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tion, namely an equation whose evolution depends on its past history as
well as on its present state, driven by a pure di�usive component plus a
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to show that its solution is an L2−valued Markov process whose unique-
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1. Introduction

During recent years, an increasing attention has been paid to stochastic equa-
tions whose evolution depends not only on the present state, but also on the
past history. In particular, it has been shown that memory e�ects cannot be
neglected when dealing with many natural phenomena. As examples, let us
mention the coupled atmosphere-ocean models, see, e.g., [9], and their appli-
cations in describing climate changes in the environmental sciences setting,
or the e�ect of time delay considering population dynamics, when suitable
growth models are considered, see, e.g., [2]. Nevertheless, assumptions that
will be made throughout the work are mainly taken into account having
in mind concrete �nancial applications. For instance, in [38, 53] the authors
pointed out how delay arises in commodity markets and energy markets, when
it is necessary to take into account the impact of production and transporta-
tion, whereas in [5, 11] the authors provide applications to option pricing
in markets with memory. Similarly, delay naturally arises when dealing with
�nancial instruments as, e.g., Asian options or lookback options, as studied
in, e.g. [16] and references therein.

For the mathematical foundations of the theory of stochastic functional
delay di�erential equations (SFDDEs) we refer to [41], as well as to [42] to
many motivating examples concerning the treatment of equations with delay.
In particular the monograph [41] represents an early and deep treatment
of SFDDE's, where several results concerning existence and uniqueness of
solutions to SFDDE's as well as regularity results are derived. The theory of
delay equations has seen a renewed attention recently, in particular in [13, 14]
an ad hoc stochastic calculus, known as functional Itô's calculus, has been
derived, based on a suitable Itô's formula for delay equations. Also, in past few
years several di�erent works have appeared deriving fundamental results on
delay equations based on semigroup theory and in�nite dimensional analysis,
see, e.g. [30, 31], or based on the calculus via regularization, see, e.g. [22, 33].
Eventually, in [30, 22], it has been shown that SFDDE's, path-dependent
calculus and delay equations via semigroup theory, are in fact closely related.

Having in mind possible �nancial applications, the aim of the present
work is to extend some results concerning the non-linear Feynman-Kac for-
mula for a forward-backward system with delay, where the driving noise is
a non Gaussian Lévy process, using the theory of SFDDE's �rst introduced
in [41]. It is worth to mention that, particularly during last decades, asset
price dynamics and, more generally, �nancial instruments processes, have
been widely characterized by trajectories showing sudden changes and ample
jumps. It follows that the classical Black and Scholes picture has to be re�ned
by allowing to consider random components constituted by both di�usive and
jump components.
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We thus consider the following R−valued SFDDE with jumps

dX(t) =µ(t,X(t+ ·), X(t))dt+ σ(t,X(t+ ·), X(t))dW (t)+

+

∫
R0

γ(t,X(t+ ·), X(t), z)Ñ(dt, dz) ,
(1.1)

where W (t) is a standard Brownian motion, Ñ(dt, dz) is a compensated
Poisson random measure with associated Lévy measure ν. Also the notation
X(t+ ·) means that the coe�cients µ, σ and γ, at time t, depend not only on
the present state of the process X but also on its past values. Exploiting the
concept of segment of a process X, see, e.g., [41, 42], we will lift the �nite
dimensional R-valued process solution to (1.1) to an in�nite dimensional sto-
chastic process with values in a suitable path-space. More precisely, in what
follows we will denote by r > 0 the maximum delay taken into account and
T <∞ a �xed �nite time horizon. Thus, for an R−valued stochastic process
X, we indicate with X(t) the value in R at time t ∈ [0, T ] and with Xt the
corresponding segment, i.e. the trajectory in the time interval [t− r, t], that
is Xt(·) : [−r, 0]→ R is such that Xt(θ) := X(t+ θ) for all θ ∈ [−r, 0].

Then equation (1.1) can be rewritten as s
dX(t) = µ(t,Xt, X(t))dt+ σ(t,Xt, X(t))dW (t)+

+
∫
R0
γ(t,Xt, X(t), z)Ñ(dt,dz)

(X0, X(0)) = (η(θ), x)

, (1.2)

for all t ∈ [0, T ], θ ∈ [−r, 0], x ∈ R and η a suitable R−valued function on
[−r, 0].

Remark 1.1. In what follows we will only consider the 1−dimensional case,
the case of a Rd−valued stochastic process, perturbed by a general Rm−
dimensional Wiener process and a Rn−dimensional Poisson random measure,
with d > 1, m > 1 and n > 1, can be easily obtained from the present one.

In order to take into account the delay component, we study the equa-
tion (1.2) in theDelfour-Mitter space de�ned as followsM2 := L2 ([−r, 0];R)×
R, endowed with the scalar product

〈(Xt, X(t)), (Yt, Y (t))〉M2
= 〈Xt, Yt〉L2 +X(t) · Y (t) ,

and norm

‖(Xt, X(t))‖2M2
= ‖Xt‖2L2 + |X(t)|2 , (Xt, , X(t)) ∈M2 , (1.3)

where ·, resp. | · |, stands for the scalar product in R, resp. the absolute value,
and 〈·, ·〉L2 , resp. ‖·‖L2 , is the scalar product, resp. norm, in L2([−r, 0];R) =:
L2. Note that the space M2 is a separable Hilbert space, see, e.g., [6]. The
Delfour-Mitter space can be generalized to be a separable Banach space if we
consider p ∈ (1,∞), equipped with the appropriate norm. In this work we
will consider the case p = 2.

Alternatively, we could have considered the space of càdlàg functions,
i.e. right�continuous functions with �nite left limit, on the interval [−r, 0],
D := D ([−r, 0];R) called Skorokhod space; in particular D is a non separable
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Banach space if endowed with the sup norm ‖ · ‖D = supt∈[−r,0] | · |. We

also have that D ⊂ M2 with the injection being continuous, see, e.g., [6].
Nevertheless, choosing M2 as state space we cannot deal with the case of
discrete delays, see, e.g., [6, pag. 3], or [41].

The choice of considering the Hilbert spaceM2 instead of the Skorokhod
space D has two main motivations. First, the separability of the Hilbert space
M2 allows us to prove a fundamental property for the SFDDE under inves-
tigation, that is we will show that although exhibiting delay, the SFDDE
(1.2) is a M2−Markov process. The same, primary due to the fact that the
Skorokhod space D is not a separable Banach space, does not hold if one
considers D as state space. One can nevertheless avoid this problem consid-
ering weaker topologies on D, such as the so-called Skorokhod topology, under
which D can be shown to be separable, see, e.g [46]. For the sake of simplicity
we will address here the simpler case of an M2−valued process, leaving the
more technical case of D−process to future investigations.

Second reason we are choosing here the Hilbert space M2 is the exten-
sive use we will do of Malliavin calculus. In fact Malliavin calculus provides
a powerful tool to study general regularity properties of a process or, as
in the present case, to obtain representation theorem under mild regularity
assumptions for the process. Nevertheless its generalization to the in�nite
dimensional setting, mostly when the driving noise is a general Lévy pro-
cess, is rather technical and the theory, even if promising results have been
obtained, see [4] and references therein, is still not completely developed.
For these reasons, in the present work, we will employ an approach similar
to the one used in [25] for backward stochastic di�erential equations with
time-delayed generator and in [33] for SFDDE with a Brownian noise. We
will in fact exploit the fact that the original equation (1.2) has value in a
�nite dimensional space, so that one can use standard results in Malliavin
calculus. This will imply that, exactly as in [33], we will not use a purely
in�nite dimensional formulation for our problem, such as for instance the one
�rst formulated in [12] and subsequently used in [35]. In fact theM2−setting
will be mainly used to prove existence and uniqueness of a solution and most
important, as mentioned above, we are able to prove that the SFDDE (1.2)
is a M2−Markov process.

We have already mentioned that, despite the fact that the process (1.2)
exhibits memory e�ects, lifting the problem to consider aM2−value solution
leads to obtain a solution which is a Markov process. Taking in mind latter
result and in order to derive the Kolomogorov equation associated to equation
(1.2), we will consider, following [33, 34, 35], a classical R−valued backward
stochastic di�erential equation (BSDE), coupled with the forward equation
equation (1.2), which evolves according to


dY (t) = ψ

(
t,Xt, X(t), Y (t), Z(t),

∫
R0
U(t, z)δ(z)ν(dz)

)
dt

+Z(t)dW (t) +
∫
R0
U(t, z)Ñ(dt, dz)

Y (T ) = φ(XT , X(T ))

, (1.4)
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where ψ and φ are given suitable functions to be speci�ed later on. We
recall that a solution to equation (1.4) is a triplet (Y,Z, U) , where Y is the
state process, while Z and U are the control processes.

It is well known that, when the delay is not involved, there exists a
Feynman-Kac representation theorem that connects the solution of the cou-
pled forward-backward system (1.2) and (1.4), to a deterministic semi-linear
partial integro-di�erential equation, see, e.g., [24, Chapter. 4] or [7] for fur-
ther details. When the delay is taken into consideration, previous result has
been recently proved in the Brownian case in [33, 35]. In the present paper we
extend latter result taking into consideration a non Gaussian Lévy noise. In
particular, exploiting notations already introduced, we will consider the fol-
lowing coupled forward-backward stochastic di�erential equation (FBSDE)
with delay, for t ∈ [τ, T ] ⊂ [0, T ],



dXτ,η,x(t) = µ(t,Xτ,η,x
t , Xτ,η,x(t))dt+ σ(t,Xτ,η,x

t , Xτ,η,x(t))dW (t)

+
∫
R0
γ(t,Xτ,η,x

t , Xτ,η,x(t), z)Ñ(dt, dz)

(Xτ,η,x
τ , Xτ,η,x(τ)) = (η, x) ∈M2

dY τ,η,x(t) = ψ
(
t,Xτ,η,x

t , Xτ,η,x(t), Y τ,η,x(t), Zτ,η,x(t), Ũτ,η,x(t)
)

dt

+Zτ,η,x(t)dW (t) +
∫
R0
Uτ,η,x(t, z)Ñ(dt,dz)

Y τ,η,x(T ) = φ(Xτ,η,x
T , Xτ,η,x(T ))

,

(1.5)

where we have denoted for short by

Ũτ,η,x(t) :=

∫
R0

Uτ,η,x(t, z)δ(z)ν(dz) .

