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Abstract

In this thesis we study subgraph enumeration problems. We provide an extensive
literature review of subgraph enumeration, considering different problems associated
to cliques, clique relaxations, and other kind of subgraphs. We then devise algorithms
for the problems of enumerating k-cliques (i.e., complete subgraphs on k nodes) and
one of their relaxations, called k-diamonds (i.e., cliques of size k with one missing
edge).

For the first problem we present simple and fast multicore parallel algorithms for
counting the number of k-cliques in large undirected graphs, for any small constant
k ≥ 4. Clique counting is important in a variety of network analytics applications.
Differently from existing solutions, which mainly target distributed memory settings
(e.g., MapReduce), the proposed algorithms work on off-the-shelf shared-memory
multicore platforms.

The effectiveness of our approaches is assessed through an extensive experimental
analysis on a variety of real-world graphs, considering different clique sizes and
scalability on different numbers of cores. The experimental results show that the
proposed parallel algorithms largely outperform the running times of the highly
optimized sequential solution and gracefully scale to non-trivial values of k even
on medium/large graphs. For instance, computing hundreds of billions of cliques
for rather demanding Web graphs and social networks requires about 15 minutes
on a 32-core machine. Moreover, the running times of the multicore algorithm are
competitive – and in some cases much faster than – the state-of-the-art distributed
solutions based on MapReduce. As a by-product of the experimental analysis, we
also compute the exact number of k-cliques with at most 20 nodes in many real-world
networks from the SNAP repository.

For the second problem, we first devise a sequential algorithm for counting the
number of k-diamonds in large undirected graphs, for any small constant k ≥ 4.
The algorithm can compute the number of k-diamonds using O(

√
m) extra work

with respect to the clique-counting problem. A parallel extension of the sequential
algorithm is then proposed, developing a MapReduce-based approach. This algorithm
achieves the same local and total space usage of the state-of-the-art MapReduce
algorithm for k-cliques, and uses O(

√
m) extra local and global work.
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Chapter 1

Introduction

Social networks represent interactions and collaboration between people or groups
of people. A social network can be regarded as a graph, where the nodes (vertices)
are the people and the edges (arcs) are the pairwise relations between them. Con-
sidering that many real-world systems in nature and society can be represented
by networks [209], social network analysis (SNA) has received significant attention.
One of the central concepts in SNA is the notion of cohesive subgraphs, that are
subsets of nodes related to each other by relatively strong, direct, intense, frequent,
or positive ties [321]. These subgraphs are attractive because their members tend to
exhibit similar characteristics [103].

The problem of counting – and possibly listing – all the occurrences of a small
pattern subgraph in a given graph has a long history. The first papers date back to
the ’70s, but there has been a renewed interest in the last few years in connection
with the growth of network analytics applications. In particular, the enumeration
of small dense subgraphs has been the subject of many recent works. Modern
real-world networks have indeed a large number of nodes and sparse connections,
but due to locality of relationships are locally very dense, i.e., contain an enormous
number of small dense subgraphs that can be exploited for a variety of tasks such as
spam and fraud detection [105], social networks analysis [238], link classification and
recommendation [301], and the discovery of patterns in biological networks [246].

The focus of this thesis is on listing k-cliques (i.e., complete subgraphs of k
nodes) and one of their relaxations, called k-diamonds (i.e., k-cliques with 1 missing
edge) in large-scale networks, considering small values of k. The problem of counting
and enumerating k-cliques is an important building block in numerous graph mining
algorithms, e.g., [115, 299, 257]. In Table 1.1 we show the number of k-cliques
for k ≤ 7 on a selection of datasets from the SNAP repository [170], a general
purpose, high-performance system for the analysis and the manipulation of large
networks. Besides a graph mining library, SNAP also provides a collection of
more than 50 medium-size and large real-world datasets. As shown in Table 1.1,
graphs with millions of edges can easily have hundreds of billions of k-cliques. This
sheer size makes the design of enumeration algorithms very challenging. Even for
triangle counting, which is the simplest, non-trivial version of the problem (k = 3),
exact centralized processing algorithms cannot typically scale to massive graphs.
Workarounds proposed in the literature to speed up the computation are mostly
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Table 1.1. k-cliques in real-world networks: number n of nodes, number m of edges, and
numbers qk of cliques for k ∈ [3, 7].

n = q1 m = q2 q3 q4 q5 q6 q7

amazon 403 394 3 387 388 3 986 507 4 420 994 3 606 466 2 193 997 988 617
citPat 3 774 768 16 518 948 7 515 023 3 501 071 3 039 636 3 151 595 1 874 488

comYoutube 1 134 890 2 987 624 3 056 386 4 986 965 7 211 947 8 443 803 7 959 704
locGowalla 196 591 950 327 2 273 138 6 086 852 14 570 875 28 928 240 47 630 720
socPokec 1 632 803 22 301 964 32 557 458 42 947 031 52 831 618 65 281 896 83 896 509
webGoogle 875 713 5 105 039 13 391 903 39 881 472 105 110 267 252 967 829 605 470 026
wikiTalk 2 394 385 5 021 410 9 203 519 64 940 189 382 777 822 1 672 701 685 5 490 986 046
webStan 281 903 2 312 497 11 329 473 78 757 781 620 210 972 4 859 571 082 34 690 796 481
hTwitter 456 631 14 855 875 83 023 401 429 733 013 2 170 177 145 11 040 286 581 55 261 342 424
asSkitter 1 696 415 11 095 298 28 769 868 148 834 439 1 183 885 507 9 759 000 981 73 142 566 591
comOrkut 3 072 441 117 185 083 627 584 181 3 221 946 137 15 766 607 860 75 249 427 585 353 962 921 685

webNotreDame 325 729 1 497 134 8 910 005 231 911 102 6 367 609 888 153 998 482 142 3 228 475 265 752
webBerkStan 685 230 6 649 470 64 690 980 1 065 796 916 21 870 178 738 460 155 286 971 9 398 610 960 254

comLiveJ 3 997 962 34 681 189 64 690 980 5 216 918 441 246 378 629 120 10 990 740 312 954 445 377 238 737 777
socLiveJ1 4 847 571 68 993 773 285 730 264 9 933 532 019 467 429 836 174 20 703 476 954 640 -

based on approximation or parallelization techniques.
Approximate counting algorithms (e.g., [217, 227]) typically return estimates

strongly concentrated around the true number of cliques and are very accurate in
practice, but cannot solve the more general listing problem. Most parallel solutions,
on the other side, achieve scalability by exploiting a distributed computing cluster
to perform the computation. Though distributed resources can be easily available
through the cloud, orchestrating a distributed computation remains challenging
and therefore big data systems à la MapReduce [78] are quite often the solution of
choice. These systems automatically handle scheduling, synchronization, and fault
tolerance issues, but might not naturally support iterative computations and incur
large overheads due to communication costs, workload balancing, and I/O operations.
Triangles, for instance, can be efficiently enumerated in very large graphs using
MapReduce [285], but traditional multicore algorithms [278] or even well-engineered
sequential approaches [214] could remain preferable depending on the graph size
and on the number of subgraphs to be listed.

The state of the art for k-clique enumeration is less understood with respect
to triangles. The running time of fast and practical sequential algorithms [59] is
O(α(G)k−2m), where α(G) is the arboricity of the graph: this is O(mk/2) in the
worst case, since α(G) = O(

√
m). In a parallel setting, previous works focused on

MapReduce, with two different algorithms presented in [4] and [98], respectively.
The design of traditional multicore algorithms for counting k-cliques has not been
properly addressed in the literature. Hence, differently from triangles, it is not clear
whether and to what extent it is possible to count k-cliques on a single multicore
machine with tens of cores and adequate memory.

Considering that every pair of nodes must be connected by an edge in a clique,
in many real-world systems the concept of clique is often too rigid [12] or presents
modeling disadvantages [102]. Requiring the existence of all possible edges may
prove to be rather restrictive for many applications, where the interaction between
members of the group could be sometimes achieved through intermediaries, without
the need to be directly connected [226]. Furthermore, due to possible errors in data
collection or interpretation, the absence or presence of an edge is not known with
certainty in many problems involving application of clique-detection algorithms [223].
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Table 1.2. A selection of subgraph structures.

Structure Name Definition References

k-clique Complete subgraph on k nodes. This thesis,
[59, 98, 46]

k = 4

k-diamond Clique of size k with one missing edge. This thesis
k = 4

k-core
Largest subgraph in which all nodes have
degree at least k. [32, 187, 94]

k = 2

k-plex
Connected subgraph in which each node
may miss at most k neighbors in the
subgraph (including itself).

[319, 66, 69]

k = 2

k-truss
Connected subgraph in which each edge
is incident to at least k − 2 triangles

[62, 127,
114]

k = 4

s-clique

Connected subgraph in which the length
of the shortest path (number of edges in
the original graph) between each pair of
nodes is at most s. Notice that the grey
node is not included in the 2-clique.

[142, 195,
34]

s = 2

k-club

Connected subgraph in which the length
of the shortest path (number of edges
in the subgraph) between each pair of
nodes is at most k.

[183, 14, 26]

k = 2

γ-clique Connected subgraph S in which the num-
ber of edges is at least γ

(|S|
2
)
.

[300], [184],
[232]

γ = 0.6

To overcome these issues, alternative subgraph structures have been considered
in the literature, relaxing the definition of clique. In Table 1.2 we show a collection
of subgraph structures, as well as their definition and some of the main works
addressing them. Those structures can be classified into three main groups according
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to the clique property which is relaxed: vertex-based, edge-based, and density-based
relaxations. Vertex-based relaxations, such as k-core [264, 191] and k-plex [265],
relax the degree of vertices in a clique. For example, in a 2-core on 4 vertices, each
vertex must have degree at least 2, while in a clique of size 4 all vertices must have
degree equal to 3. Edge-based relaxations consist of relaxing a property of the edges.
The k-diamond structure addressed in this thesis can be included in this group,
because there is exactly one missing edge in a “clique” of size k. Another example
of edge-based relaxation is the k-truss [62], considering that the number of triangles
incident to each edge must be at least k − 2. At last, density-based relaxations are
focused on a global characteristic, being not directly related to a vertex or an edge
property. For instance, the γ-clique structure [3, 228] is classified as density-based
relaxation, where its density is relaxed by decreasing the total number of edges. The
s-clique [181, 201] and k-club [201] structures can also be considered density-based
relaxations, since the length of the shortest path between every two nodes is relaxed.

Besides many previous works focused on cliques and their relaxations, problems
dealing with different kind of subgraphs have been widely studied in the literature.
For instance, the problem of listing specific sample subgraphs, where the objective is
to enumerate all instances of a specific input sample subgraph in a large undirected
graph [4]. Furthermore, instead of enumerating all occurrences of a single structure,
counting or listing a collection of subgraphs have been extensively studied, such as
the problem of listing all subgraphs on k nodes [199] or frequent subgraphs [6].

The focus of this thesis is on k-clique and k-diamonds listing problems. In
particular, we design parallel k-clique enumeration algorithms, as well as a sequential
and a distributed algorithm for k-diamond enumeration.

1.1 Original contributions

In this section we describe the main contributions of this thesis: a literature review
of the subgraph enumeration, multicore clique enumeration algorithms, a sequential
diamond enumeration algorithm and a distributed diamond enumeration algorithm.

A literature review of the subgraph enumeration. The large number of
subgraphs structures addressed in the literature makes the summary of main works a
rather challenging task. The number of articles to be considered becomes even larger
when we address different problems related to each subgraph structure, e.g., listing
all instances, finding the maximum subgraph, enumerating all maximal subgraphs,
exact counting, and approximate counting. Furthermore, there are many other works
in the literature addressing problems that deal with enumeration of all subgraphs
of a fixed size and with the frequent subgraph mining problem. In this thesis we
provide an extensive literature review of the subgraph enumeration, which considers
different problems associated to several subgraph structures and group of subgraphs.

Multicore clique enumeration algorithms. Previous works addressing the
problem of enumerating triangles or k-cliques propose either sequential or distributed
solutions. A first natural question is whether we always need a cluster for listing
k-cliques. To shed some light on this question, in this thesis we develop simple and
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fast multicore parallel algorithms for listing k-cliques in large undirected graphs, for
any small constant k ≥ 4. The proposed algorithms, based on nodes’ neighborhood
intersection, are work-optimal in the worst case, i.e., can list all k-cliques on a graph
with m edges in O(mk/2) work. They exploit a fork/join programming style, which
resembles divide-and-conquer, and are suitable to be implemented in shared-memory
settings using any languages/libraries supporting dynamic multithreading. In order
to tradeoff between the number of parallel task operations and the synchronization
overhead due to the number of tasks, they can be naturally parameterized according
to the number t of neighborhood intersections performed by each task.

The parallel algorithms were implemented and engineered in a light-weight Java
framework for fork/join parallelism [168]. The effectiveness of the implementations is
assessed through an extensive experimental analysis on a variety of real-world graphs
from the SNAP repository [170], considering different clique sizes and scalability on
different numbers of cores.

To the best of our knowledge, multicore algorithms addressing the same k-
clique enumeration problem were not proposed so far in the literature. Hence,
we provide an experimental analysis comparing the proposed multicore solutions
with the highly optimized sequential algorithm. The experimental results show
that one of our parallel algorithms largely outperforms the running times of the
state-of-the-art sequential solution and gracefully scales to non-trivial values of
k even on medium/large graphs. For instance, computing hundreds of billions
of cliques for rather demanding Web graphs and social networks from the SNAP
repository requires about 15 minutes on a 32-core machine. For moderate values of
k the running times are competitive with – and in some cases much faster than –
state-of-the-art distributed solutions based on MapReduce [4, 98].

As a by-product of the experimental analysis, it is computed the exact number of
k-cliques in many real-world networks from the SNAP repository for k ∈ [4, 20] and
analyzed their distribution. These k-clique numbers, differently from the number
of triangles and of other small subgraphs on a few nodes, were not available in the
literature before our study.

The parallel implementations, as well as the implementation of the state-of-the-
art sequential algorithm, are publicly available on bitbucket at the URL https://
bitbucket.org/renanleong/parallelcliquecounting.

Sequential and distributed diamond enumeration algorithms. The prob-
lem of listing k-diamonds has not been properly addressed so far in the literature:
k-diamonds are only considered in a few works that deal with different subgraph
structures, such as listing all subgraphs on k nodes and listing all instances of a
specific sample subgraph.

In this thesis we address the problem of listing all occurrences of k-diamonds in
large undirected graphs, for any small constant k ≥ 4. Moreover, we develop and
analyze a sequential algorithm addressing this problem. The proposed approach can
compute all k-diamonds in O(m(k+1)/2) time, which is O(

√
m) larger than the time

required by the state-of-the-art algorithm for computing k-cliques.
Besides the sequential algorithm, we show that our approach is amenable to

parallelization, describing a MapReduce-based approach for k-diamond enumeration.
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The MapReduce algorithm extends the strategy of the sequential solution to perform
in parallel. It can compute all k-diamonds in O(m(k+1)/2) total work and O(m3/2)
total space. The local work and space are O(mk/2) and O(m), respectively. Com-
paring to the state-of-the-art MapReduce algorithm for k-cliques, the k-diamond
algorithm achieves the same local and total space usage, and requires only O(

√
m)

more local and total work.

1.2 Organization of the thesis
This thesis consists of three main parts. The first part covers Chapter 4 and presents a
literature review of the subgraph enumeration. The second part covers Chapter 5 and
describes parallel shared-memory algorithms for the k-clique enumeration problem,
as well as an experimental analysis. The third part covers Chapters 6 and 7, where we
propose the state-of-the-art sequential and MapReduce algorithms for the k-diamond
enumeration problem. In addition, Chapter 2 provides the basic notation, definitions,
and properties that will be useful throughout the thesis. Chapter 3 describes the
computational models exploited by the proposed algorithms. In Chapter 8 we provide
concluding remarks and highlight some interesting open problems.
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Chapter 2

Graph theoretical preliminaries

In this chapter is introduced basic notation and graph-theoretical properties that
will be used throughout the thesis.

2.1 Graph terminology

In this section is described the basic graph notation. Let G = (V ,E) be a simple
undirected graph without self loops. For each node u ∈ V , let d(u) and Γ(u) denote
its degree and its neighborhood in G, respectively (u is not included). Given an
integer k ≥ 1, let qk and dk denote the number of k-cliques (i.e., complete subgraphs
on k nodes) and the number of k-diamonds in G, respectively.

A k-diamond is a clique of size k with one missing edge. It can be represented
as two (k − 1)-cliques with one (k − 2)-clique in common. For instance, for k = 4,
each 4-diamond has four nodes and five edges, represented by two triangles (i.e., two
(k − 1)-cliques) with one common edge (i.e., one (k − 2)-clique). Examples are given
in Figure 2.1, where edges in one (k − 1)-clique are dashed (set A), edges in the
other (k − 1)-clique are bold (set B), and the (k − 2)-clique in their intersection is
both dashed and bold (set A ∩B). In each k-diamond, the endpoints of the missing
edge are grey (notice they have degree k − 2).

(a) 4-clique
A B

(b) 4-diamond
A B

(c) 5-diamond
A B

(d) 6-diamond

Figure 2.1. Relation between k-diamonds and h-cliques, for h ≤ k − 1.
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2.2 Total order

In this section is described the total order technique. It consists of applying the
total order ≺ over the nodes of the undirected graph G to build a directed graph G.
This strategy works as follows:

u ≺ v if and only if d(u) < d(v) or d(u) = d(v) and u < v

assuming nodes to have comparable and unique labels. Order ≺ implicitly defines a
directed graph G = (V,E) as follows: V = V and E = {(u, v) ∈ E such that u ≺ v
in G}. Throughout the thesis, n and m are used to denote the number of nodes and
the number of edges in G, respectively, i.e., n = |V | and m = |E|. For each node
u ∈ V , Γ+(u) denotes the high-neighborhood of u, i.e., the set of neighbors v such
that u ≺ v. Symmetrically, Γ−(u) = Γ(u)\Γ+(u) is the set of neighbors v of u such
that v ≺ u.

The total order ≺ allows the algorithms to avoid the very high degree nodes.
For example, a nodes u ∈ G have degree less or equal m, while the same node u ∈ G
(after applying the total order) have degree less or equal

√
m.

A graph H is a subgraph of G if V (H) ⊆ V and E(H) ⊆ E. H is an induced
subgraph of G if, in addition to the above conditions, for each pair of nodes u, v ∈
V (H), it also holds: (u, v) ∈ E(H) if and only if (u, v) ∈ E. The subgraph induced
by the neighborhood Γ(u) of a node u is denoted as G(u), while the subgraph induced
by the high-neighborhood Γ+(u) is denoted as G+(u).

Examples of induced and non-induced subgraphs are given in Figure 2.2. Consider
the undirected graph G = (V ,E) in Figure 2.2a. The graph H in Figure 2.2b is
an induced subgraph of G, since H ⊂ G and, for each pair of nodes u, v ∈ V (H),
(u, v) ∈ E(H) if and only (u, v) ∈ E. However, the graph H ′ in Figure 2.2c is a
non-induced subgraph of G. Although H ′ ⊂ G, the pair of nodes 2 and 5 are not
adjacent in H ′, while they are an edge in G. Therefore, H ′ is a non-induced subgraph
of G.

5

2 3

4

1

(a) Graph G
5

2 3

4

(b) Induced sub-
graph H

5

2 3

4

(c) Non-induced
subgraph H ′

Figure 2.2. Examples of induced and non-induced subgraphs.

In Table 2.1 is summarized the key notation used throughout the thesis.

2.3 Theoretical properties

In this section we describe two useful properties that will be crucial in the analysis
of the algorithms proposed in the thesis.
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Table 2.1. Summary of notation.

Notation Meaning
G = (V ,E) Undirected graph G composed of nodes set V and edges set E
d(u) Degree of node u in G
Γ(u) Neighborhood of u in G
≺ Total order
u ≺ v d(u) < d(v) or d(u) = d(v) and u < v

G = (V,E) Directed graph G composed of nodes set V and edges set E
n Number of nodes in G, n = |V |
m Number of edges in G, m = |E|
Γ+(u) Set of neighbors v of u in G such that u ≺ v
Γ−(u) Set of neighbors v of u in G such that v ≺ u
G(u) Subgraph induced by the neighborhood Γ(u) of a node u
G+(u) Subgraph induced by the high-neighborhood Γ+(u) of a node u
G+(u, v) Subgraph induced by Γ+(u) ∩ Γ+(v) of a pair of nodes u and v
qk Number of k-cliques in G
dk Number of k-diamonds in G

Lemma 1. [98] Let G be the directed graph with m edges obtained from an undirected
graph G according to the total order ≺. For each node u in G, |Γ+(u)| ≤ 2

√
m.

As an example, Figure 2.3 shows an undirected graph G in which only node 1
has a high degree, equal to n − 1. When preprocessed, it turns out that node 1
has outdegree 0 in the directed graph G because v ≺ 1 for each other node v.
Hence, thanks to the preprocessing we can get rid of all the high degree nodes (also
called heavy hitters in the literature [171]). Preprocessing the graph to eliminate
heavy hitters is simpler and can reduce memory consumption with respect to other
approaches, such as the triangle counting algorithm presented in [171], which works
on the undirected graph and needs two distinct subroutines to count triangles all of
whose nodes have high degree and triangles containing at least a low degree node.

5

4

2
9

8

6

1

3

7

(a) Graph G

5

4

2
9

8

6

1

3

7

(b) Graph G

Figure 2.3. An undirected graph G and its corresponding directed graph G.

Lemma 2. Let n and m be respectively the numbers of nodes and edges of an
undirected graph G without isolated nodes. Then it holds:

√
m/2 ≤ n ≤ 2m.
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Proof. The upper and the lower bound on n are proved separately. Since there are
no isolated nodes in G, the degree of each node is at least one and thus n = ∑

u∈V 1 ≤∑
u∈V d(u) = 2m. Now consider the directed graph G obtained from G according

to the total order. Notice that m = ∑
u∈V |Γ+(u)| and that, for each node u in G,

|Γ+(u)| ≤ 2
√
m by Lemma 1. Hence, m = ∑

u∈V |Γ+(u)| ≤ ∑u∈V 2
√
m = 2n

√
m.

This implies that n ≥
√
m/2.
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Chapter 3

Computational models

In this chapter we discuss the models of computation exploited by the algorithms
proposed in the thesis to parallelize their execution. In Section 3.1 is described the
Fork/join framework, which is exploited by the clique enumeration algorithms in
Chapter 5 to run in a shared-memory platform. MapReduce framework is presented
in Section 3.2, being exploited by the diamond enumeration algorithm in Chapter 7
to execute in a distributed platform.

