [the system] to be Markovian?

Similarly, Shang-Keng Ma expresses a caveat of central importance [15]:

The hidden worry of thermodynamics is: we do not know how many coordinates or forces

are necessary to completely specify an equilibrium state.

Usually the “proper variables” are unknown and in the building of the model one can use

the time series of just one observable {U(t)}, or a few ones. Such problem is quite similar to the

phase space reconstruction in dynamical systems. There are no automatic protocols for this

choice, and typically to obtain some good results it is necessary to possess the expertise and/or

intuition about the problem under investigation. For a general discussion on the difficulties to

build models from data, see [16].

Sometimes mathematics can help to anticipate that a certain set of variables is not adequate

as Markovian model. For instance, see Ref. [9], in the case of a single scalar variable, the shape

of the correlation function may be already sufficient to exclude that such variable is an equilib-

rium Markov process, so that it becomes necessary to look for a new set of variables.

Experimental setup and phenomenological models

Granular materials apparently share many properties with condensed “molecular” matter [17,

18], but such similitudes hide a crucial difference: grains, being macroscopic, dissipate energy

through friction (in enduring contacts or rapid collisions). For this reason equilibrium statisti-

cal physics may only suggest qualitative ideas for fluidized steady states and dramatically fails

in the extreme case of static or quasi-static regimes. The liquid state of granular matter, which
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is in the middle between fast “granular gases” and slow “granular glasses”, feels stronger the

need for a coherent theoretical framework: continuum descriptions for dense flows lack first-

principle constitutive relations [19, 20], so that transport coefficients can only be measured in

molecular dynamics simulations [21], while kinetic theories (e.g. mode-coupling) must be

carefully adapted to take into account some fundamental peculiarities, such as dissipation and

inertia [22]. An important insight is provided by experiments, where such a liquid state is

obtained through some mild shaking of the container [23–25]. In the setup described below

our focus is on regimes where the longest relaxation time is reasonably smaller than the total

experimental time, so that the system can be said to be in a steady state. In a word we are not

interested, here, in the solid or glassy states [26–28].

A recent experimental study [25] has offered a new picture for dense granular flows in a

wide range of time-scales, from 10−3 s up to 103 s and more, revealing an unexpectedly rich

scenario. In the experimental setup, sketched in Fig 1A the “impurity” was constituted by an

immersed blade who could rotate around a fixed vertical axis under the kicks from the grain of

a vibrofluidized granular medium. The dynamics of the angular velocity ω(t) of the blade and

its absolute angular position yðtÞ ¼
R t

0
dsoðsÞ, was studied in different regimes of density and

intensity of vibration. In Fig 1B, the velocity power density spectrum (VPDS),

Sðf Þ ¼
1

2ptTOT
j

Z tTOT

0

oðtÞeið2pf Þtdtj2; ð3Þ

is presented and its salient features are highlighted in two opposite limits, which are the gas

and the cold liquid. We remind that the VPDS is the Fourier transform of the velocity autocor-

relation function and that its f! 0+ limit is the self-diffusion coefficient, i.e. D1 = π limf!0+

S(f). We also recall that relations exist, under certain approximations, between the VPDS and

the intermediate scattering function which—in liquids—is typically accessed through neutron

scattering experiments [29].

In the gas limit (low packing fraction and high energy per grain) the probe velocity autocor-

relation is close to a simple exponential decay� e� t=tgas , ruled by a single relaxation time τgas:
in this limit the VPDS takes the form of a Lorentzian

Sðf Þ ¼
T
pg

1

1þ ð2pIf =gÞ2
: ð4Þ

Fig 1. Experimental results. A: Sketch of the experiment reported in [25]. B: Experimental data of the VPDS for the gas case and the “cold liquid” case, together with

predictions (dashed lines) from the incomplete model, Eq (5). C: Experimental data of the MSD for both cases, together with dashed lines useful as guides for the eye.

https://doi.org/10.1371/journal.pone.0212135.g001
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In the—roughly speaking—opposite limit, that of a “cold liquid” (high packing fraction ≳
30 – 35% and low energy per grain), the observed VPDS strongly deviates from the Lorentzian.

