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Abstract

We study the complexity of local graph centrality estimation, with the goal of approxi-
mating the centrality score of a given target node while exploring only a sublinear number of
nodes/arcs of the graph and performing a sublinear number of elementary operations. We de-
velop a technique, that we apply to the PageRank and Heat Kernel centralities, for building a
low-variance score estimator through a local exploration of the graph. We obtain an algorithm
that, given any node in any graph of m arcs, with probability (1− δ) computes a multiplica-
tive (1±ǫ)-approximation of its score by examining only Õ

(
min

(
m2/3∆1/3d−2/3, m4/5d−3/5

))

nodes/arcs, where ∆ and d are respectively the maximum and average outdegree of the graph
(omitting for readability poly(ǫ−1) and polylog(δ−1) factors). A similar bound holds for com-
putational complexity. We also prove a lower bound of Ω

(
min

(
m1/2∆1/2d−1/2, m2/3d−1/3

))

for both query complexity and computational complexity. Moreover, our technique yields
a Õ(n2/3) query complexity algorithm for the graph access model of Brautbar et al. [14],
widely used in social network mining; we show this algorithm is optimal up to a sublogarith-
mic factor. These are the first algorithms yielding worst-case sublinear bounds for general
directed graphs and any choice of the target node.
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1 Introduction

Computing graph centralities efficiently is essential to modern network analysis. With the advent
of web and social networks, the prototypical scenario involves massive graphs on millions or even
billions of nodes and arcs. On these inputs graphs, traditional approaches such as Monte Carlo
simulations and algebraic techniques are often impractical – if not entirely useless – since their
cost can scale linearly or superlinearly with the size of the graph. An alternative approach is
that of local graph algorithms, that, broadly speaking, work by exploring only a small portion of
the graph around a given target node. Local algorithms are justified by the fact that, often, one
does not need an exact computation of the entire score vector, but only a quick approximation
for a few nodes of interest. Obviously, in exchange one hopes to drastically reduce both the
running time and the portion of the graph to be fetched. One of the best-known examples is
perhaps local graph clustering [4, 54, 33].

In this paper we address the problem of locally approximating the centrality score of a node
in a graph, focusing on the PageRank and heat kernel centralities. PageRank [20] is a classic
graph centrality measure with a vast number of applications including local graph clustering [4],
trendsetter identification [52], spam filtering [40], link prediction [39] and many more (see [35]
and [23]); it has been named one of the top 10 algorithms in data mining [55]. Heat kernel [24] can
be seen as a variant of PageRank that satisfies the heat equation. Its applications span biological
network analysis [31, 30] and solving local linear systems [27]; and, similarly to PageRank, heat
kernel has a long and successful history in local graph clustering algorithms [24, 25, 26, 43, 28].
The inputs to our problem are a directed graph G, a target node v ∈ G, and approximation
parameters ǫ, δ ∈ (0, 1). The output is a value p(v) that, with probability 1−δ, is a multiplicative
(1± ǫ)-approximation of the centrality score P (v) of v. The goal is to compute p(v) by fetching
only a sublinear portion of G’s nodes and arcs, and using a sublinear number of elementary
operations. In other words, we aim at sublinear query complexity and sublinear computational
complexity.

In the case of PageRank, the local approximation of P (v) has a history dating back over a
decade [21, 34, 2, 10, 9, 19, 12, 11, 48, 46, 47]. It is well understood that PageRank can be seen
as a fast-mixing random walk, which enables the approximation of all scores larger than p in
time Θ̃(1/p) [6, 12, 11, 13]. However, all but o(n) nodes in an n-node graph have score O(1/n),
which means the cost is Ω(n) for essentially every target node in G. A complementary approach
is to estimate P (v) by exploring the graph backwards from v towards its ancestors [21, 2, 10, 9];
however, this approach alone is subject again to a Ω(n) lower bound [10, 9, 19, 15]. A step forward
has been made by coupling the two techniques, which basically amplifies the information given
by the random walks [48, 46, 47]. The bounds obtained in this way improve on each one of
the two techniques alone, but are sublinear only in expectation over v [48, 47] or only for target
nodes of low degree in undirected graphs [46]. In summary, so far no sublinear bounds have been
found for general directed graphs and any choice of the target node. A similar scenario holds
for the heat kernel, where research is focused on heat kernel diffusions and their connection to
Cheeger’s constants and local graph clustering [42, 43, 36, 28], but from which no useful bound
can be derived for the problem of approximating P (v).

Our Results. In this paper we present approximation algorithms for approximating P (v) with
fully sublinear worst-case query complexity and computational complexity. Our algorithms work
for general directed graphs and any choice of the target node v, for both PageRank and heat
kernel. (They can in principle be used for other random walk-based centralities as well, with
complexity bounds depending on the choice of parameters). For computational complexity, we
use the standard RAM model. For query complexity, we primarily use the standard graph access
model of [37, 38], where the number of queries is essentially the number of arcs fetched. More
precisely, let m be the number of arcs of G, and ∆ and d be respectively its maximum and
average outdegree. We prove:
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Theorem 1. The query complexity of computing with probability (1−δ) a (1± ǫ)-approximation
of P (v) is Õ

(
min

(
m2/3∆1/3d−2/3, m4/5d−3/5

))
.

Theorem 2. The computational complexity of computing with probability (1 − δ) a (1 ± ǫ)-
approximation of P (v) is Õ

(
min

(
m3/4∆1/4d−3/4, m6/7d−5/7

))
.

The two bounds derive from essentially the same algorithm by optimising query complexity and
computational complexity separately. One can however keep both complexities simultaneously
sublinear – for example according to the bound of Theorem 2, since computational complexity
is an upper bound to query complexity. In general, one can trade between the two. Our results
show one can always break through the Θ(m) complexity barrier by polynomial factors, while all
previous algorithms are no better than O(m) unless one looks at special cases (e.g. disconnected
graphs or nodes with large score). For example, in graphs with ∆ = O(poly log(n)), which
is reasonable for many social networks, our algorithms fetch only Õ(n2/3) nodes and arcs, or
perform only Õ(n3/4) operations; approximating P (v) via random walks, instead, requires Θ(n)
queries and operations. In fact our algorithms are sublinear in n, too, unless m = Θ(n2).

Our second contribution are lower bounds on the query and computational complexity of
approximating P (v), for both PageRank and heat kernel. Formally, we prove:

Theorem 3. Ω
(
min

(
m1/2∆1/2d−1/2, m2/3d−1/3

))
queries and elementary operations are in gen-

eral required to approximate P (v) within a factor O(1) with probability Ω(1).

Although weaker than the upper bounds, at the very least these lower bounds show one cannot
solve the problem with e.g. only poly log(n) queries and/or operations. We also note that, unless
∆ = Θ̃(d) or m = Θ̃(n2), our lower bounds are tighter than the Õ(m1/2) upper bounds given
by [48] for a uniform choice of v (see Section 2), proving such bounds cannot hold for every
choice of v. We leave open the question of whether one can tighten our upper bounds, our lower
bounds, or both.

Our final contribution are almost-tight query complexity bounds for approximating P (v)
under the model of [14], widely used in the field of large graph mining [9, 7, 12, 29, 49, 22]. The
model provides a (powerful) query that returns, in one shot, all the incoming and outgoing arcs
of the queried node; therefore, n queries are always sufficient. Equivalently, one can think of
the query as revealing one row and one column of the adjacency matrix of G. We obtain the
first sublinear-query-complexity algorithm, and one that we prove optimal up to sublogarithmic
factors:

Theorem 4. In the model of [14], the query complexity of computing with probability (1− δ) a
(1± ǫ)-approximation of P (v) is Õ(n2/3). Moreover, Ω(n2/3) queries and elementary operations
are in general required to approximate P (v) within a factor O(1) with probability Ω(1).

Organization of the paper. The rest of the introduction pins down notation and definitions.
Section 2 summarizes the state of the art. Section 3 provides a detailed walkthrough of the ideas
and techniques behind our results. All details omitted can be found in the appendix, including
the pseudocode of our algorithms (A.1), the adaptation for heat kernel (A.12), and the proofs
of Theorem 4 (A.13).

1.1 Preliminaries and notation

We denote the directed input graph by G = (V,A), and we denote by n = |V | and m = |A| the
number of its nodes and arcs. For simplicity we assume n is known; however one can estimate
it by sampling O(

√
n) random nodes from G (see [16]), which leaves our bounds unchanged. If

(u,w) ∈ A we say u is a parent of w and w is a child of u, and we write u→ w. We denote by
in(u) and out(u) the indegree and outdegree of u, and by d = m

n and ∆ = maxu∈G out(u) the
average and maximum outdegree of G. We denote by G[u, u′, . . .] the subgraph of G induced
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by the set of nodes {u, u′, . . .}. For simplicity we assume G is free from dangling nodes (u is
dangling if out(u) = 0). This assumption makes the discussion much lighter for PageRank and
can be easily lifted (see Appendix A.11). Unless necessary, for readability we hide in the O()
notation multiplicative factors depending only on the approximation parameters ǫ, δ, which in
our case are (mildly) polynomial in ǫ−1 and polylogarithmic in δ−1. Similarly, the Õ() notation
hides factors polylogarithmic in n, that in most of our bounds are actually sublogarithmic.

We denote by A the normalized (row-stochastic) adjacency matrix of G, so aij = 1
out(i) if

(i, j) ∈ A and aij = 0 otherwise. The PageRank score vector p is then defined as:

p = (1− α)
∑

τ≥0

ατ f Aτ (1)

where α < 1 is called the damping factor and ensures convergence, and f is a stochastic preference
vector. The heat kernel score vector is the analogous of PageRank under exponential damping:

p = e−α
∑

τ≥0

ατ

τ !
f Aτ (2)

In both cases ‖p‖1 = 1, i.e. the scores form a probability distribution. P (v) is the entry of p asso-
ciated to node v. In our case, we set f to the uniform distribution [ 1n . . .

1
n ]. Note that this implies

P (v) = Ω( 1n) for all v. In most proofs we use the definitions of P (v) given in Appendix A.3; they
emphasize the relationship with random walks and can be immediately derived from equations 1
and 2. Another useful equality is, for PageRank, P (v) = 1−α

n +
∑

u→v P (u)
α

out(u) (a slightly

more involved relationship holds for heat kernel – see Appendix A.12).
For computational complexity, we adopt the standard RAM model. For query complexity,

we adopt the standard model of [37, 38]. Under this model, access to G is provided by an
oracle that answers to the following queries: indeg(u), that returns in(u); outdeg(u), that
returns out(u); parent(u, i), that returns the i-th parent of u or nil if in(u) < i; child(u, i),
that returns the i-th child of u or nil if out(u) < i. We also allow a query jump() [14], that
returns a node chosen uniformly at random from G. Note that every call to one of these queries
counts as an elementary operation, thus query complexity is a lower bound to computational
complexity. As mentioned before, we obtain bounds in the model of [14], too; the allowed queries
are neigh(u), that returns the parents and the children of u, and jump().

2 Related work

Most existing work concerns the local approximation of PageRank. The problem itself was
introduced in [21], and in its many forms has attracted considerable attention since then [32, 6,
34, 2, 10, 9, 19, 12, 11, 48, 46, 47].