3.1 The Fork/join shared-memory model

The idea of implementing parallel processing in a multiprocessor system design was
introduced in 1963 by [70], called fork and join system calls. The origins of how
fork/join strategy was designed are investigated by [213]. Fork/join parallelism is a
programming style that hinges upon divide-and-conquer: problems are recursively
split into subtasks until they are small enough to solve using a simple sequential
method, where the subtasks are solved in parallel. The final result is computed only
upon completion of the subtasks.

According to [168], the fork/join parallelism is among to simplest and most
effective design techniques to achieve a good parallelism. Furthermore, in [168] is
described a generic model of the fork/join strategy, which is shown in Figure 3.1.

Algorithm 1. Fork/join
1: function Solve(Problem problem)
2: if problem is small then
3: directly solve problem . Sequential method
4: else
5: split problem into independent subproblems
6: for each subproblem s do
7: fork a new subtask Solve(s)
8: join all subtasks . Aggregate partial results
9: return combined result

Figure 3.1. Fork/join generic model.
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The fork command starts new parallel fork/join subtasks, while the join
command forces the current task not to proceed until all forked subtasks have
completed. The execution of the fork/join algorithm can be represented as a tree,
where the root starts the computation of the problem and the leaves are the base
case (subtasks small enough to solve sequentially).

Standard threads are typically too heavyweight to support most fork/join pro-
grams and cannot scale to large number of tasks. Hence the implementation of
frameworks and libraries that provide lightweight support for the fork/join program-
ming style have been proposed, most notably OpenMP, Java Fork/join, Intel Cilk
Plus, Intel Thread Building Blocks and the Task Parallel Library for .NET.

Clique enumeration algorithms introduced in Chapter 5 exploit the Java Fork/Join
framework, which is available in Java since version 7 [168]. The lightweight threads
provided by this framework, called ForkJoinTasks, are small enough that even
millions of them should not hinder performance. Moreover, the framework imple-
ments a very efficient scheduler, based on work stealing, with low practical overhead
and theoretically optimal expected-time guarantees. The efficiency of scheduling
fork/join tasks with work stealing is analyzed from a theoretical and a practical
perspective by [41] and [168], respectively. Moreover, in [224] is investigated how the
Java Fork/Join model is applied in practice, primarily by identifying best-practice
patterns and ant-patterns.

The Fork/join clique counting algorithm introduced in Chapter 5 is theoretically
analyzed according to the three performance metrics:

• Work: the total work spent by the algorithm during the computation.

• Memory space: the total amount of space used by the algorithm during the
computation.

• Span: the length of the longest chain of sequential instructions.

3.2 The MapReduce framework

MapReduce is a distributed framework originally developed at Google [78]. Con-
sidering the increasing size of large data sets, this framework has emerged as an
easy-to-program, reliable, and distributed parallel computing paradigm to process
these massive quantities of available data [143].

The basic unit of information in the MapReduce programming paradigm is a
〈key; value〉 pair, where key and value are binary strings. Therefore, the input of
any MapReduce algorithm is a set of 〈key; value〉 pairs. A MapReduce program is
composed of consecutive rounds, where each round is divided into three consecutive
phases: map, shuffle and reduce.

In the map phase, 〈key; value〉 pairs are arbitrarily distributed among mappers
and a programmer-defined map function is applied to each pair. Basically, a
mapper µ takes a single 〈key; value〉 pair as input, and produces a set of intermediate
〈key; value〉 pairs. Mappers are stateless and process each input pair independently
from the others. Hence, different inputs for the map phase can be processed by
different machines. The shuffle phase is seamless to the programmer, being executed
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automatically. In this stage, intermediate 〈key; value〉 pairs emitted by the mappers
are grouped by key. All pairs with the same key are then sent to the same reducer.
In the reduce phase, each reducer ρ takes all values associated with a single key
and process them by executing a programmer-defined reduce function. Since the
reducers have access to all the values with the same key, the reduce phase can start
only after the execution of all mappers have been completed.

Besides introducing and describe the MapReduce programming model, in [78]
is also presented an example of MapReduce algorithm for counting the number of
occurrences of each word in a large collection of documents. The pseudocode is
given in Figure 3.2.

Algorithm 2. WordCount
Map 1: input 〈docName; contents〉

for each word w in contents do
emit〈w; 1〉

Reduce 1: input 〈word; listCounts〉
result← 0
for each number n in listCounts do

result← result+ n

emit 〈word; result〉

Figure 3.2. Example of word counting algorithm in MapReduce.

Computational model. A model of efficient computation using MapReduce
paradigm is proposed in [143], called MapReduce Class (MRC). Considering that
MapReduce is designed to compute massive data sets, the proposed model limits the
number of machines and memory per machine to be substantially sublinear in the
size of the input. However, this model allows each machine to perform sequential
computations in time polynomial in the size of the input. In [143] is also pinpointed
the critical aspects of efficient MapReduce algorithms:

• Memory: the input of any mapper or reducer should be sublinear with respect
to the total input size. It allows to exclude trivial algorithms that first map
the whole input to a single reducer, and then solve the problem sequentially.

• Machines: the total number of machines available should be substantially
sublinear in the data size. According to [143], an algorithm requiring n3

machines, where n is the input size, will not be practical in the near future.

• Time: both the map and the reduce function should run in polynomial time
with respect to the original input length in order to ensure the efficiency.

Besides the three guiding principles, the model also requires programs to be
composed of at most a polylogarithmic number of rounds, since shuffling is a time
consuming operation, and to have a total memory usage that grows substantially less
than quadratically with respect to the input size. Therefore, algorithms following
these conditions belong to theMRC.

Based on the MRC, the MapReduce-based diamond enumeration algorithm
introduced in Chapter 7 is theoretically analyzed according to the four performance
metrics:



14 3. Computational models

• Global work: the total time spent by all mappers and reducers.

• Local work: the time spent by each mapper and each reducer.

• Global space: the amount of space used by all mappers and reducers.

• Local space: the amount of space used by each mapper and each reducer,
considering input size and the working space.
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Chapter 4

Subgraph enumeration: a
review of the literature

In this chapter we discuss the works related to the problems addressed in this thesis.
As described in Chapter 2, this research considers simple undirected static graphs,
excluding specific graph classes (e.g., dynamic graphs). Therefore, in this chapter is
discussed works that tackle problems in simple undirected static graphs.

Works are presented according to the problems addressed by them. The problem
of counting or listing specific subgraphs is tackled by works described in Section 4.1.
Frequent subgraphs mining is the aim of the works discussed in Section 4.2. In
Section 4.3 are discussed the works addressing the problem of counting or listing all
subgraphs of a fixed size k, while different clique relaxations problems are discussed
in Section 4.4.

The organization of this chapter is shown in Figure 4.1.

4.1 Specific subgraphs

In this section we discuss the works tackling the problem of counting or listing
specific subgraphs. Triangles are the aim of the works described in Section 4.1.1.
Works in Section 4.1.2 address cliques, which are a generalization of triangles. In
Section 4.1.3 are discussed the works addressing the problem of bipartite counting
cliques in bipartite graphs. Sample graphs are tackled by works in Section 4.1.4.

4.1.1 Triangles

The triangle listing problem consists of enumerating all instances of triangles in an
undirected input graph G exactly once. Triangle listing is very well studied, due to
its large number of applications in network analysis. Several exact algorithms exist,
most of which date back to the ’80s. A simple and practical edge-searching strategy
was presented by Chiba and Nishizeki [59]. Given an input graph G with n nodes
and m edges, their approach requires O(α(G)m) time to enumerate all triangles
in G, where α(G) = O(

√
m) is the arboricity of the graph. This running time is

optimal in the worst case.
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Specific subgraphs

Frequent 
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Review
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relaxations

k-core

k-plex
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decomposition

s-clique

k-club

Quase-clique

Sample graphs

Clique relaxations

Figure 4.1. Organization of Chapter 4.

Another work-optimal solution, called Heavy Hitters, is described in [171]. It is
based on the idea of listing separately triangles whose all vertices have high degree
and triangles containing at least a low degree vertex. This strategy was used by
Alon et al. [16] in a previous result for finding and counting simple cycles of a given
length. Neighborhood intersection techniques were continuously studied, iterating
over graph nodes [261] or graph edges [132]. An extensive experimental analysis of
these approaches, that have been all cast into a common framework, is given in [214].
In their analysis the variant called L+N shows the best performance.

When graphs are too large to fit in main memory, the problem can be solved in
the external memory model [216, 72]. Considering that triangle listing requires to
access the neighbors of the neighbor of a vertex, they may appear in any position
of the graph. Thus, random access to the graph stored on disk is needed, which
can incur prohibitively large I/O cost. Based on that argument, an I/O-efficient
algorithm is proposed in [60], partitioning the input graph into a set of subgraphs
that fit into memory and listing the triangles in each local subgraph. An analysis
and improvement of I/O complexity is described in [71]. A different solution to
graphs too large is proposed in [164], which consists of compressing the input graph
and listing all triangles without decompressing it.

Focused on speeding up the enumeration of triangles, parallel approaches have
been proposed in different models of computation. Suri and Vassilvitskii [285]
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introduced two MapReduce algorithms for listing triangles, dubbed NodeIterator++
and Partition. The former uses O(m3/2) global space and works in two rounds,
generating all possible paths of length two and checking which paths can be closed
to form a triangle. The latter divides the input graph into subgraphs that are
then processed using a sequential listing algorithm. A new graph partitioning based
algorithm is proposed in [220], which classifies the triangles into three types to reduce
duplication. Generalizations of Partition approach, that take into account memory
constraints, are described in [221]. In [106] is introduced a distributed algorithm with
provable CPU, I/O, memory, and network bounds. MapReduce-based algorithms
for listing triangle were also proposed in [222, 329, 346, 149].

Other works address the triangle listing problem on single-node multicore plat-
forms, extending node iterator to compute clustering coefficients [112], parallelizing
the compact forward algorithm [278] presented in [167] or exploiting hash maps [291].
An in-memory parallel solution is proposed in [268], combining two existing ap-
proaches: EdgeIterator [262] and NodeIterator++ [285]. Two MPI-based algo-
rithms are given in [25], exploiting the overlapping partitions strategy to achieve
a very fast algorithm and non-overlapping strategy to achieve a space-efficient
algorithm.

A bit batch-based algorithm is described in [240], where the list of neighbors are
represented by bit vectors. Matrix multiplication approaches performed in parallel
for listing triangle are the topic of [29], while index-based method is presented in [241].
Implementations exploring the large numbers of cores in a GPU are proposed in [113]
and [39].

Although triangle enumeration has been widely studied in the last years, counting
the exact number of triangles in a graph is enough in many network analysis
applications. Linear algebra approaches for triangle counting problem are given
in [180] and [325], which compute in parallel the number of triangles using OpenMP
architecture and KokkosKernels implementation, respectively. MPI-based algorithms
are described in [22, 24, 23].

A comparison and analysis of GPU implementations for triangle counting is given
in [310]. Other parallel algorithms were proposed focusing on specific frameworks,
such as Nvidia CUDA in [233] and Graphulo library in [130]. Voegele et al. [308]
describe CPU and GPU implementations of triangle counting algorithm. A scalable
framework designed for GPUs is proposed in [127], combining a 2-D graph parti-
tion strategy with a binary search based intersection. In [141] are analyzed and
discussed four different approaches, which are generalized into a common framework
implemented in a distributed shared-memory setting.

Besides parallelism, approximation has been also exploited to speed up triangle
counting algorithms on massive graphs. It consists of estimating as accurately as
possible the number of triangles in an input graph G. A variety of triangle counting
algorithms are proposed in the literature [217, 157], achieving different accuracy guar-
antees. A wedge sampling approach is given in [267], being posteriorly implemented
in MapReduce programming model in [156] to parallelize the computation. In [303]
is proposed a hybrid estimate algorithm that exploits edge and wedge sampling
strategies.

In [158] is described an approximation approach that explores two existing
strategies: the sampling algorithm in [302] and the partitioning method presented
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in [16]. A sublinear-time approach is introduced by Eden et al. [87], where the
algorithm is given query access to the graph. However, in [266] is described a simpler
sublinear-time algorithm that achieves the same theoretical running time of the
approach presented in [87]. The first approximate triangle counting algorithm using
only polylogarithmic queries is introduced in [37].

A hybrid parallel algorithm is proposed in [315], which combines the advantages
of NodeIterator and EdgeIterator solutions introduced by Alon et al. [16].
Focused on a different parallel model, in [236] is described a multicore approximation
algorithm based on edge-iteration [132]. A few works, such as [33, 135, 312], focus
on the data stream model.

Since approximate triangle counting problem is widely addressed in the literature,
comparative works have been proposed. A detailed analysis of random sampling
algorithms is given in [327], providing an experimental and analytical comparison of
existing approaches. In [52] is introduced a random framework for expressing and
analyzing approximate triangle counting. A more generic review of triangle counting
problem in large network is given in [9], which includes exact and approximate
approaches.

4.1.2 Cliques

The clique counting problem consists of computing all instances of cliques on k nodes
in an undirected input graph G exactly once. It can be extended to the clique enu-
meration problem, which consists of listing all k-cliques in G. Clique counting/listing
problem can be considered a generalization of the triangle counting/listing problem,
since a triangle is a k-clique of size three, i.e., k = 3.

Chiba and Nishizeki [59] extend their triangle listing algorithm K3 to compute
cliques on k nodes, named COMPLETE. Basically, the algorithm computes iteratively
the nodes’ neighborhood until it finds the k-cliques. It can list all k-cliques in a graph
G in O(α(G)k−2m) time, where m is the number of edges in G and α(G) = O(

√
m)

is the arboricity of the graph. This theoretical running time is optimal in the worst
case. Although the Heavy Hitters [171] approach was initially proposed to address
the triangles listing problem, it can be easily extended to k-cliques, yielding optimal
running time O(mk/2).

As shown in Chapter 1, graphs with millions of edges can easily have hundreds
of billions of k-cliques. Even for the problem of counting triangles (k-cliques with 3
nodes), exact centralized processing algorithms cannot typically scale to massive
graphs. Based on that argument, parallel approaches have been proposed in the
literature, providing theoretical and experimental analysis. Finocchi et al. [98]
introduce two MapReduce algorithms for counting the exact and the approximate
number of k-cliques, respectively. The strategy of the exact approach is to split
the whole input graph in many subgraphs, and then count the cliques in each
subgraph independently. This approach is work-optimal in the worst case, listing
the number of k-cliques in O(m3/2) total space and O(mk/2) work. Moreover, it can
be easily adapted to the enumeration problem. A different one-round MapReduce-
based algorithm is given in [4], designed to enumerate subgraph instances (including
cliques). An experimental analysis of the MapReduce approaches is carried out
in [98]. Focused on shared-memory settings, in [73] is proposed an extension of the
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algorithm COMPLETE [59] to run in parallel.
Approximation methods have also been exploited for counting k-cliques in massive

graphs. In [134] is described a randomized algorithm to approximate the number of
k-cliques in a graph, providing an experimental analysis of k-cliques for k ranging
from 5 to 10. Another approximation algorithm is proposed in [88], which runs in
sublinear time. This approach estimates the number of k-cliques in a graph when
given query access to the graph. In [107] is proposed an algorithm to estimate the
distribution of clique sizes, a variant of the clique counting problem. It is computed
from a probability sample of nodes obtained from the input graph. Another variant
of the clique counting problem is introduced in [299], called k-clique densest subgraph
problem. It consists of finding the k-clique with maximum average degree. Moreover,
an approximation algorithm is proposed tackling the introduced clique problem.

Maximal cliques. Instead of enumerate all cliques of a constant size k, several
works in the literature have addressed the maximal clique problem. It consists of
listing all maximal cliques in an input graph G, i.e., all cliques Q ⊆ G such that the
nodes in Q are not all contained within any other larger clique in G.

A classical worldwide studied algorithm for listing maximal cliques is presented
by Bron and Kerbosch [46]. The algorithm consists of a recursive backtracking
procedure exploiting a branch-and-bound technique to cut off branches that can
not complete a clique. Bron and Kerbosch’s algorithm works with three arguments:
a partial clique, a set of candidate vertices and a set of non-candidate vertices.
Basically, the algorithm takes each vertex from the candidate set and tries to add it
in the partial clique. The non-candidate set is used to store vertices that would lead
to a clique already listed, avoiding duplication. An adaptation of Bron-Kerbosch
algorithm is given in [18], using a complement matrix to list all maximal cliques.
A parallel algorithm, called GP, is described in [126], which exploits the binary
graph partitioning to find the cliques. Moreover, a parallel hybrid approach is
proposed, combining the characteristics of GP and Bron-Kerbosch [46] algorithms.
Both introduced approaches are implemented on MapReduce and experimentally
analyzed, showing that the hybrid approach achieves the best results.

Tomita et al. [297] use algorithm engineering techniques to design a depth-
first algorithm for enumerating all maximal cliques, where the output is generated
in a tree-like form. Furthermore, the authors prove that the worst case time
complexity of their algorithm is O(3n/3) in a graph with n nodes, which is optimal
considering that there exist up to 3n/3 maximal cliques. The enumeration of
maximal cliques is also addressed in [185], and implementation issues are presented
in [304]. In [292] is described an extensive analysis of the branch-and-bound depth-
first algorithms for maximum (i.e., the largest) and maximal cliques introduced
in [297, 295, 293, 296, 298]. In addition, the author presents a new algorithm for
enumerating maximal cliques. The depth-first strategy is exploited by Li [176] to
introduce a new approach, which implements several pruning methods to improve
its performance.

Yu and Liu [335] design a novel structure, called Candidate Map, to hold all
candidate cliques during the construction of maximal cliques. Moreover, a new linear
time algorithm is proposed exploiting the introduced structure. The first sublinear
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space and bounded delay approach for listing maximal cliques is described in [67].
A theoretical comparison with previous works shows that the proposed approach
can be competitive with the state-of-the-art when suitably implemented, ensuring
small space and bounded delay.

Different models of parallel computation have been proposed for the maximal
clique problem. In [172] is described a shared-memory multicore algorithm, consisting
entirely of data-parallel operations. Based on previous branch-and-bound solution,
San Segundo et al. [249] propose a new algorithm combining bit-parallelism with
a simple greedy pivot selection. A distributed approach based on a decomposition
strategy is proposed in [64], providing experimental evidences of the efficiency and
scalability of the algorithm. Another distributed approach is proposed in [332],
which is built on a share-nothing style. In this strategy, each node in the architecture
is completely independent and self-sufficient. Focused on MapReduce framework,
parallel algorithms for listing maximal cliques are given in [286, 55, 319].

Maximum clique. Another variant of the clique listing problem is the maximum
clique problem. It consists of listing the largest clique in a graph, i.e., a clique with
maximum number of vertices. An extensive review of the literature is given in [328],
providing a comprehensive description of exact and heuristic methods proposed
before the date of publication of their work. After that, a new selective coloring
heuristic for listing the maximum clique is introduced in [255], which is based on
approximate vertex coloring. A different solution is described in [74], combining the
concept of quantum computing [121] and evolutionary algorithm.

San Segundo et al. [253] propose a branch-and-bound approach that can prune
the search space using an infra-chromatic upper bound. The bound is improved
in [263], and the experimental results report that the new bound is significantly
better than the state-of-the-art algorithms. Another branch-and-bound solution
is given in [137], combining incremental MaxSAT reasoning [175] and an efficient
preprocessing procedure. The branch-and-bound strategy is also exploited in [296],
introducing a new approximate coloring technique to speed up the computation.
Improvements for the algorithm proposed in [296] are described in [294]. Based
on the argument that branch-and-bound algorithms present a discrepancy between
the theoretical and experimental results, Zurge and Carmo [347] present a review
those approaches. They show that a broad class of proposed solutions display
sub-exponential average running time behavior. Furthermore, the authors introduce
a structured methodology for the experimental analysis of the algorithms for the
maximum clique problem.

Seeking to scale to larger graphs, parallel solutions have been proposed in the
literature. A shared-memory approach is described in [243], which combines a
branch-and-bound strategy with aggressive pruning technique. The authors provide
the implementation details, analysis and performance evaluation of the introduced
algorithm. In [251] is presented a bit-parallel approach, which exploits a novel
compressed representation of the bit-encoded adjacent matrix applied in [254, 252].
Bit-parallel approaches are also proposed in [250, 248].

A distributed graph partitioning algorithm is proposed in [117]. The authors
introduce a new graph partition method and design an algorithm based on Apache
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Hadoop platform [19] (an open source implementation of the MapReduce program-
ming model). A more recent open source distributed framework, called Apache
Spark [284], was used in [92] to implement a new parallel approach. The algo-
rithm exploits the multi-phase partitioning strategy, enabling iterative in-memory
processing of graphs.

Maximum weight clique. The problem of listing the maximum weight clique
is an extension to weighted graph of the maximum clique problem. It consists of
enumerating the clique with largest weight in an input graph. Considering that the
weight can be associated to vertices and/or edges, the following variants have been
considered in the literature:

• Maximum vertex weight clique: Given a graph G = (V ,E) such that
each vertex v ∈ V is associated with a positive integer weight w(v), find a
clique Q which maximizes ∑v∈Qw(v).

• Maximum edge weight clique: Given a graph G = (V ,E) such that each
edge {x, y} ∈ E is associated with a positive integer weight w({x, y}), find a
clique Q which maximizes ∑x,y∈Qw({x, y}).

• Maximum total weight clique: Given a graph G = (V ,E) such that each
vertex v ∈ V and each edge {x, y} ∈ E are associated with a positive integer
weight w(v) and w({x, y}), respectively, find a clique Q which maximizes∑
v∈Qw(v) +∑

x,y∈Qw({x, y}).

The problem of finding the maximum vertex weight clique is addressed in [173],
introducing a new algorithm that exploits the maximum satisfiability (MaxSAT)
techniques. MaxSAT reasoning is also exploited in [96] to introduce a new solution.
In [317] is applied the Binary Quadratic Programming model to the maximum vertex
weight clique problem, which is combined to the tabu search approach proposed
in [318]. Heuristic methods are described in [316], being exploited to implement
local search algorithms. In [48] is proposed an approach that can scale to massive
graphs, which interleaves between clique construction and graph reduction. In the
reduction phase, the graph is reduced by removing some vertices that are impossible
to be in any clique of the optimal weight. A new solution is introduced in [120],
which is based on satisfiability (SAT) technique combined to the Conflict-Driven
Clause Learning algorithm [189, 205].