Moreover we have denoted by Xτ,η,x the value of the process with starting
time τ ∈ [0, T ] and initial value (η, x) ∈ M2. In what follows we will often
omit the dependence on the initial value point (η, x) and we assume that the

process starts at time τ = 0, i.e. X0,η,x
t =: Xt. Also, in order to simplify

notation, most of the results will be proved for τ = 0, the extension to the
general case of τ 6= 0 being straightforward.

We are going to connect the solution to the FBSDE (1.5) to the solution
of the following partial integro-di�erential Hilbert�space valued equation

{
∂
∂t
u(t, η, x) + Ltu(t, η, x) = ψ (t, η, x, u(t, η, x), ∂xu(t, η, x)σ(t, η, x),J u(t, η, x))

u(T, η, x) = φ(η, x) , t ∈ [0, T ] , (η, x) ∈M2 .

(1.6)

where Lt is the in�nitesimal generator of the forward M2−valued pro-
cess in equation (4.1), ∂x is the derivative with respect to the present state
X(t) and J is the operator

J u(t, η, x) :=

∫
R0

[u(t, η, x+ γ(t, η, x, z))− u(t, η, x)]δ(z)ν(dz) .
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In particular, we will consider a mild notion of solution to equation
(1.6), so that we say that a function u : [0, T ] ×M2 → R is a mild solution
to equation (1.6) if there exist C > 0 and m ≥ 0, such that, for any t ∈ [0, T ]
and any (η1, x1), (η2, x2) ∈M2, u satis�es

|u(t, η1, x1)− u(t, η2, x2)| ≤ C|(η1, x1)− (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m ,

|u(t, 0, 0)| ≤ C ,
(1.7)

and the following equality holds true

u(t, η, x) = Pt,Tφ(η, x)+

∫ T

t

Pt,s[ψ(·, u(s, ·), ∂xu(s, ·)σ(s, ·),J u(s, ·)](η, x)ds ,

(1.8)
for all t ∈ [0, T ], and (η, x) ∈ M2, Pt,s being the Markov semigroup related
to the equation (1.2). In particular we would like to stress that we require the
solution u to equation (3.5) to be locally Lipschitz continuous with respect to
the second variable with at most polynomial growth, so that the derivative
appearing in the right�hand�side of equation (1.8) is to be de�ned in a mild
sense, to better speci�ed later on.

We thus de�ne
Y τ,η,x(t) := u(t,Xτ,η,x

t , Xτ,η,x(t))

Zτ,η,x(t) := ∂xu(t,Xτ,η,x
t , Xτ,η,x(t)) σ(t,Xτ,η,x

t , Xτ,η,x(t))

Uτ,η,x(t, z) := u (t,Xτ,η,x
t , Xτ,η,x(t) + γ(t,Xτ,η,x

t , Xτ,η,x(t), z))

−u (t,Xτ,η,x
t , Xτ,η,x(t))

then the triplet (Y τ,η,x, Zτ,η,x, Uτ,η,x) is the unique solution to the back-
ward equation (1.4), where ∂x is the derivative with respect to the R−valued
present state X(s) of (Xs, X(s)), u being the mild solution to the Kolmogorov
equation

{
∂
∂t
u(t, η, x) + Ltu(t, η, x) = ψ (t, η, x, u(t, η, x), ∂xu(t, η, x)σ(t, η, x),J u(t, η, x))

u(T, η, x) = φ(η, x) , t ∈ [0, T ] , (η, x) ∈M2 .
.

As regard the notion of mild solution for the Kolmogorov equation (1.6),
we have to mention that di�erent notions can be chosen. Our choice is due
mainly to the fact that, since we do not require for di�erentiability assump-
tions, it seems to be the most suitable for �nancial applications. As an ex-
ample, in option pricing one usually have that the terminal payo� of a given
claim is Lipschitz continuous, without being di�erentiable. Moreover, mild
di�erentiability assumptions and the use of delayed coe�cients, allow the
above notion to be particularly suited to price exotic options, as in the case
of Asian options, see [16]. Furthermore, the notion of mild solution we have
chosen well emphasize the intrinsic stochastic nature of the problem, also
providing an immediate connection to BSDE theory, hence allowing to treat
general semilinear PIDE. We refer to [24] for a comprehensive treatment of
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BSDE's with general Lévy noise, see also [15] and references therein for a
more �nancially oriented study of the topic.

We would also like to recall that di�erent notions of mild solution
for partial integro-di�erential already exist in literature, mostly considering
Volterra-type equations, allowing also to exhibit delays, we refer the inter-
ested reader to [10, 36, 40]. Also, in a setting similar to the present one, a
notion of mild solution for SPDE's driven by α−stable noise can be found
in [50, 51], where the authors study mild solutions of semilinear parabolic
equations in an in�nite dimensional Hilbert space, in order to obtain the
associated Hamilton-Jacobi-Bellman equation with applications to the sto-
chastic optimal control problems.

Last but not least, rather recently a further notion of mild solution to
delay equations has appeared in literature. This is an ad hoc generalization
of the standard notion of viscosity solution. In particular �rst in [27], and
then in [28, 29], a new notion of viscosity solution to PDE with delays, called
path-dependent PDE, has been formulated, based on the newly developed
functional Itô calculus mentioned above. Latter notion has been also exploited
to treat path-dependent PDE with delayed generator, see, e.g., [21], or [17]
for an application to mathematical �nance.

The paper is organized as follows: in Section 2 we introduce necessary
notations and formalize the tools necessary to treat delay equations in the
Hilbert spaceM2. In particular Section 2 is devoted to the characterization of
fundamental results on SFDDE, such as existence and uniqueness, as well as
the Markov property of the forward process. Thus subsection 2.1 is devoted
to results concerning Malliavin calculus for delay equations which will be
needed in order to prove the main representation theorem. In Section 3 we
prove the main result based on Malliavin calculus, which is related to the
study of the joint quadratic variation of the forward equation and a suitable
function; in Section 4 we give the non-linear Feynman-Kac theorem that is
later used to derive a deterministic representation to the FBSDE. Finally in
Section 5 we give an application of obtained result to optimal control.

2. Forward stochastic functional di�erential equation with delay

In this Section we introduce the notation used throughout the paper, also
presenting basic de�nitions and main results related to the mathematical
techniques involved in our approach. Some results are already established in
literature, such as existence and uniqueness of solutions, whereas others are
proved here for the �rst time.

Let us consider a probability space (Ω,F , (Ft)t∈[0,T ] ,P), where (Ft)t∈[0,T ]

is the natural �ltration jointly generated by the random variables W (s) and
N(ds, dz), for all z ∈ R \ {0} =: R0 and for all s ∈ [0, T ], augmented by
all P-null sets, W being a 1-dimensional Brownian motion, while N is a 1-
dimensional Poisson random measure, independent from W , with associated
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Lévy measure ν(dz), satisfying∫
R0

min{1, z2}ν(dz) <∞ ; (2.1)

also we de�ne the compensated random measure Ñ(dt, dz) := N(dt, dz) −
ν(dz)dt.

We will further assume in what follows that the Lévy measure ν satis�es∫
R0

|z|2ν(dz) <∞ . (2.2)

We underline that condition (2.1) is a standard assumption in the de�-
nition of a Lévy measure ν, whereas assumption (2.2) implies that the process
has a �nite second moment, which is a natural assumption if one has in mind
�nancial applications.

In the following, we �x a delay r > 0 and we will use the notation X(t)
to denote the present state at time t of the real valued process X, whereas
we use Xt to denote the segment of the path described by X during the time
interval [t− r, t] with values in a suitable in�nite dimensional path space. In
particular, we refer to the couple(

(X(t+ θ))θ∈[−r,0] , X(t)
)

=: (Xt, X(t)) .

From now on, we de�ne M2 := L2 × R := L2([−r, 0];R) × R, endowed with
the scalar product

〈(Xt, X(t)), (Yt, Y (t))〉M2
= 〈Xt, Yt〉L2 +X(t) · Y (t) ,

and norm

‖ (Xt, X(t)) ‖2M2 = ‖Xt‖2L2 + |X(t)|2 , (2.3)

namely the Delfour-Mitter space, which is a separable Hilbert space, see, e.g.,
[41] and reference therein for details.

Furthermore, for any p ∈ [2,∞), we denote by Sp(t) := Sp([0, t];M2)
and we say that a M2−valued stochastic process (Xs, X(s))s∈[0,t] belongs to

Sp(t) if

‖X‖pSp(t) := E

[
sup

s∈ [0,t]

‖(Xs, X(s))‖pM2

]
<∞ .

We denote for short Sp := Sp(T ). For the sake of simplicity, the following
notation is used throughout the paper: | · |2 denotes the norm in M2 and | · |
the absolute value in R.

Remark 2.1. Let us stress that we will consider here a R−valued stochastic
process X, nevertheless any result that follows can be easily generalized to
the case of an Rd− valued stochastic process. In particular we would have
considered the Delfour-Mitter space M2([−r, 0];Rd) := L2([−r, 0];Rd)× Rd,
see, e.g. [6].
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As brie�y said in Section 1, the main goal of this work is to study a
stochastic functional delay di�erential equation (SFDDE) of the form

{
dX(t) = µ(t,Xt, X(t))dt+ σ(t,Xt, X(t))dW (t) +

∫
R0
γ(t,Xt, X(t), z)Ñ(dt, dz)

(X0, X(0)) = (η, x) ∈M2
,

(2.4)

for all t ∈ [0, T ]. We will assume the functionals µ, σ and γ to ful�l the
following assumptions.

Assumption 2.2. (A1) the coe�cients

µ : [0, T ]×M2 → R , σ : [0, T ]×M2 → R , γ : [0, T ]×M2 × R0 → R

are continuous.
(A2) There exists K > 0 such that for all t ∈ [0, T ] and for all (η1, x1),

(η2, x2) ∈ M2,

|µ(t, η1, x1)− µ(t, η2, x2)|2 + |σ(t, η1, x1)− σ(t, η2, x2)|2

+

∫
R0

|γ(t, η1, x1, z)− γ(t, η2, x2, z)|2ν(dz)

≤ K|(η1, x1)− (η2, x2)|22(1 + |(η1, x1)|22 + |(η2, x2)|22) .

