
Noname manuscript No.
(will be inserted by the editor)

Distributed algorithms for convex problems with linear coupling constraints

Tommaso Colombo · Simone Sagratella

Received: date / Accepted: date

Abstract Distributed and parallel algorithms have been frequently investigated in the recent years, in par-
ticular in applications like machine learning. Nonetheless, only a small subclass of the optimization algo-
rithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all
the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods
are among the most used techniques to get rid of the coupling constraints issue, namely by moving such
constraints to the objective function in a structured, well-studied manner. Unfortunately, standard aug-
mented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve
a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap,
we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints
that can be distributed and requires a single gradient projection step at every iteration. We give a formal
convergence proof to at least ε-approximate solutions of the problem and a detailed analysis of how the
parameters of the algorithm influence the value of the approximating parameter ε . Furthermore, we intro-
duce a distributed version of the algorithm allowing to partition the data and perform the distribution of the
computation in a parallel fashion.

Keywords Nonlinear optimization · Parallel algorithms · Distributed algorithms · Lagrangian methods

1 Introduction

Distributed and parallel algorithms to solve optimization problems have gained more and more attention
in the last decades. These have acquired an even larger importance since the amount of data available has
grown exponentially. Beyond the evident effectiveness from a computational time perspective, some of
these also allow the distribution of the data. Partitioning the data in blocks and assigning those blocks to
separate processes is key not only for speeding up the computation, but also e.g. for privacy reasons [7,11,
20,37–40].

Unfortunately, only a small subset of the optimization algorithms in the literature presents the desirable
property of being distributable. Moreover, such distributed algorithms usually assume that the feasible set
is representable as a cartesian product of feasible sets, so that the variables are block-separable and each

The work of the authors was partially supported by the grant: “Finanziamenti di ateneo per la ricerca scientifica 2018” n.
RP11816432902D1E, Sapienza University of Rome

T. Colombo
Department of Computer, Control and Management Engineering Antonio Ruberti
Sapienza University of Rome
E-mail: colombo@diag.uniroma1.it

S. Sagratella
Department of Computer, Control and Management Engineering Antonio Ruberti
Sapienza University of Rome
E-mail: sagratella@diag.uniroma1.it

2 Tommaso Colombo, Simone Sagratella

block has a private feasible set independent from the other blocks, even if the objective function depends
on all the blocks [6,8,18]. However, these assumptions are not satisfied in many real big data applications
like, e.g., support vector machines training. In particular, in the dual formulation of the training problem of
support vector machines the presence of a linear equality constraint (i.e. a coupling constraint) over all the
variables makes the distribution of the data uneasy [26,28,30,31,33].

A solution to the problem of the coupling constraints is to employ methods that allow including such
constraints in the objective function, thus making the feasible set block-separable. The most well-known
of such methods is probably the augmented Lagrangian method [5,12,13,27]. We must mention that there
are other efficient decomposition methods, like column generation and Frank-Wolfe methods, which use
fast subsolvers and have been effectively employed in machine learning applications [19,21,23,24,29,32].

Thanks to Lagrangian duality theory the coupling constraints can be included in the objective func-
tion and the problem solved by alternating a minimization over the primal variables and a maximization
step over the Lagrangian multipliers [5,6]. Augmented Lagrangian methods, although much used in prac-
tice, need solving (at least inexactly) a subproblem over the primal variables at each iteration. Solving a
subproblem by using an iterative scheme at each iteration may be really inefficient. In these regards, one
may think to modify the standard version of the augmented Lagrangian method [5] by employing a single
minimization step instead of performing a minimization with respect to the primal variables. We show that
this is not viable in general and we provide a counterexample showing the ineffectiveness of such naive
modification.

To fill this gap, we propose a modified augmented Lagrangian method to solve convex problems with
linear coupling constraints. This new method turns out to be distributable and at every iteration performs
a single gradient projection step with respect to the primal variables. We give a formal convergence proof
to at least ε-approximate solutions of the problem, namely points that have an objective value better or
equal than the optimal one and violate the equality constraints by a quantity lower or equal than ε . A
detailed analysis of how the parameters of the algorithm influence the value of the approximation ε is also
included. Furthermore, we sketch a distributed version of the algorithm, underlining how the data can be
partitioned and assigned to separate processes that perform the computations independently, with minimal
communication at the end of each iteration.

In Section 2 we detail the motivation for this work, in particular we define a general distributed scheme
and we show how standard augmented Lagrangian methods can hardly be distributed; in Section 3 we
present Algorithm 2 and we state the main convergence results in Theorem 1. In Section 4 we explore some
technical results that are fundamental for the proof of Theorem 1. In particular we define a nonsmooth
function φ whose properties are explored in Propositions 1 and 2; in Proposition 3 we show that any
minimal point of φ is an ε-approximate solution of the problem; in Proposition 4 we show a strategy for
updating the parameters of the algorithm leading to optimal solutions of the problem. In Section 5 we
give the proof of Theorem 1. Finally, in Section 6 we sketch a distributed version of the algorithm and we
discuss some conclusions in Section 7.

2 Motivation

We define the general formulation of the convex programming problem with linear coupling constraints:

minimize f (x)

s.t. h(x), Ax−b = 0

x ∈ X ,

(1)

where f ∈ C1,1 is convex with Lipschitz constant of ∇ f equal to L, A ∈ Rm×n, b ∈ Rm, and X ⊆ Rn is
convex, compact and encompasses a structure that is separable in N blocks, namely

X ,
N

∏
ν=1

Xν ,

Distributed algorithms for convex problems with linear coupling constraints 3

where Xν ⊆ Rnν , with n , n1 + · · ·+ nN . For the sake of notational simplicity we denote the feasible
set of Problem (1) with S. We observe that the set S is in general not separable due to the presence of
the constraints h that may tie together variables of different blocks. For this reason we refer to h as the
coupling constraints. We underline that the case with linear inequality constraints can be included in the
above framework by simply adding slack variables.

We assume that S is non-empty. Therefore there exists an optimal solution x? such that

x? ∈ S, f (x?)≤ f (x) ∀ x ∈ S.

To compute x? one can resort to several numerical methods. We concentrate on (synchronous) distributed
algorithms which structure is described in Figure 2. Namely, in a distributed algorithm at every iteration
the computation is split into N independent blocks that can be performed by different parallel processes,
and a final communication phase allows synchronization among the processes.

Fig. 1 General distributed algorithmic scheme

Such a distribution of the computation is even more relevant when it makes it possible to partition the
data defining the problem into N blocks that need to be known only by the respective processes. This is the
case when the data comes from several sources and can not be stored in a unique place, for example when
there exist privacy issues or the dimension of the data is huge.