A first set of papers [32, 6, 12, 11] addressed the problem of sketching the scores of G
efficiently through random walks by using jump() and child(). Since one needs Ω(1/P (v))
samples in order to hit v, this approach is subject to a Ω(1/P (v)) query and computational
complexity lower bound [12, 11], which means Ω(n) for essentially every node in G. A second
set of papers [3, 2] focused on estimating how much each node u ∈ G contributes to P (v) (in
terms of random walks, how easily one reaches v from u). These algorithms do not use jump(),
and explore G backwards from v towards its ancestors. Although such algorithms can in principle
be used to estimate P (v), the lack of jump() makes them subject to a query complexity lower
bound of Ω(n) (for Monte Carlo) or n− o(n) (for Las Vegas) [9, 19, 17].

By combining the random walks of [32, 6, 12, 11] with the backward exploration of [3, 2], a set
of recent papers by Lofgren et al. [48, 46, 8, 47] proved novel results on the local approximation
of Personalized PageRank (PPR) [20] and related problems. The key idea is to hit the ancestors
of v through random walks, which greatly reduces the necessary number of samples. Their main
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result is FAST-PPR, an algorithm that approximates the PPR score of a given node within
a factor (1 ± ǫ), whenever the score is larger than a given δ > 0. FAST-PPR has running
time Õ(

√
d/δ) in expectation over a uniform random choice of v ∈ G, which for plain PageRank

means δ = Θ(1/n) and an expected running time of Õ(m1/2). The framework of FAST-PPR was
subsequently used to compute Markov chain multi-step transition probabilities [8], with similar
average-case guarantees, and for local PageRank approximation on undirected graphs [46], with
a worst-case running time O(n1/2 in(v)1/2). These results are encouraging, but at the same
time suggest that obtaining worst-case sublinear upper bounds for the general case is nontrivial.
Similarly to [48, 46, 8, 47], in this paper we combine random walks with backward exploration.
However, we do not use the backward exploration of [3, 2], but instead we introduce two novel
tools, subgraph estimators and weighted subgraph estimators, that make it easier to control both
the variance of our estimator and the cost of its construction. Thanks to these tools, we give the
first worst-case sublinear upper bounds that hold for any directed graph G and all nodes v ∈ G;
incidentally, we show that the average-case upper bounds of [48] cannot hold in the worst case.

For what concerns heat kernel, existing local approximation algorithms focus on the so-called
diffusions – essentially, the distribution of the random walk from a given seed node – due to their
relationship with local low-conductance cuts and local graph clustering [42, 43, 36, 28]. There
exists work on efficiently computing the action of the matrix exponential on vectors [1, 50, 36],
but no useful bounds can be derived for the local approximation of P (v).

Finally, we shall mention recent work on the local approximation of the stationary probability
of a target state v in a Markov Chain [44, 8, 18], and on the local approximation of a single entry
of the solution vector of a linear system [45, 53]. The local approximation of P (v) is a specific
but nontrivial case of both, and we hope that our techniques may serve as an entry point for
future developments in those directions.

3 Sketch of the proofs

This section gives a detailed step-by-step sketch of the algorithms and proofs behind Theorem 1
and Theorem 2. Due to space limitations, the most technical parts have been moved to the ap-
pendix. Here we focus on PageRank; the case of heat kernel is entirely analogous, but requires
lengthy technical adaptations that can be found in Appendix A.12. The proof of Theorem 4
requires adapting our algorithms as well, and can be found in Appendix A.13. The pseudocode
of our algorithms is in Appendix A.1. Before proceeding, let us overview the main ideas and
techniques in the order they appear in the proof sketch.
1. Random walk sampling. As a basic primitive we need to sample the nodes u ∈ G with prob-
ability equal to their score P (u). To this end we emulate the random walk, which requires O(1)
operations per sample in expectation. We can then associate to each u ∈ G an indicator random
variable χu with expectation P (u). Estimating P (v) by repeated sampling of χv is possible, but
requires Ω(n) samples in the worst case.
2. Subgraph estimators. Given any induced subgraph H of G containing v, by expressing P (v)
recursively in terms of the scores of its ancestors we define a subgraph estimator pH(v) satisfying
E[pH(v)] = P (v). Formally, pH(v) is a weighted sum of the χu of the nodes u bordering H (akin
to the “blanket sets” of [48]). We can take a sample of pH(v) using the random walk. Unfor-
tunately, the coefficients of the χu can be unbalanced and one of them can dominate, making
pH(v) behave essentially as a single χu, and one may still need Ω(n) samples to estimate P (v).
3. Weighted estimators. To bypass these limitations we introduce weighted estimators, which
are the weighted average of a sequence of subgraph estimators pG0(v), pG1(v), . . .. We build a
weighted estimator pk(v) on the sequence of subgraphs H = G0, G1, . . . , Gk that we visit by
exploring G starting from v. This requires moving from Gi−1 to Gi by picking a new node ui
and then expanding it by fetching its parents and their outdegrees. The advantage over subgraph
estimators is that pk(v) exploits also the χu associated to the nodes inside Gk, while adding a
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degree of freedom in weighting their coefficients.
4. Building a perfect estimator. We prove how, by carefully choosing the nodes u0, . . . , uk to
expand together with the weights of the subgraph estimators pG0(v), . . . , pGk

(v), we can build a
“perfect” weighted estimator pk(v) that behaves essentially as the plain sum of k non-positively
correlated indicator random variables χu. This means the variance of pk(v) is drastically lower
than that of every single pGi(v). By standard concentration bounds we can then show that
ℓ = Θ(nk ) samples of pk(v) suffice to estimate P (v) within our approximation guarantees.
5. Blacklisting heavy nodes. We then adapt the construction of pk(v) so to avoid expanding
nodes with high indegree. First, we take ℓ random walk samples; this reveals all “heavy” nodes
having score in Ω̃(ℓ−1), together with good estimates of their score. The intuition is that a
heavy node can have high degree. Second, if while building pk(v) we encounter a heavy node,
instead of expanding it we plug its estimate directly into pk(v). We then show that the resulting
estimator qk(v) preserves the approximation guarantees.
6. Indegree inequalities. We then bound the total number of queries t used to build qk(v) by
bounding the indegree in(ui) of each node we expand. To this end we give inequalities that
bound in(ui) from above in terms of m,d,∆ and of P (ui). It follows that in(ui) must be small
since we only expanded nodes with small P (ui). The resulting bound is used to minimize the
sum of the query complexity of all the phases (blacklisting, building, sampling).
7. Approximate estimators. We then turn to computational complexity. This is dominated by
the construction of qk(v) and, more precisely, by the computation of the subgraph estimators
pGi(v). We show that we just need an additive ǫ

n -approximation of the coefficients of pGi(v),
which one can compute using Θ(ln(n/ǫ)) sparse matrix-vector products on the normalized adja-
cency matrix of Gi. The resulting bound is again used to minimize the sum of the computational
complexity of all the phases (blacklisting, building, sampling).

3.1 Random walk sampling

Our first ingredient is a primitive to sample v with probability P (v). We employ samplenode(),
a simple routine originally introduced in [32, 6] and formally defined in Appendix A.1, which
emulates PageRank’s random walk using jump() and step(·) queries. It is known that sample-
node() returns node u with probability P (u); for convenience we give a short proof in Ap-
pendix A.5. Moreover, samplenode() has expected query and computational complexity O(1),
thus ℓ invocations have query and computational complexity O(ℓ) w.h.p. (see Appendix A.6).
For each u ∈ G we then let χu be the indicator random variable of the event that samplenode()
returns u, so that E[χu] = P (u) and that we can sample χu in expected time O(1). Clearly,
the χu are non-positively correlated since they indicate mutually exclusive events. The random
variables χu will appear throughout all the rest of the paper. Note that one could naively es-
timate P (v) by repeatedly invoking samplenode(), but this requires Ω(n) queries since in the
worst case P (v) = O( 1n).

3.2 Subgraph estimators

Our second ingredient is the subgraph estimator of P (v). Recall from Section 1.1 that P (v) can
be written recursively as P (v) = 1−α

n +
∑

u→v P (u)
α

out(u) . If we now replace P (u) with χu, since

E[χu] = P (u) we obtain a random variable p(v) with expectation exactly P (v). More in general,
instead of v and its parents, we can consider an induced subgraph H ⊆ G containing v, and the
nodes of G \H having outgoing arcs that end in H. Formally, define:

Definition 1. The frontier of an induced subgraph H of G is the set of arcs F (H) = {(u,w) ∈
A : u /∈ H,w ∈ H}. We say node u is on the frontier of H, and we write u ∈ F (H), if it has an
outgoing arc (u,w) ∈ F (H).
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The intuition is that F (H) collects the part of P (v) due to the random walks originating in
G \ H. Indeed, any random walk starting in G \ H must go through some u ∈ F (H) before
hitting v. This intuition can be formalized in the following lemma (proved in Appendix A.4):

Lemma 5. For any induced subgraph H of G and any v ∈ H it holds:

P (v) = cH +
∑

u∈F (H)

P (u) · cH(u) (3)

where cH and cH(u) depend only on H, F (H) and on the outdegrees of u ∈ H and u ∈ F (H).

By replacing once again P (u) with χu, we obtain:

Definition 2. The subgraph estimator of P (v) given by H is the random variable:

pH(v) = cH +
∑

u∈F (H)

χu · cH(u) (4)

By construction of H we will always have cH>0, cH(u)>0. Now, since the χu are non-positively
correlated, we can use standard concentration bounds on pH(v). The strength of the bounds
depends on the coefficients cH(u): if one of them dominates, then pH(v) behaves essentially like
a single χu and we may still need Ω(n) samples. This happens for example if H contains only
v and if all parents of v have high outdegree, save one parent having outdegree 1. In fact there
may be no H making the coefficients balanced, and furthermore we know the coefficients only
after fetching H. Perhaps surprisingly, however, we can overcome all these limitations by simply
combining subgraph estimators into a weighted sum.

3.3 Weighted estimators

The notion of weighted estimator of P (v) is a cornerstone of our technique. Informally, a weighted
estimator is just the weighted average of a set of subgraph estimators. Formally:

Definition 3. Let G0, . . . , Gk be a set of induced subgraphs of G, each one containing v.
Let β0, . . . , βk be nonnegative reals such that

∑k
i=0 βi = 1. The weighted estimator given by

G0, . . . , Gk with weights β0, . . . , βk is the random variable:

pk(v) =
k∑

i=0

βi pGi(v) =
k∑

i=0

βi

(
cGi +

∑

u∈F (Gi)

χu · cGi(u)
)

(5)

Let us see how to employ weighted estimators. Start by setting u0 = v and G0 = G[u0], and
expand u0 so to learn F (G0) and the outdegrees of all u ∈ F (G0). We can then compute the
coefficients of pG0(v). Now pick some u1 ∈ F (G0), let G1 = G[u0, u1], and expand u1 so to learn
F (G1) and the outdegrees of all u ∈ F (G1). We can then compute the coefficients of pG1(v).
Now pick some u2 ∈ F (G1), and so on. We obtain a sequence of progressively larger subgraphs
G0, . . . , Gk giving subgraph estimators pG0(v), . . . , pGk

(v). By picking weights β0, . . . , βk we
finally obtain our weighted estimator pk(v).