Throughout the paper, we will look for strong solution to equation (2.4)
in the following sense.

De�nition 2.3. We say thatX := (Xt, X(t))t∈[0,T ] is a strong solution to equa-
tion (2.4) if for any t ∈ [0, T ] X is indistinguishably unique and (Ft)t∈[0,T ]-

adapted and it holds P−a.s.

X(t) = x+

∫ t

0

µ(s,Xs, X(s))ds+

∫ t

0

σ(s,Xs, X(s))dW (s)

+

∫ t

0

∫
R0

γ(s,Xs, X(s), z)Ñ(ds, dz) ,

X0 = η .

In what follows we will denote by (Xτ,η,x
t , Xτ,η,x(t)) the M2−value of the

process at time t ∈ [τ, T ], with initial value (η, x) ∈ M2 at initial time
τ ∈ [0, T ]. However, for the sake of brevity, in most of the results, we will
avoid to state the dependence on the initial value (τ, η, x) writing for short
(Xt, X(t)) instead of (Xτ,η,x

t , Xτ,η,x(t)).
Now we provide an existence and uniqueness result for equation (2.4).

Theorem 2.4. Suppose that µ, σ and γ satisfy conditions (A1) − (A2) in
Assumptions 2.2. Then, for all t ∈ [0, T ] and (η, x) ∈ M2, there exists a
unique strong solution to the SFDDE (1.2) in Sp and there exists C1 :=
C1(K,L, T, p) such that

‖Xη,x‖pSp ≤ C1(1 + |(η, x)|p2) . (2.5)
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Moreover, the map (η, x) 7→ Xη,x is Lipschitz continuous from M2 to Sp and
it exists C2 := C2(K,L, T ) such that

‖Xη1,x1 −Xη2,x2‖pSp ≤ C2|(η1, x1)− (η2, x2)|p2 . (2.6)

Proof. Existence and uniqueness of the solution to equation (2.4), as well as
the estimate in equation (2.5), are proved in [6, Th. 2.14].

As regards equation (2.6), exploiting the Burkholder-Davis-Gundy in-
equality, see, e.g. [3, Section 4.4.], we have that, for any t ∈ [0, T ], denoting
for short by C several positive constants,

|Xη1,x1 −Xη2,x2 |pSp =

= E sup
t∈[0,T ]

|(Xη1,x1

t , Xη1,x1(t))− (Xη2,x2

t , Xη2,x2(t))|p2 ≤

≤ C|(η1, x1)− (η2, x2)|p2

+ C

[∫ t

0

|µ(s,Xη1,x1
s , Xη1,x1(s))− µ(s,Xη2,x2

s , Xη2,x2(s))|pds

+

(∫ t

0

|σ(s,Xη1,x1
s , Xη1,x1(s))− σ(s,Xη2,x2

s , Xη2,x2(s))|2ds
) p

2

+

∫ t

0

∫
R0

|γ(s,Xη1,x1
s , Xη1,x1(s), z)− γ(s,Xη2,x2

s , Xη2,x2(s), z)|pν(dz)ds

]
,

so that from the Lipschitz continuity in assumption 2.2 (A2), it follows

E sup
t∈[0,T ]

|(Xη1,x1

t , Xη1,x1(t))− (Xη2,x2

t , Xη2,x2(t))|p2 ≤

≤ C|(η1, x1)− (η2, x2)|p2+

+

∫ T

0

sup
s∈[0,q]

|(Xη1,x1
s , Xη1,x1(s))− (Xη2,x2

s , Xη2,x2(s))|p2ds ,

and the claim follows from Grownall's inequality. �

Remark 2.5. We want to stress that a result analogous to Thm. 2.4 can
be obtained by replacing the Delfour-Mitter space M2 with the space D of
càdlàg functions, with the corresponding sup norm ‖ · ‖D = supt∈ [−r,0] | · |,
see e.g. [6, 46].

One of the major results, when one is to lift the delay equation into
an in�nite dimensional setting exploiting the notion of segment, is that one
is able to recover the Markov property of the driving equation, see, e.g [42,
Theorem II.1]. Similarly also equation (2.4) results to be an M2−valued
Markov process.

Proposition 2.6. Let X = ((Xt, X(t)))t∈[0,T ] be the strong solution to equation

(2.4), then the process X is a Markov process in the sense that

P((Xt, X(t)) ∈ B|Fs) = P((Xt, X(t)) ∈ B|(Xs, X(s)) = (η, x)) , P− a.s. ,
for all 0 ≤ s ≤ t ≤ T and for all Borel sets B ∈ B(M2).
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Proof. See, e.g. [6, Th. 3.9], or also, see, e.g., [46, Prop. 3.3] or [44, Sec.9.6].
�

Having shown in Proposition 2.6 that X is a M2−valued Markov pro-
cess, we can therefore introduce the transition semigroup Pτ,t, acting on the
space of Borel bounded function on M2, denoted by Bb(M

2), namely, we
de�ne

Pτ,t : Bb(M
2) → Bb(M

2) , Pτ,t[ϕ](x) := E[ϕ(Xτ,η,x
t )] , ϕ ∈ Bb(M2) .

(2.7)
Concerning the in�nitesimal generator Lt of equation (2.4), following

[33, 34, 35], we will not enter in further details concerning its explicit rep-
resentation or the characterization of its domain, since this goes beyond the
aim of the present work and it is not necessary in order to prove the main
results. Nevertheless let us mentioned that its form can be derived from a
direct application of Itô's formula, see, e.g. [6, Th. 3.6].

2.1. Malliavin calculus for jump processes with delay

In this subsection we recall some de�nitions and main results concerning
Malliavin operator and Skorokhod integral for jump processes. We will give
fundamental de�nition in order to �x the notation and to recall the most
e�ective results, we refer to [26, 45] for further references and proofs of some
results, or to [23, 25] for application of Mallavin calculus to delay equations.

In particular we stress that very few results concerning Malliavin calcu-
lus for jump processes in in�nite dimension exist, where also the most simple
case of jumps processes having values in an in�nite dimensional Hilbert space
is di�cult to treat, we refer the interested reader to [4]. In order to avoid prob-
lems coming with the Hilbert space setting we will, in the present section,
exploit the same ideas used in [25]. Using the fact that the original SDE has
�nite dimensional realizations. This will allow us to exploit standard results
in Malliavin calculus for jumps processes with values in Rd. Also, in order to
be able to do so, as in [25], we must work with delay of integral type, which
motivates the choice of the Hilbert space M2.

In order to keep the present paper as much as self contained as possible,
we will �rst recall de�nitions and fundamental results for Malliavin calculus
for jumps processes mainly taken from [26]. Eventually we state the main
result of the present subsection, that is, as done in [25] exploiting the �nite
dimensional nature of the SFDDE, we prove a Malliavin di�erentiability re-
sult for SFDDE. Also, for the sake of brevity, we will state the results just
for the jump component and we refer to [35, 42] for the di�usive part.

Let us denote by In(f) the n-fold iterated stochastic integral w.r.t. the

random measure Ñ , as

In(fn) :=

∫
([0,T ]×R0)n

f((t1, z1), . . . , (tn, zn))Ñ(dt1, dz1) . . . Ñ(dtn, dzn) ∈ L2(Ω) ,

(2.8)



12 Cordoni, Di Persio and Oliva

where

f ∈ L2 (([0, T ]× R0)n) = L2 (([0, T ]× R0)n),⊗ν(dz)dt) ,

is a deterministic function.
Thus, every random variable F ∈ L2(Ω) can be represented as an in�nite

sum of iterated integrals of the form (2.8). This representation is known as
chaos expansion, see, e.g.[26, Def. 12.1] or [45, Th. 1].

Theorem 2.7. The stochastic Sobolev space D1,2 consists of F−measurable
random variable F ∈ L2(Ω) such that, for (fn)n≥0, with fn ∈ L2 (([0, T ]× R0)n) ,
it holds

F =

∞∑
n=0

In(fn) , (2.9)

with the following norm

‖F‖2 =

∞∑
n=0

nn!‖In(fn)‖2L2(([0,T ]×R0)n)
.

Given the chaos expansion in equation (2.9), we can introduce theMalli-
avin derivative Dt,z and its domain D1,2, see, e.g. [26, Def. 12.2].

De�nition 2.8. Let us consider a random variable F ∈ D1,2, the Malliavin
derivative is the operator D : D1,2 ⊂ L2(Ω) → L2(Ω× [0, T ]×R0) de�ned as

Dt,zF =

∞∑
n=1

nIn−1(fn(·, t, z)), F ∈ D1,2, z 6= 0 . (2.10)

Since the operator D is closable, see, e.g., [26, Thm. 3.3 and Thm 12.6],
we denote by D1,2 the domain of its closure.

The following result represents a chain rule for Malliavin derivative.

Theorem 2.9. Let F ∈ D1,2 and let φ be a real continuous function on R.
Suppose φ(F ) ∈ L2(Ω) and φ(F + Dt,zF ) ∈ L2(Ω × [0, T ] × R0). Then,
φ ∈ D1,2 and

Dt,zφ(F ) = φ(F +Dt,zF )− φ(F ) . (2.11)

Proof. See, e.g. [26, Thm. 12.8]. �

Once the Malliavin derivative has been de�ned, we are able to introduce
its adjoint operator, the Skorokhod integral, in particular next de�nition is
taken from [26, Def. 11.1], see, also [45, Sec. 3] for details.

De�nition 2.10. Let δ : L2(Ω× [0, T ]×R0)→ L2(Ω) be the adjoint operator
of the derivative D. The set of processes h ∈ L2(Ω× [0, T ]× R0) such that∣∣∣∣∣E

∫ T

0

∫
R0

Ds,zF ht(z) ν(dz)ds

∣∣∣∣∣ ≤ C‖F‖ ,
for all F ∈ D1,2, forms the domain of δ, denoted by domδ.
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For every h ∈ domδ we can de�ne the Skorokhod integral as

δ(h) :=

∫ T

0

∫
R0

ht(z)Ñ(d̂t, dz) ,

for any F ∈ D1,2.