In [344] is described a new operator to be used in a local search approach. It
is implemented in a tabu search algorithm to assess the usefulness of the proposed
operator. Shimizu et al. [276] use algorithm engineering techniques to design a new
branch-and-bound approach for listing the maximum vertex weight clique. Their
method is divided in two phases: precomputation and branch-and-bound. Basically,
in the first phase the weights of cliques in many subgraphs are calculated and stored,
while in the second phase the problems are divided in small subproblems, pruning
the unneeded ones. Another brunch-and-bound approach is given in [138], which
is specially designed for large graphs. The algorithm implements a preprocessing
phase to determine an initial vertex ordering and reduce the graph size, while the
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incremental vertex-weighted splitting phase reduces the number of branches. More
recent branch-and-bound algorithms are given in [174, 128].

Seeking to parallelize the computation, a distributed tabu search algorithm is
proposed in [153]. In [89] is described a parallel metaheuristic for the maximum
vertex weight clique problem. The proposed method is an optimization of the
ant colony strategy, being implemented using Message Passing Interface (MPI).
Nogueira and Pinheiro [211] introduce a new CPU-GPU local search heuristic, which
is implemented to run in a CPU-only architecture and a hybrid CPU-GPU platform.
The experimental analysis shows that the hybrid implementation performed better,
achieving an average speed up of 12 times over the CPU-only implementation.

Focused on maximum edge weight clique problem, a recent review of approaches is
described in [125], providing a description of mathematical optimization formulations
and solution approaches. Although the techniques proposed to find the maximum
vertex weight clique can be widely used to solve similar problems, they may fail
to tailor the local search to specific structures. Based on that argument, in [182]
is described an approach specialized to solve the maximum edge weight clique
problem. The algorithm exploits the Deterministic Tournament Selections (DTS)
strategy [198] to choose the edges with large weight, minimizing the search space.
In [124] is described a quadratic optimization formulation approach, analyzing the
characteristics of the proposed method in terms of local and global optimality. Li
et al. [177] introduce three new heuristics and a local search algorithm to find the
maximum edge weight clique.

The problem of listing the maximum total weight clique is address in [95]. The
authors develop a new local search algorithm, providing an extensive experimental
evaluation in large sparse vertex-weight and edge-weight graphs.

4.1.3 Bipartite cliques

A bipartite graph G = (U ∪ V ,E) is a graph with two distinguished disjoint sets of
nodes U and V , such that edges in E connect nodes in U to nodes in V , but two
nodes within the same set are not adjacent. Bipartite clique, also known as biclique,
is an induced bipartite subgraph Q ⊆ G where every node in U(Q) ⊆ U is connected
to every node in V (Q) ⊆ V by edges in E(Q) ⊆ E. Given an input bipartite graph
G and two integer t and z, the problem of counting – and possibly listing – bicliques
consists of counting all bipartite cliques of size t+ z with t nodes in U and z nodes
in V . In [256] is described an algorithm for counting butterflies, i.e., complete 2× 2
bicliques. The proposed approach is a randomized algorithm to approximate the
number of butterflies in a graph with provable guarantee on accuracy.

Butterflies are exploited by [259] to list dense subgraphs in a bipartite graph
and detect the relations among them. The proposed approach is a peeling algorithm
designed to enumerate maximal k-tips (vertex-based subgraph) and k-wings (edge-
based subgraph). Given a subgraph S = (U ∪ V,E) such that U and V are the sets
of disjoint nodes and E is the set of edges, S is a k-tip only if each node u ∈ U is
contained in at least k butterflies, and each pair of nodes u, v ∈ U is connected by
series of butterflies. By similar arguments, S is a k-wing only if every edge (u, v) ∈ E
is contained in at least k butterflies, and each pair of edges (u1, v1), (u2, v2) ∈ E is
connected by series of butterflies.
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Besides the problem of counting all bicliques of fixed size, the maximal biclique
problem has also been addressed in the literature. It consists of enumerating bicliques
containing nodes that are not properly contained within any other larger biclique.
Two algorithms for sparse bipartite graphs are presented in [185]. Given an input
graph G with n nodes and m edges, the first approach runs in O(43) time and
O(n+m) space, while the second one runs in O(42) time and O(n+m+N · 4)
space, where 4 is the maximum degree of G and N is the number of all maximal
bicliques in G. In [146] is described a depth-first strategy to enumerate maximal
bicliques. The proposed approach starts with singleton nodes and expands each one
by adding adjacent nodes to them one by one using a depth-first search.

A distributed approach is introduced in [208]. The parallel algorithm is designed
for the MapReduce framework and implemented using the Apache Hadoop plat-
form [19]. The main strategy of the algorithm is to cluster the input graph into
smaller size subgraphs and process them in parallel. A variation of bicliques is
proposed in [11], called c-isolated bicliques. In this case, both parts of the biclique
are constrained with respect to their outgoing edges. Hence, it is designed an
algorithm for listing all c-isolated maximal bicliques in a given bipartite graph, which
is inspired by the technique for listing c-isolated cliques introduced in[133].

Focused on listing only the largest biclique, the maximum biclique enumeration
problem has also been studied in the literature. In [271] are proposed scale reduction
techniques for the maximum biclique problem. Those techniques can be combined
with an exact algorithm to solve this problem optimality on large sparse networks.
Furthermore, the proposed scale reduction techniques can also be applied for the
maximum edge biclique problem, which consists of finding the biclique with largest
number of edges. The maximum edge biclique problem is also addressed in [269],
where is proposed a probabilistic algorithm based on the Monte Carlo subspace
clustering method.

A special case of the maximum biclique problem focused on balanced bicliques
has also been addressed, called the maximum balanced biclique problem. Given a
bipartite graph G = (U ∪ V ,E), this problem consists of listing the largest biclique
Q ⊆ G such that both disjoint nodes set of Q have the same number of nodes,
i.e., |U(Q)| = |V (Q)|. In [195] is described how techniques from branch-and-bound
algorithms for the maximum clique problem can be adapted to find the maximum
balanced biclique. The proposed branch-and-bound approach is improved in [345],
where is applied a new Upper Bound Propagation procedure inspired by [283].
An evolutionary algorithm with structure mutation is given in [336]. Moreover, a
mutation operator is proposed to enhance the exploration during the local search
process. In [342] is proposed a tabu search method combined with a graph reduction
to find the maximum balanced biclique. The proposed approach employs the
Constraint-Balanced Tabu Search algorithm to explore the search space and two
bound-based dedicated reduction techniques to shrink progressively the given graph.

An extension to bipartite subgraph of the bipartite clique problem is studied
in [287], called maximum weighted induced bipartite subgraph problem (WIBSP).
Given a bipartite graph G and non-negative weights for the nodes, this problem
consists of finding an induced subgraph S ⊆ G with the largest total weight. In
the study, it is shown that the WIBSP can be reduced to the weight independent
set problem. Thus, non-trivial approximation and exact algorithm for the WIBSP
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can be obtained using the reduction and results about the weight independent set
problem.

4.1.4 Sample graphs

Given a sample graph S of size k, the problem of listing sample graphs consists of
enumerating all instances of S in a large undirected graph G. This problem is also
known as subgraph or motif listing.

Enumeration algorithm. The Partition algorithm for listing triangles proposed
by Suri and Vassilvitskii [285] has been extended for listing subgraphs in [4]. The
extended algorithm is a parallel one-round MapReduce approach for listing all non-
induced instances of a subgraph S in a graph G, designed based on the computation of
multiway joins [5]. MapReduce-based framework is also proposed in [165], exploiting
the edge-based join to allow multiple edges to join in each round. The input/output
complexity of the problem when graphs do not fit in the main memory is the focus
of [279], introducing two external memory algorithms. The first is a deterministic
algorithm that exploits a matched independent set technique, while the second is a
randomized algorithm exploiting the random coloring technique [216].

In [275] is described a distributed approach, called PSgL, for listing non-induced
subgraphs, which exploits the divide-and-conquer strategy. The proposed algorithm
is based on graph processing paradigm [186] and Bulk Synchronous Parallel [305],
expanding the partial subgraph instances by data vertices in parallel until all
instances are found. Another distributed approach based on MapReduce framework
is described in [150], named TwinTwigJoin. Experimental evaluations are performed
comparing TwinTwigJoin and the PSgL algorithm [275], showing that the introduced
approach achieved the best results. In [166] is described a distributed algorithm called
SEED, which is compared to TwinTwigJoin [150]. SEED returns the solution in a
generalized join framework, avoiding the constraints in TwinTwigJoin. Experimental
results show that SEED outperforms TwinTwigJoin. Shared-memory platform is
exploited in [152]. The authors parallelize the sequential approach RI [43] and
propose an improved version called RI-DS.

Works addressing the subgraph enumeration problem listed in this section can
enumerate all non-induced instances of a given subgraph S in a large graph G.
However, the problem of listing all induced instances of a given subgraph S in G
can not be solved by the described approaches.

Exact counting algorithm. The problem of counting, instead of listing, all
instances of S in G has also been addressed in the literature. It consists of counting
all instances of a given subgraph S on k nodes in a large graph G, being not necessary
to touch all instances of S during the process. In [258] is described an algorithm
for counting independent instances of a specific subgraph in probabilistic biological
network. A parallel algorithm for counting the number of occurrences of a given
graph S on six nodes in a large graph G is given in [144]. The proposed approach is
a GPU implementation of a distributed algorithm described in [40].
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Approximate counting algorithms. Approximate approaches have been intro-
duced in the literature seeking to speed up the running time. In [108] is proposed an
estimating subgraph algorithm, employing the egocentric approach described in [321].
The algorithm exploits the probability sample of egocentric networks to estimate
the subgraph frequency. A parallel approximate solution is given in [53], which
implements the color-coding technique [15]. Another parallel approximate solution
is described in [36], being implemented on parallel graph processing framework
Pregel [186].

Detecting induced subgraphs. Given a sample graph S and a large graph G,
this problem consists of detecting whether S exists in G, i.e., if G contains at
least 1 induced instance of S. The problem of detecting a subgraph S of size 4 in a
large graph G is addressed in [324], introducing a general randomized framework.
Although the algorithm can detect the existence or not of a subgraph S in a large
graph G, it cannot list all induced instances of S in G. The detection of small
induced subgraph is also addressed in [99], which can find induced subgraph of fixed
size k in a large graph G.

4.2 Frequent subgraphs mining

In this section are discussed the works focused on mining frequent subgraphs. This
problem consists of finding all subgraphs that appear frequently in a graph or
collection of small graphs according to a given frequency threshold τ . Therefore, a
subgraph is frequent if it has at least τ appearances in the graph.

In [239] is given a survey on frequent subgraph mining algorithm. The survey is
focused on reviewing few existing scalable techniques to find frequent subgraphs in a
collection of graphs or in a single large graph. A novel framework, called GraMi, for
frequent subgraph mining in a single large graph is presented in [93]. The algorithm
models the frequency evaluation as a constraint satisfaction problem (CSP). GraMi
stores only the templates of frequent subgraphs and, at each iteration, solves the
CSP until finds the minimal set of appearances that are enough to evaluate the
subgraph frequency. This process is repeated by extending the subgraphs until no
more frequent subgraphs can be found. In [206] is proposed a new version of GraMi.
It is a hybrid algorithm that combines approximate structural graph matching and
semantic graph matching.

A genetic framework is described in [85], which is an extension of [83] and [84].
The authors implement two instances of the framework: a breadth-first order and a
pattern-growth approach. In [2] is proposed an algorithm that exploits the mapping
sets method. This strategy allows to eliminate the isomorphism computation during
the search for frequent subgraphs. An optimization for frequent subgraph mining
approaches is given in [81]. The proposed technique, called filtration, exploits the
property of repeating edges of subgraphs, allowing to eliminate the non-frequent
subgraphs during the computation without calculating the exact support value.
The filtration method is general purpose, which can be applied to any algorithm
designed to address the frequent subgraphs mining.

Focused on a single large graph, in [80] is presented a brief survey of frequent
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subgraph mining algorithms. The review describes the type of techniques used in
each work and their respective phases. A more general survey is given in [289],
focusing on algorithms for mining frequent subgraphs in different types of graphs.
Moreover, the survey discusses distinct mining strategies and the types of frequent
subgraphs produced by the previous works.

In [10] is proposed a new approach focused on real-time frequent subgraph
mining. The algorithm can avoid redundant and false pattern checking and reduce
costly isomorphism checking by indexing subgraphs with custom data structures.
Demetrovics et al. [79] describes an approach that can solve the subgraph isomorphism
in polynomial time in some settings. The proposed algorithm is based on canonical
labeling strategy, Random Access Machine (RAM) model [260], and the A prior-
based approach. The binary search and the isomorphism test procedures run in
O(logn) and O(log |Cik|), respectively, where n is the number of nodes in the input
graph and |Cik| is the number of subgraphs candidates on k nodes. In [97] are
proposed two hybrid bi-objective evolutionary solutions. The first method, called
GASLS, combines genetic algorithm and stochastic local search, while the second
approach, named GAVNS, combines genetic algorithm and variable neighborhood
search. Experimental evaluation is performed, and the algorithm GASLS showed the
best results. An approach for frequent subgraph mining in multigraphs is proposed
in [131]. The algorithm implements a set of pruning rules to swiftly transverse the
search space for multigraph pattern extraction.

Considering that graph mining is computationally very hard, parallel solutions for
frequent subgraph mining have been proposed in the literature. A parallel algorithm
on GPUs is given in [147], analyzing major challenges for GPU-based subgraph
mining. The proposed approach is investigated in [290], where the algorithm in [147]
is extensively analyzed and implemented using the Nvidia CUDA framework [212].
In [307] is described a parallel multicore approach, exploiting the gSpan strategy [333].
Another in-memory algorithm is described in [274], which executes on current
multicore and multiprocessor machines. The proposed approach incorporates a fast
heuristic with high-performance concurrent data structure in order to accelerate the
detection and counting subgraphs. A parallel frequent subgraph mining algorithm
is proposed in [334], adopting the master-slave parallel mode. In this case, master
processor generates frequent subtrees and distributes them to slave processing
nodes, dealing with the expansion of frequent subgraph edge and the isomorphism
identification. The proposed approach can compute frequent subgraphs in O(n2·2n/k)
time, where n is the number of nodes in the input large graph and k is the number of
slave processors. The distributed programming framework Pregel [186] is exploited
in [340] to introduce an algorithm for single massive graph. Moreover, the authors
describe two optimizations processes applied in the proposed approach to reduce
the communication cost and distribution overhead.

MapReduce framework is exploited in [179], presenting a two-step filter-and-
refinement approach. The algorithm partitions the graph (or collection of graphs)
among worker nodes in the filter step, hence each worker determines a set of locally
frequent subgraphs. Then, the union of all local candidates is processed in the
refinement step, storing only globally frequent subgraphs. Another MapReduce-
based approach is proposed in [38], which is implemented using the Apache Hadoop
platform [19]. Basically, the algorithm constructs and retains all patterns in a
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partition that has a non-zero support in the map phase, and then it decides whether
a pattern is frequent by aggregating its support in the reduce phase. In [317] is
presented a two rounds MapReduce approach. The algorithm mines the locally
frequent subgraphs in the first round, and then calculates the global frequency of
each candidate subgraph in the second round. Talukder and Zaki [288] focus on a
single massive graph that is too large to fit in the local memory at each compute
node. Therefore, they propose a hybrid solution that exploits both thread-based
parallelism within each compute node and distributed computation across multiple
compute nodes. Their approach can scale to a massive graph with over a billion
nodes and four billion edges. A more recent MapReduce-based approach is given
in [229]. It exploits the breadth-first search strategy to iteratively extract frequent
subgraphs. Moreover, new frequent subgraphs are generated without performing
any isomorphism test, which is costly and imperative in existing approaches.

A different distributed approach is given in [230]. It utilizes the features provided
by distributed in-memory dataflow systems such as Apache Spark [284] or Apache
Flink [49]. Apache Spark is also exploited in [234], where is proposed a parallel
frequent subgraph mining algorithm in a single large graph. The authors introduce a
heuristic search strategy and three optimizations for the support computing operation.
In [1] is described a novel parallel frequent subgraph mining system for a single
large graph. The approach is divided in two phases: approximate and exact. In the
approximate phase are identified subgraphs that are frequent with high probability,
while in the exact phase is computed the exact solution based on the results of the
approximation phase. Mohamed et al. [200] adapts the FSG approach [163] to a
parallel version. The proposed solution is based on the parallelism model in cloud
system by using HoriVertical partition.

Maximal frequent subgraphs mining. Due to the extremely large space needed
to mine all frequent subgraphs, the maximal frequent subgraphs mining problem has
been addressed in the literature. It consists of listing all maximal frequent subgraphs,
i.e., frequent subgraphs that are not properly contained within any other larger
subgraph. The computational complexity of this problem is the topic of [151]. This
work provides an extensive analysis of the maximal frequent subgraphs enumeration
considering the effect of three different parameters: possible restrictions on the class
of graphs, a fixed bound on the threshold, and a fixed bound on the number of
desired answers. An algorithm for listing maximal frequent subgraphs in a single
graph is described in [100]. The proposed approach uses inexact matching strategy,
which allows identifying maximal patterns with structural differences, in vertices and
edges, respect to their occurrences. Focused on parallel platform, in [235] is proposed
a multi-threaded algorithm, which is a parallelization of the Mule approach [161].
The algorithm decides whether a subgraph is maximally frequent by exploiting a
depth-first search strategy, listing each frequent subgraph exactly once. A recent
review of the frequent subgraph mining is given in [207]. An overview of different
algorithms from a bioinformatics perspective is presented, as well as their potential
biomedical application.
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4.3 All subgraphs on k vertices
In this section are discussed the works addressing the problem of counting/listing
subgraphs of fixed size. Given a large graph G and an integer k, this problem consist
of counting – and possibly listing – all subgraphs on k nodes in G. This problem
is known in the literature as subgraphs, graphlets or motifs counting/enumeration
problem.

Enumeration algorithms. A notable tool for listing all subgraphs on k nodes is
given in [323], called FANMOD. The tool implements a novel algorithm described
in [322]. It can enumerate all subgraphs up to eight nodes (i.e., k ≤ 8), exporting
the results to a variety of machine- and human-readable file formats. In [188] is
described an algorithm for 4-node subgraphs, named RAGE. Although the proposed
approach is based on non-induced subgraphs, the authors show how to calculate the
count of induced subgraphs given the non-induced count. An experimental analysis
is performed comparing the algorithm RAGE and the tool FANMOD [323], showing
that RAGE achieved the best results. Connected induced subgraphs are addressed
in [193]. The authors describe an algorithm that enumerates all connected induced
subgraphs of a given size k, combining a local search tree strategy and a conventional
depth-first approach. In [68] is tackled the problem of listing connected subgraphs
with bounded girth in directed graph. The girth of a graph is defined as the length
of its shortest cycle. The authors propose two algorithms for listing induced and
non-induced subgraphs, respectively. Both proposed approaches run in O(n|S|) time
and use O(n3) space, where n is the number of nodes in the input graph G and S is
the set of all solutions.

Focused on parallel platforms, distributed and multicore solutions have been pro-
posed in the literature for listing subgraphs of fixed size. In [20] is described a parallel
multicore version of the sequential algorithm FaSE [219]. This approach exploits the
network-centric strategy, which is combined with a dynamic load balancing scheme
in the parallel version to speed up the computation. Another multicore algorithm
is given in [273], which enumerates all induced subgraphs using edges instead of
vertices. This strategy leads to a load-balanced enumeration approach efficiently
executed on current multicore and multiprocessor machine. In [197] is described a
multithread algorithm. The proposed approach is an extension of [196] that can
enumerate all induced subgraphs up to 6 nodes. Distributed MapReduce-based
solution is given in [272]. It exploits a heuristic method for subgraph isomorphism
detection, being implemented on the Apache Hadoop framework [19].

The problem of enumerating bipartite subgraphs in an undirected simple graph G
is addressed in [320]. The bipartite subgraph enumeration problem tackled consists
of, for a given graph G and a constraint R, listing all bipartite subgraphs of G
exactly once. In the work are proposed two algorithms for listing all bipartite induced
subgraphs and all bipartite subgraphs, respectively. The first approach can compute
all induced subgraphs in a bipartite graph with degeneracy k in O(k) time per
solution, while the second solution can compute all subgraphs in O(1) per solution.

Exact counting algorithms. Although the enumeration problem has several
applications in the complex network analysis, the problem of counting, instead of
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listing, all subgraphs on k nodes has also been addressed in the literature. It consists
of counting the number of subgraphs on k nodes without the need of enumerating
each one of them.

A combinatorial method for counting subgraphs, called Orca, is described in [122].
It exploits a system of equations introduced by [154] to compute all subgraphs up
to 5 nodes. Hence, given an input graph G on n nodes and m edges, the algorithm
can count all subgraphs on 4 nodes in O(m · d + T4) time and O(m + n) space,
where d is the maximal node degree and T4 is the time needed to enumerate all 4-
cliques. Subgraphs on 5 nodes are counted in O(m · d2 + T5) time and O(m · d)
space, where T5 is the time needed to enumerate all 5-cliques. A generalization of
Orca for counting subgraph of any size is given in [123]. In [196] is proposed an
algorithm for counting subgraphs of size k+ 2 based on the set of induced subgraphs
on k nodes. This approach can compute 3, 4 and 5-node subgraphs in directed
graphs in O(α(G)m), O(m2) and O(nm2) time, respectively, where α(G) is the
arboricity of the input graph. Ortmann and Brandes [215] present an algorithm
for counting all induced and non-induced subgraphs of size 4 on a per-node and
per-edge basis. This solution combines a system of equations and the algorithms K3,
C4 and COMPLETE proposed by Chiba and Nishizeki [59], requiring O(α(G)2m)
time for counting all 4-node subgraphs.

In [231] is proposed an algorithm, called ESCAPE, to enumerate all 5-node
subgraphs. Its main strategy is to cut a subgraph into smaller ones, and using counts
of smaller subgraphs to get larger counts. The proposed approach counts all 5-node
subgraphs by listing four specific subgraphs, which three of them have less then 5
nodes. Given an undirected graph G with n nodes and m edges, the algorithm first
construct the degree ordered directed graph G→ by orienting all edges in G. Then,
it counts all connected 5-node subgraphs in G in O(W (G) + D(G) + DP (G→) +
DBP (G→) + m + n) time and O(n + m + T (G)) space, where W (G) is the time
required to count all wedges, D(G) is the time required to count all diamonds,
DP (G→) is the time required to count all directed 3-paths, and DPB(G→) is the
time required to count all directed bipyramids. A general purpose tool for detection
and analysis of subgraphs is described in [17], which is a Java library, designed for
extensibility and sustainability.