Ignoring a mechanical resonance due to the mounting plate at *102 Hz, it displays four differ-

ent regions: at high frequency (region IV) it decays with a negative power law equal or smaller

than 2; in region III it shows a smooth parabolic maximum (centered near *10Hz), reminis-

cent of a harmonic confinement (“cage”) typical of molecular and granular liquids [22, 30–32];

in region II it stabilizes on a short plateau, which suggests a loss of memory (as in the plateau

of the Lorentzian which marks the onset of normal diffusion); finally region I, perhaps the

most surprising one, shows a diverging S(f) for f! 0+, signaling a problem with the finiteness

of the self-diffusion coefficient D1. A few longer experiments (12 hours) were conducted,

showing a slow crossover toward a new higher plateau at very low frequencies. The study of

the mean squared displacement (MSD), see Fig 1C confirmed that the four regions of the cold

liquid case correspond, respectively, to short-time ballistic (free) motion (IV), dynamical arrest

due to caging (III), later relaxation of the cage (II) and “final” superdiffusive behavior (I), very

rarely observed in previous works on granular systems [27, 28, 33, 34]. A universal scenario for

anomalous diffusion is lacking [35], but certainly it is the signal of an enduring memory. A

family of phenomenological models for anomalous diffusion includes fractional Fokker-

Planck equations [36], where an immediate physical interpretation is not always at hand, or

phenomenological continuous time random walk model for the velocity [37], with a power-

law-decaying distribution of persistency times (see Supplemental Materials of [25]). Interest-

ingly, simpler models—e.g. linear Langevin equations—can offer an even more complete

insight in the many observed phenomena.

In [25] a first model was proposed to account for the caging phenomenon, i.e. regions

II-III-IV of the VPDS in the cold liquid limit, inspired by the Itinerant Oscillator model for

molecular liquids [38–40]; it is described by the following stochastic equations of motion:

I _oðtÞ ¼ � goðtÞ � k½yðtÞ � y0ðtÞ� þ
ffiffiffiffiffiffiffiffi
2gT
p

ZðtÞ

_yðtÞ ¼ oðtÞ

_y0ðtÞ ¼
ffiffiffiffiffiffiffiffi
2D0

p
Z0ðtÞ

ð5Þ

where η(t) and η0(t) are independent white normal Gaussian noises (unitary variance) and the

angles θ(t) and θ0(t) are considered not bounded. The model represents the diffusion of a par-

ticle in a harmonic potential with “stiffness” k and unfixed minimum located at θ0(t), under

the effect of a thermal bath at temperature T and relaxation time I/γ. The harmonic potential,

representing the cage created by the confining effect of the dense granular host fluid, is not

fixed but moves, as θ0(t) behaves as Brownian motion with diffusivity D0. Motivation for this

model is twofold: 1) it reproduces the main features of the VPDS, i.e. short time fast relaxation

(region IV), an elastic resonance at intermediate times (region III) and a plateau revealing loss

of memory at larger times (region II); 2) in the dilute limit (when k! 0) there are analytical

arguments for it [6, 41], 3) at intermediate densities a series of studies showed that memory

effects (coming from correlated collisions) are well described by a similar coupling with an

additional degree of freedom characterized by slower relaxation time-scales [42]. The VPDS of

the above model is fully calculated in [25], fairly reproducing the VPDS in regions II-IV (see

dashed lines in Fig 1B) in which k/I* (2π � 10)2 * 4 � 103 Hz2.