De�nition 2.11. We denote by L1,2 the space of F−adapted processes h :
Ω× [0, T ]× R0 → R such that ht ∈ D1,2 and

E
∫ T

0

∫
R0

|ht(z)|ν(dz)dt <∞

E
∫
([0,T ]×R0)

2

|Dt,zhs(ζ)|ν(dζ)dsν(dz)dt <∞ .

From De�nitions 2.10�2.11 above, we have that L1,2 ⊂ domδ. If h ∈ L1,2

and Dt,zh ∈ domδ, then δ(h) ∈ D1,2 and

Dt,zδ(h) = h(z) + δ(Dt,zh) , (2.12)

see, e.g. [37]. Notice also that L1,2 ' L2([0, T ];D1,2).

Proposition 2.12. Let ht be a predictable square integrable process. Then, if
h ∈ D1,2, we have, for a.e. (s, z) ∈ [0, t]× R0,

Ds,z

∫ t

0

hτdτ =

∫ t

s

Dτ,zhτdτ ,

Ds,z

∫ t

0

hτdW (τ) =

∫ t

s

Dτ,zhτdW (τ) ,

Ds,z

∫ t

0

∫
R0

hτ Ñ(dτ, dz) = hs +

∫ t

s

∫
R0

Dτ,ζhτ Ñ(dτ, dζ) .

Proof. ee, e.g. [45, Prop. 6]. �

Next result is the chain rule for SFDDE, that is the generalization of
Theorem 2.9 to the case of delay equations, that will be needed in the proof
of the main result of the present Section as well as in subsequent sections.

Theorem 2.13. Let F and ψ ∈ D1,2, let also φ be a real valued continuous
function on M2 Suppose φ(ψ, F ) ∈ L2(Ω) and φ(ψ + Dt,zψ, F + Dt,zF ) ∈
L2(Ω× [−r, T ]× R0). Then, φ ∈ D1,2 and it holds

Dt,zφ(ψ,F ) = φ(ψ +Dt,zψ, F +Dt,zF )− φ(ψ, F ) . (2.13)

Proof. Following [43, Proposition 6.2], let us de�ne a partition of [−r, 0],

Πk : −r ≤ s1 < . . . < sk ≤ 0 ,

with

‖Πk‖ := max
2≤i≤k

(si − si−1) → 0, as k → ∞ .



14 Cordoni, Di Persio and Oliva

Let Ik : Rk → L2([−r, 0],R) be the continuous linear embedding asso-
ciated to the partition Πk as

Ik(x1, . . . , xk)(t) :=

k∑
i=1

xiI(si−1,si](t) ,

and set sk the tuple (s1, . . . , sk). Let us also de�ne

Qsk(ψ) :=

(
1

s1 − s0

∫ s1

s0

ψ(t)dt, . . . ,
1

sk − sk−1

∫ sk

sk−1

ψ(t)dt

)
,

the L2 projection for ψ ∈ L2([−r, 0],R). Finally, we de�ne a linear map
T k : L2([−r, 0],R)→ L2([−r, 0],R) as

T k : ψ 7→ ψk := T kψ := Ik ◦Qsk(ψ) ;

in particular it holds that T kψ → ψ in L2([−r, 0],R) as k →∞, see, e.g. [43,
Lemma 5.1].

We thus de�ne the function φk : Rk×R→ R, so that, from the classical
chain rule Theorem 2.9 applied to φk we have

Dt,zφ(ψk, F ) = Dt,zφ
k
(
Qsk(ψ), F

)
=

= φk(Qsk (ψ +Dt,zψ) , F +Dt,zF )− φk(Qsk (ψ) , F ) =

= φ(Ik ◦Qsk (ψ +Dt,zψ) , F +Dt,zF )− φ(Ik ◦Qsk (ψ) , F ) .

Then the claim follows taking the limit as k → ∞ together with [43,
Lemma 5.1], the continuity of φ and the Dominated Convergence Theorem.

�

We are �nally able to prove next theorem, which is the main result of
the current subsection concerning Malliavin di�erentiability of the SFDDE
(2.4).

Theorem 2.14. Let us suppose that Assumptions 2.2 (A1)-(A2) hold and X =
(X(t))t∈[−r,T ] is the solution to equation (2.4). Then, X ∈ L2

(
[−r, T ];D1,2

)
and, for every s ∈ [0, T ] and z ∈ R0, the stochastic process {Ds,zX(t) : t ∈
[s, T ]} satis�es

E

[∫ T

0

∫
R0

sup
t∈[s,T ]

|Ds,zX(t)|2ν(dz)ds

]
<∞ . (2.14)

In particular, for any t ∈ [0, T ], X(t) ∈ D1,2 and it holds



Ds,zX(t) = γ(s,Xs, X(s), z)+

+
∫ t
s (µ (Xu +Ds,zXu, X(u) +Ds,zX(u))− µ(Xu, X(u))) du+

+
∫ t
s (σ (Xu +Ds,zXu, X(u) +Ds,zX(u))− σ(Xu, X(u))) dW (u)+

+
∫ t
s

∫
R0

(γ (Xu +Ds,zXu, X(u) +Ds,zX(u))− γ(Xu, X(u))) Ñ(du, dζ) ,

Ds,zX(t) = 0 , t ∈ [−r, s) ,

,

(2.15)
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Moreover, for any z ∈ R0, there exists a measurable version of the two-
parameter process

Ds,zXt = {Ds,zXt(θ) : s ∈ [0, T ] , θ ∈ [−r, 0]} .

Proof. We will use a standard Picard's approximation scheme, see, e.g. [26,
Th. 17.2]. Let X0(t) = x and X0

t = η, then set, for n > 0,

Xn+1(t) = x+

∫ t

0

µ(s,Xn
s , X

n(s))ds+

∫ t

0

σ(s,Xn
s , X

n(s))dW (s)

+

∫ t

0

∫
R0

γ(s,Xn
s , X

n(s), z)Ñ(ds, dz) ,

Xn+1
0 = η ,

where we use the notation Xn
s := (Xn(s+ θ))θ∈[−r,0].

We are going to prove by induction over n that Xn(t) ∈ D1,2 for any
t ∈ [0, T ], Ds,zX(t) is a predictable process and that

ξn+1(t) ≤ C1 + C2

∫ t

−r
ξn(s)ds ,

where C1, C2 are some suitable constants and

ξn(s) := sup
0≤s≤t

E
∫
R0

sup
s≤τ≤t

|Ds,zX
n(τ)|2ν(dz) <∞ .

For n = 0 the above claim is trivially satis�ed. Let us thus assume that
the previous assumptions hold for n, we have to show that they hold also for

n + 1. Indeed we have that
∫ t
0
µ(s,Xn

s , X
n(s))ds,

∫ t
0
σ(s,Xn

s , X
n(s))dW (s)

and
∫ t
0
γ(s,Xn

s , X
n(s), z)Ñ(ds, dz) ∈ D1,2, and proposition 2.12 guarantees

that

Ds,z

∫ t

0

µ(τ,Xn
τ , X

n(τ))dτ =

∫ t

s

Dτ,zµ(τ,Xn
τ , X

n(τ))dτ

Ds,z

∫ t

0

σ(τ,Xn
τ , X

n(τ))dW (τ) =

∫ t

s

Dτ,zσ(τ,Xn
τ , X

n(τ))dW (τ)

and

Ds,z

∫ t

0

γ(τ,Xn
τ , X

n(τ), z)Ñ(dτ, dz) = γ(s,Xn
s , X

n(s), z)

+

∫ t

s

∫
R0

Dτ,ζγ(τ,Xτ
s , X

n(τ), ζ)Ñ(dτ, dζ)
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for s ≤ t. Consequently, for any t ∈ [0, T ], Xn+1(t) ∈ D1,2 and

Ds,zX
n+1(t) = γ(s,Xn

s , X
n(s), z) +

∫ t

s

Dτ,zµ(τ,Xn
τ , X

n(τ))dτ

+

∫ t

s

Dτ,zσ(τ,Xn
τ , X

n(τ))dW (τ)

+

∫ t

s

∫
R0

Dτ,zγ(τ,Xτ
τ , X

n(τ), ζ)Ñ(dτ, dζ) , (2.16)

and the representation in equation (2.15) immediately follows from the chain
rule Th. 2.13.

By squaring both sides of equation (2.16), we have

∣∣Ds,zX
n+1(t)

∣∣2 ≤ 4 |γ(s,Xn
s , X

n(s), z)|2 +

∣∣∣∣∫ t

s

µτ,z(τ,X
n
τ , X

n(τ))dτ

∣∣∣∣2
+ 4

∣∣∣∣∫ t

s

στ,z(τ,X
n
τ , X

n(τ))dW (τ)

∣∣∣∣2
+ 4

∣∣∣∣∫ t

s

∫
R0

γτ,z(τ,X
τ
s , X

n(τ), ζ)Ñ(dτ, dζ)

∣∣∣∣2 . (2.17)

By exploiting Doob maximal inequality, stochastic Fubini's theorem and
Itô isometry, we get

E
∫
R0

sup
s≤τ≤t

∣∣Ds,zX
n+1(t)

∣∣2 ν(dz) ≤ C
[
E
∫
R0

|γ(s,Xn
s , X

n(s), z)|2 ν(dz)

+ E
∣∣∣∣∫ t

s

µτ,z(τ,X
n
τ , X

n(τ))dτ

∣∣∣∣2 + E
∣∣∣∣∫ t

s

στ,z(τ,X
n
τ , X

n(τ))dW (τ)

∣∣∣∣2
+ E

∣∣∣∣∫ t

s

∫
R0

γτ,z(τ,X
τ
s , X

n(τ), ζ)Ñ(dτ, dζ)

∣∣∣∣2
]

≤ C
[
E
∫
R0

|γ(s,Xn
s , X

n(s), z)|2 ν(dz)

+ E
∫ t

s

|µτ,z(τ,Xn
τ , X

n(τ))|2 dτ + E
∫ t

s

|στ,z(τ,Xn
τ , X

n(τ))|2 dτ

+ E
∫ t

s

∫
R0

|γτ,z(τ,Xτ
s , X

n(τ), ζ)|2 ν(dz)dτ

]
,

(2.18)

where we denote for short by C > 0 a suitable constant.