Parallel solutions for counting, without listing, all subgraphs of size k have
also been proposed in the literature. A multicore algorithm is given in [21]. The
proposed approach exploits the g-trie data structure [242], which is implemented
using Pthreads [210]. Ahmed et al. [7] propose a parallel multicore approach for
counting connected and disconnected subgraphs of size 3 and 4. For each edge, the
algorithm counts a few subgraphs, which are used to obtain the exact counts of
others in constant time by combinatorial arguments. Given a graph G with n nodes
and m edges, their algorithm counts all subgraphs on 3 and 4 nodes in O(m ·4) and
O(m · 4 · Tmax +m · 4 · Smax) time, respectively, where 4 is the maximum degree
in G, Tmax is the maximum number of triangles incident to an edge, and Smax is
the maximum number of stars incident to an edge.

Another shared-memory multicore approach is described in [77]. It can count all
subgraphs on 3, 4 and 5 nodes considering all possible edge orbits of a subgraph.
It allows the approach to enumerate 4 out of 8 subgraphs on 4 nodes, and 14 out
of 32 subgraphs on 5 nodes, being the number of remaining subgraphs obtained in
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constant time by combinatorial calculation. The proposed approach can count all
connected 5-node subgraphs in O((Tmax +Nmax

u +Nmax
v )3) time, where Tmax is the

largest value of |T | = Γ(u)∩ Γ(v), while Nmax
u and Nmax

v represent the largest value
of |Nu| = Γ(u)\T and |Nv| = Γ(v)\T , respectively. CPU and GPU parallelizations
are the topic of [244]. Inspired by the parallel CPU-based algorithm PGD [7], the
authors introduce three different parallel approaches: single-GPU, multi-GPU and
hybrid CPU-GPU. A distributed MapReduce-based solution is given in [86], being
implemented using Apache Spark [284]. The main strategy of the algorithm is
to apply an adaptive time threshold and an efficient work-sharing mechanism to
dynamically do load balancing between the workers.

Approximate counting algorithms. Besides enumeration and exact counting
algorithms, approximate solutions have also been proposed in the literature for
counting subgraphs on k nodes. The main objective of the approximate approaches
is to estimate as accurately as possible the number of all subgraphs on k nodes in
an input large graph G.

Two sampling methods are described in [311] for estimating subgraphs statistics.
The first one can estimate the number of connected induced subgraphs on k nodes for
any value of k, while the second approach can jointly count the number of subgraphs
on k − 1, k, and k + 1 for any k ≥ 4. Focused on 4-node subgraphs, in [136] is
described a path sampling approach. The proposed algorithm approximates the
number of 4-node subgraphs applying a novel technique of 3-path sampling and
a special pruning scheme. In [237] is proposed an approximate algorithm, called
Graft, to count approximately all k-node subgraphs for k ≤ 5. Graft counts the
subgraphs by iterating over a random subset of edges of the input graph. Hence,
the lower the sampling factor, the faster the algorithm runs. However, the higher
the sampling factor, the better the accuracy of Graft. Subgraphs on 4 and 5 nodes
are tackled in [313]. The proposed method can sample and count 4- and 5-node
subgraphs, providing unbiased estimators of subgraph frequencies. Two approximate
algorithms based on random walk strategy are proposed in [247]. They exploits the
Monte Carlo Markov Chain sampling method over the candidate subgraph space.

A general framework to estimate subgraph statistics of any size is presented in [56],
which exploits the random walk strategy. Furthermore, two optimization techniques
are proposed to improve the accuracy of the framework. Another random walk based
approach is given in [57], which generates samples by leveraging consecutive steps
of the random walk as well as by observing neighbors of visited nodes. In [119] is
described a sampling algorithm for counting connected and disconnected subgraphs
up to 8 nodes. A new sampling method for counting subgraphs on 5 nodes is given
in [314], while sampling methods for subgraphs of any size are described in [58, 118].
In [218] is proposed a Monte Carlo sampling algorithm. It can simultaneously sample
all subgraphs of size up to k nodes.

Bressan et al. [45] provide a theoretical and experimental comparison of two
popular approaches for counting approximately the number of subgraphs: Monte
Carlo Markov Chain (MC) and Color Coding (CC) [15]. Although MC method
is very efficient in terms of space, a carefully engineered version of CC approach
presented the best results. In [155] are studied two of the most widely used sampling



4.4 Clique relaxations 31

schemes: subgraph and neighborhood sampling. The subgraph sampling strategy
consists of sampling each node independently with probability p and observes the
subgraph induced by the sample nodes, while the neighborhood sampling method
additionally observes the edges between the sampled nodes and their neighbors.

Focused on parallel computation, in [8] is described an exact counting framework
for subgraphs on k nodes. The exact approach is combined with a statistical unbiased
estimation framework with provable error bounds for computing local subgraphs
statistics approximately. A distributed algorithm for k-node subgraphs counting is
proposed in [281]. It is a distributed-memory version of the shared-memory algorithm
Fascia described in [280], which exploits the color coding strategy. Subgraphs
on 3 nodes are tackled in [90], describing a distributed solution implemented in
GraphLab PowerGraph framework [110]. Moreover, the concept of edge pivoting is
introduced, being exploited by the parallel solution. The edge pivoting strategy is
also exploited in [91], describing a distributed approach for counting approximately
the number of 4-node subgraphs. The proposed approach is a distributed message-
passing scheme, which is implemented using GraphLab PowerGraph framework [110].
Another distributed approach is given in [192]. Two techniques are also introduced,
multi-phased sampling and cost-aware sampling, reducing the query time on large
graphs with less than 1% relative error. In [245] is proposed an unbiased subgraph
estimation framework. It can be implemented in both shared and distributed memory
architecture, presenting an effective accuracy with less than 1% relative error.

4.4 Clique relaxations
In this section are discussed the works addressing clique relaxation problems. Con-
sidering that a k-clique (small complete subgraphs on k nodes) is too restrictive in
common real-life scenarios, different types of relaxations equally useful have been
introduced in the literature. The origins of clique relaxation concepts are discussed
in [225], providing a brief overview of mathematical programming formulations
for different clique relaxation problems. According to the characteristics of their
problems, the works discussed in this section are presented in three main clique re-
laxation categories: vertex-based relaxations in Section 4.4.1, edge-based relaxations
in Section 4.4.2 and density-based relaxations in Section 4.4.3.

4.4.1 Vertex-based relaxations

In this section are discussed the works addressing the vertex-based clique relaxations.
Those problems consist of listing small subgraphs S of size s such that the degree
of every vertex in S is relaxed according to a given threshold k ≤ s − 1. In this
category is included the problem of listing k-core and k-plex subgraphs.

k-core. Given an input graph G, the k-core of G is the largest induced subgraph in
which every vertex has degree at least k. Hence, the problem of k-core decomposition
of the graph is to find all the k-cores of the graph. A study of patterns and anomalies
related to k-cores is presented in [277]. It introduces three empirical patterns that
govern k-cores or degeneracy across a wide variety of real-world graphs, providing
practical uses of those patterns.
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In [148] is described an extensive analysis of previous proposed approaches for
k-core decomposition, which aims to explore whether k-core decomposition on large
networks can be computed using a consumer-grade PC. Several implementations
have been evaluated, and the Batagelj and Zaversnik algorithm [32] implemented
on Webgraph framework [42] presented the best performance. An experimental
analysis of Batagelj and Zaversnik algorithm [32] is performed in [75]. Moreover, it
is introduced a new multicore approach, called ParK. Another multicore algorithm
is given in [139], called PKC. The proposed approach can reduce the synchronization
overhead and creates a smaller graph to process high degree vertices. An experimental
analysis is carried out comparing the performance of PKC with Batagelj and Zaversnik
algorithm [32], ParK [75] and the distributed approach MPM [202], showing that
the PKC achieved the best performance.

Focused on distributed platform, in [187] is described a parallel solution for k-core
decomposition, being implemented on Apache Spark [284]. The proposed approach
is based on "think like a vertex" paradigm, which is an iterative execution framework
provided by Pregel [186]. A MapReduce-based algorithm for approximate k-core
decomposition is introduced in [94]. It is a sketching technique based on edge
sampling strategy for computing a 1− ε-approximate k-core for all k simultaneously.

The problem of (k, r)-core is addressed in [339]. It is a variant of k-core which
consists of finding cohesive subgraphs on social networks considering both user
engagement and similarity perspective. Therefore, given an attributed graph G, a
connected subgraph S in G is a (k, r)-core if and only if it satisfies both structure
and similarity constraints. Several algorithms are proposed to enumerate all maximal
(k, r)-cores and find the maximum (k, r)-core, being evaluated using four real-world
datasets.

k-plex. Given an input large graph G and a positive integer k, a k-plex is a
subgraph S in G such that every vertex u in S is a neighbor of at least |S| − k
vertices in S. In other words, each vertex in a k-plex S can miss at most k neighbors
in S. A clique is a special case of a k-plex, where 1-plex of size s correspond to a
clique on s vertices.

Based on the definition of k-plex, the problem of enumerating all maximal k-
plexes has been proposed in the literature. Algorithm engineering techniques are
used in [35] to design two algorithms for listing maximal k-plexes and maximal
connected k-plexes, respectively. The algorithms are based on the work described
in [63], being applied a method to optimize the generic approach. Focused on
densely connected k-plexes for non-small k, in [337] is proposed an algorithm for
enumerating maximal k-plexes that can avoid small k-plexes and non-dense medium
k-plexes. Densely connected k-plexes are also the target of [338], where is described
an algorithm for enumerating densely connected k-plexes in networks. In [66] is
introduced a solution for listing all large k-plexes, i.e. all k-plexes non-smaller than
an input integer value i. The main idea of the algorithm is to find large k-plexes
by looking in the neighborhood of cliques of a size that depends on k and i. A
generalization of sequential algorithm for maximal clique enumeration to handle
maximal k-plex enumeration is described in [319]. Parallel computation is exploited
in [69], where is proposed a distributed algorithm able to find larger k-plexes of very
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large graphs in just a few minutes.
Besides maximal k-plex enumeration, the problem of listing maximum k-plex has

also been addressed in the literature. It consists of enumerating the largest k-plex
in an input graph G for all possible value of k, i.e., listing all maximum k-plexes.
Maximal and maximum enumeration solutions are proposed in [65]. The main idea is
to enumerate all maximal k-plexes and then selecting the largest ones. Combinatorial
algorithms are proposed in [194] focused on maximum k-plexes, introducing heuristics
and exact approaches. Another combinatorial algorithm is described in [204], which
improves the depth-bounded search tree approach introduced by [159].

A study of maximum k-plexes is given in [31], where the problem is formulated
as a binary integer program. Moreover, a branch-and-cut framework is implemented
based on classes and valid inequalities and facets introduced in the study. In [104] is
proposed an exact algorithm that can deal with large-scale graphs. Several graph
reduction methods and heuristic strategies are introduced, which are integrated
into a branch-and-bound search algorithm. Structural properties of maximum k-
plexes are investigated in [330]. It is also described a branch-and-bound algorithm,
being theoretically and experimentally evaluated. In [343] is proposed a tabu
search approach to enumerate maximum k-plexes in very large networks. The
algorithm exploits two transformation operators to locate high-quality solutions and
a frequency-driven perturbation operator to escape and search beyond the identified
local optimum.

The maximum k-plex problem is also addressed in edge-weight graphs, which is
known as maximum edge-weight k-plex problem (Max-EkPP). Given a graph G such
that each edge is associated with a positive integer weight, this problem consists of
listing k-plexes with largest total weight of edges. The Max-EkPP was introduced
in [190], where the author also provides a linear programming formulation. The first
heuristic method for the Max-EkPP is proposed in [111]. It is based on the variable
neighborhood search metaheuristic, implementing a objective function which takes
into account the degree of every edge.

4.4.2 Edge-based relaxations

In this section are discussed the works addressing the edge-based clique relaxations.
In this category is included the problem of listing k-truss subgraphs and the truss
decomposition problem.

k-truss. The cohesive subgraph k-truss was introduced by Cohen [62], being
considered an extension of the clique. It consists of a connected subgraph S such
that each edge in S is incident to at least k−2 triangles. Notice that a clique of order
k is a k-truss. In [62] is also proposed the problem of listing maximal k-truss, i.e.,
k-truss that is not a proper subgraph of another larger k-truss. In [127] is proposed
a preliminary version of an approach for maximal k-truss, being implemented in
a multithread platform. Focused on GPU computation, in [114] is proposed an
approach using algorithm engineering techniques for finding both the k-truss of the
graph for a given k and the maximal k-truss using a dynamic graph formulation.
Although the authors present an implementation for the NVIDIA GPU, the proposed
approach is architecture independent.
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Based on the concept of k-truss, in [341] is introduced a novel community model,
called weighted k-truss community. In addition to the characteristics of the k-truss
problem, this model takes the edge weight into consideration. To address the
new community model, it is described an algorithm to find top-r weighted k-truss
communities. Given an undirected edge-weighted graph G and parameters r and
k, this problem consists of listing all the top-r weighted k-truss communities with
largest weights. The strategy of the algorithm is to remove iteratively the smallest-
weight edge from the maximal k-truss to generate all weighted k-truss communities
one by one. The proposed approach requires O(m3/2) time, where m is the number
of edges in the input graph. In [145] is described a linear-time algorithm for listing
top-r k-truss communities in an undirected unweighted graph G. Given a graph G,
a vertex v ∈ G and integers r and k, this problem consists of finding top-r k-truss
communities containing v.

A novel dense subgraph model combining k-core and k-truss is proposed in [178],
called k-core-truss. It is based on a new concept of important edges. Therefore, the
k-core-truss of a graph G is the largest subgraph S in G such that every edge has
the importance value at least k in S.

Truss decomposition. Given a graph G, the truss decomposition consists of
finding all largest k-trusses of G for all values of k. In [309] is described an in-memory
algorithm for truss decomposition. It achieves the same worst-case complexity of
the in-memory triangle listing approach [285], requiring O(m3/2) time and O(m+n)
space on graphs with n vertices and m edges. Probabilistic graphs are the topic
of [129], being designed a dynamic programming approach.

Parallel solutions have also been proposed for truss decomposition. In [140] is
introduced a multicore approach for large sparse graph. It is a level-synchronous
parallelization of the sequential approach for k-truss decomposition described in [309].
Another multicore solution is proposed in [331], which applies a new optimization
method to achieve a better parallelization. In [282] is proposed a shared-memory
parallel algorithm based on peeling. It breaks a serial approach into several bulk-
synchronous parallel steps and then uses a multi-stage peeling method. Collaborative
CPU+GPU approaches for triangle counting and truss decomposition are given
in [76]. Moreover, it is described a comparison of the memory management schemes
offered by Nvidia CUDA [212] and NVLink [101]. In [54] is proposed a distributed
algorithm for k-truss decomposition. It is designed in the MapReduce framework
based on the previous work [61].

Bounds and algorithms for k-truss are discussed in [47]. Moreover, two new
approaches are proposed. The first is inspired by [309], using linear memory and
requiring O(m3/2) time. The second is a matrix multiplication method, which avoids
enumerating all the triangles in the input graph and can achieve running times
significantly below m3/2.

4.4.3 Density-based relaxations

In this section are discussed the works addressing problems related to density-
based clique relaxations. In this category are included s-clique, k-club, quasi-clique,
bipartite clique and bipartite subgraphs.
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s-clique. Given an input graph G, let distG(u, v) be the length of the shortest
path (number of edges) between nodes u and v in G. A subgraph S ⊆ G is a s-clique
only if, for all pair of nodes u, v ∈ S, it holds that distG(u, v) ≤ s. Notice that, for
k = 1, a k-clique is a clique (complete subgraph), where all pair of nodes in S are
adjacent. A s-clique is also known in the literature as n-clique or k-clique.

Exact and approximation algorithms for the s-clique problem are proposed
in [142]. The exact approach is based on branch-and-bound strategy, which can list
all s-cliques. The approximation algorithm produces s-clique with 2-approximation.
It can produce all or top-k s-cliques in polynomial delay. Another polynomial delay
algorithm is proposed in [34] for listing all maximal s-cliques, i.e., s-cliques S such
that they are not properly contained within any other larger s-clique. Furthermore,
several variants of the well-know Bron-Kerbosch algorithm [46] for maximal clique
enumeration are introduced. In [195] is described an approach for enumerating the
maximum s-clique, i.e., the largest s-clique. The proposed algorithm is an adaptation
of the maximum clique algorithm described in [296] with an introduced lazy global
domination rule.

k-club. Given a subgraph S, let diamS(u, v) be the length of the shortest path
(number of edges) between nodes u and v in S. Given a positive integer k, a k-club is
a subgraph S in G such that diamS(u, v) ≤ k for all pairs of nodes u, v ∈ S. In other
words, S is a k-club if and only if the shortest path between every two nodes u, v in
S is composed of at most k edges. Notice that a 1-club is a clique, where all pair
of nodes are connected. Although the definitions of s-clique and k-club are similar,
distG(u, v) and diamS(u, v) have different definitions. In a s-clique S ⊆ G, each pair
of nodes u, v ∈ S is connected by a path of length at most s (distG(u, v) ≤ s), where
that path may use any node in G. However, in a k-club S′ ⊆ G, each pair of nodes
u, v ∈ S′ is connected by a path of length at most k (diamS′(u, v) ≤ k) such that
all nodes in the path are also in the k-club. Based on the definition of k-club, the
problem of listing the k-club with maximum cardinality for a given integer k has
been addressed in the literature.

A combinatorial branch-and-bound algorithm is described in [183]. It combines
a distance coloring based upper-bounding scheme and a bounded enumeration based
lower-bounding routine for enumerating the largest k-club. In [51] is described a new
heuristic approach and a dynamic data structure that maintains the k-neighborhood
for each node of a graph. Moreover, four tricks for the implementation of the branch-
and-bound algorithms are presented in [44, 183]. A new variable neighborhood
search heuristic is described in [270]. It is incorporated into the branch-and-bound
algorithm introduced by [183] to create a new exact approach for the maximum
k-club listing problem.

An study of maximum k-club enumeration in different graphs is given in [109].
The authors prove that, for a given graph G and an integer k, a maximum k-
club in G can be computed in polynomial time when G is a chordal bipartite,
a strongly chordal or a distance heredity graph. Moreover, on a superclass of
these graphs, polynomial-time algorithm can be obtained when k is odd. In [13]
is described a comparative study of models for the maximum k-club problem. A
linear programming relaxation standpoint is used to compare integer formulations
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proposed in the literature. Besides the comparison of existing approaches, it is
described two enhanced compact formulations for k = 3.

Heuristic methods for listing the maximum k-club are described in [14]. All
proposed heuristics are composed of two phases, combining simple construction
schemes and exact optimization of restricted integer models. In [326] are proposed
two exact methods. The problem of listing the maximum k-club is encoded as an
instance of the partial MAX-SAT problem, where two MAX-SAT formulations are
designed to tackle it. Graph decomposition and model decomposition techniques
are combined in [203] to prove that the maximum k-club problem can be solved
optimally on large-scale graphs. The proposed method combines a simple relaxation
based on necessary conditions with canonical hypercube cuts described in [30].

Approximation polynomial-time approaches for the maximum k-club problem
are given in [28, 26]. The approximation ratio of [28] is O(n1/2) and O(n2/3) for
any even k ≥ 2 and any odd k ≥ 3, respectively, where n is the number of nodes
in the input graph. However, the algorithm proposed in [26] achieves an optimal
approximation ratio of O(n1/2) for any k ≥ 2. Implementation and experimental
evaluation of both algorithms [28, 26] are given in [27]. Focused on k = 2, in [160] is
investigated the algorithmic complexity for three variants of well-connected 2-clubs:
robust, hereditary, and "connected" 2-clubs. To address this problem, it is designed
an exact combinatorial algorithm, being experimentally evaluated on real-world
graphs. A variation of the maximum k-club listing problem is described in [50],
called maximum triangle k-club problem. For a given input graph G and an integer
k, this problem consists of listing the maximum k-club induced subgraph S such
that all nodes in S belong to at least one triangle in S. To tackle the proposed
problem, integer programming formulations are introduced, which are stated in
different variable spaces.

Quasi-clique. Given a graph G and an induced subgraph S ⊆ G, let e[S] be the
number of edges in the induced subgraph S. According to [3], given a threshold γ
such that 0 < γ ≤ 1, a subgraph S ⊆ G is a γ-clique (quasi-clique) only if S is
connected and e[S] ≥ γ

(|S|
2
)
. Based on this definition, the problem of enumerating the

maximum quasi-clique in an input large graph has been addressed in the literature,
which consists of listing the largest quasi-clique.

A combinatorial branch-and-bound approach for the maximum quasi-clique
problem is described in [184]. The proposed algorithm is a classical depth-first search
based on the method described by [162]. Mixed integer programming formulations are
introduced in [306], designing four different solutions. In [232] is proposed a biased
random-key genetic algorithm for the maximum quasi-clique problem, where two
variants of the proposed approach are implemented using two alternative decoders.

A variation of the quasi-clique problem is proposed in [300], called optimal quasi-
clique. This problem consists of finding the best quasi-clique, i.e., a subgraph S ⊆ G
that maximized the function fγ(S) = e[S]− γ

(|S|
2
)
. Furthermore, two algorithms for

extracting optimal quasi-cliques are introduced: greedy and heuristic algorithms.
In [169] is addressed the query-driven maximum quasi-clique problem. It consists
of finding the largest quasi-clique containing a given query node set. To solve this
problem, the notion of core tree is proposed to organize dense subgraphs recursively,
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as well as three refinement operations are presented to optimize a solution. Another
variant of the quasi-clique problem is addressed in [223], called degree-based quasi-
clique problem. Given a graph G and an induced subgraph S ⊆ G, instead of
considering the edge density e[S], this problem considers the degree of nodes in S.
Hence, given a threshold γ, S is a degree-based quasi-clique only if S is connected
and the degree of any node in S is at least γ(|S| − 1). Two exact approaches are
proposed for finding the maximum degree-based quasi-clique: a branch-and-bound
based solution and a degree decomposition algorithm.
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Chapter 5

Enumerating cliques in parallel

In this chapter we introduce a new parallel clique enumeration algorithm. The pro-
posed approach is described and theoretically analyzed in Section 5.1. Experimental
setup is given in Section 5.2. In Section 5.3 is described the implementation of the
proposed algorithm, while experimental results are given in Section 5.4.