One of the most well-known methods to solve Problem (1) is the classical gradient projection algorithm,
see e.g. [4]:

xk+1 = PS

[
xk−αk∇ f (xk)

]
, (2)

where αk is a positive stepsize and PS(z) denotes the projection of z over the convex set S. To guarantee
the convergence of the algorithm defined by iteration (2), one can compute αk by employing a linesearch
procedure, a diminishing stepsize rule, or by using a fixed, sufficiently small, stepsize αk = α ∈

(
0,(2/L)

)
[2]. Unfortunately this method does not fall into the class of distributed algorithms because the projection
on S, in general, cannot be decomposed with respect to the N blocks, see Appendix A.

Note however that in the special case in which there are no coupling constraints (i.e. m = 0) this task
is easier. In fact in this case the projection can be performed in a distributed fashion and this scheme is a
proper distributed algorithm, since the projection on S turns out to be a projection on the N sets Xν that are
separate. With the additional assumption that the objective function f (x) = 1

2 xT Qx+cT x is quadratic, then
the situation is even more favourable since also the data can be partitioned. Specifically, referring to the
general scheme in Figure 2, the vector of variables x ∈ Rn can be partitioned into N blocks: x =

(
x(ν)
)N

ν=1,

with x(ν) ∈ Rnν , ν = 1, . . . ,N. Accordingly, ∇ f (x) =
(
∇ f (x)(ν)

)N
ν=1. In the situation cited above where

m = 0 and f is quadratic, the generic process ν performs the following steps at any iteration k:

(i) compute ∇ f (xk)(ν) =
N
∑

ξ=1
aξ ,k
(ν)

+ c(ν) (where all the aξ ,k
(ν)

come from the communication phase at step

(iii));

4 Tommaso Colombo, Simone Sagratella

(ii) compute xk+1
(ν)

= PXν

[
xk
(ν)−α∇ f (xk)(ν)

]
;

(iii) compute aν ,k+1 = Q∗(ν) xk+1
(ν)

and broadcast.

We observe that in this scheme the stepsize is fixed, and the computations up to process ν are independent
from those of the other blocks. Process ν only needs to know the columns Q∗(ν) of the matrix Q correspond-
ing to the ν-th block of variables, the ν-th block c(ν) of vector c, and the set Xν . Thus the data defining
the problem can be partitioned and then distributed to the processes in the initialization phase. This plays a
fundamental role in applications where either different pieces of information are available only to different
processes or if the knowledge of such data requires significant computational burdens. The latter is the case
of support vector machines training, because in its dual quadratic formulation a column of the matrix Q
requires in general O(n2) nonlinear calculations [28,30]. Nonetheless, we underline that the above scheme
is not directly applicable to the support vector machines quadratic formulation due to the presence of a
coupling linear constraint (m = 1) [31].

In the general case where m > 0, as explained above and in Appendix A, such simple distributed
scheme with partitioned data cannot be employed due to the presence of the coupling constraints, which
make S non-separable. One possible solution is to move the coupling constraints from the feasible set to
the objective function, thus making the feasible set S separable since it reduces to X . This can be done by
employing a Lagrangian method (see e.g. [4–6]). The well-known augmented Lagrangian function can be
defined for Problem (1) as

Lρ(x,µ), f (x)+µ
T h(x)+

1
2

ρ‖h(x)‖2, (3)

where µ ∈ Rm is the vector of Lagrangian multipliers, ρ > 0 is the parameter of the penalty term, and
‖ · ‖ denotes the euclidean norm. We recall that, in our framework, assuming the second-order sufficient
conditions to hold at the optimal point of the problem with multipliers µ∗, then a finite ρ∗ exists such that,
for all ρ ≥ ρ∗, the augmented Lagrangian with µ = µ∗ turns out to be an exact penalty function, see [34].
In a general augmented Lagrangian method (see e.g. [5] for an efficient version of such method) a solution
of Problem (1) can be found by using the scheme described in Algorithm 1.

Algorithm 1: Basic augmented Lagrangian method

Data: x0 ∈ X , µ0 ∈C, ρ0 > 0, {βk}> 0;
1 for k = 0,1, . . . do
2 xk+1 = argmin

x∈X
Lρk(x,µ

k);

3 µk+1 = PC
[
µk +βk∇µLρk(x

k+1,µk)
]
;

4 ρk+1 ≥ ρk.
5 end

Algorithm 1 performs: at step 2 a minimization of the augmented Lagrangian function over X with
respect to the variables x, at step 3 an ascent step for the augmented Lagrangian function with respect to
µ using the stepsize βk with a projection over a nonempty convex compact set C, and at step 4 a possible
increase of the penalty parameter ρ . Convergence of such general scheme can be obtained by suitably
choosing the sequence of positive steplengths βk or by updating the penalty parameter ρ according to
certain rules usually tied to the violation of the coupling constraints given by h. Actually, the minimization
at step 2 can be also performed inexactly by computing xk+1 such that Lρk(x

k+1,µk) ≤Lρk(x,µ
k)+ εk,

for all x ∈ X , with εk ↓ 0, maintaining convergence properties.
We notice that any single (inexact) minimization at step 2 of Algorithm 1 could be distributed by

employing a scheme similar to the one described above for the case with m = 0. In fact in this setting
one can use e.g. a gradient projection method over X that is separable in N blocks. Therefore, the overall
Algorithm 1, executing iteratively a distributed minimization over the variables x, can be viewed itself
as a distributed algorithm (see e.g. [31,37]). Nevertheless, solving an (inexact) optimization problem at
each iteration may be numerically inefficient. The alternating direction method of multipliers suffers from
the same inefficiency since it relies on a similar scheme where an (inexact) minimization with respect to
the primal variables x must be performed at each iteration (see e.g. [6,22]). One may try to substitute the
(inexact) minimization at Step 2 of Algorithm 1 with one single gradient projection step and a stepsize
updating rule such that the descent of the objective function at each iteration is guaranteed (a tipical choice

Distributed algorithms for convex problems with linear coupling constraints 5

is to set the stepsize equal to the inverse of the Lipschitz constant of the gradient with respect to x of the
Lagrangian function). The following counterexample shows how this does not work in general.

Example 1 Let us consider the problem

minimize x1

s.t. h(x) = x1− x2 = 0

x ∈ [−1,1]2,

which unique solution is x? =
(
−1
−1

)
.

It is proved in [5] that Algorithm 1, with C = {0} and an updating rule for the penalty parameter
ρk+1 = 2ρk if ‖h(xk+1)‖2 > τ‖h(xk)‖2, ρk+1 = ρk otherwise, where τ ∈ (0,1), globally converges to a
solution of the problem. In this case µ vanishes and the Lagrangian function is

Lρk(x) = x1 +
ρk

2
‖x1− x2‖2,

while its gradient can be written as

∇Lρk(x) =
(

1+ρk(x1− x2)
ρk(x2− x1)

)
.