Exploiting Assumptions 2.2 together with Theorem 2.9, we get
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E
∫
R0

sup
s≤τ≤t

|Ds,zXn+1(τ)|2ν(dz) ≤

≤ C1

∫ t

s
E
∫
R0

| (Ds,zXn
τ , Ds,zX

n(τ)) |22ν(dz)dτ + C2

(
1 + E| (Xn

τ , X
n(τ)) |22

)
≤ C1

(
E
∫ t

s

∫ 0

−r

∫
R0

|Ds,zXn(τ + θ)|2 ν(dz)dθdτ + E
∫ t

s

∫
R0

|Ds,zXn(τ)|2 dν(dz)τ

)
+

+ C3(1 + λ)

≤ C1

(
E
∫ 0

−r

∫ t+θ

s

∫
R0

|Ds,zXn(p)|2 ν(dz)dpdθ + E
∫ t

s

∫
R0

|Ds,zXn(τ)|2 ν(dz)dτ

)
+

+ C3(1 + λ)

≤ C4E
∫ t

s

∫
R0

|Ds,zXn(τ)|2 ν(dz)dτ + C3(1 + λ) ,

(2.19)

where C1, C2, C3 and C4 denote some suitable constants and λ is such
that

λ = sup
n

E sup
−r≤s≤T

|Xn(s)|22 <∞ .

Also, we obtain

Xn+1 =
(
Xn+1(t)

)
t∈[−r,T ]

∈ L2(Ω× [−r, T ]) ,

and for any t, Xn+1(t) ∈ D1,2, so that Xn+1 ∈ L2(Ω× [−r, T ];D1,2) and, for
p ≤ s, Ds,zX

n+1(p) = 0.
It follows that, for any z ∈ R0, it exists a measurable version of the

two-parameter process

Ds,zX
n+1
t =

{
Ds,zX

n+1
t (θ) : s ∈ [0, T ] , θ ∈ [−r, 0]

}
,

such that Ds,zX
n+1
t ∈ L2(Ω× [0, T ]× [−r, 0]), see, e.g. [42, Sec. 4].

Therefore, the inductive hypothesis is ful�lled by Xn+1 and

E sup
s≤T
|Xn(s)−X(s)|2 → 0 as n→∞ .

Finally, thanks to a discrete version of Gronwall's lemma, see, e.g. [8,
Lemma 4.1] or [26, Th. 17.2], and applying equation (2.19), we have

sup
n≥0

E
∫ T

−r
|Ds,zX

n(τ)|2dτ <∞ ,

so that X(t) ∈ D1,2.
By repeating the same reasoning as before, we have

X = (X(t))t∈[−r,T ] ∈ L2(Ω× [−r, T ]), X(t) ∈ D1,2 ,

for any t, so that X ∈ L2(Ω × [−r, T ];D1,2). The proof is complete by ob-
serving that, for any z ∈ R0, there exists a measurable version of the two-
parameter process

Ds,zXt = {Ds,zXt(θ) : s ∈ [0, T ] , θ ∈ [−r, 0]} ,
such that Ds,zXt ∈ L2(Ω× [0, T ]× [−r, 0]). �
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3. Joint quadratic variation

In order to prove the main result of this work, which consists in giving an
explicit Feynman-Kac representation formula for a coupled forward-backward
system with delay, we need �rst to prove a joint quadratic variation result.
The main advantage of such an approach is to overcome di�culties that may
arise in dealing with the Itô formula in in�nite dimension, since, in general,
the process Xt fails to be a semi-martingale, so we cannot rely on standard
Itô calculus. Furthermore, with the present approach, we are able to relax
hypothesis concerning the di�erentiability of the coe�cients.

Following [33, 35], we introduce a generalized covariation process. The
de�nition of joint generalized quadratic variation we consider in the present
paper has been �rst introduced in [48], see also [47, 49], with the only dif-
ference that they consider the limit to hold uniformly on compacts sets in
probability. We have chosen here, following [33, 35], to consider the limit in
probability because the limiting procedure is easier with a stronger notion of
convergence, such as the convergence in probability. Also, it is shown in [48,
Prop. 1.1] that the standard de�nition of joint quadratic variation, see, e.g.
[3, Section 4.4.3], coincides with the quadratic variation de�ned below.

De�nition 3.1. Given a couple of R-valued stochastic processes (X(t), Y (t)),
t ≥ 0, we de�ne their joint quadratic variation on [0, T ], to be

〈X(t), Y (t)〉[0,T ′] := P− lim
ε↓0

Cε[0,T ′](X(t), Y (t)) ,

where P− lim denotes the limit to be taken in probability and

Cε[0,T ′](X(t), Y (t)) :=
1

ε

∫ T ′

0

(X(t+ε)−X(t))(Y (t+ε)−Y (t))dt, ε > 0 , (3.1)

with 0 ≤ T ′ + ε < T .

Before stating our main result we are to better introduce a mild notion of
derivative we will use throughout the paper. In what follows we will consider
a function u : [0, T ]×M2 → R, such that there exist C > 0 and m ≥ 0, such
that, for any t ∈ [0, T ] and any (η1, x1), (η2, x2) ∈M2, u satis�es

|u(t, η1, x1)− u(t, η2, x2)| ≤ C|(η1, x1)− (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m ,

|u(t, 0, 0)| ≤ C .
(3.2)

that is we require the function u to be Lipschitz continuous without
requiring any further regularity concerning di�erentiability. Nevertheless, in
what follows, we will use the notation of ∂σx . In particular following [35] we will
introduce a mild notion of derivative, called generalized directional gradient
∂σxu. When u is su�ciently regular, it can be shown that the generalized
directional gradient, in the direction σ(t, η, x), of a function u, coincides with
∂xu(t, η, x)σ(t, η, x).

The de�nition, as well as the characterization of several properties, for
the generalized directional gradient has been provided in [35]. We will only
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state here the de�nition of generalized directional gradient, whereas we refer
to [35] to a complete treatment of the topic.

In particular it has been shown in [35] that the following holds

〈u(·, X·, X(·),W (·)〉τ,t =

∫ t

τ

ζ(s,Xs, X(s))ds , (3.3)

where 〈 · , ·〉τ,t denotes the joint quadratic variation de�ned above and ζ :

[0, T ] × M2 → R is a suitable measurable map, see also [33, 34, 35] for
details. Under suitable hypothesis of regularity, in [35] the authors show that

〈u(·, X·, X(·),W (·)〉τ,t =

∫ t

τ

∂xu(t,Xs, X(s))σ(t,Xs, X(s))ds , P− a.s. ,

(3.4)
where we denote by ∂x the derivative w.r.t. the present state. Hence, equation
(3.3) can be considered as the de�nition of the generalized directional gradient
of the function u along the direction σ. We say that the map ζ : [0, T ]×M2 →
R belongs to the directional gradient of u, or equivalently that ζ ∈ ∂σxu, if
equation (3.3) holds. Therefore, we use for short the notation ∂σxu to represent
an element of the generalized directional gradient. Since this topic lies outside
our goals, having been deeply studied in a more general setting in [35], we
skip every technicality and invite the interested reader to [35].

The following result represents the core of this paper.

Theorem 3.2. Let us assume that u : [0, T ] ×M2 → R is locally Lipschitz
w.r.t. the second variable and with at most polynomial growth, namely, there
exist C > 0 and m ≥ 0, such that, for any t ∈ [0, T ] and any (η1, x1),
(η2, x2) ∈M2, u satis�es

|u(t, η1, x1)− u(t, η2, x2)| ≤ C|(η1, x1)− (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m ,

|u(t, 0, 0)| ≤ C .
(3.5)

Then, for every (η, x) ∈ M2 and 0 ≤ τ ≤ T ′ ≤ T, the process

{u(t,X
(τ,η,x)
t , Xτ,η,x(t)), t ∈ [τ, T ′]}

admits a joint quadratic variation on the interval [τ, T ′] with

J(t) :=

∫ t

0

∫
R0

zÑ(ds, dz),

given by

〈
u(·, Xτ,η,x

· , Xτ,η,x(·)), J(·)
〉
[τ,T ′] =

∫ T ′

τ

∫
R0

z [u(s,Xτ,η,x
s , Xτ,η,x(s)

+γ(s,Xτ,η,x
s , Xτ,η,x(s), z)− u(s,Xτ,η,x

s , Xτ,η,x(s))]N(ds, dz) .

(3.6)
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Remark 3.3. An analogous of [35, Prop. 4.4] is valid in the present case, that
is the following representation holds

〈u(·, Xτ,η,x
· , Xτ,η,x(·)),W (·)〉[τ,T ′] =

∫ T ′

τ

∂σxu(s,Xτ,η,x
s , Xτ,η,x(s))ds ,

where ∂σxu is the generalized directional gradient. The claim follows from [35]
by observing that the Poisson random measure does not a�ect the result and
the proof follows exactly the same steps as in [35].

Proof. Without loss of generality, we prove the result for τ = 0, as the case
of a general initial time τ 6= 0 can be proved using the same techniques. Fix
(η, x) ∈ M2 and a time horizon T ′ ∈ [0, T ] and denote for brevity X0,η,x by

X. In what follows we will denote with Ñ(d̂t, dz) the Skorokhod integral.

In order to shorten the notation set

vt := (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))1[0,T ′](t) ,

and

Aε := {(t, s) ∈ [0, T ′]× [0, T ′] : 0 ≤ t ≤ T ′ , t ≤ s ≤ t+ ε} .

From equation (3.5) and theorem 2.14, we have vt ∈ L1,2, so that, for
any t, vt ∈ D1,2 and then vt1Aε(t, ·) ∈ L2(Ω× [0, T ]). Furthermore, equation
(2.12) implies that vt is Skorokhod integrable and from [26, Th. 12.11] we
have∫ T ′

0

∫
R0

zvt1Aε(t, s)Ñ(d̂t, dz) = vt

∫ T ′

0

∫
R0

z1Aε(t, s)Ñ(d̂t, dz)

−
∫ T ′

0

∫
R0

zDs,zvt1Aε(t, s)N(ds, dz) =: zt ,

(3.7)

which holds since z ∈ L2(Ω × [0, T ]). Also, equation (3.7) implies, for a.a.
t ∈ [0, T ′],

u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))(Jt+ε − Jt)

= u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))

∫ t+ε

t

∫
R0

zÑ(ds, dz)

=

∫ t+ε

t

∫
R0

zDs,z (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t)))N(ds, dz)

+

∫ t+ε

t

∫
R0

z (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))) Ñ(ds, dz) .