5.1 A general parallel framework

In this section is described a work-efficient parallel algorithm to compute k-cliques.
Though the focus is on counting, the algorithm can be easily adapted to the listing
problem. We assume that the input undirected graph has been preprocessed as
described in Chapter 2: this is a standard preliminary step that can be performed
efficiently in parallel (see, e.g., [278]), independently of k. In Section 5.1.1 is described
the clique counting algorithm. Main implementation choices are given in Section 5.1.2,
while the analysis of the introduced algorithm is presented in Section 5.1.3.

5.1.1 Algorithm

The proposed approach can be regarded as an extension – to cliques with an arbitrary
number of nodes and to a parallel setting – of the forward algorithm for triangle
counting described in [167]. It exploits the basic idea of t-expansion, implemented
through neighborhood intersection for the sake of efficiency.

In a t-expansion, t new nodes are added to an existing clique on h nodes.

Claim 1. Let h and t be two positive integer values. Let Uh = {u1 . . . uh} ⊆ V be a
set of h nodes of G such that (ui, uj) ∈ E for each i < j. Let Wt = {w1 . . . wt} ⊆ V
be a set of t nodes of G such that:

1. (wi, wj) ∈ E for each i < j, with i, j ∈ [1, t];

2. wi ∈ Γ+(u1) ∩ . . . ∩ Γ+(uh) for each i ∈ [1, t].

Then the graph induced by Uh ∪Wt in G is a clique on h+ t nodes.

Figure 5.1 illustrates t-expansion for h = 3 and t = 2. Edges are directed
according to the total order ≺ introduced in Chapter 2. Nodes in U3 are {u1, u2, u3}
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Figure 5.1. Example of t-expansion as described in Claim 1.

such that u2 ∈ Γ+(u1) and u3 ∈ Γ+(u1) ∩ Γ+(u2). The dashed arrows from U3 to
W2 represent condition 2 of Claim 1: since no arrow is missing, all nodes of W2
are adjacent to nodes of U3 in G. Moreover, since w2 ∈ Γ(w1) due to condition 1,
the union of the two sets forms a 5-clique in the undirected graph G with nodes
{u1, u2, u3, w1, w2}, where u1 ≺ u2 ≺ u3 ≺ w1 ≺ w2.

Our approach is to start from small cliques and expand them by progressively
adding t new nodes until a clique of size k is obtained. This is implemented
as follows. Assuming that the intersection C = Γ+(u1) ∩ . . . ∩ Γ+(uh) has been
previously computed, all subsets of t nodes are taken from C. Notice that condition 2
is automatically satisfied for each node in any of these subsets. Then, if the t subset
nodes also satisfy condition 1, the computation is forked passing to the new thread
the intersection C ∩ Γ+(w1) ∩ . . . ∩ Γ+(wt).

The core of the algorithm, based on the fork/join paradigm, is shown in Figure 5.2.
The fork command is used to start a new thread and compute the next iteration.
The first invocation is CountClique(k, t, G, V , 0), where k and t are the clique
and the clique expansion size, respectively (assuming k ≥ 2 and t < k), G is the
directed graph, V contains candidate nodes (at the beginning, all graph nodes),
and 0 is the current clique size. At lines 3 to 6 we check if we need less then t nodes
to complete k-cliques: in this case we increase the number q of cliques by the number
of subsets W of size k − h, with nodes in W satisfying condition 1.

If we are not in a base step, we compute lines 7 to 15. At lines 8 to 11, for
each possible set W ⊆ C of size t satisfying condition 1, a new thread τ is started.
Candidate nodes C ′ processed by τ result from the intersection between C and
the neighborhoods of all nodes in W (if h = 0, i.e., at the first invocation of
CountClique, C = V is not taken into account in the intersection). At lines 12
to 15, when all forked computations are done (i.e., each spawned thread has completed
its execution and joined its parent), the partial results are summed.

We remark that the algorithm does not explicitly check for condition 2 of Claim 1
thanks to the use of a data structure – the neighborhoods’ intersection set C – that
explicitly stores candidates: if a node v ∈ C, then v is guaranteed to be in the
high-neighborhood of all the previously selected nodes.

5.1.2 Main implementation choices

A variety of aspects related to the algorithm implementation have not been spec-
ified in Section 5.1.1. In particular, we discussed neither subset computation nor
neighborhood intersection algorithms, which are addressed below.
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Algorithm 3. CountClique
1: function CountClique(clique size k, clique expansion size t, directed graph G = (V,E),

,——————————– candidates C = V ∩ Γ(u1) ∩ . . . ∩ Γ(uh), current clique size h)
2: q ← 0 . Local number of cliques
3: if h+ t ≥ k then
4: for each subset W ⊆ C of size k − h do
5: if nodes in W are mutually adjacent then . Condition 1 in Claim 1
6: q ← q + 1
7: else
8: for each W = {w1... wt} ⊆ C of size t do
9: if nodes in W are mutually adjacent then . Condition 1 in Claim 1
10: C′ ← C ∩ Γ(w1) ∩ Γ(w2) ∩ ... ∩ Γ(wt) . Neighborhoods’ intersection
11: fork CountClique(k, t, G, C′, h+ t)
12: for each thread τ forked at line 11 do . Aggregate partial clique counts
13: join τ
14: let q′ be the number of k-cliques computed by τ
15: q ← q + q′

16: return q

Figure 5.2. Fork/join algorithm for computing the number of k-cliques by t-expansions.

Subset enumeration. The number of subsets of size t to be enumerated at line 8
is
(|C|
t

)
. When this is large, it may be worth to enumerate subsets in parallel in order

to minimize span. To this aim, CountClique is combined with an adaptation of the
parallel subset enumeration algorithm subsetlim introduced in [82]. The subsetlim
approach enumerates subsets in lexicographic order: subset positions in the ordering
are used as indexes to divide subset into groups that are then distributed among
different threads. In the implementation, the maximum group size σ is fixed to 10
thousands.

CountClique, when combined with subsetlim, works as follows. Consider set C ′
obtained by neighborhood intersection at line 10 in Figure 5.2: instead of forking a
unique thread with input C ′ at line 11, the number of t-size subsets in C ′ is computed
and divided into γ groups each containing at most σ subset indexes (following the
lexicographic order). Then, γ new threads are forked, one per group. When the
execution of each spawned thread reaches line 8, it will enumerate at most σ subsets
of C ′, which is its input set of candidates.

For a simple example, consider the set of nodes C ′ = {1, 2, 3, 4, 5, 6}, t = 3
and σ = 5. In this case, the number of subsets of size 3 in C ′ is

(6
3
)

= 20. Considering
that the maximum group size σ is 5, four new threads are forked. Each thread
receives as input the set C ′ and the index of the first subset to be enumerated:
thread1 = 1, thread2 = 6, thread3 = 11, and thread4 = 16. Hence, the subsets of
C ′ are enumerated by the spawn threads as follows:

• thread1: {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,3,4}.

• thread2: {1,3,5}, {1,3,6,}, {1,4,5}, {1,4,6}, {1,5,6}.

• thread3: {2,3,4}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}.

• thread4: {2,5,6}, {3,4,5}, {3,4,6}, {3,5,6}, {4,5,6}.
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Neighborhood intersection. Intersections are computed using a merge-style
approach (nodes are kept ordered by their labels both in the neighborhoods and
in the candidate sets). If subsets are enumerated sequentially, node selection at
line 8 and set intersection at line 10 can be also performed incrementally. A first
node w1 is selected in C, computing the intersection C1 = C ∩ Γ+(w1). The next
node w2 is selected in C1, computing C2 = C1 ∩ Γ+(w2). This procedure, repeated
until Ct = Ct−1∩Γ+(wt), guarantees that w1 ≺ w2 ≺ . . . ≺ wt: each node belongs to
the high-neighborhood of the previously selected nodes. We call this the progressive
intersection heuristic. Since each intersection decreases the number of candidates,
node selection and set intersection are likely to be faster. In addition, besides
avoiding the test for condition 2, the progressive intersection heuristic allows the
algorithm not to check condition 1 as well: any selected node wx ∈ Cx−1 is thus
adjacent to all previously selected nodes.

With parallel subset enumeration, this improvement is not applicable: since
subsets are divided into groups and represented by indexes, all subset nodes must
be selected from C before computing any intersection.

5.1.3 Analysis

The computation can be conveniently represented on a fork tree, where each branch
works in parallel. At the root node (level 0), all nodes in V are candidates. Tree
nodes at level 1 correspond to all the

(|V |
t

)
subsets of V of size t. Each subset

{w1, . . . , wt} associated with a fork tree node W of level 1 has a candidate set
C obtained as the intersection between the neighborhoods Γ+(w1) ∩ . . . ∩ Γ+(wt).
Similarly, the children of W at level 2 correspond to all the

(|C|
t

)
subsets of C of size

t. A similar reasoning can be repeated downto the last level dkt e − 1. Examples of
fork trees for t = 1 and t = 2 are shown in Figure 5.3. A square box surrounding one
or more tree nodes is labeled with the candidate set C of their (common) parent.

Given any tree node W at level `, consider the t · ` graph nodes whose neighbor-
hoods have been intersected along the path from the root to W . These nodes form
a (t · `)-clique. For instance, nodes {1, 5} and {3, 4} in Figure 5.3c yield the 4-clique
{1, 3, 4, 5}. Moreover, since Γ+(1) ∩ Γ+(3) ∩ Γ+(4) ∩ Γ+(5) = ∅, no clique of size at
least 5 containing these four nodes can exist in G.

Consider a leaf at the maximum depth of the fork tree. If (k mod t) = 0, then
the leaf corresponds to a (k − t)-clique, which is extended to a k-clique in the base
step (lines 3 - 6) by adding t nodes satisfying conditions of Claim 1. Conversely, if
k%t 6= 0, the number of nodes added to the clique in the base step is smaller than t
(see the test at line 3).

The proposed algorithm is work-optimal [59], i.e., it can list all k-cliques of a
graph with m edges in time O(mk/2). Moreover, its span and memory usage are
also analyzed. Among the many implementation variants, the analysis is focused on
the case t = 1, assuming that forks and set intersections are done sequentially.

Work analysis. By Lemma 1, at any time during the execution the set of can-
didates contains at most 2

√
m nodes, since 2

√
m is the maximum size of the

neighborhood of any node. Since candidates are obtained as intersections of node
neighborhoods, throughout the computation, C can only get smaller than this bound.
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(a) Graph G (b) 1-expansion

(c) 2-expansion

Figure 5.3. A graph G and its fork trees for t = 1 and t = 2, assuming k = 5.

This implies that the degree of any fork tree node is at most 2
√
m because t = 1.

The only exception is the tree root: C = V at the beginning of the execution and
thus the root has n children.

It is not difficult to see that the number of nodes at a level ` ≥ 2 of the
fork tree is O(m ·

√
m
`−2) = O(m`/2). Indeed, the number of nodes at level 2 is∑

v∈V |Γ+(v)| = m and the degree of any internal node is upper bounded by 2
√
m,

as observed above.
The number of operations done by the thread corresponding to a leaf is dominated

by line 4 and isO(
√
m), because |C| ≤ 2

√
m (the check at line 5 takesO(|W |2) = O(1)

time since t and k are constant). The time spent on each internal node (different
from the root) is instead O(m), because line 8 enumerates O(

√
m) sets and the

intersection at line 9 requires O(
√
m) time.

The total work is achieved summing the work done by the nodes at each level of
the fork tree. Using the bounds given above, since the deepest leaves are at level k−1,
the time spent on these leaves turns out to be O(

√
m·m(k−1)/2) = O(mk/2). Similarly,

the time spent at any level ` ≤ k− 2 is O(m ·m`/2), which can be upper bounded by
O(m ·m(k−2)/2) = O(mk/2). Since we have at most k − 1 levels and k is a constant,
the total work is O(mk/2).

Span analysis. Consider any path in the fork tree. The time spent on the
root (lines 8-9) is given by ∑w∈V |Γ+(w)| = O(m). Any other node has degree
≤ |C| = O(

√
m) and therefore lines 8-10 take time O(

√
m ·
√
m) = O(m). Any leaf

requires time O(
√
m). Summing up along the path, whose length is k − 1, yields

span O(k ·m).
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Memory space analysis. As stated above, the number of nodes at level ` ≥ 2
is O(m`/2). Hence, the total number of nodes from level 2 downto the last level
is ∑k−1

x=2m
x/2, which is Θ(m(k−1)/2). Since the space usage per node is O(

√
m)

(due to the upper bound on the number of candidates), the total memory usage
is O(mk/2). The contribution due to the first three levels is upper bounded by
the contribution of the bottom levels. The memory consumption thus matches the
worst-case number of k-cliques, which is Θ(mk/2) [59].

5.2 Experimental setup

In this section is described the experimental platform, deferring implementations
details on algorithm CountClique to Section 5.3. Benchmarks used to evaluate
the algorithms are described in Section 5.2.1. The state-of-the-art sequential clique
counting algorithm in the experimental analysis is presented in Section 5.2.2. The
description of the platform where the experiments are performed is given in Sec-
tion 5.2.3

5.2.1 Benchmarks

The algorithms are evaluated on publicly available real-world networks from the
SNAP graph library [170], preprocessing all graphs so that they are undirected (if an
edge (u, v) appears in the graph, we also add edge (v, u) if it does not already exist).
We selected a set of 15 instances of different sizes and growth rates as function of
k (see Table 1.1). The results are obtained on eight social networks (comYoutube,
locGowalla, socPokec, wikiTalk, hTwitter, comOrkut, comLiveJ, socLiveJ1),
four Web graphs (webGoogle, webNotreDame, webStan, webBerkStan), a citation
network among US Patents (citPat), an Internet topology graph (asSkitter), and
a product co-purchasing network (amazon). The exact numbers of k-cliques on these
datasets, for k ∈ [1, 7], are shown in Table 1.1. In Figure 5.4 is analyzed the clique
growth rate by plotting the ratio qk/qk−1 as a function of k. Benchmarks are divided
into three groups, based on their clique growth rate: smaller than 3, in [3, 10], and
larger than 10, respectively. Notice that some graphs of the last group – most
notably comLiveJ and socLiveJ1 – exhibit very steep rates.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 5 6 7

q
k
/q

k
-1

clique size k

amazon
citPat

comYoutube

locGowalla
socPoke

webGoogle

 3

 4

 5

 6

 7

 8

 9

 10

4 5 6 7

q
k
/q

k
-1

clique size k

wikiTalk
webStan

hTwitter
asSkitter

comOrkut

 10

 20

 30

 40

 50

 60

 70

 80

 90

4 5 6 7

q
k
/q

k
-1

clique size k

webNotreDame
webBerkStan

comLiveJ
socLiveJ1

Figure 5.4. Clique growth rate: ratio qk/qk−1 for k ∈ [4, 7] on the different benchmarks.
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5.2.2 Sequential clique counting: algorithm L+N

As a baseline to understand and quantify the acceleration factor that our parallel
algorithms can achieve, a highly optimized sequential implementation is used, called
L+N, taken from [98]. L+N was implemented in Java and extends the state-of-
the-art sequential implementation for triangle enumeration presented in [214]. It
is an intersection-based algorithm that iterates over all edges, intersecting the
neighborhoods of the endpoints of each edge to find nodes that complete a triangle.
To this aim, during the computation, nodes are associated with a counter: when
processing a node u, the counters of all nodes in the neighborhood of u are set
to 1. Each node v in the neighborhood of u also increases the counters of its own
neighbors. Hence, triangles including edge (u, v) are formed by nodes whose counter
becomes equal to 2. L+N extends this approach to k-cliques, where the counter of
the node that completes a clique must be equal to k − 1.

The counter-based implementation seems difficult to parallelize due to concur-
rency issues in the management of counters: since the counter of the node completing
a clique must be k − 1, if different threads are allowed to write counters during the
execution, they must be properly synchronized. The proposed parallel algorithms
overcome this issue by using lists of candidates, instead of counters, and maintaining
only nodes that are adjacent to all the candidates. This technique, which proved
useful also in a sequential setting [304], might result in larger space usage, but can
be more easily parallelized avoiding concurrency issues.

5.2.3 Platform

The experiments have been performed on an Oracle Hotspot VM with 4 AMD
Opteron 8-Core 6272 2.1Ghz processors (32 overall cores), 64 GB of RAM (2 GB
per core), and Java version 1.7.

5.3 Engineering algorithm CountClique

The implementation of algorithm CountClique was carefully engineered considering
a variety of subset enumeration procedures, set intersection strategies, and data
structures. Hence, the most effective implementation choices are reported in the
thesis, focusing on five variants. Three of them (called 1by1, 2by2 and 3by3) use
sequential subset enumeration for t = 1, 2, and 3, respectively. Two variants (called
2by2P and 3by3P) use parallel enumeration for t = 2 and 3 (when t = 1, the number
|C| of subsets to be enumerated is typically rather small, making parallel enumeration
unworthy).

All the implementations have been realized within the Java Fork/Join frame-
work [168]. Besides the progressive intersection heuristic, code optimizations are
applied, whose are described in Section 5.3.1. A preliminary experimental analysis
aimed at identifying the most promising implementation choices is given in Sec-
tion 5.3.2, which discusses whether it is convenient to use parallel subroutines for
both candidate intersection and subset enumeration.
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5.3.1 Code optimizations

Clique expansion check. Whenever a node w such that |Γ+(w)| < k − h is
selected at line 8, w is immediately discarded before computing any intersection.
Similarly, in the progressive intersection heuristic, if |C ′| < k − h after each intersec-
tion, C ′ is dropped without forking any new thread. Incremental clique expansion
tests are instead impossible with parallel enumeration, where an entire subset must
be generated before checking that a clique can grow up to size k from the current
set of candidates.

Bounded forks. With sequential subset enumeration and t ≥ 2, at the first tree
level we need to bound the number of forks, which could be extremely large because
C = V . In order to avoid exceeding the Fork/join task queue capacity during
the execution, when an upper bound is reached, the algorithm stops forking until
previously spawned tasks have been completed. According to preliminary tests, a
bound of one million appears to be rather effective, yielding a total number of tasks
close to queue capacity on the platform.

For parallel enumeration variants, 1-expansion is applied at the first level of
the fork tree and t-expansion thereafter. When the graph to be analyzed is sparse,
as in the case of social networks (see also Table 1.1), many of the

(|V |
t

)
fork tree

nodes would be indeed associated to subsets of t graph nodes that are not mutually
adjacent (and cannot be thus expanded to a k-clique). The use of 1-expansion at
the first level reduces the number of root children to |V |, spending less time forking
worthless tasks. This optimization does not need to be applied at lower levels, where
we observed that the number of children becomes manageable (candidates in C
decrease after each intersection).

5.3.2 Candidate intersection and subset enumeration: sequential
or parallel?

Parallel merging. A first natural question is whether set intersection, which
uses a merge-style approach, should be performed sequentially or in parallel. Since
a parallel approach might be worth if sets to be intersected are large enough, in
Table 5.1 we analyze, for each benchmark, the degree of nodes with non-empty
high-neighborhood. Even graphs with a few million nodes present an average high-
neighborhood size of just a few dozens neighbors. In agreement with power laws in
degree distribution observed in real networks, there is a very large gap between the
maximum and the average sizes: the percentage of nodes with degree larger than
max/2, for instance, is close to 0 on most benchmarks. On such small sets, parallel
intersection does not pay off. Hence, sequential merging is considered to implement
all variants of the CountClique algorithm.

Parallel subset enumeration. Differently from set intersection, which involves
only small sets, a large number of subsets is likely to be generated at line 8 of
algorithm CountClique. To understand if parallel enumeration can prove useful, in
Table 5.2 we compare the running times, for t = 2 and 3, when subsets are generated
either sequentially or in parallel.
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Table 5.1. High-neighborhood statistics.

Graph
Nodes with Max high- Avg high- % larger % larger

non-empty high- neighborhood neighborhood than than
neighborhood size size Max/2 Max/4

amazon 398 879 24 6.13 0.115 59.720
citPat 3 718 682 77 4.44 0.021 0.428
comYoutube 1 120 769 164 2.67 0.016 0.318
locGowalla 195 500 84 4.86 0.487 3.534
socPokec 1 632 214 96 13.66 1.297 20.125
webGoogle 863 740 93 5.00 0.008 0.122
wikiTalk 2 391 620 340 1.95 0.013 0.084
webStan 276 003 103 7.22 0.596 3.899
hTwitter 456 408 377 27.41 0.179 4.466
asSkitter 1 685 838 231 6.58 0.023 0.372
comOrkut 3 072 280 535 38.14 0.314 2.165
webNotreDame 322 769 155 3.38 0.215 0.598
webBerkStan 676 928 201 9.82 0.274 2.547
comLiveJ 3 990 338 524 8.69 0.012 0.114
socLiveJ1 4 834 939 687 8.86 0.003 0.097

For t = 2, the parallel variant 2by2P performs slightly better than its sequential
counterpart 2by2 on small graphs and for small values of k. However, 2by2 becomes
considerably faster as the graph size and the clique size increase. The same behavior
can be observed for t = 3, where the difference of performance is even more noticeable
(see, e.g., socLiveJ1 for k = 5).

The parallel subset enumeration algorithm has shown very good speedups with
respect to sequential approaches when tested in isolation. Interestingly, when
applied as a subroutine of CountClique, parallel enumeration does not show the
same benefits. An in-depth analysis of this phenomenon revealed that this is largely
due to the incremental clique expansion checks performed by the sequential variants:
when k is larger, sequential incremental checks make it possible to enumerate far
less subsets than with parallel implementations, improving substantially the overall
running time.

Overall, there is no clear winner: parallel or sequential subset enumeration might
be preferable depending on the value of k and on the specific benchmark. Hence,
results obtained with both the implementations are reported in the experimental
evaluation.

5.4 Experimental results

In this section are summarized the main experimental findings. We remark that,
to the best of our knowledge, multicore algorithms addressing the same k-clique
enumeration problem were not proposed so far in the literature. Therefore, we provide
an experimental analysis comparing the proposed multicore solutions with the state-
of-the-art sequential algorithm. Notice that the running times of the sequential
algorithm are used as a baseline with the aim to understand and quantify the
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Table 5.2. Running times (mins:secs) of four sequential/parallel variants for t ∈ [2, 3] across
different datasets and different values of k, using 32 cores.