Let us see what happens by substituting step 2 with only one gradient projection step and a stepsize updat-
ing rule guaranteeing the descent of the objective function at each iteration. The modified version of the
algorithm is then the following, for any iterate k ≥ 0:

(i) αk =
1

L+ρk‖A‖2
= 1

2ρk
;

(ii) xk+1 = P[−1,1]2
[
xk−αk∇Lρk(x

k)
]
;

(iii) ρk+1 = 2ρk if ‖h(xk+1)‖2 > τ‖h(xk)‖2; ρk+1 = ρk otherwise.

In particular we choose τ ∈
(
0, 1

4

)
, ρ0 = 2 and x0 =

(
0
1
2

)
. By simple calculations, we have, for any k,

that condition ‖h(xk)‖2 > τ‖h(xk−1)‖2 is always satisfied and:

ρk = 2ρk−1 = 2k+1,

∇Lρk(x
k) =

(
0
1

)
,

xk =

(
0
1

2k+1

)
,

h(xk) =−x2 =−
1

2k+1 .

But this implies

lim
k→∞

xk =

(
0
0

)
6= x?,

that is, this modified version of the algorithm does not converge to a solution of the problem. ut

To fill this gap, in Section 3 we propose a nontrivial and globally convergent modification of Algorithm 1 to
solve Problem (1) that is still distributable, but requires only a single gradient projection step with respect
to the variables x at any iteration. The main idea underlying this new algorithm consists in avoiding the
possible out of control growth of the penalty parameter ρ , that is evident in Example 1, by introducing an
upper bound on this parameter. Thus, in case the penalty parameter reaches its upper limit, the algorithm
computes an approximate solution of the problem by performing gradient-like minimization steps for a
suitable merit function that is introduced in Section 4.

6 Tommaso Colombo, Simone Sagratella

3 A gradient projection method for the augmented Lagrangian reformulation

In this section we propose Algorithm 2, that is a gradient projection algorithm to solve the augmented
Lagrangian reformulation of Problem (1). Algorithm 2 is characterized by two parameters, µ̂ > 0, used to
define the compact set for the multipliers µk, and ρ̂ > 0, the upper bound for ρk, which will play a key role
in the effectiveness of computing a solution of Problem (1).

Algorithm 2: Gradient projection augmented Lagrangian method

Data: ρ̂ > 0, µ̂ > 0, x0 ∈ X , µ0 ∈ [−µ̂, µ̂]m, ρ0 ∈ (0, ρ̂), γ > 0, δ > 0, τ ∈ (0,1), k̂ = 0;
1 for k = 0,1, . . . do
2 αk =

1
L+ρk‖A‖2+γ(k−k̂)

;

3 xk+1 = PX [xk−αk∇xLρk (x
k,µk)] ;

4 if ρk < ρ̂ then
5 µk+1 ∈ [−µ̂, µ̂]m;
6 k̂ = k̂+1 ;
7 else

8 µ
k+1
i =

{
−µ̂, i : hi(xk+1)< 0
µ̂, otherwise

, i = 1, . . . , m;

9 end

10 ρk+1 ∈

{
[min{ρk +δ , ρ̂}, ρ̂] , ‖h(xk+1)‖> τ‖h(xk)‖
{ρk}, otherwise.

11 end

Algorithm 2 enjoys the following two nice properties:

– the computation can be distributed and, moreover, if f is quadratic the data can be distributed too (see
Section 2);

– at each iteration k, only a gradient projection step over x is performed.

At step 2 the stepsize αk is updated, exploiting the value of k̂, such that:

(i) on the one hand, whenever k̂ = k (i.e. ρk < ρ̂), it dynamically estimates the quantity 1/Lk
L , where

Lk
L =L+ρk‖A‖2 (with L being the Lipschitz constant of ∇ f) is the Lipschitz constant of ∇xLρk(x

k,µk)
over X ;

(ii) on the other hand, when k̂ < k (i.e. ρk = ρ̂), it ensures that αk ↓ 0 and αk is squared summable, but
not summable, namely

∞

∑
k=0

α
2
k < ∞,

∞

∑
k=0

αk = ∞. (4)

It will be clear by the following sections that the convergence of the algorithm is based on the stepsize
updating rule property defined in (4).

At step 3 a single gradient projection step is performed to update xk. The multipliers vector µk is
updated either at step 5 if ρk < ρ̂ , or at step 8 otherwise. We observe that in the former case µk+1 can be
any element in the compact set Mµ̂ , [−µ̂, µ̂]m, i.e. µk can be updated like in Algorithm 1. In the latter
case, µk+1 is such that

µ
k+1 ∈ arg max

µ∈Mµ̂

Lρk(x
k+1,µ).

Throughout the paper we will equivalently refer to the set Mµ̂ with the abbreviation M when the dependence
on µ̂ will not be of interest. Finally, at step 10 the penalty parameter ρk, bounded above by ρ̂ > 0, is
increased if a sufficient decrease in the violation of the equality constraints is not achieved.

We observe that such an iterative scheme implies the boundedness of the generated sequence {(xk,µk,ρk)}.
In Theorem 1 we show that Algorithm 2 converges in the worst case to an ε-approximate solution of Prob-
lem (1), i.e. a point x such that

x ∈ X , ‖h(x)‖ ≤ ε, f (x)≤ f (x) ∀ x ∈ S.

Distributed algorithms for convex problems with linear coupling constraints 7

On the other hand, if ρ̂ is large enough, in the sense that the penalty parameter remains strictly below ρ̂ ,
the algorithm provably converges to a solution x? of Problem (1), that is a 0-approximate solution. We
underline that f (x)≤ f (x?), namely the value of the objective function at x is a lower bound of the optimal
value. Furthermore, we can theoretically show (see Theorem 1) that the value of the feasibility relaxation
parameter ε can be controlled by suitably choosing the parameters µ̂ and ρ̂ . It is expedient to define the
following finite quantities:

f min , min
x∈X

f (x), f max , max
x∈X

f (x).

Theorem 1 Let {(xk,µk,ρk)} be the sequence generated by Algorithm 2 and (x,µ,ρ) be any of its limit
points. Then we have two cases:

1. if ρ < ρ̂ , then x is a solution of Problem (1);

2. otherwise, ρ = ρ̂ and x is an ε-approximate solution of Problem (1) with ε =min
{

f max− f min

µ̂
,
√

f max− f min

ρ̂

}
.

The proof of Theorem 1 is postponed to Section 5 since it requires some further theoretical developments,
which are described in Section 4. In the light of Theorem 1, we observe that Algorithm 2 is in general
inexact and the quality of the produced solution depends on the values of µ̂ and ρ̂ .

In Example 2 we show that the problem given in Example 1 is actually solved by employing Algorithm
2.