(3.8)

Let us integrate the right-hand side of equation (3.8) in [0, T ′] w.r.t. t.
By noticing that the left-hand side equals to εCε, we write the right-hand
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side as follows∫ T ′

0

∫ t+ε

t

∫
R0

zDs,z (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t)))N(ds, dz)dt

+

∫ T ′

0

∫ t+ε

t

∫
R0

z (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))) Ñ(d̂s, dz)dt

=

∫ T ′

0

∫ t+ε

t

∫
R0

zDs,z (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t)))N(ds, dz)dt

+

∫ T ′+ε

0

∫
R0

∫ s∧T ′

(s−ε)+
z (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))) dtÑ(d̂s, dz) .

(3.9)

It remains to verify that
∫ T ′
0
zvt1Aε(t, ·)dt appearing in equation (3.9)

is Skorokhod integrable. From the de�nition of Skorokhod integral, by using
equation (3.7) for G ∈ D1,2 and the duality formula, see e.g. [26, equation
(12.14)], we have

E

[∫ T

0

∫
R0

∫ T

0

zvt1Aε(t, s)dtDs,zGν(dz)ds

]

=

∫ T

0

E

[∫ T

0

∫
R0

zvt1Aε(t, s)Ds,zGν(dz)ds

]
dt

=

∫ T

0

E

[
G

∫ T

0

∫
R0

zvt1Aε(t, s)Ds,zÑ(d̂s, dz)

]
dt = E

[
G

∫ T

0

ztdt

]
,

so that
∫ T ′
0
vt1Aε(t, ·)dt is Skorokhod integrable. Hence,∫ T

0

∫ T

0

∫
R0

zvt1Aε(t, s)dtÑ(d̂s, dz)

=

∫ T

0

ztdt =

∫ T

0

∫ T

0

∫
R0

zvt1Aε(t, s)Ñ(d̂s, dz)dt .

Exploiting again equation (3.7) we have∫ T

0

∫ T ′

0

∫
R0

zvt1Aε(t, s)dtÑ(d̂s, dz) =

∫ T

0

zvt(Jt+ε − Jt)1[t,T ](t)dt

−
∫ T ′

0

∫ T

0

∫
R0

zDs,zvt1Aε(t, s)N(ds, dz)dt ,

and then equation (3.9) is proved.

On the other hand, thanks to the chain rule Theorem 2.13 and from the-
orem 2.14 together with the adeptness property of the Malliavin derivative,
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i.e. Ds,zX(t) = 0 if s > t, we have that, for a.a. s ∈ [t, t+ ε],

Ds,zvt = Ds,z[u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))]

= Ds,z[u(t+ ε,Xt+ε, X(t+ ε))]

= u(t+ ε,Xt+ε +Ds,zXt+ε, X(t+ ε) +Ds,zX(t+ ε))

− u(t+ ε,Xt+ε, X(t+ ε)) .

Now, we apply equation (3.9) to get

Cε =
1

ε

∫ T ′

0

∫ t+ε

t

∫
R0

z
[
u (t+ ε,Xt+ε +Ds,zXt+ε, X(t+ ε) +Ds,zX(t+ ε))N(d̂s, dz)dt

−
1

ε

∫ T ′

0

∫ t+ε

t
u (t+ ε,Xt+ε, X(t+ ε))]N(d̂s,dz)dt

+
1

ε

∫ T ′+ε

0

∫
R0

∫ s∧T ′

(s−ε)+
z (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))) dtÑ(d̂s,dz) .

Let us consider separately the two terms

Iε1 :=
1

ε

∫ T ′

0

∫ t+ε

t

∫
R0

z
[
u (t+ ε,Xt+ε +Ds,zXt+ε, X(t+ ε) +Ds,zX(t+ ε))N(d̂s,dz)dt

−
1

ε

∫ T ′

0

∫ t+ε

t
u (t+ ε,Xt+ε, X(t+ ε))]N(d̂s, dz)dt ,

Iε2 :=
1

ε

∫ T ′+ε

0

∫
R0

∫ s∧T ′

(s−ε)+
z (u(t+ ε,Xt+ε, X(t+ ε))− u(t,Xt, X(t))) dtÑ(d̂s,dz) .

As regards Iε2, the proof proceed as in [35, Prop. 4.4.], see also [33, Th.
3.1]. We report in what follows its main steps for the sake of completeness.
We have to show that

1

ε

∫ T ′

0

vt1Aε(t, s)dt→ 0 ,

in L1,2, since this implies Iε2 → 0 in L2(Ω), together with the boundedness of
the Skorokhod integral. Thus, for a general y ∈ L1,2, we have

T ε(y)s =
1

ε

∫ T ′

0

(yt+ε − yt)1Aε(t, s)dt =
1

ε

∫ s∧T

(s−ε)∨t
(yt+ε − yt)dt ,

so that we have to show that T ε(y)→ 0 in L1,2.

Let us recall the isomorphism

L2
(
[0, T ];D1,2(R)

)
' L1,2 .
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Following [35], we have to prove that ‖T ε‖L1,2(R) is bounded uniformly
w.r.t. ε. In fact, we have

‖T ε(y)s‖2D1,2(R) ≤
1

ε2

∫ T ′

0

1Aε(t, s)dt

∫ T ′

0

|yt+ε − yt|2D1,2(R)1Aε(t, s)dt

≤
∫ T ′

0

|yt+ε − yt|2D1,2(R)1Aε(t, s)dt ,

‖T ε(y)s‖2L1,2(R) =

∫ T ′

0

‖T ε(y)s‖2D1,2(R)ds

≤
∫ T ′

0

|yt+ε − yt|2D1,2(R)

∫ T ′

0

1Aε(t, s)ds dt

≤
∫ T ′

0

|yt+ε − yt|2D1,2(R)dt ≤ 2‖y‖2L1,2(R) ,

and thus the claim follows by [35, Prop. 4.4.], or [33, Th. 3.1].

As regards Iε1, we have

Iε1 =
1

ε

∫ T

0

∫ t+ε

t

∫
R0

z u(t+ ε,Xt+ε +Ds,zXt+ε, X(t+ ε) +Ds,zX(t+ ε))N(d̂s, dz)dt

−
1

ε

∫ T

0

∫ t+ε

t

∫
R0

z u(t+ ε,Xt+ε, X(t+ ε))]N(d̂s, dz)dt := Kε
1 −Kε

2 .

Let us �rst prove that

Kε
2 →

∫ T ′

0

∫
R0

zu(t,Xt, X(t))N(d̂t,dz) , P− a.s. (3.10)

as ε→ 0.

From assumption (3.5) on the function u, the right-continuity of X, and
exploiting the Lebesgue di�erentiation theorem together with the dominated
convergence theorem, it follows that

1

ε

∫ T ′

0

∫ t+ε

t

∫
R0

zu(t+ ε,Xt+ε, X(t+ ε))N(d̂s,dz)dt

=

∫ T ′+ε

0

∫
R0

z
1

ε

∫ (s+ε)∧T ′

s∨ε
u(t,Xt, X(t))dtN(d̂s, dz)

→
∫ T ′

0

∫
R0

zu(s,Xs, X(s))N(d̂s,dz) ,

(3.11)

P−a.s., as ε→ 0.

Let us now prove that

Kε
1 →

∫ T ′

0

∫
R0

zu(t,Xt, X(t) + γ(t,Xt, X(t), z))N(d̂t, dz) . (3.12)
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Theorem 2.14 assures that

Ds,zX(t+ ε) =γ(s,Xs, X(s), z) +

∫ t+ε

s

Ds,z[µ(q,Xq, X(q))]dq

+

∫ t+ε

s

Ds,z[σ(q,Xq, X(q))]dW (q)

+

∫ t+ε

s

∫
R0

Ds,z[γ(q,Xq, X(q), ζ)]Ñ(dq,dζ) .

(3.13)

Proceeding as above, we get

1

ε

∫ T

0

∫ t+ε

t

∫
R0

zu(t+ ε,Xt+ε +Ds,zXt+ε)N(d̂s, dz)dt

=

∫ T ′+ε

0

∫
R0

z
1

ε

∫ s∧T ′

(s−ε)+
u (t+ ε,Xt+ε +Ds,zXt+ε, X(t+ ε) +Ds,zX(t+ ε)) dtN(d̂s, dz) .

(3.14)

The continuity of u, together with the right-continuity of X, and the
Lebesgue di�erentiation theorem provide that

∫ T ′+ε

ε

∫
R0

z
1

ε

∫ (s+ε)∧T ′

s∨ε
u(t,Xt +Ds,zXt, X(t) +Ds,zX(t))dtN(d̂s, dz)

→
∫ T ′

0

∫
R0

zu(t,Xt +Dt,zXt, X(t) +Dt,zX(t))N(d̂t, dz) ,

(3.15)

P−a.s. as ε→ 0.

Moreover, theorem 2.14 implies that

Ds,zX(t+ θ) = γ(s,Xs, X(s), z) +

∫ t+θ

s

Ds,z[µ(q,Xq, X(q))]dq

+

∫ t+θ

s

Ds,z[σ(q,Xq, X(q))]dW (q)

+

∫ t+θ

s

∫
R0

Ds,z[γ(q,Xq, X(q), ζ)]Ñ(dq,dζ) , θ ∈ [−r, 0] ,

Ds,zX(t+ θ) = 0 , s > t+ θ ,

and exploiting the adaptedness of the Malliavin derivative, namely

Dt,zXt(θ) = Dt,zX(t+ θ) = 0 , for θ ∈ [−r, 0) ,

Dt,zX(t) = γ(t,Xt, X(t), z) ,
(3.16)

and substituting (3.16) into eq. (3.15), we obtain the claim and (3.12) is
proved. Equation (3.6) thus follows and the proof is then complete. �
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4. Existence of mild solutions of Kolmogorov equation

The main goal of this section is to prove an existence and uniqueness result
of a mild solution, in a sense to be speci�ed later, of a non-linear path-
dependent partial integro-di�erential equation. Such a solution is connected
to a forward-backward system with delay of the form



dXτ,η,x(t) = µ(t,Xτ,η,x
t , Xτ,η,x(t))dt+ σ(t,Xτ,η,x

t , Xτ,η,x(t))dW (s)

+
∫
R0
γ(t,Xτ,η,x

t , Xτ,η,x(t), z)Ñ(dt, dz)

(Xτ,η,x
τ , Xτ,η,x(τ)) = (η, x) ∈M2

dY τ,η,x(t) = ψ
(
t,Xτ,η,x

t , Xτ,η,x(t), Y τ,η,x(t), Zτ,η,x(t), Ũτ,η,x(t)
)

dt

+Zτ,η,x(t)dW (t) +
∫
R0
Uτ,η,x(t, z)Ñ(dt, dz)

Y τ,η,x(T ) = φ(Xτ,η,x
T , Xτ,η,x(T ))

,

(4.1)

where we have set for short

Ũτ,η,x(t) :=

∫
R0

Uτ,η,x(t, z)δ(z)ν(dz) .