Let us take a closer look at pk(v). For each u appearing in the expression of pk(v) we let
j(u) = min{j : u ∈ F (Gj)}. By rearranging the expression of Equation 5 so to collect together
the terms pertaining a same node, we obtain:

pk(v) =
k∑

i=0

βi cGi +
k∑

i=1

χui ·
i−1∑

j=j(ui)

βj cGj (ui) +
∑

u∈F (Gk)

χu ·
k∑

j=j(u)

βj cGj (u) (6)

The first summation of Equation 6 gathers constant terms (containing no random variables). The
second summation gathers the nodes u1, . . . , uk that we have expanded and are thus in Gk. The
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third summation gathers nodes that are still on F (Gk). Our focus is on the second summation.
We show that, by cleverly choosing u1, . . . , uk and β0, . . . , βk, we can make the coefficients of
χu1 , . . . , χuk all identical, leading to (strong) concentration bounds. This holds even though the
coefficients of every single subgraph estimator pGi(v) may be heavily unbalanced.

3.4 Building a perfect weighted estimator

Let us rewrite Equation 6 more compactly. We write the first summation,
∑k

i=0 βi cGi , as ck.
In the second summation, we write the coefficient

∑i−1
j=j(ui)

βjcGj (ui) as ck(ui). In the third

summation, we write the coefficient
∑k

j=j(u) βjcGj (u) as ck(u). Our weighted estimator is then:

pk(v) = ck +
k∑

i=1

χuick(ui) +
∑

u∈F (Gk)

χu ck(u) (7)

We call the two summations of Equation 7 respectively inner summation and frontier summation.
Similarly, we call their coefficients inner coefficients and frontier coefficients. Ideally, we would
like to make all the coefficients identical. We settle for a slightly less ambitious target:

Definition 4. We say the weighted estimator pk(v) is perfect if:

ck(ui) = ck(ui′) for all i, i′ ∈ {1, . . . , k}
ck(ui) ≥ ck(u) for all i ∈ {1, . . . , k} and all u ∈ F (Gk)

The heart of our algorithm consists in building a perfect weighted estimator pk(v) by exploring
as little of G as possible. In fact, we show one can always build such a pk(v) by expanding
exactly k + 1 nodes.

Let us sketch the construction. Suppose by inductive hypothesis that we have built a perfect
weighted estimator pk−1(v) on subgraphsG0, . . . , Gk−1 using weights β0, . . . , βk−1. Therefore, by
Definition 4 the inner coefficients ck−1(ui) are all identical. Recall the expression of pk−1(v) given
by Equation 7 together with the definitions of ck−1(ui) and ck−1(u). Now note that every frontier
coefficient ck−1(u) contains βk−1, while the inner coefficients ck−1(ui) contain only β0, . . . , βk−2.
Hence, if we change βk−1 while rescaling β0, . . . , βk−2 so that the overall sum remains 1, we can
change the ratio between inner coefficients and frontier coefficients. In particular, we can choose
βk−1 so that the largest (breaking ties arbitrarily) of the frontier coefficients matches the value
of the inner coefficients. The node u associated to this largest frontier coefficient is the next
node uk to expand. Indeed, we can build pk(v) from pk−1 by moving the term concerning uk
from the frontier summation to the inner summation, expanding uk, and then adding to the
frontier summation the new terms concerning the parents of uk that are on F (Gk). We then
choose the new weight βk = 0. One can check that the weighted estimator pk(v) is again perfect.
Appendix A.1 gives the pseudocode of the construction, while Appendix A.7 formally proves:

Lemma 6. We can build a perfect weighted estimator pk(v) using
∑k

i=0(1 + 2 in(ui)) queries.

Before bounding the query complexity and computational complexity of building pk(v), we shall
analyse its concentration around P (v).

3.5 Concentration bounds for pk(v)

We bound the probability that |pk(v) − P (v)| > ǫP (v), as required by our guarantees. Recall
again the expression of pk(v) given by Equation 7. By Definition 4, if c = ck(ui) is the value
of the inner coefficients, then the random variable c−1(pk(v) − ck) is a sum of non-positively
correlated binary random variables with coefficients in [0, 1]. Furthermore, the probability that
pk(v) deviates by more than a multiplicative (1 ± ǫ) from P (v) is bounded by the probability
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that c−1(pk(v)− ck) deviates by more than a multiplicative (1± ǫ) from E[c−1(pk(v)− ck)]. By
the probability bounds of Appendix A.2 we then get:

Pr
[
|pk(v) − P (v)| > ǫP (v)

]
< 2 exp

(
− ǫ2

3
E
[
c−1(pk(v)− ck)

])
(8)

Crucially, we bound from below E[c−1(pk(v)− ck)] by restricting pk(v) to the inner summation:

E[c−1(pk(v)− ck)] ≥ E

[
c−1

k∑

i=1

χuick(ui)
]
= E

[ k∑

i=1

χui

]
(9)

Finally, since E[χui ] = P (ui) ≥ 1−α
n for any ui, we obtain E[c−1(pk(v) − ck)] ≥ 1−α

n k. Now, if
we take ℓ independent samples of pk(v), the expectation obviously grows to 1−α

n kℓ. Therefore,
if pℓk(v) is the average of pk(v) over ℓ samples, by Equation 8 we obtain:

Pr
[
|pℓk(v) − P (v)| > ǫP (v)

]
< 2 exp

(
− ǫ2(1− α)kℓ

3n

)
(10)

To get our multiplicative (1± ǫ)-approximation of P (v) with probability 1− δ we must then pick
kℓ = Θ(nǫ−2 ln(1/δ)), or equivalently ℓ = Θ(nk ǫ

−2 ln(1/δ)).
The core of our algorithm is complete: we know how to build a perfect weighted estimator

pk(v) and how many samples ℓ to take of it. We shall now turn to bounding the query complexity
and computational complexity of building pk(v).

3.6 Blacklisting heavy nodes

We now bound the query complexity
∑k

i=0(1 + 2 in(ui)) of building pk(v) (Lemma 6). Unfor-
tunately, such a complexity might be Θ(m): for instance if G is a sparse graph and some ui
has in(ui) = Θ(n). We shall thus modify our algorithm so to avoid expanding nodes with high
indegree or, more precisely, with high score.

First of all, we take ℓ samples via samplenode(). For each u ∈ G let s(u) be the fraction

of times u is returned, and let B = {u ∈ G : s(u) ≥ 16 ln(2n/δ)
ǫ2ℓ }. We call blacklisted the nodes in

B. By standard arguments one can show (see Appendix A.8):

Lemma 7. With probability at least 1− δ
2 it holds:

1. {u ∈ G : P (u) ≥ 25 ln(2n/δ)
ǫ2ℓ

} ⊆ B
2. (1− ǫ)P (u) ≤ s(u) ≤ (1 + ǫ)P (u) for all u ∈ B

If v ∈ B, then by Lemma 7 s(v) with probability 1− δ
2 is a (1 ± ǫ)-approximation of P (v). We

can thus just return s(v) and stop. If instead v /∈ B, then we build an estimator qk(v) similar
to pk(v) but that avoids expanding nodes of B. The idea is the following. Suppose by inductive
hypothesis that for some k ≥ 1 we have built an estimator qk−1(v) which has the same form as
pk(v) but is such that ui /∈ B for all i = 0, . . . , k − 1. We then build qk(v) as in the original
construction, but choosing uk among the nodes on F (Gk−1) that are not in B (if there are no
such nodes then we simply stop). Therefore we set βk−1 so that, among all nodes on F (Gk−1)
not in B, the largest coefficients equals the inner coefficients. As a consequence, in qk(v) we
have ui /∈ B for all i = 0, . . . , k; while every u ∈ B encountered during the construction is left
indefinitely on the frontiers F (Gj(u)), . . . , F (Gk). Formally, qk(v) has the form:

qk(v) = ck +

k∑

i=1

χuick(ui) +
∑

u∈F (Gk)
u/∈B

χu ck(u) +
∑

u∈F (Gk)
u∈B

χu ck(u) (11)

Now, by construction, if restrict ourselves to the first three terms of Equation 11 then qk(v)
is a perfect weighted estimator (Definition 4). We can thus apply the same bounds of pk(v)
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(Subsection 3.5). For the last summation, instead, we just replace each χu with s(u) and by
Lemma 7 with probability 1− δ

2 we get a multiplicative (1± ǫ)-approximation of the expectation
of the whole sum. Later, at sampling time, we can simply discard any sampled u ∈ B. By a
union bound, then, we get for qk(v) the same guarantees of pk(v). We shall now conclude our
query complexity bounds by bounding in(ui) for i = 0, . . . , k.

3.7 Indegree inequalities

Recall that: (1) by Lemma 6, building qk(v) requires
∑k

i=0(1 + 2 in(ui)) queries, and (2) by

Lemma 7, we can assume P (ui) <
25 ln(2n/δ)

ǫ2ℓ
for all i = 0, . . . , k. We shall then bound in(ui)

in terms of P (ui) and the parameters of the graph. The intuition is that P (ui) is directly
proportional to in(ui), and inversely proportional to the outdegrees of ui’s parents, which in
turn are tied to m,d,∆. Formally, we show (Appendix A.9):

Lemma 8. For any u ∈ G it holds: 1. in(u) = O(m∆P (u)
d ), 2. in(u) = O(mP (u)1/2

d1/2
).

Denote t =
∑k

i=0(1+2 in(ui)). Now bound each term in(ui) with the bounds of Lemma 8, then
in turn bound P (ui) with the bound of Lemma 7. This leads to:

t = O
(
min

(km∆ ln(n/δ)

ǫ2dℓ
,
km

ǫ

( ln(n/δ)
dℓ

)1/2))
(12)

Now set k = n ln(1/δ)
ǫ2ℓ

= m ln(1/δ)
ǫ2d ℓ

as prescribed by the concentration bounds of Section 3.5. Then,
since the blacklisting and sampling phase have query complexity O(ℓ), impose ℓ = t in order to
minimize the total asymptotic query complexity ℓ+ ℓ+ t of our algorithm. We get:

ℓ = O
(
min

(
m2/3∆1/3d−2/3 ln(n/δ)1/3 ln(1/δ)1/3ǫ−4/3,

m4/5d−3/5 ln(n/δ)1/5 ln(1/δ)2/5ǫ−6/5
))

(13)

which becomes Õ
(
min

(
m2/3∆1/3d−2/3,m4/5d−3/5

))
if we hide factors depending only on ǫ and

δ. For ℓ sufficiently large, we can invoke a union bound on the probability that building qk(v)
requires more than ℓ queries (through Lemma 7) and on the probability of qℓk(v) deviating
excessively from P (v) (Equation 10), proving Theorem 1.

3.8 Approximate estimators

We shall finally bound the computational complexity of our algorithm. The blacklisting and
sampling phase take time O(ℓ). The computationally intensive part is the construction of qk(v),
or equivalently pk(v), which is dominated by the computation of the coefficients. We can however
show one just needs a good approximation of such coefficients. Formally, we need:

Definition 5. p′k(v) is an additive ǭ-approximation of pk(v) if
∣∣E[p′k(v)]− E[pk(v)]

∣∣ ≤ ǭ.