Example 2 Consider again the problem in Example 1. Let us assume again that the updating rule for the
penalty parameter is ρk+1 = 2ρk if ‖h(xk+1)‖2 > τ‖h(xk)‖2, where τ ∈

(
0, 1

4

)
, ρk+1 = ρk otherwise. In

this case we employ Algorithm 2 and we choose µ̂ = 0, ρ̂ = 2, γ = 1
10 , δ = 1. The Lagrangian function

and its gradient are the same of Example 1.
Algorithm 2 performs the following updates for k ≥ 0:

(i) αk =
1

L+ρk‖A‖2+γ(k−k̂)
= 1

2ρk+γ(k−k̂)
;

(ii) xk+1 = P[−1,1]2
[
xk−αk∇Lρk(x

k)
]
;

(iii) ρk+1 = min{2ρk, ρ̂} if ‖h(xk+1)‖2 > τ‖h(xk)‖2, ρk+1 = ρk otherwise.

We choose again ρ0 = 2 and x0 =

(
0
1
2

)
, that is the same starting point of Example 1 and for which the

naive modification of Algorithm 1 does not converge. Then, by simple calculations, we have x1 =

(
0
1
4

)
and, for any k ≥ 1, that ρk = ρ̂ = 2, k̂ = 0 and αk =

10
40+k . The sequence produced by the algorithm for

k = 2, . . . ,9 is the following:

xk =

(
− 1

2 ∑
k−1
i=1 αi

1
4 −

1
2 ∑

k−1
i=1 αi

)
.

In k = 10, x1 reaches its lower bound:

x10 =

(
−1

1
4 −

1
2 ∑

9
i=1 αi

)
.

For k ≥ 11,

xk =

(
−1(1

4 −
1
2 ∑

9
i=1 αi

)(
∏

k−1
i=10 (1−2αi)

)
−∑

k−1
i=10 2αi

(
∏

k−1
j=i+1 (1−2α j)

))
.

Such sequence
{

xk
}

converges (from above) to the optimal solution x? =
(
−1
−1

)
. ut

We remark that the new method presented in this work is a subgradient-type scheme for which the conver-
gence speed depends strongly on the stepsize. In particular, if the Lipschitz constant L or the parameter ρ̂

are large, the stepsize can be very small. E.g. in the presented Example 2 the convergence is slow.

8 Tommaso Colombo, Simone Sagratella

4 Technical results

In order to prove part 2 of Theorem 1, we introduce and analyze a nonsmooth value function φµ̂,ρ̂ that is
related to the Lagrangian function (3) and to Problem (1):

φµ̂,ρ̂(x), f (x)+ µ̂‖h(x)‖1 +
ρ̂

2
‖h(x)‖2. (5)

Notice that it depends on the same parameters µ̂ and ρ̂ defined in Algorithm 2, and is useful for the
subsequent analysis.

First of all we analyze the properties of the nonsmooth value function φµ̂,ρ̂ .

Proposition 1 Let µ̂, ρ̂ ≥ 0. The function φµ̂,ρ̂ is convex and locally Lipschitz continuous.

Proof It is well known that a sum of convex functions is convex. Thus the proof follows by noticing that f

is convex by assumption, ‖h(x)‖1 = ‖Ax−b‖1 =
m
∑

i=1
|Ai∗x−bi|=

m
∑

i=1
max{Ai∗x−bi,−Ai∗x+bi} is convex,

and ‖h(x)‖2 = xT AT Ax− 2bT Ax+ bT b is convex. The proof of the local Lipschitz continuity follows by
recalling that any convex function is locally Lipschitz continuous, see e.g. [10, Proposition 2.2.6]. ut

Note that the role of the linearity of h is fundamental for the convexity of the nonsmooth function φµ̂,ρ̂ .

Proposition 2 The subdifferential ∂φµ̂,ρ̂(x) is non-empty and

∇ f (x)+ µ̂

m

∑
i=1

ξi + ρ̂∇h(x)h(x) ∈ ∂φµ̂,ρ̂(x),

with

ξi ∈


{AT

i∗}, if Ai∗x−bi > 0,
{−AT

i∗}, if Ai∗x−bi < 0,
conv{−AT

i∗,A
T
i∗}, if Ai∗x−bi = 0,

where conv{x,y} denotes the convex hull of the vectors x,y ∈ Rn.

Proof From [10, Corollary 3], the subdifferential of the sum of convex functions equals the sum of the
subdifferentials of the functions. Therefore we can write

∂φµ̂,ρ̂(x) = ∂ f (x)+ µ̂∂‖h(x)‖1 +
ρ̂

2
∂‖h(x)‖2,

where
∂ f (x) = ∇ f (x), ∂‖h(x)‖2 = 2∇h(x)h(x) = 2AT (Ax−b),

∂‖h(x)‖1 =

(
m

∑
i=1

∂ |Ai∗x−bi|

)
=

(
m

∑
i=1

∂ max{Ai∗x−bi,−Ai∗x+bi}

)
3

m

∑
i=1

ξi,

with

ξi ∈


{AT

i∗}, Ai∗x−bi > 0,
{−AT

i∗}, Ai∗x−bi < 0,
conv{−AT

i∗,A
T
i∗}, Ai∗x−bi = 0,

(see e.g. [35, Exercise 8.31]). ut

The following proposition proves that minimal points of φµ̂,ρ̂ over X are ε-approximate solutions of Prob-

lem (1) with ε = min
{

f max− f min

µ̂
,
√

f max− f min

ρ̂

}
.

Proposition 3 Given µ̂ > 0 and ρ̂ > 0, for any minimal point x of φµ̂,ρ̂ over X, it holds that:

1. f (x)≤ f (x?),

Distributed algorithms for convex problems with linear coupling constraints 9

2. ‖h(x)‖ ≤min
{

f max− f min

µ̂
,
√

f max− f min

ρ̂

}
,

where x? is a solution of Problem (1), f min = min
x∈X

f (x) and f max = max
x∈X

f (x).

Proof We first show the first inequality. It holds that

f (x)≤ f (x)+ µ̂‖h(x)‖1 +
ρ̂

2
‖h(x)‖2 ≤ f (x?)+ µ̂‖h(x?)‖1 +

ρ̂

2
‖h(x?)‖2 = f (x?),

by recalling that µ̂‖h(x)‖1 +
ρ̂

2 ‖h(x)‖
2 ≥ 0, that x? ∈ X and that h(x?) = 0. This proves the first assertion

of this proposition.
Let us now prove the second assertion. Let x̃ ∈ X such that h(x̃) = 0, namely x̃ is any feasible point of

Problem (1). Then we can write

f min ≤ f (x) and f (x̃)+ µ̂‖h(x̃)‖1 +
ρ̂

2
‖h(x̃)‖2 = f (x̃)≤ f max.

From the two inequalities above, we can write

f min + µ̂‖h(x)‖1 ≤ f (x)+ µ̂‖h(x)‖1 +
ρ̂

2
‖h(x)‖2 ≤ f (x̃)+ µ̂‖h(x̃)‖1 +

ρ̂

2
‖h(x̃)‖2 ≤ f max,

implying

‖h(x)‖ ≤ ‖h(x)‖1 ≤
f max− f min

µ̂
.