In particular the solution to the forward�backward SFDDE (4.1) is the
quadruple (X,Y, Z, U) taking values in M2 ×R×R×R. We refer to [24] for
a detailed introduction to forward-backward system with jumps.

Let us assume the following assumptions to hold:

Assumption 4.1.

(B1) The map ψ : [0, T ] ×M2 × R × R × R → R is continuous and there
exists K > 0 and m ≥ 0 such that

|ψ(t, η1, x1, y1, z1, u1)− ψ(t, η2, x2, y2, z2, u2)| ≤ K|(η1, x1)− (η2, x2)|2
+K(|y1 − y2|+ |z1 − z2|+ |u1 − u2|) ;

|ψ(t, η1, x1, y, z, u)− ψ(t, η2, x2, y, z, u)|
≤ K(1 + |(η1, x1)|2 + |(η2, x2)|2 + |y|)m

· (1 + |z|+ |u|)(|(η1, x1)− (η2, x2)|2) ;

|ψ(t, 0, 0, 0, 0, 0)| ≤ K ,

for all (t, η1, x1, y1, z1, u1), (t, η2, x2, y2, z2, u2) ∈ [0, T ]×M2×R3;
(B2) the map φ : M2 → R is measurable and there exist K > 0 and m ≥ 0

such that

|φ(η1, x1)− φ(η2, x2)| ≤ K(1 + |(η1, x1)|2 + |(η2, x2)|2)m|(η1, x1)− (η2, x2)|2 ,

for all (η1, x1), (η2, x2) ∈ M2;
(B3) there exists K > 0 such that the function δ : R0 → R satis�es

|δ(z)| ≤ K|(1 ∧ |z|) , δ(z) ≥ 0 , z ∈ R0 .
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Remark 4.2. Following [24], we have chosen this particular form for the gen-
erator ψ of the backward component in equation (4.1), due to the fact that
it results to be convenient in many concrete applications.

Remark 4.3. We want to stress that assumptions 4.1 imply that there exists
a suitable constant C > 0 such that

|ψ(t, η, x, y, z, u)| ≤ C(1 + |(η, x)|m+1
2 + |y|+ |z|+ |u|) ,

|φ(η, x)| ≤ C(1 + |(η, x)|m+1
2 ) .

In what follows we will denote by K([0, T ]) the space of all triplet
(Y, Z, U) of predictable stochastic processes taking value in R × R × R and
such that

‖(Y,Z, U)‖2K := E

[
sup

t∈ [0,T ]

|Y (t)|2
]

+ E

[∫ T

0

|Z(t)|2dτ

]

+ E

[∫ T

0

∫
R0

|U(t, z)|2ν(dz)dt

]
<∞ . (4.2)

The following Proposition ensures the existence and the uniqueness of the
solution to the system (4.1), under suitable properties of the coe�cients.

Proposition 4.4. Let us consider the coupled forward-backward system (4.1)
which satis�es Assumptions 2.2 and Assumptions 4.1.

Then, the coupled forward-backward system admits a unique solution

(Xτ,η,x, Y τ,η,x, Zτ,η,x, Uτ,η,x) ∈ Sp ×K([0, T ]) .

Eventually we have that the map

(τ, η, x) 7→ (Xτ,η,x, Y τ,η,x, Zτ,η,x, Uτ,η,x) ,

is continuous.

Proof. The existence and uniqueness of the solution to the forward compo-
nent follows from theorem 2.4, since Assumptions 2.2 hold true by hypothesis,
whereas the existence and uniqueness of the backward component under As-
sumptions 4.1 follows [7, Cor. 2.3] or [24, Thm. 4.1.3] .

The continuity of the map (τ, η, x) 7→ Xτ,η,x is guaranteed by theorem
2.4, whereas the continuity of (τ, η, x) 7→ (Y τ,η,x, Zτ,η,x, U (τ,η,x) follows from
[7, Prop. 1.1].

�

Theorem 4.5. Let us consider the coupled forward-backward system (4.1)
which satis�es Assumptions 2.2 and 4.1. Let us de�ne the function u : [0, T ]×
M2 → R,

u(t, η, x) := Y t,η,xt ,

with t ∈ [0, T ] and (η, x) ∈ M2,.
Then, there exist C > 0 and m ≥ 0, such that, for any t ∈ [0, T ] and

any (η1, x1), (η2, x2) ∈M2, the function u satis�es
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|u(t, η1, x1)− u(t, η2, x2)| ≤ C|(η1, x1)− (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m ,

|u(t, 0, 0)| ≤ C .
(4.3)

Moreover, for every t ∈ [0, T ] and (η, x) ∈ M2 we have P−a.s. and for
a.e. t ∈ [τ, T ]

Y τ,η,x(t) = u (t,Xτ,η,x
t , Xτ,η,x(t)) ,

Zτ,η,x(t) = ∂σxu (t,Xτ,η,x
t , Xτ,η,x(t)) ,

Uτ,η,x(t, z) = u(t,Xτ,η,x
t , Xτ,η,x(t) + γ(t,Xτ,η,x

t , Xτ,η,x(t), z))

− u(t,Xτ,η,x
t , Xτ,η,x(t)) ,

(4.4)

where ∂σx is the generalized directional gradient in the sense of equation (3.3).

Remark 4.6. Let us recall that, if u is su�ciently regular, then

Z(τ,η,x)(t) = ∂xu(t,Xτ,η,x
t , Xτ,η,x(t))σ(t,Xτ,η,x

t , Xτ,η,x(t)) .

Proof. The fact that u(t, η, x) := Y t,η,xt satis�es (4.3) immediately follows
from the continuity of the map

(τ, η, x) 7→ (Xτ,η,x, Y τ,η,x, Zτ,η,x, Uτ,η,x) ,

proved in proposition 4.4 together with assumptions 2.2.
The representation of Y and Z follow from [33, Cor. 4.3].
As regards the process U, using the standard notion of joint variation

we have

〈Y τ,η,x(·), J(·)〉[τ,T ] =

∫ T

τ

∫
R0

z Uτ,η,x(s, z)N(ds, dz) . (4.5)

On the other hand, Theorem 3.2 implies

〈u(·, Xτ,η,x
· , Xτ,η,x(·)), J(·)〉[τ,T ]

=

∫ T

τ

∫
R0

z [u(s,Xτ,η,x
s , Xτ,η,x(s) + γ(s,Xτ,η,x

s , Xτ,η,x(s), z))]N(ds, dz)

−
∫ T

τ

∫
R0

z [u(s,Xτ,η,x
s , Xτ,η,x(s))]N(ds, dz) . (4.6)

Comparing now equation (4.5) and equation (4.6), the representation
for U in equation (4.4) follows. �

4.1. The non-linear Kolmogorov equation

The present section is devoted to prove that the solution to the forward-
backward system (4.1) can be connected to the solution of a path-dependent
partial integro-di�erential equation with values in the Hilbert space M2.

More precisely, let us consider the Markov process (Xτ,η,x
t , Xτ,η,x(t))

de�ned as the solution of equation (2.4), and the corresponding in�nitesimal
generator Lt.
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The path-dependent partial-integro di�erential equation we want to in-
vestigate has the following form

{
∂
∂tu(t, η, x) + Ltu(t, η, x) = ψ (t, η, x, u(t, η, x), ∂σxu(t, η, x),J u(t, η, x)) ,

u(T, η, x) = φ(η, x),

(4.7)
for all t ∈ [0, T ], and (η, x) ∈ M2, where u : [0, T ]×M2 →,R is an unknown
function, ψ and φ are two given functions such that ψ : [0, T ] ×M2 × R ×
R×R → R and ψ : M2 → R, ∂σxu is the generalized directional gradient and
J is a functional acting as

J u(t, η, x) =

∫
R0

(u(t, η, x+ γ(t, η, x, z))− u(t, η, x) ) δ(z)ν(dz) .

In particular, we want to look for a mild solution of equation (4.7),
according to the following de�nition.

De�nition 4.7. A mild solution to equation (4.7) is a function u : [0, T ] ×
M2 → R such that there exist C > 0 and m ≥ 0, such that, for any t ∈ [0, T ]
and any (η1, x1), (η2, x2) ∈M2, u satis�es

|u(t, η1, x1)− u(t, η2, x2)| ≤ C|(η1, x1)− (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m

|u(t, 0, 0)| ≤ C
(4.8)

and the following identity hold true

u(t, η, x) = Pt,Tφ(η, x) +

∫ T

t

Pt,s[ψ(·, u(s, ·), ∂σxu(s, ·),J u(s, ·)](η, x)ds ,

(4.9)
for all t ∈ [0, T ], and (η, x) ∈ M2 and where Pt,s is the Markov semigroup
for equation (1.2) introduced in equation (2.7).

Theorem 4.8. Assume that Assumptions 2.2 and Assumptions 4.1 hold true.
Then, the path-dependent partial integro-di�erential equation (4.7) admits a
unique mild solution u, in the sense of de�nition 4.7. In particular, the mild
solution u coincide with the function u introduced in theorem 4.5.