By picking ǭ = Θ( ǫn) arbitrarily small we can then make E[p′k(v)] arbitrarily close to E[pk(v)] =
P (v) ≥ 1−α

n in a multiplicative sense. We then build p′k(v) as we did for pk(v), so to obtain
a perfect weighted estimator and keep all the concentration guarantees (with concentration
around E[p′k(v)] instead of P (v)). In exchange for the additive approximation we can build
p′k(v) faster than pk(v). To this end, when computing the generic coefficients of pGi(u), we
ignore the contribution given by paths of length ω(ln(n/ǫ)); we only compute the contribution
of paths of length O(ln(n/ǫ)), which requires just O(ln(n/ǫ)) matrix-vector multiplications on
the adjacency matrix of Gk. Since this matrix has at most t nonzero entries, computing the
approximate coefficients of pGi(u) takes time O(t ln(n/ǫ)). Formally, we prove (Appendix A.10):

Lemma 9. An additive ǭ-approximation p′k(v) of pk(v) can be built in time O(kt ln(1/ǭ)).
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With our choice ǭ = Θ( ǫn) this implies we can build p′k(v) in time O(kt ln(n/ǫ)). We then use

the bound t = Õ
(
min

(
km∆
d ℓ , km( 1

d ℓ)
1/2

))
given by Equation 12, and we set ℓ = m ln(1/δ)

ǫ2d k for the

concentration bounds. We obtain t = Õ
(
min

(
∆k2, k3/2m1/2

))
. It follows that q′k(v) can be built

in time Õ
(
min

(
∆k3, k5/2m1/2

))
. Finally, we minimize the overall computational complexity by

equalling this bound with the O(ℓ) = O( mdk ) time bound of the blacklisting and sampling phase.
We obtain:

ℓ = Õ
(
min

(
m3/4∆1/4d−3/4,m6/7d−5/7

))
(14)

which proves Theorem 2.

3.9 Remarks

Obliviousness to m,d,∆. Although we have described our algorithm as if it needed knowledge
of m,d,∆, one can make it oblivious to them. For query complexity we proceed as follows. Pick
an initial value for ℓ and perform all phases on a budget of ℓ queries. This is straightforward
to do for blacklisting and sampling; for building qk(v), simply stop as soon as expanding ui
would deplete the budget. If at sampling time c−1(qℓk(v) − ck) = Θ(ǫ−2 ln(1/δ)), by standard
concentration bounds c−1(qℓk(v) − ck) is within (1± ǫ) of its expectation with probability 1− δ
(see Section 3.5), and so qℓk(v) is. Otherwise we double ℓ and repeat. A similar argument holds
for computational complexity.

Portability of our techniques. We would spend a few words about porting our techniques to
other settings. First, we need a primitive to sample nodes with probability proportional to their
score. Second, we need P (v) to be a (positive) linear combination of the scores of v’s ancestors.
At this point we can already build and sample a perfect estimator pk(v). Third, we need a lower
bound on each P (u), or at least on

∑k
i=1 P (ui), so that we can attain concentration for pk(v).

Fourth, P (u) must be increasing with in(u), so that we can blacklist nodes with large indegree.
Such ingredients are present at least partially in centralities such as Katz’s [41], or in Markov
chains. What bounds can be obtained in these and other cases is left for future research.

4 Lower Bounds

We sketch the proof of Theorem 3. For every function d(n) ∈ Ω(1) ∩ O(n) we show a family of
n-node graphs with average degree d ∈ Θ(d(n)) containing a node v such that, to approximate
P (v) within factors O(1), one needs Ω

(
min

(
m1/2∆1/2d−1/2, m2/3d−1/3

))
queries. The structure

of the generic graph G is shown below. The target node v has g = n2/3d1/3 parents. One of
them, u, has in turn γ = n1/3d−1/3 parents itself. Finally, there are n′ = n−g−γ−2 nodes that
serve as additional children of the remaining g − 1 parents of v; each parent picks as children
∆ = n1/3d2/3 of those nodes. Note that G has m = Θ(g∆) = Θ(nd) arcs. One can check that
P (v) = Θ(γn) = Θ( g

∆n), and that by reversing the arcs between u and its parents, P (v) changes
by a multiplicative factor Θ(γ). To estimate P (v) one must decide the orientation of those arcs.
It is easy to see that doing so with non-vanishing probability requires Θ(g) parent() queries
and/or Θ(nγ ) jump() queries. However, Θ(g) = Θ(nγ ) = Θ(m2/3d−1/3) = Θ(m1/2∆1/2d−1/2).

v

u

v

u
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personalized PageRank: Algorithms, lower bounds, and experiments. Internet Mathematics,
2(3):333–358, August 2005.

[33] K. Fountoulakis, D. F. Gleich, and M. W. Mahoney. An optimization approach to locally-
biased graph algorithms. Proceedings of the IEEE, 105(2):256–272, Feb 2017.

[34] David Gleich and Marzia Polito. Approximating personalized PageRank with minimal use
of web graph data. Internet Mathematics, 3(3):257–294, 2007.

[35] David F. Gleich. Pagerank beyond the web. SIAM Review, 57(3):321–363, 2015.

[36] David F. Gleich and Kyle Kloster. Sublinear column-wise actions of the matrix exponential
on social networks. Internet Mathematics, 11(4-5):352–384, 2015.

12



[37] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, July 1998.

[38] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

[39] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh.
Wtf: The who to follow service at Twitter. In Proc. of WWW, 505–514, 2013.
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A TECHNICAL DETAILS

A.1 Pseudocode

The routine ApproxCentrality(v, ǫ, δ) is the entry point of our whole algorithm. All other routines
are invoked during the execution. As noted in Section 3, although for simplicity we write the
algorithm as if it knew the parameters ∆, d of the graph, it can easily made oblivious to them
by progressively increasing the query budget.

Algorithm ApproxCentrality(v, ǫ, δ)

1: ℓ, k ← from the bounds of Section 3
2: B, s[ ]← BlackList(ǫ, δ, ℓ)
3: ck, ck[ ]← BuildEstimator(v, k, B)
4: return SampleEstimator(ck, ck[ ], ℓ, B) +

∑
u∈B ck[u]s[u]

Algorithm Blacklist(ǫ, δ, ℓ)

1: s[ ]← empty dictionary with default value 0
2: for i = 1, . . . , ℓ do
3: u← samplenode()
4: s[u]← s[u] + 1

ℓ

5: if s[u] ≥ 16 ln(2n/δ)
ǫ2ℓ

then

6: B ← B ∪ u
7: return B, s[ ]

Algorithm BuildEstimator(v, k, B)
1: u0 ← v
2: expand u0 and set H ← G[u0]
3: c← cH(u0) ⊲ inner coefficient
4: c0 ← cH ⊲ subgraph coefficient
5: c0[ ]← empty dictionary with default value 0
6: for u ∈ F (H) do
7: c0[u]← cH(u) ⊲ frontier coefficients

8: for i = 1, . . . , k do

9: ∆[ ]← empty dictionary
10: for u ∈ F (H) \B do

11: ∆[u]← c− ci−1[u]

12: cH , cH [ ]← ComputeCoefs(H, ǫ/n)
13: ui ← argmin{∆[u]/(∆[u] + cH [u]) : u ∈ F (H) \B}
14: β ← ∆[ui]/(∆[ui] + cH [ui])
15: c← (1− β)c
16: ci ← (1− β)ci−1 + β cH
17: ci[ ]← empty dictionary with default value 0
18: for u ∈ F (H) do
19: ci[u]← (1− β)ci−1[u] + β cH [u]

20: expand ui and set H ← G[u0, . . . , ui]

21: return ck, ck[u1, . . . , uk] ∪ ck[u : u ∈ F (H)])
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Algorithm SampleEstimator(ck, ck[ ], ℓ, B)

1: p← 0
2: for i = 1, . . . , ℓ do
3: u← samplenode()
4: if p /∈ B then

5: p← p + ℓ−1(ck + ck[u])

6: return p

Algorithm SampleNode()

1: u← jump()
2: loop

3: with probability (1− α) return u
4: out(u)← outdeg[u]
5: if out(u) == 0 then

6: u← jump()
7: else

8: u← child(u, randint(out(u)))

Algorithm ComputeCoefs(H, ǭ)

1: k ← |VH |
2: AH ← AG restricted to H
3: r, c← [0, . . . , 0] of length k
4: r[v], c[v]← 1
5: for i = 1, . . . , ln(1/ǭ) do
6: r← αAH r

7: c← c+ r

8: cH ← 0, cH [ ]← empty dictionary with default value 0
9: for z ∈ H do

10: cH ← cH + 1−α
n r[z]

11: for (u,w) ∈ F (H) do
12: cH [u]← cH [u] +

α
out(u)r[w]

13: return cH , cH [ ]

A.2 Probability bounds

We give Chernoff-type probability bounds that are repeatedly used in our analysis. These bounds
can be found in e.g. [5] and can be derived from [51]. Let X1, . . . ,Xn be binary random variables.
We say that X1, . . . ,Xn are non-positively correlated if for all I ⊆ {1, . . . , n} we have:

Pr[∀i ∈ I : Xi = 0] ≤
∏

i∈I

Pr[Xi = 0] (15)

Pr[∀i ∈ I : Xi = 1] ≤
∏

i∈I

Pr[Xi = 1] (16)

The following lemma holds:

Lemma 10. Let X1, . . . ,Xn be independent or, more generally, non-positively correlated binary
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random variables. Let a1, . . . , an ∈ [0, 1] and X =
∑n

i=1 aiXi. Then, for any ǫ > 0, we have:

Pr[X < (1− ǫ)E[X]] < e−
ǫ2

2
E[X] (17)

Pr[X > (1 + ǫ)E[X]] < e−
ǫ2

2+ǫ
E[X] (18)

Note that Lemma 10 applies if X1, . . . ,Xn are indicator variables of mutually disjoint events, or
can be partitioned into independent families {X1, . . . ,Xi1}, {Xi1+1, . . . ,Xi2}, . . . of such vari-
ables.

A.3 Additional definitions

A path π from z to v is a sequence of arcs of G such that either π = ∅ and z = v, or π is the
concatenation of a path π′ from z to some w such that (w, v) ∈ G with the arc (w, v). The
length |π| of a path π is the number of arcs in it. The weight of a path π is:

ρπ =
∏

(x,y)∈π

1

out(x)
(19)

The resistance ✵
π of a path π is α|π|ρπ. For PageRank, ✵

π is the probability that the PageRank
random walk, starting on the first node of π, follows exactly π. Given a subgraph H ⊆ G, we
say π ∈ H if each arc of π is in H. We denote by ΠH(z, v) be the set of all paths from z to v in
H. The resistance of H from z to v is the sum of the resistances of all paths in ΠH(z, v):

✵H(z, v) =
∑

π∈ΠH (z,v)

✵
π (20)

Note that ✵H(z, v) is always finite. Note also that ✵H(v, v) contains the empty path from v to
itself, with resistance 1.