On the other hand,

f min +
ρ̂

2
‖h(x)‖2 ≤ f (x)+ µ̂‖h(x)‖1 +

ρ̂

2
‖h(x)‖2 ≤ f (x̃)+ µ̂‖h(x̃)‖1 +

ρ̂

2
‖h(x̃)‖2 = f (x̃)≤ f max,

from which

‖h(x)‖2 ≤ f max− f min

ρ̂
,

which completes the proof. ut

Furthermore, if a minimal point of φµ̂,ρ̂ is also feasible for Problem (1), then it is a solution of Problem (1).

Corollary 1 Let the same setting of Proposition 3 applies. Then, if x is such that ‖h(x)‖= 0, x is a solution
of Problem (1).

Proof From Proposition 3, it holds that
f (x)≤ f (x∗),

where x∗ is a solution of Problem (1). The proof follows by recalling the hypothesis, from which we have
h(x) = 0. ut

We now want to provide a counterexample of how an ε-approximate solution of Problem (1) may not be a
solution of φµ̂,ρ̂ over X , that is, the vice versa of Proposition 3 does not hold in general.

Example 3 Let us consider the problem

minimize x2

s.t. h(x) = x−1 = 0

x ∈ [0,2],

which trivial solution is x? = 1. By definition, this is an ε-approximate solution for any ε > 0.

10 Tommaso Colombo, Simone Sagratella

The corresponding φµ̂,ρ̂ if we fix µ̂ = 1, ρ̂ = 0 is

φ1,0(x) = x2 + |x−1|,

which unique solution over [0,2] is x = 1
2 , that is different from x?.

Note that by letting µ̂ grow to infinity, the solution of φµ̂,ρ̂ gets closer and closer to the minimizer of
|x−1|, which is the solution of the original problem. This will be better formalized in the next proposition.

ut

Proposition 3 shows that a minimizer of φµ̂,ρ̂ is an ε-approximate solution of Problem (1). Specifically, the
bigger the parameters µ̂ and ρ̂ are, the smaller the value of the feasibility relaxation parameter ε is. The
next proposition formally states that if one of the parameters goes to infinity, then ε goes to zero.

Proposition 4 Let {xk} be a sequence of minimizers of φ
µ̂k,ρ̂k(x) over X. If either lim

k→∞
µ̂k = ∞ or lim

k→∞
ρ̂k =

∞, then any accumulation point x of the sequence {xk} is a solution of Problem (1).

Proof Let us assume, without loss of generality, that the first limit applies. By Proposition 3, it holds for
any k that

xk ∈ X , f (xk)≤ f (x∗), ‖h(xk)‖ ≤ f max− f min

µ̂k .

By the continuity of ‖h(xk)‖, we can write

‖h(x)‖= lim
k→∞
‖h(xk)‖ ≤ lim

k→∞

f max− f min

µ̂k = 0

and therefore h(x) = 0. Similarly, by recalling that x? is a solution of Problem (1), we can write f (x) ≤
f (x?). ut

We are now ready to give the proof of Theorem 1.

5 Proof of Theorem 1

In this section we give the proof of Theorem 1.
Proof We start by proving the first assertion of the theorem, namely that if ρ < ρ̂ then x is a solution

of Problem (1).
Recalling step 10 of Algorithm 2, if ρ < ρ̂ then a k ≥ 0 exists such that for all k ≥ k

‖h(xk+1)‖ ≤ τ‖h(xk)‖< ‖h(xk)‖, (6)

by recalling that τ ∈ (0,1). This yields, together with the positiveness of the sequence {‖h(xk)‖}, that

lim
k→∞
‖h(xk)‖= h≥ 0.

Taking the limit for k→ ∞ in (6), we get
h≤ τh,

which, since τ ∈ (0,1), is true only if h = 0. Therefore, by the continuity of h, we have proved that

h(x) = 0. (7)

Moreover, recalling a well-known property of the projection operator, it holds for all z ∈ Rn

(y−PX [z])
T (z−PX [z])≤ 0 ∀y ∈ X .

Therefore we can write(
xk−PX [xk−αk∇xLρ(xk,µk)]

)T (
xk−αk∇xLρ(xk,µk)−PX [xk−αk∇xLρ(xk,µk)]

)
≤ 0,

Distributed algorithms for convex problems with linear coupling constraints 11

and by expanding the products∥∥∥xk−PX [xk−αk∇xLρ(xk,µk)]
∥∥∥2

+αk∇xLρ(xk,µk)T
(
PX [xk−αk∇xLρ(xk,µk)]− xk

)
≤ 0,

from which, by recalling that xk+1 = PX [xk−αk∇xLρ(xk,µk)], we get

∇xLρ(xk,µk)T
(

xk+1− xk
)
≤− 1

αk

∥∥∥xk+1− xk
∥∥∥2

. (8)

The descent lemma [4, Lemma 2.1] and (8) therefore yield

Lρ(xk+1,µk)−Lρ(xk,µk)≤ ∇xLρk(x
k,µk)T (xk+1− xk)+

Lk
L

2
‖xk+1− xk‖2

≤−

(
1

αk
−

Lk
L

2

)
‖xk+1− xk‖2

and consequently

f (xk+1)− f (xk)+µ
kT
(h(xk+1)−h(xk))+

ρ

2
(‖h(xk+1)‖2−‖h(xk)‖2)≤−L+ρ‖A‖2

2
‖xk+1− xk‖2.

By taking the limit for k→ ∞ of the above inequality we get

lim
k→∞

(f (xk+1)− f (xk))+

(
lim
k→∞

µ
k
)T

(h−h)+
ρ

2
(‖h‖2−‖h‖2)≤−L+ρ‖A‖2

2
lim
k→∞
‖xk+1− xk‖2,

from which we can write
lim
k→∞

(
f (xk+1)− f (xk)

)
≤ 0.

This yields
lim
k→∞

f (xk) = f (x) = f ,

because f is continuous and bounded from below over X . It follows that

lim
k→∞
‖xk+1− xk‖2 = 0.

Focusing on step 3 of the algorithm, by the limit above and since αk = α = 1
L+ρ‖A‖2 for all k≥ k, this yields

∇xLρ(x,µ)T (x− x)≥ 0 ∀ x ∈ X . (9)

Let us suppose by contradiction that f is greater than the optimal value of Problem (1). Therefore a point
x̃ ∈ X exists such that h(x̃) = 0 and f (x̃)< f = f (x). We can write

0≤
(
∇ f (x)+AT

µ
)T

(x̃− x) = ∇ f (x)T (x̃− x)≤ f (x̃)− f (x)< 0,

where the first inequality comes from (9), the equality is a consequence of the fact that h(x̃) = 0 and (7),
the second inequality is due to the convexity of f and the last inequality comes from the hypotheses that
x is not optimal and x̃ is optimal. But this is impossible. Finally, x is a solution of Problem (1) and this
completes the proof of the first part.