Langevin equations and granular material
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In order to overcome the strong disagreement between the previous model and observa-

tions in region I (super-diffusion), a new model was introduced in [43]:

I _oðtÞ ¼ � goðtÞ � k½yðtÞ � y0ðtÞ� þ
ffiffiffiffiffiffiffiffi
2gT
p

ZðtÞ

I0
_o0ðtÞ ¼ � g0o0ðtÞ þ k½yðtÞ � y0ðtÞ� þ

ffiffiffiffiffiffiffiffiffiffiffi
2g0T0

p
Z0ðtÞ

_yðtÞ ¼ oðtÞ

_y0ðtÞ ¼ o0ðtÞ

ð6Þ

In Eq (6) the angular velocity of the probe feels two different forces both related to collisions:

one part is without memory and is described by the −γω + η(t) contribution, the second part

takes the form −k[θ(t) − θ0(t)] and therefore depends upon the past history of ω(t) and ω0(t).
As before θ0(t) should be viewed as a collective degree of freedom representing the preferential

point of the blade with respect to some granular cage. The cage slowly changes its configuration

and favors the blade’s drift at later times. This model however replaced the overdamped

dynamics of θ0(t) in Eq (5), introducing the crucial effect of cage inertia I0. For the sake of sym-

metry a reciprocal effect of the blade upon the granular material was included, an ingredient

which is likely to be negligible in view of the large value of I0. In [43] the introduction of cage

inertia was motivated only by analogy: it was reasonable, when looking for an ingredient

reproducing almost ballistic superdiffusion, to imagine that the cage (which, over long time-

scales, dominates also the probe’s dynamics) is doing long ballistic drifts sustained by its large

inertia. Discreteness and finiteness of the granular material, which in the experiments is made

of a few thousands grains, makes random but persistent (also called “secular” [44]) drifts

possible.

The linearity of the model allowed to solve it analytically, with a closed formula for many

statistical properties, for instance the VPDS and, semi-analytically, also for the MSD. After

some controlled procedure of fitting for the many parameters it was possible to find a perfect

reproduction of the full dynamics in regions I-IV, including super-diffusion at long times,

with a value of I0 of the same order of the moment of inertia of the granular medium sur-

rounding the probe in the experiment [43].

Results

In the previous section we have discussed how experimental data presented in [25] can be

described by simplified stochastic models, whose parameters can be found by fitting dynamical

observables as the VPDS or the MSD. In the following we will face the problem from a differ-

ent, complementary, point of view: instead of checking the accordance of the measurements

with a predeterminate theoretical model (based on physical arguments), we will try to get

important information on the model itself directly from data, by enforcing the extrapolation

protocol discussed above.

If the studied variable (namely, the angular velocity of the probe as a function of time) is a

continuous Markov process, the procedure should be able to “automatically” find the best

functional form for the corresponding Langevin Equation (provided that the sampling fre-

quency is high enough). In the following we will examine a case, the gas limit, in which this

scheme can be applied quite straightforwardly; in the cold-liquid limit, on the contrary, some

additional considerations from physics will be needed—and not always sufficient—in order to

get a satisfactory description.

Langevin equations and granular material
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Gas limit

Let us consider first a “dilute gas” case: the container is filled with 350 grains, corresponding to

a packing fraction of ϕ = 5%; the shaking intensity is G ¼ €z=g ¼ 39:8, where €z stands for the

vertical acceleration and g = 9.81m/s2 is the gravitational acceleration. The measuring set-up

records the angular position θ(t) of the blade with a sampling rate of fs = 2000Hz, so that we

can compute the angular velocity oðtÞ ¼ _yðtÞ with a temporal resolution of Δtmin = 1/f =

0.5ms. Analyzing a long time series (1 hour) of data, we would like to infer the parameters

F(ω) and D(ω) of Eq (1).