Graph k 2by2 2by2P 3by3 3by3P Graph k 2by2 2by2P 3by3 3by3P

amazon

4 0:05 0:04 0:04 0:04

citPat

4 0:50 0:43 0:46 0:47
5 0:05 0:04 0:05 0:04 5 0:47 0:44 0:47 0:44
6 0:05 0:04 0:05 0:04 6 0:45 0:43 0:44 0:42
7 0:04 0:04 0:04 0:04 7 0:42 0:40 0:44 0:41

comYoutube locGowalla

4 0:03 0:02 0:02 0:01
4 0:06 0:05 0:06 0:05 5 0:02 0:01 0:05 0:02
5 0:06 0:05 0:09 0:06 6 0:02 0:02 0:05 0:02
6 0:06 0:05 0:11 0:06 7 0:02 0:02 0:05 0:02
7 0:06 0:05 0:08 0:06 14 0:04 0:05 0:05 0:07

20 0:02 0:03 0:02 0:04

socPokec

4 1:02 0:42 0:54 0:50
5 1:07 0:42 1:18 0:54

webGoogle

4 0:11 0:09 0:09 0:08
6 1:08 0:41 1:15 0:56 5 0:14 0:08 0:24 0:10
7 1:09 0:43 1:11 0:54 6 0:12 0:10 0:25 0:10
14 0:57 0:53 0:57 1:12 7 0:12 0:12 0:25 0:13
20 0:48 0:46 0:47 1:00

wikiTalk

4 0:14 0:09 0:17 0:21

webStan

4 0:07 0:04 0:05 0:04
5 0:11 0:12 0:38 0:43 5 0:08 0:06 0:23 0:09
6 0:21 0:46 0:51 0:53 6 0:14 0:29 0:35 0:25
7 1:00 1:21 1:13 2:57 7 1:13 2:27 1:21 4:52

hTwitter

4 0:40 0:26 1:01 1:37

asSkitter

4 0:24 0:18 0:30 0:24
5 1:02 0:43 2:35 2:26 5 0:31 0:23 1:06 0:43
6 1:28 2:25 3:53 3:29 6 0:53 1:29 1:44 1:19
7 4:48 8:02 6:05 17:24 7 4:10 5:55 5:06 13:42

8 26:49 57:35 30:18 115:20

comOrkut

4 12:16 5:49 15:23 -

webNotreDame

4 0:04 0:04 0:06 0:04
5 14:01 7:41 36:23 - 5 0:11 0:23 0:47 1:00
6 13:32 23:42 38:02 - 6 3:43 12:19 3:48 9:00
7 42:16 51:25 60:29 - 7 75:56 176:23 74:51 427:30

webBerkStan
4 0:27 0:16 0:31 0:21

comLiveJ
4 2:21 1:41 4:20 3:50

5 1:08 1:29 4:20 4:25 5 12:50 28:13 22:02 39:14
6 17:18 48:22 18:58 28:48

socLiveJ1
4 3:06 2:25 6:07 8:14
5 22:16 54:40 37:41 80:37

acceleration factor that our parallel algorithms can achieve by using the parallelism.
Throughout the experiments three main independent variables are changed:

input dataset, number of cores, and clique size k. After a bird’s eye view on the
outcomes of the proposed study (Section 5.4.1), Section 5.4.2 addresses the scalability
of CountClique on different numbers of cores. Section 5.4.3 and Section 5.4.4 focus
on the computation of cliques with at most or more than 7 nodes, respectively: 7 is
the maximum value of k considered in previous experimental studies, most of which
focus on k = 4 and 5. Hence, as a by-product of the experimental analysis, we also
compute the exact number of k-cliques with at most 20 nodes in many real-world
networks from the SNAP repository. A comparison with state-of-the-art distributed
solutions is given in Section 5.4.5.

5.4.1 A bird’s eye view

In order to assess the efficiency of the proposed parallel algorithms, as a first
experiment cliques of moderate size are counted across different datasets using a
number of cores (8) that can be easily matched on modern commodity hardware.
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Figure 5.5. A comparison of the algorithms for k = 5.

The outcome of such experiments is shown in Figure 5.5 and Figure 5.6, reporting
on the running times of L+N and of the five parallel variants described in Section 5.3
when counting cliques of 5 and 7 nodes, respectively.
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Figure 5.6. A comparison of the algorithms for k = 7.

At a first glance, it is possible to observe that the performance of the parallel
algorithms changes significantly depending on the value of t and on the specific
dataset. The variants for t = 3 (3by3 and 3by3P, last two columns in the histograms)
appear to be the least competitive: they can be even slower than L+N, especially on
small graphs for which the number of k-cliques is not large (see also Table 1.1). The
variants of t = 2 perform better, but still struggle to beat L+N in a few graphs for
k = 5: e.g., 2by2 on amazon and citPat and 2by2P on comLiveJ and socLiveJ1 in
Figure 5.5. On the other hand, 1by1 clearly shows the benefits of parallelism and
is always significantly faster than the optimized sequential algorithm. Its speedup,
though largely affected by k and by the dataset characteristics, in this experiment is
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as large as 9.5 on comOrkut for k = 7 on 16 cores.
Overall, the experiment suggests that computing intersections of a relatively

large number of neighborhoods in order to reduce the number of tasks does not pay
off substantially in the Fork/join framework. Additional tests for values of t > 3 have
confirmed this performance trend. This is not completely unexpected: the larger
is t, the smaller is the number of nodes in the fork tree but, at the same time, the
higher is the running time at each node (see Section 5.1). In practice, since each fork
tree node is mapped to a distinct ForkJoinTask in the Java Fork/join framework,
small values of t yield many short tasks, while larger values result into fewer but
longer tasks. It is well known [116] that the Java Fork/join framework is extremely
efficient at handling even very large numbers of tasks. Conversely, long tasks are
more difficult to be scheduled optimally and could thus harm the scalability of the
framework. The results confirm this behaviour, showing that it is mostly convenient
using t ≤ 2. In particular, algorithm 1by1 seems well worth of being used even on a
relatively small number of cores.

5.4.2 Scalability analysis

In this section the scalability of the algorithms on different numbers of cores is
studied. As a typical outcome, Figure 5.7 shows the running times when counting
cliques of size k ∈ [5, 7] on the asSkitter dataset, using a number of cores that
ranges from 2 to 32.
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Figure 5.7. Running times of L+N and of the five parallel variants when counting cliques
of size k ∈ [5, 7], using a number of cores ranging from 2 to 32, on the input dataset
asSkitter.

Considering that the state-of-the-art algorithm (L+N) is sequential, its running
time does not change. On a few cores, the least efficient parallel solutions can have
a running time comparable to, or even slower than, L+N (e.g., 2by2P and 3by3P
on 2 and 4 cores). As previously stated, L+N and CountClique perform the same
asymptotic work, which is O(mk/2) in the worst case. However, due to the overhead
of thread synchronization and to the fact that the implementation of L+N is very well
engineered, it is not surprising that the sequential approach has smaller constant
factors hidden by the asymptotic notation. Conversely, when the number of cores
increases, speedups are more tangible. Actually, using at least 4 cores the parallel
approach starts to pay off.

Not surprisingly, the scalability of the parallel algorithms is better for the largest
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values of k, i.e., when the clique counting problem becomes more computationally
demanding. With k = 7, for instance, the speedup of 1by1 is about 9.2 on 32 cores
(notice the logarithmic scale on the y axis in Figure 5.7c). Comparable speedup
trends can be observed for k = 6. On the other hand, when k = 5, all the running
times are very small – less than 1 minute for 1by1 – and the advantages over L+N
are limited (the speedup of 1by1 is only about 3.3 on 32 cores).

Figure 5.8 illustrates the scalability of the algorithms on the other datasets. It is
reported only one experiment per benchmark, focusing on the largest – and most
difficult – value of k considered for each dataset.
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Figure 5.8. Scalability of the parallel algorithms.

Overall, the results are consistent with those observed on asSkitter: 1by1 is
the fastest variant and shows similar scalability trends. Scalability, however, appears
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to depend on the benchmark characteristics and is substantially better for the most
demanding datasets. For instance, amazon and citPat, which have a relatively small
number of cliques, appear not to take much advantage of parallelism: the curves
in Figure 5.8 are rather flat. Conversely, on hTwitter and comOrkut 1by1 gets a
speedup about 13 and 14, respectively, on 32 cores, starting from a running time
close to L+N on 2 cores.

5.4.3 Counting small cliques

In this section we focus on small cliques with at most 7 nodes. Figure 5.9 reports on
the results obtained for thirteen benchmarks on 16 cores (q6 and q7 could not be
computed for comLiveJ and socLiveJ1).
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Figure 5.9. Running time of the algorithm as a function of k on 16 cores, for k ≤ 7.
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As previously stated, L+N has a theoretical running time O(mk/2), where m is the
number of edges in the graph and k is the clique size, and this is optimal in the worst
case. Hence, the wall clock times measured for L+N should increase exponentially
with k on worst-case instances. Ideally, if L+N could be perfectly parallelized, for
moderate numbers of cores it would still be expect an exponential growth of the
wall clock time when increasing the clique size, but mitigated by a linear scaling
factor proportional to the number of cores.

On webNotreDame and webBerkStan, the running time of all the algorithms
has a sharp exponential trend with respect to k (notice the logarithmic scale on
the y-axis). As shown in Table 1.1, the number of cliques in webNotreDame and
webBerkStan grows considerably with k and the performance is thus likely to be
close to the worst case. Except for considerably small benchmarks (e.g., amazon,
citPat and comYoutube), the exponential trend is still visible in the other graphs,
but mitigated for the parallel algorithms when k = 4 and 5, since the algorithms
can take advantage of a relatively smaller number of k-cliques.

5.4.4 Counting larger cliques

The last set of experiments considers cliques of larger sizes, up to 20 nodes. This
is the first analysis in the literature of the exact number of k-cliques for k > 7. In
Appendix A is shown the number of k-cliques for k ∈ [8, 20] in 10 real-world networks
from the SNAP graph library [170]. The experiments are performed running both
1by1, which is fastest variant of CountClique, and its sequential competitor L+N
across small and medium-size benchmarks for k ∈ [4, 20], aborting long executions
after a time limit of 48 hours (2880 minutes).

Parallelism clearly shows its benefits as the clique size k increases. Figure 5.10
shows the running times on webGoogle, webStan, hTwitter, and asSkitter using 32
cores. On each benchmark, the number of k-cliques for the largest plotted value of k
is in the order of trillions. For k ≤ 7, the proposed parallel solution does not present
any noticeable difference with respect to L+N. However, it becomes extremely faster
as k increases: e.g., webGoogle for k = 15, where L+N and 1by1 require almost 26
hours and 132 minutes, respectively. Overall, 1by1 can often compute the number of
k-cliques for values of k that L+N cannot afford to solve. On webGoogle, for instance,
L+N exceeded the 48 hours time limit for all k > 15.

Optimizations applied to algorithm CountClique revealed to be crucial to speed
up its execution. To support this claim, in Figure 5.11 is compared L+N with
1by1, running the parallel algorithm both on 1 and on 32 cores, on benchmark
locGowalla for k ∈ [4, 20]. The raw running times is presented in Figure 5.11a.
The speedup of 1by1 with respect to L+N is shown in Figure 5.11b. The number of
node neighborhoods explored by each algorithm is presented in Figure 5.11c. And
k-clique distribution on locGowalla is given in Figure 5.11d.

It is remarkable that 1by1, even using 1 core, is faster than L+N when k is large
enough (k > 7). L+N appears to be very sensitive to the number of k-cliques, as can
be noticed by comparing the trend of its running time in Figure 5.11a with the clique
distribution in Figure 5.11d. 1by1 is instead less affected, especially on 32 cores,
and the difference of their running times becomes larger and larger as qk increases.
To explain this behaviour, notice that 1by1 explores far less neighborhoods than
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Figure 5.10. Increasing k on a selection of medium-size benchmarks.
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Figure 5.11. In-depth comparison of L+N and 1by1 on locGowalla for large values of k.

L+N, as shown in Figure 5.11c. Thanks to the progressive intersection and expansion
check heuristics, it can skip set of candidates that can not complete a k-clique since
early stages of the execution. L+N, with its counter-based implementation, can not
instead perform similar optimizations. These unique properties of 1by1, combined
with parallelism, make it possible to achieve very large speedups on locGowalla:
e.g., 26.8 on 32 cores for k = 16.

Figure 5.12 and Figure 5.13 confirm the results reported for locGowalla on
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Figure 5.12. Counting k-cliques on (a) amazon, (b) citPat, and (c) comYoutube for k ≤ 17
(qk = 0 for larger values of k as shown in 8.1).

other benchmarks. In Figure 5.12 are considered three rather small graphs: amazon,
citPat, and comYoutube. Since on these benchmarks the number of k-cliques
becomes 0 even for moderate values of k (see Appendix A), the results reported here
are obtained when qk ≥ 1. Even if 1by1 always outperforms L+N, Figure 5.12 confirms
that the benefits of parallelism are limited on small graphs with a relatively small
number of cliques (notice that qk is “only” proportional to 106 on these benchmarks).

In Figure 5.13 are considered three medium-size graphs: socPokec, webGoogle,
and wikiTalk. The charts exhibit the same behavior observed for locGowalla in
Figure 5.11. Graph wikiTalk (Figure 5.13c) is a prime example of the utility of
the progressive intersection and the clique expansion checks heuristics: even the
sequentialized execution of 1by1 on a single core is 37 times faster than L+N. A
truly parallel execution on 32 cores blows up the speedup by an additional 14 factor,
resulting in a running time which is 523 times faster than L+N.

5.4.5 Multithreading or MapReduce?

A natural question is how the proposed algorithms compare to other parallel solutions.
The current state-of-the-art approaches for parallel k-clique counting hinge upon
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Figure 5.13. Counting k-cliques on (a) socPokec, (b) webGoogle, and (c) socPokec for
k ≤ 20.

MapReduce [78], a distributed programming framework targeted at large clusters of
commodity machines. The two clique counting algorithms that are most promising
from a theoretical point of view, presented in [4] and [98], respectively, have been
experimentally analyzed in [98].

From a methodological point of view, a comparison of the multicore approach
with cluster-based MapReduce algorithms is not straightforward, since the underlying
computational platforms are very different. Hence, the analysis is limited to a few
spot observations.

In Table 5.3 is shown, for a common selection of benchmarks, the running times
achieved by 1by1 on 32 cores and by the two MapReduce algorithms described
in [4, 98] and experimentally analyzed in [98]. It should be noticed that the
MapReduce experiments in [98] have been carried out using a 16-node cluster on
Amazon Web Services (AWS). Each node was configured for providing 4 cores (based
on Intel Xeon E5-2670 v2 Sandy Bridge processors) and 7.5 GB of main memory.
Overall, the cluster was therefore more powerful than our platform (see Section 5.2)
with respect to both main memory (120 GB vs 64 GB) and number of cores (64 vs 32).
The comparison is thus largely unfair to 1by1. Nonetheless, when looking at raw
running times, even graphs with billions of cliques can be processed by 1by1 on
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a single machine within reasonable wall clock times and the performance of the
multicore algorithm is comparable – or even faster – than the MapReduce solution
on a variety of datasets and for several values of k. MapReduce is the solution of
choice when the dataset or the number of cliques are extremely large. In these cases,
the maximum level of parallelism that can be achieved on a single node machine
is bounded by physical limits beyond which multicore approaches cannot scale.
However, for several intermediate benchmarks (medium/large datasets or moderate
values of k), using MapReduce appears to be overkill and the multithreading approach
can be largely preferable, even on a less powerful platform.

Table 5.3. Running times (mins:secs) of 1by1 and of the MapReduce algorithms analyzed
in [98].

k = 4 k = 5 k = 6 k = 7
1by1 FFF AFU 1by1 FFF AFU 1by1 FFF AFU 1by1 FFF AFU

citPat 0:45 3:11 3:11 0:44 3:13 2:18 0:43 3:13 2:19 0:41 3:09 2:24
comYoutube 0:05 2:39 1:41 0:05 2:34 1:33 0:05 2:36 1:39 0:05 2:38 1:49
locGowalla 0:02 3:04 1:21 0:01 3:02 1:30 0:02 3:04 1:24 0:02 3:03 1:30
socPokec 0:41 4:02 2:29 0:40 4:13 2:39 0:41 4:15 2:51 0:42 4:09 3:02
webGoogle 0:07 2:43 1:27 0:08 2:43 1:32 0:09 2:40 1:40 0:11 2:40 1:52
webStan 0:03 2:29 1:27 0:05 2:37 2:06 0:15 2:36 4:00 1:31 2:05 14:12

asSkitter 0:18 3:17 2:59 0:23 3:18 5:34 0:51 3:14 25:30 4:27 4:12 >40
comOrkut 4:07 23:08 20:17 6:04 23:10 >50 12:50 23:22 >50 42:25 28:08 –

webBerkStan 0:11 3:01 2:53 1:01 3:08 8:24 16:54 4:56 >30 365:13 50:17 –
comLiveJ 2:05 5:24 4:06 12:16 6:13 14:02 – 41:22 >170 – – –
socLiveJ1 1:44 6:43 5:10 21:43 7:51 23:35 – 86:34 >180 – – –
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Chapter 6

Enumerating diamonds: a
sequential approach

In this chapter we introduce our sequential algorithm for counting the number of
k-diamonds in a graph with n nodes and m edges in O(nm(k−1)/2) time. Though
the focus is on counting, the algorithm can be easily adapted to the listing problem.
To the best of our knowledge, the k-diamond structure was not properly addressed
in the literature before our study. Therefore, the state-of-the-art algorithms for
k-diamond enumeration do not exist so far in the literature

Assuming that the input undirected graph has been preprocessed as described
in Chapter 2, we first introduce a structural classification of k-diamonds based on
node degrees and edge orientations in the directed graph G (Section 6.1). We then
describe (Section 6.2) and analyze (Section 6.3) an algorithm to compute the number
of 4-diamonds. The extension to k > 4 is addressed in Section 6.4.

6.1 Diamond classification

Given a diamond with node set D, we hinge upon the total order ≺ to decide which
node is responsible for counting D. In our sequential algorithm, each diamond
is counted by its node with smallest degree in G, i.e., by the node x ∈ D such
that x ≺ y for all nodes y ∈ D\{x}.

Given a k-diamond D and a node v ∈ D, we denote by dD(v) its degree in D,
i.e., dD(v) = |Γ(v) ∩D|. Notice that dD(v) must be either k − 1 or k − 2. In the
remainder of this chapter, we also denote by x and y the two smallest nodes in D,
respectively, with x ≺ y. One of the three following conditions must hold, depending
on the position of x and y in the diamond:

• Case 1: dD(x) = k − 1;

• Case 2: dD(x) = k − 2 and dD(y) = k − 1;

• Case 3: dD(x) = k − 2 and dD(y) = k − 2.

A k-diamond D belongs to case 1 if and only if its smallest node x is adjacent to all
the other k − 1 diamond nodes. Otherwise, it must necessarily be dD(x) = k − 2,



60 6. Enumerating diamonds: a sequential approach

Case 1 Case 2 Case 3

u

x

v

y

(a)

y

x

v

u

(b)

y

x

u

v

(c)

x

y

u

v

(d)

x v

uy

(e)

x

u

y

v

(f)

Figure 6.1. Classification of k-diamonds, for k = 4, based on the degree in D of the two
smallest nodes.

since a k-diamond only contains nodes of degree ≥ k − 2. In this case, when x is
not adjacent to one node in D, we use the second smallest node y to classify D.
Namely, D belongs to case 2 if and only if y is adjacent to all nodes in D \ {y}, and
thus x and y are also adjacent. Otherwise, if dD(y) = k − 2, nodes x and y are the
endpoints of the unique missing edge and the diamond belongs to case 3.

Example. Assuming k = 4, in a directed graph with edge orientations following
the total order ≺, there are six possible distinct 4-diamond types, which are classified
as shown in Figure 6.1. The smallest node x of each diamond is highlighted in bold,
while the second smallest node y, if needed, is dashed. We call u and v the other
two diamond nodes, assuming without loss of generality that u ≺ v.

Consider first the structure of diamonds belonging to case 1. Since dD(x) = 3,
the second smallest node y must be a neighbor of x and, by definition of x and y, it
must be x ≺ y. Node y, in turn, can have degree either 3 or 2 in D. The orientations
of edges must obey the ordering constraints assumed so far (i.e., x ≺ y ≺ u ≺ v),
yielding the diamond shown in Figure 6.1a when dD(y) = 3. On the other hand,
when dD(y) = 2, the third smallest node u can have degree either 3 or 2: this results
into the two different diamonds shown in Figure 6.1b and Figure 6.1c, respectively.

A similar reasoning can be applied to diamonds classified in case 2, for which
dD(x) = 2 and dD(y) = 3: dD(u) can be either 2 or 3, yielding the two distinct
configurations shown in Figure 6.1d and Figure 6.1e, respectively. In case 3, dD(x) =
dD(y) = 2: x and y are thus the endpoints of the unique missing edge and edge
orientations induce only one possible structure, shown in Figure 6.1f.

Although the number of edge orientations between the nodes of a k-diamond
(i.e., the number of configurations shown in Figure 6.1) would increase as a function
of k, the classifications into three main cases, being solely based on the degree of
the two smallest diamond nodes, remains valid: since x ≺ y and each node in a
k-diamond D has degree k − 1 or k − 2, the only three possibilities are Cases 1–3
introduced above.

6.2 Algorithm

In this section we focus on counting 4-diamonds. Our algorithm explores the high-
neighborhoods of nodes to spot each 4-diamond, which is then counted – exactly
once – by its smallest node x. Consider the classification described in Section 6.1
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and a diamond with node set D = {x, y, u, v} such that x ≺ y ≺ u ≺ v:

• If D belongs to case 1, we can find it by exploring only the high-neighborhood
of x, since y, u, v ∈ Γ+(x).

• Otherwise, we need to explore the high-neighborhoods of at least two nodes:

– If D belongs to case 2, y ∈ Γ+(x) and u, v ∈ Γ+(y). Therefore, we can
find D by progressively exploring the high-neighborhoods of x and y.

– If D belongs to case 3, nodes x and y are not adjacent. Hence, we work
by triangle augmentation: after computing all triangles {x, u, v} such that
x ≺ u ≺ v, we try to augment them with nodes y ∈ V such that x ≺ y,
counting a diamond only if u, v ∈ Γ+(y).