We now prove the second assertion, i.e. if ρ = ρ̂ then x is an ε-approximate solution of Problem (1) with

ε = min
{

f max− f min

µ̂
,
√

f max− f min

ρ̂

}
. First we need to prove that the updates at steps 3 and 8 of Algorithm

2 are eventually equivalent to employ a gradient projection method to minimize the nonsmooth function
φµ̂,ρ̂(x), defined in (5), over X . In Proposition 2 we proved that the subdifferential of φ satisfies for all
x ∈ X

∇ f (x)+ µ̂

m

∑
i=1

ξi + ρ̂∇h(x)h(x) ∈ ∂φµ̂,ρ̂(x),

12 Tommaso Colombo, Simone Sagratella

with

ξi ∈


{AT

i∗}, if Ai∗x−bi > 0,
{−AT

i∗}, if Ai∗x−bi < 0,
conv{−AT

i∗,A
T
i∗}, if Ai∗x−bi = 0.

The gradient of Lρ̂(x
k,µk) with respect to x is

∇Lρ̂(x
k,µk) = ∇ f (xk)+AT

µ
k + ρ̂∇h(x)h(x),

where, recalling the update rule of µk at step 8 of Algorithm 2, AT µk can be rewritten as

AT
µ

k =
m

∑
i=1

µ
k
i AT

i∗ = µ̂

 ∑
i:hi(xk)≥0

AT
i∗+ ∑

i:hi(xk)<0

−AT
i∗

= µ̂

m

∑
i=1

ψi,

where

ψi =

{
AT

i∗, if Ai∗x−bi ≥ 0,
−AT

i∗, if Ai∗x−bi < 0,

which yields

∇xLρ̂(x
k,µk) ∈ ∂xφµ̂,ρ̂(x

k), ∀ k ≥ k̂.

We just proved that step 3 of Algorithm 2 is eventually equivalent to employ a gradient projection method
to minimize the nonsmooth function φµ̂,ρ̂(x), which is a convex and Lipschitz-continuous function by
Proposition 1. About the stepsize, since k̂ is fixed and finite, we get

∞

∑
k=0

αk =
k̂

∑
k=0

1
L+ρk‖A‖2

+
1
γ

∞

∑
k=1

1

k+
(

L+ρ̂‖A‖2
γ

) ≥ 1
γ

∞

∑

k=

⌈
L+ρ̂‖A‖2

γ

⌉
+1

1
k
= ∞,

and

∞

∑
k=0

α
2
k =

k̂

∑
k=0

(
1

L+ρk‖A‖2

)2

+
1
γ2

∞

∑
k=1

 1

k+
(

L+ρ̂‖A‖2
γ

)
2

≤
(

k̂+1
)(1

L+ρ0‖A‖2

)2

+
1
γ2

∞

∑
k=1

1
k2 < ∞.

Therefore the rule in (4) is fulfilled. This implies that x is a minimizer for φµ̂,ρ̂ over X , see e.g. [3, Theo-
rem 3.2.6]. The proof follows by Proposition 3. ut

We remark the following facts:

(i) the updating rule for the stepsize αk defined in step 2 of Algorithm 2 can be modified, as long as it
satisfies (4) when ρk = ρ̂ , namely it must be squared summable, but not summable;

(ii) as long as ρk < ρ̂ , the update rule for the multipliers at step 5 does not play any role and therefore any
bounded µk is acceptable; this can be useful in the first phase of Algorithm 2 where different updating
rules for µk can be developed;

(iii) Algorithm 2, with µ̂ = 0, can be viewed as a modified version of a sequential penalty algorithm and
therefore the above theoretical analysis can be directly applied also to such framework.

Distributed algorithms for convex problems with linear coupling constraints 13

6 A distributed version of Algorithm 2

In this section we want to sketch a distributed version of Algorithm 2 similar to the one described in Section
2. Our aim in particular is to consider the case of a quadratic objective f (x) = 1

2 xT Qx+ cT x, which will
allow distribution of the data too. Namely, we want to be able to perform Algorithm 2 in a distributed
fashion where each process, indexed by ν = 1, . . . , N,

– acts only on a block of variables x(ν) ∈ Rnν ,
– stores only its own data, i.e. the columns Q∗(ν) ∈ Rn×nν of the matrix Q ∈ Rn×n, c(ν), Xν and A∗(ν),

and does not need to know the data blocks of the other processes,
– communicates with the other processes in order to get convergence to a (ε-approximate) solution of

Problem (1).

In this framework, we recall that we can write the gradient of the objective function f as ∇ f (x)=
(
∇ f (x)(ν)

)N
ν=1.

A possible distributed implementation is the following, where the generic process ν performs the following
steps at any iteration k:

(i) compute αk =
1

L+ρk‖A‖2+γ(k−k̂)

(ii) compute h(xk) =
N
∑

ξ=1
hξ ,k−b (where all the hξ ,k = A∗(ξ) xk

(ξ) come from the communication phase at

step (ix))

(iii) compute µk
i =max

{
−µ̂,min

{
µ̂,µk−1

i + 1
‖A‖hi(xk)

}}
if ρk−1 < ρ̂ , and µk

i =

{
−µ̂, i : hi(xk)< 0,
µ̂, otherwise,

otherwise, for all i = 1, . . . , m;

(iv) compute ρk =

{
min{ρk−1 +δ , ρ̂}, ‖h(xk)‖> τ‖h(xk−1)‖,
ρk−1, otherwise;

(v) compute ∇Lρk(x
k,µk)(ν) =

N
∑

ξ=1
aξ ,k
(ν)

+ c(ν)+AT
∗(ν)µ

k +ρkAT
∗(ν)h(x

k) (where all the aξ ,k = Q∗(ξ) xk
(ξ)

come from the communication phase at step (viii));
(vi) compute xk+1

(ν)
= PXν

[
xk
(ν)−αk∇Lρk(x

k,µk)(ν)

]
;

(vii) compute k̂ =

{
k+1, ρk < ρ̂,

k̂, otherwise;
(viii) compute aν ,k+1 = Q∗(ν) xk+1

(ν)
and broadcast;

(ix) compute hν ,k+1 = A∗(ν) xk+1
(ν)

and broadcast.