In Fig 2 we plot the average quantities that appear on the r.h.s. of Eq (2), for several values

of the time interval Δt. As discussed in [8] and recalled in the previous section, when studying

data series resulting from deterministic physical processes, the Markovian approximation can

be considered true only at suitable time scales, namely for τME� Δt� τ, where τME is the

Markov-Einstein time and τ is a characteristic time for the autocorrelation function of the con-

sidered process. As a consequence, the limits on the r.h.s. of Eq (2) should be evaluated as

extrapolations of the trend presented by data in a suitable time-scale range (Δt 2 [0.005, 0.015]

s in our case, shaded region in Fig 2). We can perform a linear extrapolation using the least-

square method: the vertical intercept of the resulting graph is our guess for the limit Δt! 0. In

order to evaluate a confidence interval for such value, one could estimate the uncertainty of

each point of the graph and then consider the error propagation on the vertical intercept; how-

ever, since the data are not independent, this method is expected to underestimate the uncer-

tainty. A safer way to compute the confidence interval is the “jackknife method” [45]: here we

have divided our sampled data into n = 100 blocks, then we have repeated the analysis n times,

discarding one block at each turn, and we have computed the confidence interval from the dis-

tribution of the resulting n different expected values.

Taking the Δt! 0 limit of the extrapolated linear trends, we have an estimate for the drift

coefficient F(ω) and for the diffusivity D(ω): as it is shown in Fig 3 (bottom), the former has a

linear dependence F(ω) = −Aω on the angular velocity, while the latter can be approximated as

D(ω) = D1 + D2ω2. Of course, our procedure gives more accurate results when the angular

Fig 2. Gas limit: Extrapolation. Extrapolation of the limits on the r.h.s. of Eq (2), for several values of ω(t0), in order to compute drift (panel A) and diffusivity (panel

B) in the gas limit. Each linear fit (solid lines) has been computed—by means of a classical least-square method—considering only the data in the shaded range, within

the vertical lines.

https://doi.org/10.1371/journal.pone.0212135.g002
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velocity is smaller, i.e. when a bigger volume of data is available for the averages (see Fig 3

(top)). Let us notice that the quadratic corrections to the diffusivity are only relevant when |ω|

is quite large, i.e. when our estimate is less reliable because of the low volume of data. For this

reason, in the following we neglect such corrections and apply the constant approximation D
(ω) = D. Model (1) reduces then to the well known Ornstein-Uhlenbeck process [4], so that all

interesting physical observables can be computed analytically.

In Fig 3 (top) we observe a fair agreement between the predicted stationary probability dis-

tribution of ω and the experimental one. Table 1 summarizes the expected values for the

parameters of the model, and the corresponding uncertainties. In Fig 4 we compare the experi-

mental VPDS and MSD with the theoretical ones for the reconstructed Ornstein-Uhlenbeck

process, finding a good agreement. The gas limit can be fairly approximated by this model, as

already discussed in [25]. It is useful to recall that the characteristic time of the Ornstein-

Uhlenbeck process (i.e. the decay of the velocity autocorrelation) is proportional to the mean

free time between particle-blade collisions and in certain conditions can be quantitatively pre-

dicted [46]. We stress that if one considers also the quadratic corrections and performs numer-

ical simulations, the outcomes are almost identical, at least in this case.

Fig 3. Gas limit: PDF, drift and diffusivity. Top: Probability distribution (PDF) of ω in the gas limit (the green solid

line is the prediction of the derived model). Bottom: Reconstructed drift (red circles) and diffusivity (blue diamonds)

in the gas limit have been respectively fitted with a linear and a parabolic function.

https://doi.org/10.1371/journal.pone.0212135.g003

Table 1. Gas limit: Parameters. Expected values and uncertainties for the parameters of the reconstructed model in

the gas limit.

Parameter Value

F (47.82 ± 0.42)s−1

D (581.6 ± 5.8)s−3

https://doi.org/10.1371/journal.pone.0212135.t001
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Cold liquid limit

In the following we analyze a regime which is somehow “opposite” to the gas limit seen above:

in this case we consider N = 2600 beads and a shaking intensity Γ = 39.8; the packing fraction

is ϕ = 36%. Again, f = 2000Hz and the experiment has a duration of 1 hour.