Finally, from equations 1 and 2 (Section 1.1) one can derive the standard equalities:

PageRank: P (v) =
η

n

∑

τ≥0

∑

z∈G

∑

π∈ΠG(z,v)
|π|=τ

ατρπ, η =
(∑

τ≥0

ατ
)−1

= 1− α (21)

heat kernel: P (v) =
η

n

∑

τ≥0

∑

z∈G

∑

π∈ΠG(z,v)
|π|=τ

ατρπ
τ !

, η =
(∑

τ≥0

ατ

τ !

)−1
= e−α (22)

A.4 Proof of Lemma 5

From Equation 21 and the definition of path resistance ✵
π we obtain:

P (v) =
∑

z∈G

∑

π∈ΠG(z,v)

1− α
n

✵
π (23)

Now, by considering separately the paths π ∈ H and the paths π /∈ H:

P (v) =
∑

z∈H

∑

π∈ΠH (z,v)

1− α
n

✵
π +

∑

z∈G

∑

π∈ΠG(z,v)
π/∈H

1− α
n

✵
π (24)

The first term equals
∑

z∈H
1−α
n ✵H(z, v). For the second term, observe that any π /∈ H from

z to v can be uniquely decomposed into a head path π′ from z to some u ∈ F (H), an arc
(u,w) ∈ F (H), and a tail path π′′ ∈ H from w to v. We can then split each such π /∈ H on
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the arc (u,w) and gather terms using the same arc (u,w). Moreover, since the probability of
following (u,w) once in u is α

out(u) , the second term becomes:

∑

z∈G

∑

π∈ΠG(z,v)

1− α
n

✵
π =

∑

(u,w)∈F (H)

(∑

z∈G

∑

π′∈ΠG(z,u)

1− α
n

✵
π′
) α

out(u)

∑

π′′∈ΠH (w,v)

✵
π′′

(25)

The quantity between brackets equals P (u), while the last summation equals ✵H(w, v). Thus
the expression equals

∑
(u,w)∈F (H) P (u)

α
out(u)✵H(w, v).

We then define:

cH =
∑

z∈H

1− α
n

✵H(z, v) (26)

cH(u) =
∑

w:(u,w)∈F (H)

α

out(u)
✵H(w, v) (27)

It follows from Equation 24 that P (v) = cH +
∑

u∈F (H) P (u) · cH(u) and the proof is over.

A.5 Output of samplenode()

We prove:

Lemma 11. samplenode() returns node u with probability P (u).

Proof. From Equation 1 one can check that the following procedure yields u with probability
P (u). First, pick L ≥ 0 from the distribution given by Pr[L = τ ] = (1 − α)ατ . Then, pick z
uniformly at random in G. Finally, walk L steps from z, at each step moving to a children of the
current node chosen uniformly at random. This is precisely what samplenode() does, with the
sole difference of drawing L during the execution. Finally, note that samplenode() is designed
so to jump to a node uniformly chosen at random in G in case the current node is dangling.

A.6 Complexity of SampleNode()

Lemma 12. The probability that 2ℓ
(1−ǫ)(1−α) queries are not sufficient to complete ℓ calls to

samplenode() is less than e−ℓǫ
2/2(1−ǫ).

Proof. Each time line 3 is executed, with probability (1−α) samplenode() terminates. Now, if
a sequence of samplenode() calls uses q queries, then line 3 is executed at least q/2 times, and
at each execution samplenode() terminates with probability (1 − α). The expected number
of samplenode() calls one can complete with q queries is thus at least q(1− α)/2, and by the
bounds of Appendix A.2, the probability that the number of completed calls does not reach
(1− ǫ)q(1− α)/2 is less than e−q(1−α)ǫ

2/4. Setting q = 2ℓ
(1−ǫ)(1−α) gives the thesis.

A.7 Proof of Lemma 6

We prove the claim by induction. Recall that we want the coefficients of pk(v) to satisfy:

∀i, i′ : 1 ≤ i, i′ ≤ k : ck(ui) = ck(ui′) (28)

∀u ∈ F (Gk) : ck(u) ≤ ck(uk) (29)

We start with k = 1. Note that if F (G0) = ∅ or F (G1) = ∅ then we can stop and compute
P (v) exactly. Let β0 = 1 and β1 = 1 − β0 = 0. Let u0 = v, and let u1 be the parent of v of
smallest outdegree (breaking ties arbitrarily). The inner summation of p1(v) has only one term,
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so Equation 28 is trivially satisfied. We thus focus on Equation 29. By the definitions of ck(ui)
and of cG0(ui) (Appendix A.4), we have:

c1(u1) = β0 cG0(u1) =
α✵G0(v, v)

out(u1)
(30)

Similarly, by recalling the definition of ck(u), for each u ∈ F (G1) we have:

c1(u) =

0∑

j=j(u)

(1− β1)cG0(u) + β1cG1(u) =

0∑

j=j(u)

α✵G0(v, v)

out(u)
(31)

If j(u) = 1 then the rightmost summation is empty, so c1(u) = 0 ≤ c1(u1). If instead j(u) = 0

then u is a parent of v, and thus c1(u) =
α✵G0

(v,v)

out(u) ≤ α✵G0
(v,v)

out(u1)
≤ c1(u1) by our choice of u1.

Suppose now by inductive hypothesis pk−1(v) for k − 1 ≥ 1 is a perfect weighted estimator,
so it satisfies Equations 28 and 29. Assume once again βk−1 = 0, and assume F (Gk−1) 6= ∅, or
we could stop and compute P (v) exactly. Now suppose for some β > 0 we set:

pk(v) = (1− β) pk−1(v) + β pGk−1
(v) (32)

so that, by replacing the expressions of pk−1(v) and pGk−1
(v):

pk(v) = (1− β)ck−1 + βcGk−1
+
k−1∑

i=1

χui · (1− β)ck−1(ui)

+
∑

u∈F (Gk−1)

χu ·
(
(1− β)ck−1(u) + β cGk−1

(u)
)

(33)

Clearly, for β = 0 we have pk(v) = pk−1(v). Now, if we progressively increase β, all inner
coefficients will shrink together by the same factor (1 − β), and in the frontier coefficient of
u the term β cGk−1

(u) will grow. At some point the largest frontier coefficient (breaking ties
arbitrarily) will therefore match the inner coefficients. Formally, for each u ∈ F (Gk−1) let then
∆(u) = cinner − ck−1(u), where cinner = ck−1(ui). Note that by hypothesis ∆(u) ≥ 0. Now let:

ū = arg min
u∈F (Gk−1)

∆(u)

∆(u) + cGk−1
(u)

, β =
∆(ū)

∆(ū) + cGk−1
(ū)

(34)

It is easy to check that (1 − β)cinner = (1 − β)ck−1(ū) + βcGk−1
(ū), and that (1 − β)cinner ≥

(1− β)ck−1(u) + βcGk−1
(u) for every other u ∈ F (Gk−1).

We can therefore obtain pk(v) from pk−1(v) as follows. First, for i = 0, . . . , k − 2 we rescale
every βi multiplying it by (1 − β). Second, we let βk−1 = β. Third, we set uk = ū. Fourth,
we set βk = 0. The expression of pk(v) still equals the expression of Equation 33 and, by the
argument above, satisfies Equations 28 and 29.

Finally, note that the information necessary to compute pk(v) from pk−1(v) is obtained by
expanding uk if we have already expanded u0, . . . , uk−1. Since expanding ui requires 1+2 in(ui)
queries, the total query complexity of building pk(v) is

∑k
i=0(1 + 2 in(ui)).

A.8 Proof of Lemma 7

We shall analyse the rescaled random variable Su = ℓ · s(u) counting the number of samples

yielding u. If P (u) ≥ 25 ln(2n/δ)
ǫ2ℓ

, then E[Su] ≥ 25 ln(2n/δ)
ǫ2

and the event u /∈ B corresponds to

Su <
16 ln(2n/δ)

ǫ2
= (1 − 9/25)E[Su]. By the concentration bounds of Appendix A.2, Pr[Su <

(1− 9/25)E[Su]
]
< exp

(
− (9/25)2

2
25 ln(2n/δ)

ǫ2

)
= ( δ2n)

1.62 < δ
3n .
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Consider now any u ∈ B. By construction Su ≥ 16 ln(2n/δ)
ǫ2 . If Su < (1 − ǫ)E[Su] then

E[Su] >
16 ln(2n/δ)
ǫ2(1−ǫ)

and thus Pr[Su < (1 − ǫ)E[Su]] < exp
(
− ǫ2

2
16 ln(2n/δ)
ǫ2(1−ǫ)

)
< ( δ2n)

8 < δ
256n . If

instead Su > (1 + ǫ)E[Su] then Su = (1 + ǭ)E[Su] for some ǭ ≥ ǫ, and E[Su] ≥ 16 ln(2n/δ)
ǫ2(1+ǭ)

. Again

by the bounds of Appendix A.2 we get Pr[Su = (1+ ǭ)E[Su]] ≤ exp
(
− ǭ2

3
16 ln(2n/δ)
ǫ2(1+ǭ)

)
. Now if ǭ ≥ 1

then ǭ2

1+ǭ ≥ 1
2 , while if ǭ < 1 then ǭ2

1+ǭ ≥ 1
2 ; and since ǫ ≤ 1 and ǭ ≥ ǫ, in both cases ǭ2

ǫ2(1+ǭ) ≥ 1
2

and exp
(
− ǭ2

3
16 ln(2n/δ)
ǫ2(1+ǭ)

)
≤ ( δ2n )

16/6 < δ
6.34n .

By a union bound on all u, the probability that at least one of (i) and (ii) fails is at most
δ
3n + δ

256n + δ
6.34n <

δ
2 .

A.9 Proof of Lemma 8

Recall that P (u) = 1−α
n + α

∑
w→u

P (w)
out(w) ≥

α(1−α)
n

∑
w→u

1
out(w) . On the one hand, since

out(w) ≤ ∆ this implies P (u) = Ω( in(u)n∆ ) and thus in(u) = O(n∆P (u)) = O(m∆P (u)
d ). On the

other hand, by the harmonic–arithmetic mean inequality 1
in(u)

∑
w→u out(w) ≥

in(u)∑
w→u 1/out(w) ,

that is,
∑

w→u
1

out(w) ≥
in(u)2∑

w→u out(w)
. This in turn implies P (u) = Ω

(
1
n

in(u)2∑
w→u out(w)

)
. But

∑
w→u out(w) ≤ m and thus P (u) = Ω

(
1
n
in(u)2

m

)
, that is, in(u) = O((mnP (u))1/2) = O(mP (u)1/2

d1/2
).

A.10 Proof of Lemma 9

We build a p′k(v) whose generic coefficient differs additively by at most ǭ
2 from its counterpart

in pk(v). It is easy to see that p′k(v) is an additive ǭ-approximation of pk(v). Indeed, write pk(v)
in the form pk(v) = ck +

∑
u∈G ck(u)χu, where ck(u) = 0 if u does not appear in the expression

of pk(v) given by Equation 7. Do the same for p′k(v). Now suppose |ck − c′k| ≤ ǭ
2 and that

|ck(u)−c′k(u)| ≤ ǭ
2 for all u ∈ G. Then |E[pk(v)−p′k(v)]| ≤ |ck−c′k|+

∑
u∈G |ck(u)−c′k(u)|E[χu] ≤

ǭ
2 +

∑
u∈G

ǭ
2E[χu] = ǭ, where we used the fact that

∑
u∈G E[χu] = 1.