Proof. In what follows, as above, we will denote for short

Ũτ,η,x(s) :=

∫
R0

Uτ,η,x(s, z)δ(z)ν(dz) ,

Let us consider the backward stochastic di�erential equation in equation
(4.1), namely,
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Y t,η,x(t) = φ(Xt,η,x
T , Xt,η,x(T ))+

+

∫ T

t

ψ
(
Xt,η,x
s , Xt,η,x(s), Y t,η,x(s), Zt,η,x(s), Ũ t,η,x(s)

)
ds

+

∫ T

t

Zt,η,x(s)dW (s) +

∫ T

t

∫
R0

U t,η,x(s, z)Ñ(ds,dz) .

Taking the expectation and exploiting equation (4.4), then Y satis�es
equation (4.9).

In order to show the uniqueness let u(t, η, x), 0 ≤ τ ≤ t ≤ T, be a mild
solution of equation (4.7), so that

u(t,η, x) = E
[
φ(Xt,η,x

T , Xt,η,x(T ))
]

+E

[∫ T

t

ψ
(
Xt,η,x
s , Xt,η,x(s), Y t,η,x(s), Zt,η,x(s), Ũ t,η,x(s)

)
ds

]
.

By recalling that (Xτ,η,x
t , Xτ,η,x(t))t∈[0,T ] is aM

2−Markov process, and

denoting by Et the conditional expectation w.r.t. the �ltration Ft, we can
write

u(t,Xt,η,x
t , Xt,η,x(t)) = Et

[
φ(Xt,η,x

T , Xt,η,x(T ))
]

+Et
[∫ T

τ

ψ
(
Xt,η,x
s , Xt,η,x(s), Y t,η,x(s), Zt,η,x(s), Ũ t,η,x(s)

)
ds

]

−Et
[∫ t

τ

ψ
(
Xτ,η,x
s , Xτ,η,x(s), Y τ,η,x(s), Zτ,η,x(s), Ũτ,η,x(s)

)
ds

]
.

We set, for short,

ξ := φ(Xt,η,x
T , Xt,η,x(T ))

+

∫ T

τ

ψ
(
Xt,η,x
s , Xt,η,x(s), Y t,η,x(s), Zt,η,x(s), Ũ t,η,x(s)

)
ds .

Thanks to the martingales representation theorem, see, e.g., [3, Thm.
5.3.5], there exist two predictable processes Z̄ ∈ L2(Ω × [0, T ]) and Ū ∈
L2(Ω× [0, T ]× R0) such that

u(t,Xτ,η,x
t , Xτ,η,x(t)) = u(τ, η, x)

+

∫ t

τ

Z̄τ,η,x(s)dW (s) +

∫ t

τ

∫
R0

Ūτ,η,x(s, z)Ñ(ds,dz)

−
∫ t

τ

ψ
(
Xτ,η,x
s , Xτ,η,x(s), Y τ,η,x(s), Zτ,η,x(s), Ũτ,η,x(s)

)
ds .

Applying theorem 3.2, we have
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u(t,Xτ,η,x
t , Xτ,η,x(t)) = φ(Xτ,η,x

T , Xτ,η,x(T ))+

−
∫ T

t

∂σxu(s,Xτ,η,x
s , Xτ,η,x(s))dW (s)

−
∫ T

t

∫
R0

[u(s,Xτ,η,x
s , Xτ,η,x(s) + γ(s,Xτ,η,x

s , Xτ,η,x(s), z))

− u(s,Xτ,η,x
s , Xτ,η,x(s))] Ñ(ds,dz)

+

∫ T

t

ψ
(
Xτ,η,x
s , Xτ,η,x(s), Y τ,η,x(s), Zτ,η,x(s), Ũτ,η,x(s)

)
ds .

By comparing last equation with the backward component of equation
(4.1), we note that (Y τ,η,x(t), Zτ,η,x(t), Uτ,η,x(t, z)) and the following three
functions

(u(t,Xτ,η,x
t , Xτ,η,x(t)), ∂σxu(t,Xτ,η,x

t , Xτ,η,x(t)) ,

u (t,Xτ,η,x
s , Xτ,η,x(s) + γ(s,Xτ,η,x

s , Xτ,η,x(s), z))− u(t,Xτ,η,x
s , Xτ,η,x(s))) ,

solve the same equation. Therefore, due to the uniqueness of the solution, we
have that

Y τ,η,x(t) = u(t,Xτ,η,x
t , Xτ,η,x(t)) .

Setting τ = t, we obtain Y τ,η,x(t) = u(t, η, x) and the proof is complete. �

5. Application to optimal control

We are to apply previously derived results to a general class on non-linear
control problem. The present section closely follows in [35, Section. 7], in
particular we will consider weak control problems, we refer to [32] for a general
treatment of the present notion of control, or [18, 19, 50, 51].

Let us therefore consider the following R−valued controlled delay equa-
tion,

dX(t) = (µ(t,Xt, X(t)) + F (t,X(t), α(t))) dt+

+σ(t,X(t))dW (t) +
∫
R0
γ(t,X(t), z)Ñ(dt, dz) ,

(Xt0 , X(t0)) = (x, η) ,

(5.1)

where we have denoted by α : Ω × [0, T ]→ A a (Ft)t≥0−predictable process
representing the control, being A ⊂ RN a convex set, N ∈ N.

In what follows we assume µ, σ and γ to satisfy assumptions 2.2, we
also require that it exists a constant Cσ > 0 such that, for any t ∈ [0, T ] and
x ∈ R,

|σ−1(t, x)| ≤ Cσ .
We remark that a possibly choice for the coe�cient µ in equation (5.1)

is of the form

µ(t,Xt, X(t)) =

∫ 0

−r
X(t+ θ)$(dθ) ,
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for $ a Borel measure of bounded variation on the interval [−r, 0].
Following [35, Section 7], we will say therefore that an admissible con-

trol system (acs) is given by U = (Ω,F ,P,W, ν, α,X), where (Ω,F ,P) is a
complete probability space, with an associated �ltration satisfying usual con-
ditions, W is a Wiener process whereas ν is a Lévy measure also satisfying
usual assumptions introduced in previous sections, α is the control de�ned
above and X is the unique solution to equation (5.1). Then we wish to min-
imize, over all control α ∈ A, the following functional

J (t0, (x, η) ,U) =

∫ T

0

h(s,X(s), α)ds+ g(X(T )) . (5.2)

We thus assume the following to hold.

Assumption 5.1. (i). let F : [0, T ] × R × A → R be measurable and such
that there exist CF > 0 and m ≥ 0 such that, for any t ∈ [0, T ],
x, x1, x2 ∈ R and α ∈ A,

|F (t, x, α)| ≤ C ,
|F (t, x1, α)− F (t, x2, α)| ≤ CF (1 + |x1|+ |x2|)m|x1 − x2| .

(ii). let h : [0, T ]×R×A → R∪{+∞} be measurable and such that there
exist Ch > 0 and m ≥ 0 such that, for any t ∈ [0, T ], x, x1, x2 ∈ R and
α ∈ A,

h(t, 0, α) ≥ −Ch , inf
α∈A

h(t, 0, α) ≤ Ch ,

|h(t, x1, α)− h(t, x2, α)| ≤ Ch(1 + |x1|+ |x2|)m|x1 − x2|+ h(t, x2, α) .

(iii). let g : R → R be measurable and such that there exist Cg > 0 and
m > 0 such that, for any x, x1, x2 ∈ R it holds

|g(x1)− g(x2)| ≤ Cg(1 + |x1|+ |x2|)m|x1 − x2| .

The particular form for equation (5.1) leads to consider an associ-
ated Hamilton-Jacobi-Bellman (HJB) equation which is a semilinear partial
integro-di�erential equation of the form of equation (4.7) studied in previous
sections. Noticed that the particular form for equation (5.1), in particular the
presence of the control in the drift, is imposed by the techniques we will use.

Then the controlled equation (5.1), together with the functional J in-
troduced in equation (5.2), lead to de�ne in a classical way the Hamiltonian
associated to the above problem as

ψ(t, x, z) = − inf
α∈A

{
h(t, x, α) + zσ−1(s, x)F (s, x, α)

}
,

Γ(t, x, z) =
{
α ∈ A : ψ(t, x, z) + h(t, x, α) + zσ−1(s, x)F (s, x, α) = 0

}
.

Let us stress that under above assumptions we have that ψ satis�es
assumptions 4.1. Eventually we can formulate the HJB equation associated
to the above stated non-linear control problem to be{

∂
∂tu(t, η, x) + Ltu(t, η, x) = ψ(t, x, ∂σ

−1F
x u(t, η, x)) ,

u(T, η, x) = g(x) ,
(5.3)
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where the notation is as above introduced. From Theorem 4.8, it follows that
equation (5.3) admits a unique solution in the sense of generalized direction
gradient.

Eventually, from [34, Theorem 7.2] or [35, Theorem 7.2] which follow in
a straightforward manner in the present case, we have that an acs system is
optimal if and only if

α(t) ∈ Γ (t,X(t), ζ(t,Xt, X(t))) ,

being ζ : [0, T ]×M2 → R an element of the directional generalized gradient.

Theorem 5.2. Let u be a mild solution to the HJB equation (5.3), and choose

ζ to be an element of the generalized directional gradient ∂σ
−1F

x u. Then, for
all acs, we have that J(t0, x, η,U) ≥ u(t0, x, η), and the equality holds if and
only if

α(t) ∈ Γ (t,X(t), ζ(t,Xt, X(t))) , P− a.s. for a.a. t ∈ [t0, T ] .

Moreover, if there exists a measurable function ς : [0, T ]× R→ A with

ς(t, x, z) ∈ Γ(t, x, z) ,

then there also exists at least one acs such that

ᾱ(t) = ς(t,Xα(t), ζ(t,Xα
t , X

α(t))) , P− a.s. for a.a. t ∈ [t0, T ] ,

where (Xα
t , X

α(t)) is the solution to equation
dXα(t) = µ(t,Xα

t , X
α(t))dt+

+F (t,Xα(t), ς(t,Xα(t), ζ(t,Xα(t))))dt+

+σ(t,Xα(t))dW (t) +
∫
R0
γ(t,Xα(t), z)Ñ(dt, dz) ,(

Xα
t0 , X

α(t0)
)

= (x, η) ,

Proof. See [35, Th. 7.2] or also [50, Th. 4.7, Cor. 4.8]. �
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