As already understood in [25, 43], in this case the rich phenomenology of the system cannot

be described by a single-variable approach, since the dynamics of the granular matter involves

at least two clearly separate time scales. Before enforcing the extrapolation procedure, we

should be able to identify a “fast” variable and a “slow” one in order to understand how the

model depends on them.

A quite straightforward way to define a variable that describes the slow behavior of the

probe is to consider a running average with a Gaussian window function:

y0ðtÞ ¼
1
ffiffiffiffiffiffi
2p
p

s

Z

dt0 e�
ðt0 � tÞ2

s2 yðt0 � tÞ : ð7Þ

The fast component can be found, of course, as θ1(t) = θ(t) − θ0(t) (see Fig 5A). The value of

the characteristic time σ (here σ = 0.3s) is suggested by the shape of S(f), see Fig 1: we need to

filter out the features in regions III and IV, but we also demand that the interesting dynamics

in region I is reproduced by the new variable; taking 2σ’ O(1)s seems therefore a legitimate

choice. In the following we will show that varying the parameter does not affect the results of

our analysis significatively, as long as σ is chosen to be of the same order of magnitude. Of

course, any other choice for the kernel in Eq (7) could be made, provided that it canceled the

fast oscillations of θ(t) (i.e. provided that it had a Fourier transform decaying fast enough).

Let us notice that, following the physical interpretation proposed in [43], θ0 can be seen as

the center of mass of the itinerant “cage” at every time, while θ1 has the meaning of the angular

distance between θ0 and the probe itself.

First, we can use the extrapolation analysis seen before in order to determine a proper Lan-

gevin equation for the slow variable o0 ¼
_y0. In this case the significative Δt range can be

found at a much slower time scale (namely, Δt 2 [1.5, 6]s): as a consequence, the volume of

available data considerably shrinks, but it is still possible to estimate the dependence of the

drift term on the slow angular velocity. In particular one finds (Fig 5B) that F(ω0) = −A0ω0 is

Fig 4. Gas limit: Observables. Velocity power density spectrum (panel A) and mean square displacement (panel B) in the gas limit. Experimental data (black squares)

are compared with the reconstructed model (red lines). Black lines are guides for the eyes.

https://doi.org/10.1371/journal.pone.0212135.g004
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an acceptable approximation. As in the previous case, we approximate the diffusivity term

with a constant, D0(ω) = B0, neglecting the deviations for large |ω0|.

We are left with the problem of finding a model for the observed variable ω(t). In Fig 5C we

show that the drift coefficient of ω depends significantly not only on ω itself, but also on θ1 =

θ − θ0. A linear function of both arguments, F(ω, θ1) = −A1ω − A2θ1, turns out to provide a fair

description of the data. Again we consider a constant value for the diffusivity, D(θ1, ω) = B.

The reconstructed model reads as follows:

_oðtÞ ¼ � A1oðtÞ � A2½yðtÞ � y0ðtÞ� þ
ffiffiffiffiffiffi
2B
p

ZðtÞ

_o0ðtÞ ¼ � A0o0ðtÞ þ
ffiffiffiffiffiffiffi
2B0

p
Z0ðtÞ

_yðtÞ ¼ oðtÞ

_y0ðtÞ ¼ o0ðtÞ

ð8Þ

Fig 5. Cold liquid: Slow and fast components. A: Decomposing the original signal (green line) into the sum of the averaged angular position θ0 defined by Eq (7) (red

line) and the “fast” variable θ1 = θ − θ0 (blue line). B: Drift coefficient of ω0. C: Drift coefficient of ω, as a function of θ1 and ω0.

https://doi.org/10.1371/journal.pone.0212135.g005
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where η(t) and η0(t) are Gaussian noises with unitary variance. Such system is a particular

limit of the model guessed in [43], where the term k[θ(t) − θ0(t)] is negligible with respect to

the other terms in Eq (6): indeed with the present definition, ω0 evolves with a slow dynamics

that does not admit fluctuations on the fast time scale of θ1, so that such term is necessarily

negligible.