Let us then prove the claim for p′k(v), by induction. At each step we proceed as with pk(v)
(see Appendix A.7), but, instead of the coefficients cGk

(u), we use additive ǭ
2 -approximations

c′Gk
(u) i.e. such that |cGk

(u)−c′Gk
(u)| ≤ ǭ

2 . This suffices, since c′k, c
′
k(ui), and c

′
k(u) are weighted

averages of the c′Gk
(u) (see Section 3.4) and thus are ǭ

2 -approximations of ck, ck(ui), and ck(u).
Assume we have built p′k−1(v) for some k − 1 ≥ 1. (The analysis holds trivially for k − 1 ≤ 1,
too). To build p′k(v) we must: (A) choose uk and βk−1, (B) compute c′Gk

and c′Gk
(u) for all

u ∈ F (Gk), and (C) compute the new coefficients c′k, c
′
k(ui), and c

′
k(u). Note that t is an upper

bound to the number of arcs and/or nodes in Gk−1 and F (Gk−1). For (A), we use Equation 34
from Appendix A.7, which requires O(|F (Gk−1)|) = O(t) operations. For (C), once we know the
c′Gk

(u), we use Equation 33, which again requires O(|F (Gk−1)|+ |Gk−1|) = O(t) operations.
Let us then address (B), showing how to compute c′Gk

and c′Gk
(u) for all u ∈ F (G) in time

O(t ln(1/ǭ)). First note that cGk
and cGk

(u) are bounded by weighted averages of resistances
✵Gk

(ui, v) for ui ∈ Gk (see Appendix A.4 and A.3). Therefore we just need an additive ǭ
2 -

approximation of each ✵Gk
(ui, v). For any τ ≥ 0 let:

rτk(ui) = ατ
∑

π∈ΠGk
(ui,v)

|π|=τ

∏

(w,w′)∈π

1

out(w)
(35)

One can see that ✵Gk
(ui, v) =

∑
τ≥0 r

τ
k(ui) (see Appendix A.3). For all τ ≥ 0 let rτk be the vector

whose i-th component is rτk(ui), for i = 0, . . . , k (for τ = 0 we set r0k(v) = 1 and r0k(ui) = 0 for
ui 6= v). Let Ak ∈ R

(k+1)×(k+1) be the normalized adjacency matrix of G restricted to Gk, so
Ak[i, j] =

1
out(ui)

if and only if ui, uj ∈ Gk and (ui, uj) ∈ G. Then for all τ ≥ 1:

rτk = αAk r
τ−1
k (36)
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We can thus compute all ✵Gk
(ui, v) simultaneously as rk =

∑
τ≥0 α

t(Ak)
τr0k. But Ak has

at most t non-zero entries, so computing αAkr
τ−1
k from Ak and rτ−1

k by sparse matrix-vector
product takes time O(t). Since rτk(ui) ≤ ατ , if we pick τ̄ = a ln(1/ǭ) for a large enough a > 0
and we let r′k =

∑τ̄
τ=0 r

τ
k, it holds:

r′k = rk −
∑

τ>τ̄+1

rτk ≥ rk −
ατ̄+1

1− α · 1 ≥ rk −
ǭ

2
(37)

Thus r′k gives additive
ǭ
2 -approximations of ✵Gk

(ui, v), and can be computed in time O(t ln(1/ǭ).
Summing over k steps concludes the proof.

A.11 Dangling nodes

Essentially, if G contains dangling nodes then the estimators for P (v) developed in Section 3
must be adapted by adding a random term (and, possibly, rescaling by a constant) which can be
estimated with sufficient accuracy through just O(1) calls to samplenode(). In what follows
we let G∅ = {u ∈ G : out(u) = 0} and P∅ =

∑
u∈G∅\v

P (u).

Lemma 13. For any induced subgraph H of G and any v ∈ H, if H \ v is free from dangling
nodes then P (v) has the form:

P (v) = µH

(
cH

(
1 +

α

1− αP∅

)
+

∑

u∈F (H)

P (u) · cH(u)
)

(38)

µH = (1− α
1−αcH)

−1 if v ∈ G∅ and µH = 1 otherwise.

Proof. We shall adapt Equation 24 from Appendix A.4.
Consider first the case v /∈ G∅. In this case we must add to the second term of the right-hand

side of Equation 24 the paths containing nodes of G∅ = G∅ \ v. We can as usual break each
path into a head path π′ terminating in a node u ∈ F (H) and a tail path π′ ∈ H, joined by
an arc of F (H); and then gathering terms according to u ∈ F (H). However, since each u ∈ G∅

is virtually on the frontier F (H), this amounts just to adding terms P (u) α
out(u)✵H(z, v) for all

u ∈ G∅ and all z ∈ H – all paths having u /∈ G∅ are already in the expression of Equation 24.
Since out(u) = n and G∅ = G∅\v, the whole expression becomes

∑
z∈H

∑
u∈G∅\v

P (u)αn✵H(z, v),
which is equivalent to P∅

α
n

∑
z∈H ✵H(z, v) = P∅

α
1−αcH . We obtain:

P (v) = cH +
∑

u∈F (H)

P (u) · cH(u) +
α

1− αP∅ (39)

Reordering terms and multiplying by µH = 1 concludes this case.
Now suppose instead v ∈ G∅. In this case we must add to the previous case the walks

containing v as intermediate node. More precisely, we add only those paths of the form (π′, π, v)
where π′ ends in v and such that π ∈ H \ v; since all paths of this form but where π contains
some u ∈ G∅ \ v are already counted by the case v /∈ G∅. As usual, we observe that summing
over all π′ just gives P (v), and summing over all (π, v) such that π ∈ H \v gives

∑
z∈H ✵H(z, v).

We shall then multiply by the usual factor α
n for taking one of the outgoing arcs of v. We are

therefore adding to the right-hand side of Equation 39 the term:

P (v)
α

n

∑

z∈H

✵H(z, v) = P (v)
α

1− αcH (40)

Thus P (v) equals the right-hand side of Equation 39 multiplied by (1− α
1−αcH)

−1.
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Note that we can compute (1− α
1−αcH)

−1 and thus µH deterministically. Note also that we
just need an accurate enough approximation of (1 + α

1−αP∅), e.g. within a multiplicative factor

1 ± O(ǫ) with probability 1 − O(δ). Let then p∅ = 1
ℓ

∑ℓ
j=1

∑
u∈G∅\v

χju. Clearly E[p∅] = P∅.
Now, if (1 + α

1−αp∅) falls off its expectation by more than a factor 1 ± ǫ, then ℓ p∅ falls off its

expectation by more than a factor 1±ǫ
(
1+ 1−α

αP∅

)
. Since ℓ p∅ is a sum of non-positively correlated

indicator random variables with expectation ℓ P∅, by the probability bounds of Appendix A.2
the probability that such an event takes place is at most

2 exp
(
−
ǫ2(1 + 1−α

αP∅
)2

3
ℓ P∅

)
≤ 2 exp

(
− ǫ2(1− α)2ℓ

3α2

)
(41)

Therefore it suffices to take ℓ = O
(
1
ǫ2
ln(2δ )

)
additional samples.

A.12 Heat kernel

In this section we adapt the algorithms, proofs, and bounds of Section 3 to the case of heat
kernel. Recall (Equation 22) that:

P (v) =
η

n

∑

τ≥0

∑

z∈G

∑

π∈ΠG(z,v)
|π|=τ

ατρπ
τ !

, η = (
∑

τ≥0

ατ

τ !
)−1 = e−α (42)

Unlike PageRank, we cannot express P (v) directly as a function of P (u), u→ v unless we break
P (u) over paths of different lengths. Formally, we need to define:

Pτ (v) =
η

n

∑

z∈G

∑

π∈ΠG(z,v)
|π|=τ

ατρπ
τ !

(43)

Note that P0(u) =
η
n , while Pτ (u) =

∑
w→u

α
τ out(w)Pτ−1(w) for τ ≥ 1; finally, P (u) =

∑
τ≥0 Pτ (u).

Remark. Since P (v) = Ω(n−1) and Pτ (v) ≤ ατ

τ ! , we can disregard all τ ≥ a ln(n/ǫ) for some
sufficiently large a ≥ 1 and still keep our approximation guarantees valid. Hence in what follows
we implicitly consider 0 ≤ τ < a ln(n/ǫ) even if, for readability, we write τ ≥ 0.

A.12.1 Random walk sampling

As a first ingredient, we need to sample nodes u ∈ G from the distributions given by Pτ (u). For
each τ ≥ 0 we do the following. First, pick a node z uniformly at random in G. Then, walk τ
steps from z, and let χτ,u be the indicator random variable of the event that the random walk
ends in u. It is clear that E[χτ,u] =

1
n

∑
z∈G

∑
π∈ΠG(z,v):|π|=τ ρπ = τ !

ηατ Pτ (u). Note that taking
one sample of χτ,u requires O(ln(n/ǫ)) queries and elementary operations, since τ < a ln(n/ǫ).

A.12.2 Subgraph estimators

We adapt the PageRank subgraph estimator by breaking the P (u) by path length. Formally:

Lemma 14. For any induced subgraph H of G and any v ∈ H it holds:

P (v) = cH +
∑

u∈F (H)

∑

τ≥0

Pτ (u)
τ !

ηατ
· cH,τ (u) (44)

where cH and cH,τ (u) depend only on τ , H, F (H) and on the outdegrees of u ∈ H and u ∈ F (H).
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Proof. As done in Section A.4 for PageRank, we take Equation 42 and consider separately paths
in H and paths containing an arc of F (H), breaking these latter on that arc. This gives:

P (v) =
η

n

∑

z∈H

∑

π∈ΠH (z,v)

α|π|ρπ
|π|! +

η

n

∑

(u,w)∈F (H)

∑

z∈G

∑

π∈ΠG(z,u)

∑

π′∈ΠH(w,v)

α|π|+|π′|+1ρπρπ′

out(u)(|π| + |π′|+ 1)!

(45)

We let cH = η
n

∑
z∈H

∑
π∈ΠH(z,v)

α|π|ρπ
|π|! . For the second term, we group the outmost summation

by u and break ΠG(z, u) over all possible lengths τ ≥ 0. After simple rearrangements we get:

∑

u∈F (H)

∑

τ≥0

( 1

n

∑

z∈G

∑

π∈ΠG(z,u)
|π|=τ

ρπ

)(
η

∑

w:(u,w)∈F (H)

∑

π′∈ΠH (w,v)

ρπ′ ατ+|π′|+1

out(u)(τ + |π′|+ 1)!

)
(46)

The first factor inside the summation is exactly Pτ (u)
τ !
ηατ (see Equation 43). Now define:

cH,τ (u) = η
∑

w:(u,w)∈F (H)

∑

π′∈ΠH(w,v)

ρπ′ ατ+|π′|+1

out(u)(τ + |π′|+ 1)!
(47)

and by Equations 45-46 the claim is proven.