1: function SeqD4(Directed graph G = (V,E))
2: d4 ← 0
3: for each a ∈ V do
4: for each b, c, d ∈ Γ+(a) such that c ≺ d do
5: if (b, c) ∈ E and (b, d) ∈ E and (c, d) 6∈ E then
6: d4 ← d4 + 1 . Case 1
7: for each b ∈ Γ+(a) do
8: for each c, d ∈ Γ+(b) do
9: if (a, d) ∈ E and (c, d) ∈ E and (a, c) 6∈ E then
10: d4 ← d4 + 1 . Case 2
11: for each c ∈ Γ+(b) do
12: if (a, c) ∈ E then . Triangle âbc has been found
13: for each d ∈ V \{a, b, c} such that a ≺ d do
14: if (d, b) ∈ E and (d, c) ∈ E and (a, d) 6∈ E then
15: d4 ← d4 + 1 . Case 3
16: return d4

Figure 6.2. A sequential algorithm for counting (and listing) 4-diamonds.

Table 6.1. Roles played by nodes a, b, c, and d used in the pseudocode of Figure 6.2 with
respect to the six diamond types described in Figure 6.1.

1a 1b 1c 2d 2e 3f
a x x x x x x
b y u v y y u
c u y y u v v
d v v u v u y

The pseudocode of the algorithm is shown in Figure 6.2, where a, b, c, and d can
represent different nodes with respect to the configurations shown in Figure 6.1,
depending on their position within the diamond. In Table 6.1 we present the roles
played by these nodes for each diamond type. Note that a always coincides with
the smallest node x, being thus responsible for counting the diamond itself. The
algorithm receives the directed graph G, preprocessed as described in Chapter 2,
and returns the number d4 of 4-diamonds in G, computed as follows:
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• Diamonds from case 1 are counted at lines 3–6 (formal proof in Lemma 3).
For each node a ∈ V , we list all subsets {b, c, d} ⊆ Γ+(a) such that c ≺ d. A
diamond is found only if edges (b, c) and (b, d) exist, but nodes c and d are
not adjacent. Notice that the test at line 5 involves E, i.e., the direction of
edges (b, c) and (b, d) is not relevant, only their existence is: this can be easily
implemented on the directed input graph G by checking if (b, c) ∈ E or (c, b) ∈
E, i.e., if b ∈ Γ+(c) or c ∈ Γ+(b) (the checks on (b, d) are similar).

• Diamonds from case 2 are counted at lines 3 and 7–10 (formal proof in
Lemma 3). For each directed edge (a, b) ∈ E, at line 8 we list all pairs of
high-neighbors of b, i.e., nodes c, d ∈ Γ+(b), connected by an edge (as in the
previous case, the edge orientation is not relevant). Assuming that (c, d) ∈ E,
we then count the diamond only if (a, d) exists in G, but a and c are not
connected. Notice that we check for the connectivity between a and d in E,
instead of E, as a ≺ b (line 7), b ≺ d (line 8), and ≺ is a transitive relation.

• Diamonds from case 3, where the two smallest nodes are not adjacent, are
counted at lines 3, 7 and 11–15 (formal proof in Lemma 3). We first list all
triangles {a, b, c} ⊆ G such that a ≺ b ≺ c (lines 3, 7, 11 and 12). Then, for
each other graph node d such that a ≺ d, the diamond is counted only if d is
not connected to a, but has outgoing directed edges to both b and c. With
these checks, it is guaranteed that a and d are the pair of non-adjacent nodes
(with a ≺ d) as well as the smallest diamond nodes according to the total
ordering.

6.3 Analysis
We first prove the correctness of the algorithm.

Lemma 3. Algorithm SeqD4 counts each 4-diamond exactly once.

Proof. Let D be a diamond with node set {a, b, c, d}. The algorithm iterates
over each node a ∈ V at line 3, exploring a’s high-neighborhood Γ+(a) in order to
identify and count 4-diamonds where a is the smallest node (as a consequence, a
always coincides with x in Table 6.1). We now show that diamonds are listed by the
algorithm according to the classification given in Section 6.1. Namely:

• Lines 3–6: each triple of nodes b, c, d ∈ Γ+(a) such that (b, c) ∈ E, (b, d) ∈ E,
and (c, d) 6∈ E (test at line 5) corresponds to a diamond belonging to case 1.
If the test succeeds, nodes a and b have indeed degree 3, while c and d are the
endpoints of the unique missing edge. The checks performed by the algorithm
guarantee that a is the smallest node and that c ≺ d. Hence, depending on
the position of node b, only three total orderings are possible between the four
nodes: a ≺ b ≺ c ≺ d, a ≺ c ≺ b ≺ d, and a ≺ c ≺ d ≺ b. It is not difficult to
see that these correspond to the three configurations 1a, 1b, and 1c shown in
Figure 6.1.

• Lines 7–10: each triple of nodes b ∈ Γ+(a) and c, d ∈ Γ+(b) such that (a, d) ∈ E,
(c, d) ∈ E, and (a, c) 6∈ E (test at line 9) corresponds to a diamond belonging
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to case 2. Indeed, the checks guarantee that a is the smallest node x, with
degree 2 in the diamond, and b is the second smallest node y, with degree 3
(see also Table 6.1). Hence, checking if (c, d) ∈ E corresponds to verify if
(c, d) ∈ E when c ≺ d, or (d, c) ∈ E when d ≺ c. It is not difficult to see that
the two total orderings a ≺ b ≺ c ≺ d and a ≺ b ≺ d ≺ c correspond to the
two configurations 2d and 2e shown in Figure 6.1.

• Lines 11–15: each pair of nodes b ∈ Γ+(a) and c ∈ Γ+(a) ∩ Γ+(b) (see lines 7
and 11–12, respectively) corresponds to a triangle âbc such that a ≺ b ≺ c. The
second smallest diamond node is then chosen from set V \ {a, b, c}. A diamond
is counted at line 15 only if b, c ∈ Γ+(d), but d is not a neighbor of a. It is not
difficult to see that these constraints yield a 4-diamond where only one total
ordering is possible: a ≺ d ≺ b ≺ c. This corresponds to configuration 3f in
Figure 6.1. The test a ≺ d at line 13 is needed to guarantee that the diamond
will be counted only once, i.e., from the point of view of its smallest node a.

In summary, each configuration in each of the three cases shown in Figure 6.1 is
considered exactly once by algorithm SeqD4. Since any 4-diamond must belong to
one of the three cases, it follows that the overall count (updated at line 6 for Case 1
diamonds, line 10 for Case 2 diamonds, and line 15 for Case 3 diamonds) is correct.

Theorem 1. Given a graph G with n nodes and m edges, algorithm SeqD4 correctly
enumerates the 4-diamonds in G in O(nm3/2) time.

Proof. We separately analyze the running time of algorithm SeqD4 in the three
cases of Section 6.1.

In case 1, the time spent to enumerate all nodes a ∈ V and all nodes b ∈ Γ+(a)
at lines 3 and 4 is ∑a∈V |Γ+(a)| = m. Since c and d are also high-neighbors of
a and |Γ+(a)| ≤ 2

√
m by Lemma 1, the time to enumerate these node pairs at

line 4 is (2
√
m)2 = O(m). Hence, counting all case 1 diamonds requires O(m2) time,

assuming that node adjacency tests can be implemented in constant time (worst-case
or expected, depending on the available graph data structure).

Diamonds from case 2 are counted by exploring progressively the neighborhood
of their two smallest nodes. Based on the analysis of case 1, it is not difficult to see
that the algorithm spends the same amount of time for listing all diamonds from
case 2. All pair of smallest nodes a and b are listed at lines 3 and 7, respectively,
in O(m) time. Since Γ+(b) ≤ 2

√
m by Lemma 1, nodes c and d are enumerated

in 2
√
m · 2

√
m = O(m). Therefore, the algorithm count all diamonds from case 2 in

O(m ·m) = O(m2).
Focused on diamonds from case 3, the algorithm first lists all triangles in G at

lines 3, 7 and 11. This procedure requires ∑a∈V |Γ+(a)| · |Γ+(b)| time, which is at
most 2

√
m ·

∑
a∈V |Γ+(a)| = O(m3/2) by Lemma 1. Since the last node d is chosen

from V , line 13 requires O(n) time. Hence, all diamonds from case 3 are counted in
O(nm3/2) time.

Summing up the analysis above, all diamonds are counted in O(m2 + nm3/2)
time. Since √

m/2 ≤ n ≤ 2m
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by Lemma 2, the running time for counting the diamonds is O(nm3/2) time, being
O(m2) time on dense graphs and O(m5/2) time on sparse graphs.

By Lemma 3, each diamond is counted exactly once by its smallest node (accord-
ing to ≺), proving the correctness of the algorithm.

As described above, our SeqD4 algorithm counts diamonds from cases 1 and 2
in O(m3/2) time. This bound matches the work required by the state-of-the-art
algorithm FFFk [98] for listing all 4-cliques in a graph. However, the work of our
algorithm is dominated by the running time for listing diamonds from case 3,
requiring O(nm3/2). This bound is n times larger than the FFFk algorithm. Since√
m/2 ≤ n ≤ 2m by Lemma 2, SeqD4 matches the bound of FFFk algorithm on

dense graphs and it is O(
√
m) larger than FFFk on sparse graphs. The extra work is

due to the need to verify the existence of exactly one pair of non-adjacent nodes in a
diamond, which is worse on diamonds classified as case 3. Hence, SeqD4 guarantees
that 4-cliques and C4 (4-cliques with two missing edges) are not counted during the
computation.

6.4 Extension to k-diamonds

Based on the analysis of SeqD4 algorithm introduced in Section 6.3, a first natural
question is whether we can extend the algorithm to k-diamonds keeping the running
time O(

√
m) times larger than the state-of-the-art algorithm for counting k-cliques.

Therefore, in this section we describe an extension of the algorithm SeqD4 to compute
all diamonds on k nodes in a graph for k ≥ 4, we call this approach SeqDk.

As described in section 6.1, although the number of diamond configurations
increases as function of k, the number of diamond cases remains the same. Hence,
based on the SeqD4 algorithm in Figure 6.2, we describe how to compute the
k-diamonds in each of the three classifications with a few changes in the pseudocode.

• Case 1: Consider a diamond D on k nodes such that x is its smallest node. In
this case, dD(x) = k− 1 and node a in Figure 6.2 plays the role of the smallest
node x. The algorithm lists all nodes in V at line 3. Them, all subsets S of
size k − 1 in Γ+(a) are listed at line 4. A diamond is counted at line 6 only if
there is a clique Q ⊆ S such that |Q| = k − 3 and a pair of nodes b, c ∈ S\Q
such that b ≺ c, b and c are adjacent to all nodes in Q and (b, c) 6∈ E.

• Case 2: Considering that D is classified as case 2, the smallest x has k − 2
neighbors in D, while the second smallest node y has k−1, moreover y ∈ Γ+(x).
In this case, nodes a and b in the pseudocode play the roles of nodes x and y,
respectively. The algorithm lists all edges (a, b) ∈ E such that a ≺ b at lines 3
and 7. Then, for each clique Q ∈ Γ+(b) on k − 2 nodes, the algorithm counts
the diamond at line 10 only if there is exactly one node in Q not adjacent to a.

• Case 3: Assuming that D belongs to case 3, its two smallest nodes x and y,
respectively, have k− 2 neighbors in D, consequently they are not adjacent. In
this case, nodes x and y are represented by nodes a and d in the pseudocode.
The algorithm finds D by computing a clique Q of size k − 2 such that
Q ⊆ Γ+(a) ∩ Γ+(d). This is implemented as follows. The algorithm first lists



6.4 Extension to k-diamonds 65

all nodes a ∈ V at line 3. At lines 7 and 11, all cliques Q of size k− 2 in Γ+(a)
are listed. Then, for each node d ∈ V \{a} ∪Q such that a ≺ d, the diamond
is counted at line 15 only if Q ⊆ Γ+(d).

Theorem 2. The algorithm SeqDk enumerates all diamonds from cases 1, 2 and 3
exactly once in O(mk/2), O(mk/2) and O(nm(k−1)/2) time, respectively. Therefore,
the overall running time of SeqDk is O(nm(k−1)/2).

Proof. Diamonds classified as case 1 are counted by exploring the neighborhood of
their smallest node a, listing k− 1 nodes in Γ+(a). Hence, the algorithm enumerates
all diamonds in∑a∈V

(|Γ+(a)|
k−1

)
, which is at most (2

√
m)k−2 ·

∑
a∈V |Γ+(a)| = O(mk/2)

by Lemma 1.
For diamonds from case 2, the algorithm computes all pair of nodes (a, b) ∈ E

such that a ≺ b and lists k− 2 nodes in Γ+(b). The time required for listing all edges
(a, b) in E is O(m), while the time to enumerate k − 2 nodes in Γ+(b) is

(|Γ+(b)|
k−2

)
,

which is at most (2
√
m)k−2 = O(m(k−2)/2) by Lemma 1. Therefore, the total work

for computing all nodes from case 2 is O(m ·m(k−2)/2) = O(mk/2).
Considering diamonds from case 3, the algorithm lists all nodes a ∈ V and

cliques Q ∈ Γ+(a) of size k − 2 in ∑a∈V
(|Γ+(a)|
k−2

)
time, which is at most (2

√
m)k−3 ·∑

a∈V |Γ+(a)| = O(m(k−1)/2). All nodes d ∈ V are enumerated in O(n) time. Hence,
the running time for listing all diamonds from case 3 is O(nm(k−1)/2). Considering
that n = Ω(

√
m) by Lemma 2, the running time of SeqDk is dominated by diamonds

from case 3, requiring O(mk/2) time on dense graphs and O(m(k+1)/2) time on sparse
graphs.

SeqDk uses the same properties exploited by SeqD4 for counting 4-diamonds,
including the diamond classification and the total order ≺ to decide which node is
responsible for counting each diamond. Hence, SeqDk counts all k-diamonds exactly
once.
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Chapter 7

Enumerating diamonds in
parallel

In this chapter we adapt to MapReduce framework the algorithms SeqD4 and
SeqDk for computing 4-diamonds and k-diamonds in parallel, respectively. The
main idea is to split the input undirected graph G in many induced subgraphs G(x)
for each x ∈ V . Thus, we count the diamonds in each subgraph independently.
Following the strategy exploited by the sequential approaches, given a diamond
D on k nodes, the MapReduce algorithms use the total order ≺ and the diamond
classification described in Section 6.1 to decide which node is responsible for counting
D.

At a high level, our strategy consists of listing all triangles in a graph G exactly
once and use them to create subgraphs G(x) induced by the neighborhood Γ(x) for
each node x ∈ V . Then, we compute locally the number of diamonds for which x is
responsible. We begin by setting up the computation in Section 7.1. This procedure
will be used by our MapReduce algorithms as a first step for counting diamonds. For
a better comprehension, we first describe an algorithm to compute all 4-diamonds in
Section 7.2. We then present two algorithms for counting k-diamonds in Sections 7.3
and 7.4.

7.1 Setting up the computation
The computation of triangles can be regarded as an adaptation to diamonds of the
FFFk algorithm described in [98]. The pseudocode is shown in Figure 7.1. It works
in two rounds as follows.

Round 1. High-neighborhood computation. Considering that the input
graph G = (V ,E) is undirected, we apply the total order ≺ over the nodes a ∈ V to
compute the high-neighborhood of each node. For each edge (a, b), mappers emit
the pair 〈a; b〉 only if a ≺ b, allowing the reducer with key a to aggregate all nodes
b ∈ Γ+(a).

Round 2. Finding triangles. In this round we discover all triangles by exploring
the high-neighborhood of nodes. Map instance with input 〈a; Γ+(a)〉 emits a pair
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Algorithm 4. ListTri (undirected graph G = (V ,E)
Map 1: input 〈(a, b); ∅〉
if a ≺ b then

emit 〈a; b〉

Reduce 1: input 〈a; Γ+(a)〉
if |Γ+(a)| ≥ 2 then

emit 〈a; Γ+(a)〉

Map 2: input 〈a; Γ+(a)〉 or 〈(a, b); ∅〉
if input of type 〈(a, b); ∅〉 and a ≺ b then

emit 〈(a, b); $)〉
if input of type 〈a; Γ+(a)〉 then

for each b, c ∈ Γ+(a) s.t. b ≺ c do
emit 〈(b, c); a〉

Reduce 2: input 〈(b, c); {a1, . . . , at} ∪ $〉
if input contains $ then

emit 〈(b, c); {a1, . . . , at}〉

Figure 7.1. Listing triangles in MapReduce

〈(b, c); a〉 for each par of nodes b, c ∈ Γ+(a) such that b ≺ c. Besides the output of
round 1, mappers in round 2 are fed with the original set of edges and emit a pair
〈(a, b); $〉 for each edge (a, b) ∈ E such that a ≺ b. Hence, reduce instance with key
(b, c) can check whether (b, c) is an edge by looking for the symbol $ among its value.
Furthermore, this instance receives the set of nodes a such that a ≺ b ≺ c, where
each node a completes a triangle together with nodes b and c.

Theorem 3. Consider a graph G with n nodes and m edges. Algorithm ListTri
enumerates all triangles in G exactly once using O(m3/2) total space and O(m3/2)
work. Mappers and reducers use O(n) local space, and their local running time is
O(m).

Proof. The total space usage in round 1 is O(m). Map 2 instances produce key-value
pairs of constant size, whose total number is upper bounded by∑a∈V

(|Γ+(a)|
2
)
, which

is at most 2
√
m ·

∑
a∈V |Γ+(a)| = O(m3/2) by Lemma 1. Reduce 2 instances emit

all triangles in G, using O(m3/2) space. Hence, the total space usage of ListTri is
O(m3/2). Focused on local space, Map 1 instances use constant memory. The input
of any reduce 1 instance is O(

√
m) by Lemma 1, as well as, any map 2 instance

receives O(
√
m) input edges. Consider a reduce 2 instance with key (b, c). The input

of this instance is the set of nodes a ∈ V such that a ∈ Γ−(b) ∩ Γ−(c), which is at
most O(n). Since n ≥

√
m/2 by Lemma 2, the local space usage of mappers and

reducers is O(n).
Following the same reasoning, the running time of each map instance in the two

rounds is O(1) and O(m), respectively, while reduce instances require O(
√
m) and

O(n) time. The total work of Round 1 is O(m). The cost of the mappers on round 2
is ∑a∈V

(|Γ+(a)|
2
)

= O(m3/2). Since the number of triangles in G is upper bounded
by ∑a∈V

(|Γ+(a)|
2
)
, the total work of reduce 2 remains O(m3/2), concluding the proof

of the total running time claim.
The algorithm enumerates triangles by computing all pair of nodes b, c ∈ Γ+(a)

for each node a ∈ V . Moreover, a triangle ̂a, b, c is listed only if a ≺ b ≺ c and
(a, b), (a, c), (b, c) ∈ E, ensuring that each triangle is enumerated exactly once.
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Algorithm 5. ParD4 (undirected graph G = (V ,E))
Map 3: input 〈(b, c); {a1, . . . , at}〉

for each a ∈ {a1, . . . , at} do
emit 〈a; (b, c)〉, 〈b; (a, c)〉 and

〈c; (a, b)〉

Reduce 3: input 〈a;G(a)〉
d4 ← 0
Let Γ+(a) be the set of nodes u ∈ G(a)
s.t. a ≺ u
for each {b, c, d} ⊆ Γ+(a) s.t. c ≺ d do

if (b, c), (b, d) ∈ E and (c, d) 6∈ E
then

d4 ← d4 + 1 . Case 1

for each (b, c) ∈ G(a) s.t. b ≺ a ≺ c do
for each d ∈ Γ+(a)\{c} do

if (c, d) ∈ E and (b, d) 6∈ E then
d4 ← d4 + 1 . Case 2

for each d ∈ G(a)\{b} s.t. b ≺ d ≺ a
do

if (d, c) ∈ E and (b, d) 6∈ E then
d4 ← d4 + 1 . Case 3

emit 〈a; d4〉

Figure 7.2. MapReduce code for counting 4-diamonds in triangle space

7.2 Listing 4-diamonds in triangle space
As described in Chapter 2, a 4-diamond can be represented by two triangles with one
common edge (see Figure 2.1b). Based on that, we introduce an algorithm, called
ParD4, to compute all 4-diamonds in parallel using triangle space, i.e., O(m3/2).
In this approach, the ListTri algorithm is used to enumerate all triangles in the
first two rounds. Those triangles are needed to reconstruct the induced subgraphs in
round 3. Consider a diamond D = {x, y, u, v} such that x ≺ y ≺ u ≺ v. According
to the diamond classification described in Section 6.1, the node responsible for
counting D is defined as follows:

• Case 1: the smallest node x is responsible for counting D.

• Case 2: the second smallest node y is responsible for counting D.

• Case 3: the third smallest node u is responsible for counting D.

We present the pseudocode of the algorithm ParD4 in Figure 7.2. Nodes a, b, c
and d in reduce 3 phase can represent different nodes from Figure 6.1, according
to the classification of their 4-diamond. The roles played by those nodes in each
4-diamond configuration are given in Table 7.1. Notice that node a always plays the
role of the responsible node for counting its diamond.

The strategy of ParD4 is to count all 4-diamonds in each induced subgraph
G(a) for each node a ∈ V . This is implemented as follows. All triangles in G are
listed in rounds 1 and 2 by ListTri. Consider a map 3 instance with key (b, c).
This instance receives a list of nodes a ∈ V where each node a completes a triangle
with edge (b, c). For each triangle âbc such that a ≺ b ≺ c, the instance emits
three tuples 〈a; (b, c)〉, 〈b; (a, c)〉 and 〈c; (a, b)〉. After shuffling, reduce 3 instance
with key a receives as input a list of edges between the nodes in Γ(a). Hence, the
subgraph G(a) induced by the neighborhood of a can be reconstructed. Similar
to our sequential algorithm, reduce instances count each diamond according to its
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Table 7.1. Roles played by nodes a, b, c and d in Figure 7.2 according to the six diamond
types described in Figure 6.1.

1a 1b 1c 2d 2e 3f
a x x x y y u
b y u v x x x
c u y y v u v
d v v u u v y

classification, computing locally the number of diamonds for which a is responsible.
Notice that G(a) is composed of nodes in Γ(a) which is Γ−(a) ∪ Γ+(a). However,
G(a) is a directed graph, i.e., given a pair of nodes b, c ∈ Γ(a), (b, c) is an edge of
G(a) only if (b, c) ∈ E and b ≺ c.

Lemma 4. Each 4-diamond is counted exactly once by algorithm ParD4.

Proof. The algorithm uses triangles to reconstruct induced subgraphs G(a) for each
a ∈ V and explores it to count 4-diamonds for which a is responsible. We remark
that node a always plays the role of the responsible node for counting its 4-diamond.
Therefore, a is the first, second and third smallest node of 4-diamonds classified as
case 1, 2 and 3, respectively.