The power density spectrum of ω(t) for model (8) can be determined analytically:

Sðf̂ Þ ¼
1

p

A2
2
B0 þ A2

0
Bf̂ 2 þ Bf̂ 4

A2
0
A2

2
þ ½A2

2
þ A2

0
A2

1
� 2A2

0
A2

2
�f̂ 2 þ ½A2

1
� 2A2 þ A2

0
�f̂ 4 þ f̂ 6

ð9Þ

where f̂ ¼ 2pf . Once Sðf̂ Þ is known, the MSD can be found as

h½DyðtÞ�2i ¼
Z t

0

dt0
Z t

0

dt@hoðt0ÞoðtÞi ¼ 2

Z t

0

dt0ðt � t0ÞCooðt
0Þ ð10Þ

where Cωω(t), the autocorrelation function of ω(t), is the Fourier anti-transform of Sðf̂ Þ. In Fig

6 we compare the above analytical expressions to the experimental data.

The VPDS shows a fair agreement in the high-frequency regime, f� 1Hz, and in the

low-frequency one f� 1Hz; in the intermediate range (region II in the notation of [25])

there is a clear discrepancy between the model and the experimental data, maybe due to dec-

orrelations of the slow variable that are not caught by the model. However, we stress that the

difference concerns a frequency range which is almost inessential for the dynamical proper-

ties of the system, whose characteristic frequencies lay in regions I and III of the spectrum

(see Fig 1B): this is completely evident when considering the MSD evolution (Fig 6B), that is

very well reproduced by the model despite the discrepancy on Sðf̂ Þ. Let us note that changing

σ by a factor 4, from 0.2s to 0.8s, does not affect the results of our analysis in a significative

way.

Finally, let us consider an experiment with N = 2600, Γ = 26.8, ϕ = 45%: even if the number

of beads is the same as in the previous case, the lower shaking intensity entails that the

Fig 6. Cold liquid: Observables. Velocity power density spectrum (panel A) and mean square displacement (panel B) in the cold liquid case with Γ = 39.8.

Experimental data (black squares) are compared with the reconstructed models (coloured lines) for several values of the smoothing parameter σ. Black lines are guides

for the eyes.

https://doi.org/10.1371/journal.pone.0212135.g006
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accessible volume for the beads is lower, i.e. the actual packing fraction increases. The system

is therefore in a “more concentrate” state. The duration of the experiment has also been raised

(12 hours), and we have chosen σ = 0.3s for the analysis.

Fig 7A and 7B show the VPDS and the MSD in this case, compared to those that can be

inferred through the method discussed above. Even if the high-frequency regime is well repro-

duced by the model, our description fails on the long-time scale; in particular, the MSD of the

reconstructed model shows a linear dependence on time for t≳ 50s, while the experimental

one is still quadratic on that scale.

The failure of the method could be ascribed to the choice of Gaussian noise for the slow var-

iable: if the evolution of ω0 was ruled by a Lévy process, an alternative analysis should be con-

sidered [47]. Let us evaluate, a posteriori, the noise of the slow variable as:

z0ðtÞ ¼
o0ðt þ DtÞ � o0ðtÞ

Dt
� F0ðo0ðtÞÞ : ð11Þ

Fig 7C shows that the distribution of z0 can be fairly approximated with a Gaussian;

Fig 7. Cold liquid: Limits of the method. A: Velocity power density spectrum in the cold liquid limit with Γ = 26.8. B: Mean square displacement in the same case. C:

Distribution of the “noise” z0 defined by Eq (11) (with Δt = 0.6s), Gaussian fit (blue line) and comparison with the reconstructed model (dashed red line).

https://doi.org/10.1371/journal.pone.0212135.g007
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furthermore, the amplitude of the noise is very close to that of the reconstructed model.