We observe that the above algorithm needs the communication of the vectors aν ,k+1 and hν ,k+1 at Steps
(viii) and (ix). This communication is not too heavy from a computational performance point of view,
although it can slow down the algorithm if the number of processes N is big. Beyond this communication
phase, any process ν works only on its block of variables x(ν) and needs only to know its data block Q∗(ν),
A∗(ν), c(ν), Xν and b. As explained in Section 2, such possible distribution of the data can be beneficial,
and sometimes is necessary, in many applications like e.g. support vector machines training. At step (i),
any process ν performs the computation of the stepsize αk > 0 in a way that, as described in Section 3, it
is squared summable but not summable for all k such that ρk = ρ̂ . Furthermore, such update allows that
αk = 1/Lk

L for all k : ρk < ρ̂ (see Section 3). At step (iii) each process ν updates the multipliers vector µk

as in Algorithm 1 if ρk−1 < ρ̂ , or, otherwise, such that it is the maximum of the function Lρk(x
k,µ) over

Mµ̂ with respect to µ . At step (iv) the penalty parameter is increased if a sufficient descent in the violation
of the coupling constraints defined by h is not achieved. Finally, at steps (v-vi) every process ν updates its
block of variables x(ν) by a gradient projection step over Xν . We want to stress that such update does not
require any approximate solution of the subproblem in Xν , like instead is required in Algorithm 1.

We are ready to report some preliminary tests on the proposed distributed method. We consider the
following problem setting: n = 1000, m = 100, Q positive definite and ‖Q‖ = 1 (i.e. L = 1), c equal to
the vector of all ones, ‖A‖ = 1, b = 0, X = [−10,10]n. We focus on the following setting for Algorithm
2: γ = 1, δ = 0.5, τ = 0.9, x0 = 0, µ0 = 0, ρ0 = 1. We generated 4 experiments by considering different

14 Tommaso Colombo, Simone Sagratella

values for µ̂ and ρ̂: exp1 with µ̂ =1e-1 and ρ̂ =1e3, exp2 with µ̂ =1e1 and ρ̂ =1e3, exp3 with µ̂ =1e-1 and
ρ̂ =1e4, exp4 with µ̂ =1e1 and ρ̂ =1e4. In our tests we used: PC Windows with CPU Intel Core i7-8650U
- 4 core (base frequency 1.9 GHz, turboboost up to 4.2 GHz) and RAM 16 GB, Python 3.6.3, and MPI 3.0.

In Figure 2, for all the 4 experiments, we report: with a full line the objective relative error (i.e. max{1e-
4,(f (xk)− f ∗)/ f ∗}, where f ∗ is the optimal value of the problem), and with a dotted line the coupling
constraints violation (i.e. ‖h(xk)‖/

√
n), versus iterations (we report the first 120k iterations). In all the

experiments the algorithm returns an ε-approximate solution of the problem, i.e. a point x ∈ X such that
f (x)≤ f (x∗) and ‖h(x)‖ ≤ ε . As theoretically observed in Theorem 1, Figure 2 confirms that the larger µ̂

and ρ̂ , the smaller ε . Moreover, our experiments make it evident that Algorithm 2 is faster in the first phase
(when ρk < ρ̂) than in the second one. The slower convergence in exp1 and exp2 with respect to the one
in exp3 and exp4 is due to the fact that we get ρk = ρ̂ quite early in exp1 and exp2 (around iteration 2k),
while in exp3 and exp4 the algorithm switches to phase 2 later (around iteration 20k). For this reason it is
important to set carefully the parameters ρ̂ , δ , and τ to grant many iterations to phase 1 of the algorithm:
while ρ̂ must be reasonably large, δ should be small, and τ close to 1. Another key issue is the value of µ̂:
large values of µ̂ on the one hand yield small values of the approximation ε , as stated in Theorem 1, but
on the other hand can make phase 2 of the algorithm really different from phase 1 thus spoiling the joint
convergence of the objective relative error and the constraints violation that is obtained in phase 1. In our
experiments we considered reasonable values for µ̂ (up to 10), and we get good convergence behaviours.
However in the figure of both exp3 and exp4 it is possible to see that, when the algorithm switches from
phase 1 to phase 2 (around iteration 20k), the lines make a small jump.

We tested the algorithm with N = 1, 2, and 4 parallel processes, every process takes care of 1000/N
variables. While the iterations clearly remain exactly the same, we observed a speedup in terms of CPU
time that is almost ideal. Specifically, to execute 200k iterations we notice around 700 seconds with N = 1,
around 360 seconds with N = 2, and around 190 seconds with N = 4, for all the experiments.

7 Conclusions and directions for future research

In this paper we propose an augmented Lagrangian method to solve convex problems with linear coupling
constraints. The proposed method employs only one gradient projection step at any iteration and therefore
both the data and the computation can be easily distributed. This can be beneficial (or necessary) in many
practical situations, like e.g. when privacy concerns exist.

Convergence to (at least ε-approximate) solutions of the problem and a detailed analysis on the influ-
ence of the parameters to the effectiveness of the method are given. Furthermore, a parallel, distributed
implementation is presented in the case where the function f is quadratic. Such case is of particular interest
for many applications, e.g. support vector machines training.

In future work, we aim at testing such method on real applications like support vector machines train-
ing, in order to find out how to determine the parameters such that the quality of the solution and the
convergence speed are acceptable. In such kind of problems the computation of the kernel matrix Q rep-
resents a large part of the computational burden [9]. Computing such matrix in a distributed fashion by
the parallel processes may lead to substantial computational savings, especially if the available memory of
each process is enough to allow pre-computation of the entire matrix offline.

A The classical gradient projection algorithm defined in (2) is not distributable

Consider the general case in which S is not separable due to the presence of the constraints h that couple the different blocks of
variables x(ν), i.e. m > 0. To solve Problem (1), one could think to employ the following naive parallel version of the classical
gradient projection algorithm (whose original generic iteration is defined in (2)):

xk+1
(ν) = PSν (xk

(ν)
)

[
xk
(ν)−αk∇ f (xk)(ν)

]
, ν = 1, . . . ,N,

where xk ∈ S and the decomposed subsets Sν are defined in the following way

Sν (xk
(ν)),

{
x(ν) ∈ Xν : A∗(ν)x(ν) = A∗(ν)x

k
(ν)

}
⊆ℜ

nν , ν = 1, . . . ,N.

Distributed algorithms for convex problems with linear coupling constraints 15

(a) exp1

(b) exp2

(c) exp3

(d) exp4

Fig. 2 Objective relative error (full line) and constraints violation (dotted line) Vs. iterations

Let {xk} be the sequence produced by this algorithm. The sets Sν are fixed during the iterations and depend only on the starting point
x0:

Sν (xν ,k) = Sν (x0
(ν)) = S0

ν , ∀k ≥ 0, ν = 1, . . . ,N.