By replacing Pτ (u)
τ !
ηατ = E[χτ,u] with χτ,u, we obtain:

Definition 6. The subgraph estimator of P (v) given by H is the random variable:

pH(v) = cH +
∑

u∈F (H)

∑

τ≥0

χτ,u · cH,τ (u) (48)

A.12.3 Weighted estimators

The definitions and arguments of Section 3.3 can be adapted straightforwardly. The only change
is in the final form of the estimator, which is given by a variation of Equation 6:

pk(v) =
k∑

i=0

βi cGi +
k∑

i=1

∑

τ≥0

χτ,ui ·
i−1∑

j=j(ui)

βj cGj ,τ (ui) +
∑

u∈F (Gk)

∑

τ≥0

χτ,u ·
k∑

j=j(u)

βj cGj ,τ (u) (49)

A.12.4 Building a perfect weighted estimator

Similarly to PageRank, define ck =
∑k

i=0 βi cGi , define ck,τ (ui) =
∑i−1

j=j(ui)
βj cGj ,τ (ui), and

define ck,τ (u) =
∑k

j=j(u) βj cGj ,τ (u). Equation 49 becomes:

pk(v) = ck +

k∑

i=1

∑

τ≥0

χτ,ui ck,τ (ui) +
∑

u∈F (Gk)

∑

τ≥0

χτ,u ck,τ (u) (50)

Now a crucial observation. From Equation 47, and since α|π′|+1

(|π′|+1)! ≥ ατ+|π′|+1

(τ+|π′|+1)! , for any given H,u

we have cH,0(u) ≥ cH,τ (u) for all τ ≥ 0. This implies ck,0(ui) ≥ ck,τ (ui) for all i = 1, . . . , k and
ck,0(u) ≥ ck,τ (u) for all u ∈ F (Gk). In other words the coefficients for τ = 0 dominate. We
then build pk(v) as done for PageRank (Section 3.4 and Appendix A.7), but looking only at the
coefficients ck,0(ui) and ck,0(u). We get a perfect weighted estimator in the following sense:

Definition 7. We say the weighted estimator pk(v) is perfect if:

ck,0(ui) = ck,0(ui′) for all i, i′ ∈ {1, . . . , k}
ck,0(ui) ≥ ck,0(u) for all i ∈ {1, . . . , k} and all u ∈ F (Gk)

By straightforwardly adapting the proof of Lemma 6, one proves:

Lemma 15. We can build a perfect weighted estimator pk(v) using
∑k

i=0(1 + 2 in(ui)) queries.
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A.12.5 Concentration bounds

Let pk(v) be a perfect weighted estimator according to Definition 7. Recall (see Equation 50)
that ck,0(ui) ≥ ck,τ (ui) and ck,0(u) ≥ ck,τ (u). Then let c = ck,0(ui) and consider the random
variable c−1(pk(v) − ck), which is a sum of non-positively correlated binary random variables
with coefficients in [0, 1]. The arguments of Section 3.5 apply, and Equation 8 holds. Moreover
c−1(pk(v)−ck) ≥

∑k
i=1 χ0,ui and E[

∑k
i=1 χ0,ui ] = k 1

n , therefore E[c
−1(pk(v)−ck)] ≥ k

n . Similarly
to PageRank, by averaging over ℓ independent samples χ1

τ,u, . . . , χ
ℓ
τ,u of the χτ,u for each τ we

get an estimator pℓk(v) such that:

Pr
[
|pℓk(v) − P (v)| > ǫP (v)

]
≤ 2 exp

(
− ǫ2kℓ

3n

)
(51)

We thus need ℓ = O(nk ǫ
−2 ln(1/δ)), as for PageRank. Note however that, unlike PageRank,

the query and computational complexity of sampling pℓk(v) is Θ(ℓ ln2(n/ǫ)), since for each τ =
0, . . . , a ln(n/ǫ)− 1 we take ℓ samples and each sample costs O(ln(n/ǫ)).

A.12.6 Blacklisting heavy nodes

We adapt Section 3.6 as follows. For each τ ≥ 0 take again ℓ independent samples χ1
τ,u, . . . , χ

ℓ
τ,u

of the χu,τ . For any given H and any u ∈ F (H) define:

sH(u) =
∑

τ≥1

(1
ℓ

ℓ∑

j=1

χjτ,u

)
· cH,τ (u)
cH,1(u)

, σH(u) = E[sH(u)] (52)

Now let B = {u ∈ G : 1
ℓ

∑ℓ
j=1 χ

j
1,u ≥

16 ln(2n/δ)
ǫ2ℓ

}. We prove:

Lemma 16. With probability at least 1− δ
2 it holds:

1. {u ∈ G : P1(u) ≥ 25ηα ln(2n/δ)
ǫ2ℓ

} ⊆ B
2. (1− ǫ)σH(u) ≤ sH(u) ≤ (1− ǫ)σH(u) for all u ∈ B and all H ⊆ G

Proof. We adapt the proof of Lemma 7 (Appendix A.8). For (1), if P1(u) ≥ 25ηα ln(2n/δ)
ǫ2ℓ

then

E[χ1,u] ≥ 25 ln(2n/δ)
ǫ2ℓ

and thus E[
∑ℓ

j=1 χ
j
1,u] ≥ 25 ln(2n/δ)

ǫ2
. The event u /∈ B instead implies that

∑ℓ
j=1 χ

j
1,u <

16 ln(2n/δ)
ǫ2

. As in the proof of Lemma 7 we then get Pr[u /∈ B] < δ
3n . For (2), we

shall analyse the rescaled random variable Su = ℓ · sH(u) =
∑

τ≥1

(∑ℓ
j=1 χ

j
τ,u

)
· cH,τ (u)
cH,1(u)

, which

is a sum of non-positively correlated binary random variables with coefficients in [0, 1] since
cH,τ+1 < cH,τ (see Equation 47). By construction Su ≥

∑ℓ
j=1 χ

j
1,u, which means for all u ∈ B

we have Su ≥ 16 ln(2n/δ)
ǫ2 . Note this holds independently of H. We can now apply the argument

of the proof of Lemma 7 to Su. By a union bound on all u ∈ G we get the thesis.

We then proceed as for PageRank, ignoring the nodes in B on the frontier during the con-
struction of pk(v). By Equation 50, the resulting estimator qk(v) has the form:

qk(v) = ck +
k∑

i=1

∑

τ≥0

χτ,ui ck,τ (ui) +
∑

u∈F (Gk)
u/∈B

∑

τ≥0

χτ,u ck,τ (u) +
∑

u∈F (Gk)
u∈B

∑

τ≥0

χτ,u ck,τ (u) (53)

Now for each u ∈ B consider
∑

τ≥0 χτ,uck,τ (u). Is it immediate to see that E[χ0,uck,0] =
1
nck,0

and E[
∑

τ≥1 χτ,uck,τ (u)] = E[
∑

τ≥1

(
1
ℓ

∑ℓ
j=1 χ

j
τ,u

)
ck,τ ]. Therefore we replace

∑
τ≥0 χτ,uck,τ (u)

with 1
nck,0 +

∑
τ≥1

(
1
ℓ

∑ℓ
j=1 χ

j
τ,u

)
ck,τ . It is clear that, if the latter summation is within a mul-

tiplicative (1 ± ǫ) of its own expectation, then the whole expression is as well. By Equa-
tion 49,

∑
τ≥1

(
1
ℓ

∑ℓ
j=1 χ

j
τ,u

)
ck,τ is a linear combination of

∑
τ≥1

(
1
ℓ

∑ℓ
j=1 χ

j
τ,u

)
cH,τ (u) over

24



H = Gj(u), . . . , Gk. However
∑

τ≥1

(
1
ℓ

∑ℓ
j=1 χ

j
τ,u

)
cH,τ (u) equals sH(u) cH,1, which by Lemma 16

with probability 1− δ
2 is within a multiplicative (1± ǫ) of its own expectation for all u ∈ B. We

thus get a multiplicative (1±ǫ)-approximation of the rightmost summation in Equation 53, while
for the remaining terms we use the concentration bounds of Subsection A.12.5, as for PageRank.

A.12.7 Indegree inequalities

We adapt Section 3.7. First, we prove:

Lemma 17. For any u ∈ G it holds: 1. in(u) = O(∆nP1(u)), 2. in(u) = O((mn ln(n)P1(u))
1/2).

Proof. Recall that P1(u) = α
∑

w→u
P0(w)
out(w) and P0(w) = η

n . Then use the proof of Lemma 8

(Appendix A.9).

As a consequence, for the query complexity t =
∑k

i=0(1 + 2 in(ui)) of building qk(v) we get
the same bounds of Equation 12. Since the blacklisting and sampling phase have query com-
plexity O(ℓ ln2(n/ǫ)) (see Subsection A.12.1), we set t = ℓ ln2(n/ǫ) to minimize the total query

complexity. As for PageRank we shall then set k = m ln(1/δ)
ǫ2dℓ (see Section A.12.5). After a few

manipulations we get:

ℓ = O
(
min

(
m2/3∆1/3d−2/3 ln(n/δ)1/3 ln(n/ǫ)−2/3 ln(1/δ)1/3ǫ−4/3, (54)

m4/5d−3/5 ln(n/δ)1/5 ln(n/ǫ)−4/5 ln(1/δ)2/5ǫ−6/5
))

(55)

which is Õ
(
min

(
m2/3∆1/3d−2/3,m4/5d−3/5

))
if we hide factors depending only on ǫ and δ.

A.12.8 Approximate estimators

We just need to prove:

Lemma 18. An additive ǭ-approximation p′k(v) of pk(v) can be built in time O(kt ln(1/ǭ) ln(n/ǫ)).

Proof. The proof is essentially the same as the proof of Lemma 9 (Appendix A.10); the only
difference is that we now have na ln(n/ǫ) coefficients rather than just n. Therefore we need a
p′k(v) whose generic coefficient differs additively by at most ǭ

2a ln(n/ǫ) from its counterpart in pk(v).

Suppose then |ck − c′k| ≤ ǭ
2a ln(n/ǫ) and |ck(u)− c′k(u)| ≤ ǭ

2a ln(n/ǫ) for all u ∈ G. Then |E[pk(v)−
p′k(v)]| ≤ |ck − c′k| +

∑
τ≥0

∑
u∈G |ck(u) − c′k(u)|E[χτ,u] < ǭ

2 +
∑

τ≥0
ǭ

2a ln(n/ǫ)

∑
u∈G E[χu] = ǭ,

using the fact that
∑

u∈G E[χu] = 1 and that we consider only a ln(n/ǫ) terms over τ ≥ 0.
The rest of the proof shall be adapted as follows. We need to compute additive ǭ

2a ln(n/ǫ) -

approximations of the coefficients cGk
and cGk ,τ (u) for all τ ≥ 0 and u ∈ F (Gk); see Subsec-

tion A.12.2. For any τ and any λ ≥ 0 then let:

rτ,λk (ui) =
ατ+λ+1

(τ + λ+ 1)!