Hence, we can guess that the hypothesis of Gaussian noise is quite reasonable, and the

discrepancy between the experimental data and the inferred model could need a different

explanation.

Table 2 summarizes the expected values for the parameters of model (8), and the corre-

sponding uncertainties, for the two considered cases in the cold liquid limit. Also in this case

the confidence intervals have been computed using the jackknife method on n blocks of sam-

pled data: we have chosen n = 100 for the fast variables, n = 10 for the slow ones.

Conclusion

Using data from an accurate experiment on the rotational diffusion in granular media we

derived a Langevin equation which is able to describe the main dynamical statistical features of

the system.

Let us stress that, in the building of the model, part of the protocol is quite standard. On the

other hand there are rather subtle conceptual aspects which cannot be ignored. In the dilute

case it is enough to use a single variable whose dynamics is well described by a linear Langevin

equation. Much more difficult is the dense case where it is not obvious, as already stressed in the

past by many eminent scientists [14, 15], the set of variables which is ruled by a Markov process.

At a first glance, it seems natural to follow the approach of Takens for the phase space

reconstruction [10]. The basic idea is: from the knowledge of a time series {u(t)} one starts

with the variable {u(t)} itself, if this choice is not appropriate one can try with {u(t), du(t)/dt},
then {u(t), du(t)/dt, d2u(t)/dt2}, and so on. Once the dimension of the phase space has been

fixed one can try to find the evolution equation, certainly with many practical problems to

solve, see [48]. In our system one faces an additional important obstacle. Consider a series

{u(t)} with a characteristic time τc, surely the variables du(t)/dt, d2u(t)/dt2 etc. have characteris-

tic times which cannot be larger that τc, therefore a protocol based on the Takens’ approach

cannot succeed in systems with a multiscale structure, i.e. with other relevant variables whose

time scales are much longer than τc.
Actually in our case in order to find a good model we have been forced to go in a direction

which is the opposite of the Takens method; i.e. to identify a slow variable obtained with a con-

volution, which is somehow antithetical to a derivative.

Supporting information

S1 File. Experiment with N = 350, Γ = 39.8. Angular position θ of the blade during the experi-

ment with 350 spheres, maximum acceleration 39.8g and duration of 1 hour. Sampling rate of

2000Hz.

(ZIP)

Table 2. Cold liquid: Parameters. Expected values and uncertainties for the parameters of model (8) in the cold liquid

limit.

Parameter Γ = 39.8 Γ = 26.8

A1 [s−1] 200.3 ± 4.4 252.0 ± 6.3

A2 [s−2] 5.76 � 103 ± 2.4 � 102 8.55 � 103 ± 4.5 � 102

B [s−3] 161.1 ± 3.9 107.3 ± 3.1

A0 [s−1] 0.352 ± 0.034 0.1317 ± 4.9 � 10−3

B0 [s−3] 2.43 � 10−4 ± 2.1 � 10−5 8.82 � 10−5 ± 2.7 � 10−6

https://doi.org/10.1371/journal.pone.0212135.t002
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S2 File. Experiment with N = 2600, Γ = 39.8. Angular position θ of the blade during the

experiment with 2600 spheres, maximum acceleration 39.8g and duration of 1 hour. Sampling

rate of 2000Hz.

(ZIP)

S3 File. Experiment with N = 2600, Γ = 26.8: First part. Angular position θ of the blade dur-

ing the experiment with 2600 spheres, maximum acceleration 26.8g and duration of 12 hours.

Sampling rate of 2000Hz.

(ZIP)

S4 File. Experiment with N = 2600, Γ = 26.8: Second part. Angular position θ of the blade

during the experiment with 2600 spheres, maximum acceleration 26.8g and duration of 12

hours. Sampling rate of 2000Hz.

(ZIP)
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