A fixed point x for {xk} is therefore a solution of the following variational inequality problem (see e.g. [1,15,16,25])

x ∈ X , h(x) = 0, ∇ f (x)T (x− x)≥ 0, ∀x ∈
N

∏
ν=1

S0
ν . (10)

On the other hand, computing a solution of Problem (1), being a fixed point for the iterations defined in (2), turns out to be a solution
x∗ of this different variational inequality

x∗ ∈ X , h(x∗) = 0, ∇ f (x∗)T (x− x∗)≥ 0, ∀x ∈ S. (11)

16 Tommaso Colombo, Simone Sagratella

Notice that the point x, solution of the variational inequality (10), could not be a solution of the variational inequality (11), and
therefore of Problem (1). This is due to the fact that, for any feasible starting guess x0 ∈ S, we obtain only

N

∏
ν=1

S0
ν ⊆ S,

but not the other inclusion in general. Actually the fixed point x of {xk} is only an equilibrium of the (potential) generalized Nash
equilibrium problem (see e.g. [14,17,36]) whose generic player ν ∈ {1, . . . ,N} solves the following optimization problem that is
parametric with respect to all the blocks of variables x(µ) of the other players µ 6= ν :

minimize
x(ν)

f (x)

s.t. h(x) = 0, x(ν) ∈ Xν .

References

1. Aussel, D., Sagratella, S.: Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequal-
ity. Mathematical Methods of Operations Research 85(1), 3–18 (2017)

2. Bertsekas, D.P.: Nonlinear programming (1999)
3. Bertsekas, D.P., Scientific, A.: Convex optimization algorithms
4. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods, vol. 23. Prentice hall Englewood Cliffs,

NJ (1989)
5. Birgin, E.G., Martinez, J.M.: Practical augmented Lagrangian methods for constrained optimization, vol. 10. SIAM (2014)
6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating

direction method of multipliers. Foundations and Trends R© in Machine learning 3(1), 1–122 (2011)
7. Cannelli, L., Facchinei, F., Scutari, G.: Multi-agent asynchronous nonconvex large-scale optimization. In: 2017 IEEE 7th Inter-

national Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–5. IEEE (2017)
8. Cassioli, A., Di Lorenzo, D., Sciandrone, M.: On the convergence of inexact block coordinate descent methods for constrained

optimization. European Journal of Operational Research 231(2), 274–281 (2013)
9. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM transactions on intelligent systems and technology

(TIST) 2(3), 27 (2011)
10. Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. Siam (1990)
11. Daneshmand, A., Sun, Y., Scutari, G., Facchinei, F., Sadler, B.M.: Decentralized dictionary learning over time-varying digraphs.

arXiv preprint arXiv:1808.05933 (2018)
12. Di Pillo, G., Lucidi, S.: On exact augmented lagrangian functions in nonlinear programming. In: Nonlinear Optimization and

Applications, pp. 85–100. Springer (1996)
13. Di Pillo, G., Lucidi, S.: An augmented lagrangian function with improved exactness properties. SIAM Journal on Optimization

12(2), 376–406 (2002)
14. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007)
15. Facchinei, F., Kanzow, C., Karl, S., Sagratella, S.: The semismooth Newton method for the solution of quasi-variational inequal-

ities. Computational Optimization and Applications 62(1), 85–109 (2015)
16. Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems. Springer Science & Business

Media (2007)
17. Facchinei, F., Sagratella, S.: On the computation of all solutions of jointly convex generalized Nash equilibrium problems.

Optimization Letters 5(3), 531–547 (2011)
18. Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimization. IEEE Transactions

on Signal Processing 63(7), 1874–1889
19. Garcı́a, R., Marı́n, A., Patriksson, M.: Column generation algorithms for nonlinear optimization, i: Convergence analysis. Opti-

mization 52(2), 171–200 (2003)
20. Gondzio, J., Grothey, A.: Exploiting structure in parallel implementation of interior point methods for optimization. Computa-

tional Management Science 6(2), 135–160 (2009)
21. Harchaoui, Z., Juditsky, A., Nemirovski, A.: Conditional gradient algorithms for machine learning. In: NIPS Workshop on

Optimization for ML, vol. 3, pp. 3–2 (2012)
22. Hong, M., Luo, Z.Q.: On the linear convergence of the alternating direction method of multipliers. Mathematical Programming

162(1-2), 165–199 (2017)
23. Jaggi, M.: Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In: ICML (1), pp. 427–435 (2013)
24. Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of Frank-Wolfe optimization variants. In: Advances in Neural

Information Processing Systems, pp. 496–504 (2015)
25. Latorre, V., Sagratella, S.: A canonical duality approach for the solution of affine quasi-variational inequalities. Journal of Global

Optimization 64(3), 433–449 (2016)
26. Lin, C.J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: Decomposition algorithm model for singly linearly-constrained prob-

lems subject to lower and upper bounds. Journal of Optimization Theory and Applications 141(1), 107–126 (2009)
27. Lucidi, S.: New results on a class of exact augmented lagrangians. Journal of Optimization Theory and Applications 58(2),

259–282 (1988)
28. Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A convergent decomposition algorithm for support vector machines. Computa-

tional Optimization and Applications 38(2), 217–234 (2007)

Distributed algorithms for convex problems with linear coupling constraints 17

29. Mangasarian, O.: Machine learning via polyhedral concave minimization. In: Applied Mathematics and Parallel Computing, pp.
175–188. Springer (1996)

30. Manno, A., Palagi, L., Sagratella, S.: Parallel decomposition methods for linearly constrained problems subject to simple bound
with application to the svms training. Computational Optimization and Applications pp. 1–31

31. Manno, A., Sagratella, S., Livi, L.: A convergent and fully distributable svms training algorithm. In: Neural Networks (IJCNN),
2016 International Joint Conference on, pp. 3076–3080. IEEE (2016)

32. Ouyang, H., Gray, A.: Fast stochastic Frank-Wolfe algorithms for nonlinear SVMs. In: Proceedings of the 2010 SIAM Interna-
tional Conference on Data Mining, pp. 245–256. SIAM (2010)

33. Piccialli, V., Sciandrone, M.: Nonlinear optimization and support vector machines. 4OR 16(2), 111–149 (2018). DOI 10.1007/
s10288-018-0378-2

34. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal on Control
12(2), 268–285 (1974)

35. Rockafellar, R.T., Wets, R.J.B.: Variational analysis, vol. 317. Springer Science & Business Media (2009)
36. Sagratella, S.: Algorithms for generalized potential games with mixed-integer variables. Computational Optimization and Ap-

plications 68(3), 689–717 (2017)
37. Scutari, G., Facchinei, F., Lampariello, L.: Parallel and distributed methods for constrained nonconvex optimizationpart i: Theory.

IEEE Transactions on Signal Processing 65(8), 1929–1944
38. Scutari, G., Facchinei, F., Lampariello, L., Sardellitti, S., Song, P.: Parallel and distributed methods for constrained nonconvex

optimization-part ii: applications in communications and machine learning. IEEE Transactions on Signal Processing 65(8),
1945–1960

39. Scutari, G., Facchinei, F., Lampariello, L., Song, P.: Parallel and distributed methods for nonconvex optimization. In: Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pp. 840–844. IEEE (2014)

40. Woodsend, K., Gondzio, J.: Hybrid mpi/openmp parallel linear support vector machine training. Journal of Machine Learning
Research 10(Aug), 1937–1953 (2009)