∑

π∈ΠGk
(ui,v)

|π|=λ

∏

(w,w′)∈π

1

out(w)
(56)

From the definitions in Subsection A.12.2, then, cGk ,τ (u) = η 1
out(u)

∑
w:(u,w)∈F (Gk)

∑
λ≥0 r

τ,λ
k (ui)

and cGk
= η

n

∑
z∈Gk

∑
λ≥0 r

−1,λ
k (z). In other words cGk ,τ (u) and cGk

are bounded by weighted

averages of the
∑

λ≥0 r
τ,λ
k (ui) and therefore we just need a ǭ

2a ln(n/ǫ) -approximation of this quan-

tity. For all λ ≥ 0 let then r
τ,λ
k be the vector whose i-th component is rτ,λk (ui), for i = 0, . . . , k.

For λ = 0 we set rτ,0k (v) = 1 and rτ,0k (ui) = 0 for all ui 6= v. Let Ak ∈ R
(k+1)×(k+1) be the
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normalized adjacency matrix of G restricted to Gk, so Ak[i, j] =
1

out(ui)
if and only if ui, uj ∈ Gk

and (ui, uj) ∈ G. Then for all λ ≥ 1:

r
τ,λ
k =

α

τ + λ+ 1
Ak r

τ,λ−1
k (57)

Thereafter, the arguments of the proof of Lemma 9 (Appendix A.10) hold unchanged.

As for PageRank, we can now pick ǭ = Θ( ǫn) and build p′k(v) in time O(kt ln2(n/ǫ)). The
overall computational complexity is therefore the same of PageRank, save for polylogarithmic
factors: Õ

(
min

(
m3/4∆1/4d−3/4,m6/7d−5/7

))
.

A.13 Proof of Theorem 4

A.13.1 Upper bound

We port our algorithm in the model of [14]. We show the adaptation only for PageRank, but
it is straightforward to obtain the bounds for heat kernel after adapting the original algorithm
as specified in Appendix A.12. First we show that, if the query neigh(u) returned not only the
parents and the children of u but also the outdegree of each parent of u, then we would need
only O(n1/2) queries. Then we show how, by sketching an approximation of the outdegrees, one
need Õ(n2/3) queries. Note that we use our first estimator pk(v) (see Section 3.4), i.e. we do not
need the blacklisting phase.

Suppose then neigh(u) returns, in addition to the parents and the children of u, the outdegree
of each parent of u. Then invoking neigh(u) suffices to expand u, hence we can build pk(v)
with O(k) queries (see Section 3.4). Since the sampling phase takes O(ℓ) queries, then, we can
minimise the query complexity by setting ℓ = k. By the bounds of Section 3.5 we can pick
kℓ = O(n ln(1/δ)

ǫ2
), which gives k = ℓ = O(n1/2 ln(1/δ)1/2ǫ−1).

Now suppose instead neigh(u) returns an approximation of the outdegrees of u’s parents.
For each node u ∈ G we denote by ̂out(u) such an approximation. For any pair of nodes

u, u′ ∈ G with positive outdegrees let r(u, u′) = out(u)
out(u′)/

̂out(u)
̂out(u′) ≥ 1. Without loss of generality

assume r(u, u′) ≥ 1 (otherwise just switch u and u′). In other words r(u, u′) tells by how much

the ratio out(u)
out(u′) changes if we use the outdegree approximations. Now let:

γ = max{r(u, u′), u, u′ ∈ G : out(u), out(u′) > 0} (58)

We then build pk(v) as usual (Section 3.4), but by using the approximations ̂out(u) in place of
the actual outdegrees out(u) (the outdegrees appear at the denominator of the coefficients cH
and cH(u) – see Appendix A.4). This means we choose β0, . . . , βk and u0, . . . , uk so that pk(v)
is a perfect weighted estimator (Definition 4). Note however that E[pk(v)] 6= P (v) in general.

Once built pk(v), we change all its coefficients by replacing ̂out(u) with out(u), which makes
E[pk(v)] = P (v). This replacement can be performed directly for every u ∈ Gk since we have
queried it. For the nodes u ∈ F (Gk) instead we do not know out(u). However, to take a sample
of pk(v) we only need to know the outdegree of the coefficient ck(u) associated to the node u
returned by samplenode() i.e. such that χu = 1, which we can learn with a single additional
query. All other terms are implicitly set to 0 and therefore knowing their coefficients is irrelevant.

Now, by definition of ck, ck(ui), ck(u) (Section 3.4) and in turn of cH and cH(u) (Ap-
pendix A.4) it is straightforward to see that the ratio of any two coefficients of pk(v) changes by
no more than γ. Formally pk(v) is γ-perfect, where:

Definition 8. We say the weighted estimator pk(v) is γ-perfect if:

ck(ui) ≥ 1
γ ck(ui′) for all i, i′ ∈ {1, . . . , k}

ck(ui) ≥ 1
γ ck(u) for all i ∈ {1, . . . , k} and all u ∈ F (Gk)
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We now adapt the concentration bounds of Section 3.5. Let c = max{{ck(ui) : i = 1, . . . , k}∪
{ck(u) : u ∈ F (Gk)}}. Then the random variable c−1(pk(v) − ck) is a sum of non-positively
correlated random variables with coefficients in [0, 1] and Equation 8 holds. Now:

E[c−1(pk(v)− ck)] ≥ E

[
c−1

k∑

i=1

χuick(ui)
]
≥ 1

γ
E

[ k∑

i=1

χui

]
(59)

where we used Definition 8 to bound ck(ui) ≥ c 1γ . Finally, since E[χui ] = P (ui) ≥ 1−α
n , we

obtain E[c−1(pk(v)− ck)] ≥ 1−α
nγ k, and if we take ℓ independent samples of pk(v) the expectation

grows to 1−α
nγ kℓ. Hence, as in Equation 8, we obtain:

Pr
[
|pℓk(v) − P (v)| > ǫP (v)

]
≤ 2 exp

(
− ǫ2(1− α)kℓ

3γn

)
(60)

To get our multiplicative (1± ǫ)-approximation of P (v) with probability 1− δ we must then
pick kℓ = Θ(nγǫ−2 ln(1/δ)). We shall now show that, by spending k queries to approximate the

outdegrees, one can essentially guarantee γ ≤ n ln(n)
k . Replacing this bound at the exponent of

Equation 60 and optimizing for k will prove our upper bound.

Lemma 19. With k jump() and k neigh(·) queries one can obtain estimates { ̂out(u)}u∈G such

that, for any b > 2k
n ln(n) , we have γ ≤ 4bn log(n)

k with probability 1− 2n
− b

8 ln(2)
+1

.

Proof. We draw k nodes from G using jump(), ad one each of them we invoke neigh(·) to learn
its parents. For each u ∈ G let then ψju be the indicator random variable of the event that u is
a parent of the j-th node drawn; clearly E[ψju] =

out(u)
n . For every u ∈ G and all b > 0 let:

̂out(u) = n

k

( k∑

j=1

ψju + b log(n)
)

(61)

Note that E[ ̂out(u)] = out(u) + n
k b log(n) and that

∑k
j=1ψ

j
u is a sum of independent binary

random variables. We now prove that, with probability 1−2n
− b

8 ln(2)
+1

, for all u with out(u) > 0

it holds 1
2 ≤

̂out(u)
out(u) ≤ 2nk b log(n). By definition of γ this proves the theorem.

Let us start with the lower bound. Suppose out(u) ≤ n
k b log(n); this implies ̂out(u)

out(u) ≥ 1 > 1
2 .

Suppose instead out(u) > n
k b log(n). Then E[

∑k
j=1 ψ

j
u] > b log(n), and by the probability bounds

of Appendix A.2 we have Pr
[∑k

j=1 ψ
j
u <

1
2E[

∑k
j=1 ψ

j
u]
]
< e−

b log(n)
8 = n

− b
8 ln(2) . This is also a

bound on Pr[ ̂out(u) < 1
2E[ ̂out(u)]] by construction of ̂out(u), and since out(u) < E[ ̂out(u)],

on the probability that ̂out(u) < out(u)
2 . Taking a union bound on all u, the probability that

̂out(u)
out(u) <

1
2 for some u is at most n

− b
8 ln(2)

+1
.

Let us now turn to the upper bounds. Note that n
k

∑k
j=1 ψ

j
u+

n
k b log(n)out(u) ≥ ̂out(u) since

out(u) ≥ 1. Hence the event ̂out(u)
out(u) > 2nk b log(n), or equivalently ̂out(u) > 2nk b log(n)out(u),

implies
∑k

j=1ψ
j
u > b log(n)out(u). However, E[

∑k
j=1ψ

j
u] =

k
nout(u). The event is thus equivalent

to
∑k

j=1ψ
j
u = E[

∑k
j=1ψ

j
u](1 + ǫ) for some ǫ ≥ nb ln(n)

k − 1. The probability of this event is, by

the bounds of Appendix A.2, smaller than e−
ǫ2

2+ǫ
E[
∑k

j=1ψ
j
u]. Note however that since b > 2k

n ln(n)

then ǫ > 1, which implies ǫ2

2+ǫ >
1+ǫ
6 . At the exponent of the bounds we can then just plug

b log(n)out(u)
6 in place of ǫ2

2+ǫE[
∑k

j=1 ψ
j
u], obtaining an upper bound of e−

b log(n)·out(u)
6 ≤ n

− b
6 ln(2) .

Taking a union bound on all u, the probability that ̂out(u)
out(u) > 2nk b log(n) for some u is at most

n
− b

6 ln(2)
+1

.
A final union bound completes the proof.
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We can now conclude the proof of the upper bound in Theorem 4. First, we use the same
number of queries k for approximating the outdegree, building pk(v), and sampling pk(v). By

Lemma 19, we can make arbitrarily smaller than δ the probability that γ > 4bn log(n)
k by choosing

a large enough b ∈ O(1). We can then assume γ ≤ 4bn log(n)
k . Then by Equation 60:

Pr
[
|pℓk(v) − P (v)| > ǫP (v)

]
≤ 2 exp

(
− ǫ2(1− α)k3

12 b n2 ln(n)

)
(62)

To make the right-hand side arbitrarily smaller than δ, it suffices to pick:

k = O
(
n

2
3 ln(n)1/3 ln(1/δ)

1
3 ǫ−

2
3
)
= Õ

(
n

2
3
)

(63)

concluding our query complexity upper bound.

A.13.2 Lower bound

It suffices to adapt the graph for the lower bounds of 4. Set the number of parents of v to g =
Θ(n2/3), and the number of children of each parent to ∆ = Θ(n1/3). Crucially, distinct parents
must have no child in common. Set γ = Θ(∆). It is immediate to check that P (v) = Θ(n−2/3)
and that we can change P (v) by constant factors by switching the rightmost parent between
having either γ parents or γ children. Clearly, one cannot distinguish between the two cases
unless one queries the rightmost parent or one of its γ neighbors. To simplify the analysis we
can reinforce the model by assuming that (1) neigh(v) is given for free at the beginning, (2) any
jump() returns a node u as well as its parents, its children, siblings (children of its parents), and
spouses (parents of its children). Now, for any node u 6= v returned by jump() or queried by
the algorithm via neigh(u), we can mark u and all of its parents/children/siblings/spouses as
visited. There are therefore n2/3 subsets of nodes to be marked as visited, and it is easy to see
that finding the rightmost parent of v among them takes in expectation either Ω(nγ ) = Ω(n2/3)

queries via jump() or Ω(∆) = Ω(n2/3) queries via neigh(·).
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