Rounds 1 and 2 list all triangles in G. For each triangle, map 3 instances emit all
possible combination of a node and an edge, creating three possible tuples. Reduce 3
instance with key a receives a set of edges (b, c) such that b ≺ c, nodes b and c are in
Γ(a) and (b, c) is an edge in E. The set of edges are used to reconstruct the induced
graph G(a).

Each 4-diamond is counted in reduce 3 phase according to the classification
described in Section 6.1. Consider a diamond D with nodes set {a, b, c, d}, we
analyze the correctness of the algorithm ParD4 in the three cases:

• Case 1: each triple of nodes b, c and d selected in Γ+(a) such that c ≺ d
represents a possible 4-diamonds belonging to case 1, where its smallest node
a has degree 3 in D. If the checks (b, c), (b, d) ∈ E and (c, d) 6∈ E succeed,
node b is the second smallest node with dD(b) = 3, while nodes c and d are
the pair of non-adjacent nodes in the diamond. Considering that c ≺ d and
a ≺ b, c, d, only three total orderings are possible between the four nodes:
a ≺ b ≺ c ≺ d, a ≺ c ≺ b ≺ d and a ≺ c ≺ d ≺ b. It is not difficult to
see that these orderings correspond to the three configurations 1a, 1b and 1c
shown in Figure 6.1. Notice that, although G(a) is a directed graph, the test
(b, c), (b, d) ∈ E involves E. In this case, checking if (b, c) ∈ E corresponds to
check if (b, c) ∈ E when b ≺ c, or (c, b) ∈ E when c ≺ b (the checks on (b, d)
are similar).

• Case 2: each pair of nodes b, c ∈ G(a) such that b ≺ a ≺ c corresponds
to a triangle b̂ac. Each node d ∈ Γ+(a)\{c} together with triangle b̂ac can
correspond to a 4-diamond belonging to case 2. Hence, the smallest node b has
degree 2 and the second smallest node a has degree 3. The checks (c, d) ∈ E
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and (b, d) 6∈ E guarantee that b ≺ a ≺ c, d and nodes b and d are the endpoints
of the unique missing edge. Considering the total order between nodes c and
d, it is not difficult to see that the two possible ordering b ≺ a ≺ c ≺ d and
b ≺ a ≺ d ≺ c correspond to the two configurations 2d and 2e shown in
Figure 6.1.

• Case 3: as described on case 2, each pair of nodes b, c ∈ G(a) such that
b ≺ a ≺ c corresponds to a triangle b̂ac. However, instead of selects d ∈ Γ+(a),
node d is chosen in G(a)\{b} such that b ≺ d ≺ a. Hence, the smallest
node b has degree 2, as well as the second smallest node d. In this case, the
third smallest node a is responsible for counting its 4-diamond. The checks
(d, c) ∈ E and (b, d) 6∈ E guarantee that b ≺ d ≺ a ≺ c and nodes b and d are
the endpoints of the unique missing edge. The test b ≺ d ≺ a is needed to
ensure that the diamond will be counted only once.

Overall, reduce 3 exploits the properties introduced in the sequential approach
described in Section 6.2, proving the correctness of the algorithm.
Theorem 4. Given an undirected graph G with n nodes and m edges, algorithm
ParD4 correctly enumerates 4-diamonds in G using O(m3/2) total space and
O(nm3/2) work. Mappers and reducers use O(m) local space, and their local running
time is O(nm).
Proof. We focus the analysis of ParD4 on round 3. See Theorem 3 for detailed
analysis of rounds 1 and 2.

The total space usage in the first two rounds is O(m3/2). Since round 2 emits
the triangles in the input graph, map 3 instances uses O(m3/2) space. Each triangle
is triplicated in map 3 phase. Hence, reduce 3 uses O(m3/2) space, concluding the
proof of total space claim. Focused on local space, mappers and reducers in rounds 1
and 2 use O(n) space, as well as any map 3 instance. Considering that the subgraph
G(a) can be represented by a list of edges, any reduce 3 instance uses at most O(m)
space. Thus, the local space of mappers and reducers is O(m) (recall n ≤ 2m by
Lemma 2).

By similar arguments, the running time of mappers and reducers in rounds 1
and 2 is O(m). Each map instance requires O(n) time. We analyze the local running
time of reduce 3 instances in the three cases of Section 6.1 separately. Consider a
reduce 3 instance with key a. In case 1, 4-diamonds are counted in O(m3/2) time,
since {b, c, d} ∈ Γ+(a) and |Γ+(a)| ≤ 2

√
m by Lemma 1. For 4-diamonds from

case 2, reduce 3 lists all edges (b, c) ∈ G(a) in O(m) time and all nodes d ∈ Γ+(a)
in O(

√
m) time. Therefore, the running time for listing all 4-diamonds belonging

to case 2 is O(m ·
√
m) = O(m3/2). Focused on case 3, edges (b, c) ∈ G(a) are

enumerated in O(m) time, while nodes d ∈ G(a) such that d ≺ a are listed in O(n)
time. Hence, 4-diamonds from case 3 are counted in O(nm) time. Case 3 dominates
the local running time of reduce 3, since n = Ω(

√
m) by Lemma 2. Therefore, the

running time of the mappers and reducers is O(nm). We remark that node adjacency
tests can be implemented in constant time (worst-case or expected, depending on
the available graph data structure).

The total work of rounds 1 and 2 is O(m3/2). Map 3 requires O(m3/2). We
consider separately the three cases of Section 6.1 to analyze the work of reduce 3.
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In case 1, the work required for counting all 4-diamonds is ∑a∈V
(|Γ+(a)|

3
)
, which

is at most 2
√
m · 2

√
m ·

∑
a∈V |Γ+(a)| = O(m2) by Lemma 1. Since G(a) ≤ m,

4-diamonds from case 2 are counted in O(m ·∑a∈V |Γ+(a)|) = O(m2). Focused
on 4-diamonds from case 3, reduce 3 lists all triangles b̂ac in O(m3/2) time, and,
for each node d ∈ G(a), it verifies whether edge (c, d) exists and nodes b and d are
not adjacent in constant time. Therefore, 4-diamonds from case 3 are counted in
O(nm3/2) time, dominating the total work of algorithm ParD4.

By Lemma 4, each 4-diamond is counted exactly once by the reducer associated
to its responsible node (according to the total order ≺ and diamond classification),
proving the correctness of the algorithm.

7.3 Extension to k-diamonds.
In this section we describe an extension to k-diamonds for k ≥ 4 of the algorithm
ParD4, called ParDk. This approach can compute all k-diamonds using triangle
space O(m3/2) and O(nm(k−1)/2) work, achieving the running time required for
computing k-diamonds sequentially by algorithm SeqDk described in Section 6.4.

Based on the diamond classification (Section 6.1), we describe how to compute all
k-diamonds in each of the three distinct cases with a few changes in the pseudocode
of ParD4. We remark that, although the number of diamond configurations shown
in Figure 6.1 would increase as a function of k, the classifications into three main
cases remains valid.

Considering that ParDk is an extension to k-diamonds of ParD4, it exploits the
strategies introduced in Section 7.2: algorithm ListTri to enumerate all triangles
in the first two rounds and map 3 phase from ParD4. Hence, map 3 emits each
triangle in three different formats, allowing reduce 3 instances to reconstruct the
induced subgraph G(a) for each a ∈ V . The changes to compute k-diamonds are
concentrated in the third reduce. We present the reduce 3 pseudocode of algorithm
ParDk in Figure 7.3.

Algorithm 6. ParDk (undirected graph G = (V ,E), diamond size k)
Reduce 3: input 〈a;G(a)〉
dk ← 0
Let Γ+(a) be the set of nodes u ∈ G(a) s.t.
a ≺ u
t← k − 3
for each b, d ∈ Γ+(a) s.t. b ≺ d do

for each Qt ⊆ Γ+(a)\{b, d} do
if Qt ⊂ Γ(b)∩Γ(d) and (b, d)6∈ E then

dk ← dk + 1 . Case 1
t← k − 4

for each Qt ⊂ Γ+(a) do
for each (b, c)∈ G(a)\Qt s.t. b≺a≺c do

if Qt ⊆ Γ+(b) ∩ Γ+(c) then
for each d ∈ Γ+(a)\Qt ∪ {c} do

if {c}∪Qt⊂Γ(d) and (b, d)6∈ E
then

dk ← dk + 1 . Case 2
for each d ∈ G(a)\{b} s.t.
b ≺ d ≺ a do

if {c}∪Qt⊂Γ+(d) and (b, d)6∈E
then

dk ← dk + 1 . Case 3
emit 〈a; dk〉

Figure 7.3. Reduce 3 code for counting k-diamonds in triangle space

The strategy of ParDk is to count all k-diamonds in each induced subgraph G(a)
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for each node a ∈ V . This is done as follows. Similar to algorithm ParD4, after
reconstructing the induced subgraph G(a) for each node a ∈ V in the reduce 3 phase,
the instance with key a counts each k-diamond in G(a) according to its classification,
computing locally the number of k-diamonds for which a is responsible.

The responsible node for counting its k-diamond follows the same rules from
algorithm ParD4. In the pseudocode, node a always plays the role of the responsible
node for counting its k-diamond. Hence, a is the smallest node of k-diamonds from
case 1, second smallest in case 2, and third smallest in case 3.

Lemma 5. Each k-diamond is counted exactly once by algorithm ParDk.

Proof. By Theorems 3 and 4, the first two rounds correctly enumerates all triangles
in G and map 3 emits each triangle in three different formats. Hence, we focus the
proof of correctness on last reduce phase. Reduce 3 instance with key a receives a
set of edges (b, c) such that b ≺ c, nodes b and c are in Γ(a) and (b, c) is an edge in
E. This set of edges is used to reconstruct the induced graph G(a).

Let Qt denote a clique of size t with nodes {u1, . . . , ut} such that u1 ≺ u2 ≺
. . . ≺ ut. Each clique Qt is enumerated exactly once according to the total order.
Consider a diamond D on k nodes. We analyze the correctness of the algorithm
ParDk in the three classifications described in Section 6.1.

• Case 1: each pair of nodes b, d ∈ Γ+(a) such that b ≺ d together with a clique
Qt ⊆ Γ+(a)\{b, d} correspond to a possible k-diamond belonging to case 1,
where its smallest node a has degree k− 1 in D. If the checks Qt ∈ Γ(b)∩Γ(d)
and (b, d) 6∈ E succeed, node a and all nodes in Qt have indeed degree k − 1,
while nodes b and c are the endpoints of the unique missing edge. Hence, it is
not difficult to see that each ordering between the pair of non-adjacent nodes
and the nodes in Qt correspond to a unique k-diamond configuration from
case 1.

• Case 2: each clique Qt of size k−4 together with a pair of nodes b, c ∈ G(a)\Qt
such that b ≺ a ≺ c and a node d ∈ Γ+(a)\Qt ∪ {c} corresponds to a
possible k-diamond belonging to case 2. In this case, the smallest node b has
dD(b) = k− 2, while the second smallest node a has dD(a) = k− 1. The check
Qt ⊆ Γ+(b)∩Γ+(c) guarantees that all nodes in Qt are high-neighbors of nodes
b and c. At this point, a clique of size k − 1 composed of nodes {b, a, c} ∪Qt
have been listed. A k-diamond is counted only if (b, d) is not an edge and all
nodes in Qt ∪ {c} are adjacent to node d. Hence, it is not difficult to see that
the total order between the node d and nodes Qt ∪ {c} correspond to a unique
k-diamond configuration from case 2.

• Case 3: the enumeration of k-cliques from case 3 is very similar to k-cliques from
case 2. The main difference between these two processes is the enumeration
of the last node d in the k-diamond. Therefore, each clique Qt of size k − 4
together with a pair of nodes b, c ∈ G(a)\Qt such that b ≺ a ≺ c correspond
to a clique of size k − 1, composed of nodes {b, a, c} ∪ Qt. In this case, the
last node d is enumerated in G(a)\{b} such that b ≺ d ≺ a. A k-diamond
is counted only if (b, d) is not an edge and all nodes in Qt ∪ {c} are in the
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high-neighborhood of d. Hence, the smallest node b has degree 2, as well as
the second smallest node d. Only one diamond configuration can exists in
case 3, where nodes b and d are the endpoints of the unique missing edge and
the total order over the nodes is b ≺ d ≺ a ≺ c ≺ Qt.

Theorem 5. Let G be an undirected graph with n nodes and m edges. The algorithm
ParDk counts the number of k-diamonds in G exactly once using O(m3/2) total
space and O(nm(k−1)/2) work. Mappers and reducers use O(m) local space, and their
local running time is O(nm(k−2)/2).

Proof. Considering that ParDk uses rounds 1 and 2 from algorithm ListTri
(Figure 7.1) and map 3 phase from algorithm ParD4 (Figure 7.2), we focus the
proof on reduce 3 phase. Detailed analysis of first two rounds and map 3 phase is
provided in Theorems 3 and 4, respectively.

The total space usage in the rounds 1 and 2 is O(m3/2). Map 3 receives all
triangles in the input graph and triplicates each triangle, using O(m3/2) space.
Considering that each triangle is triplicated in map 3, the space used by reduce 3
instances remains O(m3/2). Focused on local space, mappers and reducers in the
first two rounds use O(m) space, as well as any map 3 instance. Based on the
output of map 3, G(a) can be represented by a list of edges. Therefore, any reduce 3
instance uses at most O(m) space. Thus, the local space of mappers and reducers is
O(m) (recall n ≤ 2m by Lemma 2).

The running time of mappers and reducers in rounds 1 and 2 is O(m). Each
map 3 instance requires O(n) time. We analyze the local running time of reduce 3
instances in the three cases of Section 6.1 separately. Consider a reduce 3 instance
with key a. The local running time for counting k-diamonds belonging to case 1 is(|Γ+(a)|
k−1

)
, which is at most O(m(k−1)/2) by Lemma 1. In case 2, cliques Qt ⊂ Γ+(a)

of size k − 4 are listed in
(|Γ+(a)|
k−4

)
= O(m(k−4)/2) time. Edges (b, c) ∈ G(a) requires

O(m) time, since G(a) is composed of O(m) edges. Each node d ∈ Γ+(a) is listed in
O(
√
m). Hence, the local running time for counting k-diamonds belonging to case 2

is O(m(k−4)/2 ·m ·
√
m) = O(m(k−1)/2). The difference between cases 2 and 3 is the

enumeration of the last node d. Hence, cliques Qt ⊂ Γ+(a) of size k − 4 and edges
(b, c) ∈ G(a) are listed in O(m(k−4)/2) and O(m) time, respectively. Nodes d ∈ G(a)
such that d ≺ a require O(n) time, since Γ−(a) ≤ O(n). Therefore, k-diamonds
classified as case 3 are counted in each reduce 3 instance in O(m(k−4)/2 ·m · n) =
O(nm(k−2)/2) time, dominating the local work of algorithm ParDk.

Applying the same analysis on total work, k-diamonds from case 1 are counted in∑
a∈V

(|Γ+(a)|
k−1

)
, which is at most O(m(k−2)/2 ·

∑
a∈V |Γ+(a)|) = O(mk/2) by Lemma 1.

For k-diamonds classified as case 2, the total work required is O(mk/2). Cliques
Qt ⊂ Γ+(a) requires ∑a∈V

(|Γ+(a)|
k−4

)
= O(m(k−3)/2), edges (b, c) are listed in O(m)

time, while nodes d ∈ Γ+(a) requires O(
√
m) time. Following the same reasoning

for k-diamonds from case 3, listing cliques Qt, edges (b, c) and nodes d such that
d ≺ a requires O(m(k−3)/2), O(m) and O(n) time, respectively. Hence, the work
for listing all k-diamonds belonging to case 3 is O(m(k−3)/2 ·m · n) = O(nm(k−1)/2),
dominating the total work of algorithm ParDk.
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7.4 Trading space for parallelism
Algorithm ParDk described in Section 7.3 enumerates all k-diamonds from cases 1
and 2 in O(m(k−1)/2) local running time, while k-diamonds from case 3 are listed in
O(nm(k−2)/2). Considering that k-diamonds belong to case 3 demand more work for
counting than k-diamonds from cases 1 and 2, a first natural question is whether we
can reduce the local work of case 3 diamonds to be equivalent or even smaller than
the local work of k-diamonds from cases 1 and 2, increasing the parallelism. Hence,
in this section we introduce an algorithm to compute all k-diamonds belonging to
case 3 using max{O(n2), O(m(k−2)/2)} local work. We call this approach ParDkC3.

Our strategy is to combine the algorithms ParDk and ParDkC3 to create a
new approach called PDC, where ParDk counts k-diamonds belonging to cases 1
and 2 while ParDkC3 counts k-diamonds classified as case 3. Thus, algorithm
PDC can compute all k-diamonds in an input graph using O(m(k−1)/2) local work
for k ≥ 5 and max{O(n2), O(m3/2)} for k = 4 (formal proof in Theorem 6).

The new approach ParDkC3 uses in the first two rounds the algorithm ListTri
described in Section 7.1 to compute all triangles in a graph. Hence, we introduce a
new round 3 for computing all k-diamonds belonging to case 3. Consider a k-diamond
D such that ai and aj are the two smallest nodes and ai ≺ aj . In this approach, the
pair of smallest nodes ai and aj is responsible for counting D. Notice that the two
smallest nodes in a k-diamond belonging to case 3 are not adjacent (see Section 6.1).

We present the pseudocode of ParDkC3 in Figure 7.4. The strategy of the
algorithm is to count the k-diamonds from case 3 in parallel for each pair of non-
adjacent nodes in V with at least k − 2 neighbors in common. For each pair of
nodes ai, aj ∈ V , the algorithm computes locally the number of (k − 2)-cliques in
the subgraph G+(ai, aj) induced by the high-neighborhoods Γ+(ai) ∩ Γ+(aj). This
is implemented as follows. Map 3 instances receive all triangles from Round 2 (see
Figure 7.1). Consider a map 3 instance with key (b, c), it receives a list of nodes
a ∈ V such that each node a completes a triangle together with edge (b, c), where
a ≺ b ≺ c. For each pair of triangles âibc and âjbc such that ai ≺ aj , the instance
emits a tuple with the common edge (b, c) as value and the nodes ai and aj as
key. Besides the output of round 2, mappers in round 3 are fed with the original
set of edges and emit a pair 〈(a, b); $〉 for each edge (a, b) ∈ E such that a ≺ b.
Hence, reduce 3 instance with key (ai, aj) can check whether the nodes ai and aj
are adjacent by looking for the symbol $ among its value. If (ai, aj) is an edge, the
algorithm skip it. Otherwise, the algorithm counts the number of (k − 2)-cliques in
G+(ai, aj). Notice that each (k − 2)-clique completes a k-diamond together with
nodes ai and aj .

Lemma 6. Each k-diamond belonging to case 3 is counted exactly once by algorithm
ParDkC3.

Consider a case 3 diamond D = {ai, aj , b, c, d} such that ai ≺ aj ≺ b ≺ c ≺ d
and (ai, aj) 6∈ E. By Theorem 3, all triangles in G are enumerated in rounds 1 and 2.
Map 3 instance with key (b, c) receives from round 2 a list of nodes a ∈ V such that
a ≺ b ≺ c and âbc is a triangle. For each pair of nodes ai and aj such that ai ≺ aj ,
the instance emits (ai, aj) as key and the edge (b, c) as value. The same procedure
is applied in map 3 instances with keys (b, d) and (c, d). Hence, reduce 3 instance
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Algorithm 7. ParDkC3 (undirected graph G = (V ,E), diamond size k)
Map 3: input 〈(b, c); {a1, . . . , at}〉 or
〈(a, b); ∅〉
if input of type 〈(a, b); ∅〉 and a ≺ b then

emit 〈(a, b); $)〉
if input of type 〈(b, c); {a1, . . . , at}〉 then

for each ai, aj ∈ {a1, . . . , at} s.t.
ai ≺ aj do

emit 〈(ai, aj); (b, c)〉

Reduce 3: input 〈(ai, aj);G+(ai, aj) ∪ $〉
dk ← 0
t← k − 2
if input does not contain $ then

for each Qt ⊆ G+(ai, aj) do
dk ← dk + 1

emit 〈(ai, aj); dk〉

Figure 7.4. MapReduce code for case 3

with key (ai, aj) receives the list of edges {(b, c), (b, d), (c, d)} ⊆ Γ+(ai) ∩ Γ+(aj).
The algorithm verifies if (ai, aj) is an edge in E by looking for symbol $ among
its value. If ai and aj are not adjacent, each unique (k − 2)-clique in G+(ai, aj)
completes a k-diamond with nodes ai and aj . Therefore, the triangle b̂cd ∈ G+(ai, aj)
completes the 5-diamond D. Considering that the two smallest node ai and aj are
not adjacent, the algorithm verifies in map 3 phase if ai ≺ aj , thus D can only be
counted by the pair of nodes ai, aj in this ordering. Moreover, each (k − 2)-clique
in G+(ai, aj) is enumerated following the total order ≺, being listed exactly once.
In general, the algorithm lists all non-adjacent pair of nodes ai and aj such that
|Γ+(ai)∩Γ+(aj)| ≥ 2 and counts the number of cliques Qt of size k−2 in G+(ai, aj),
guaranteeing that each k-diamond from case 3 is counted exactly once.

Theorem 6. Let G be a graph with n nodes and m edges. The algorithm PDC, which
combines the algorithms ParDk and ParDkC3, counts the number of k-diamonds
in G exactly once using O(nm3/2) total space and O(nm(k−1)/2) work. Mappers and
reducers use O(m) local space, and their local running time is O(m(k−1)/2) for k ≥ 5
and max{O(n2), O(m3/2)} for k = 4.

Proof. We begin by proving the bounds of algorithm ParDkC3. Map 3 receives
O(m3/2) triangles from round 2 (see Theorem 3). For each triangle âibc and for each
aj ∈ {a1, . . . , at}\{ai}, map 3 instances emit 〈(ai, aj); (b, c)〉. Since |{a1, . . . , at}| ≤ n,
map 3 instances emit O(nm3/2) tuples of constant size. For each pair of non-
adjacent nodes in G, reduce 3 emits the number of k-diamonds for which these
nodes are responsible, using O(n2) space. Hence, the total space usage of ParDkC3
is O(nm3/2). Focused on local space, any map 3 instance receives O(n) nodes.
Considering that G+(ai, aj) can be represented by a list of edges, reduce 3 instances
receive O(m) edges, concluding the proof of local space claim.

By similar arguments, the local running time of map 3 instances is
(n

2
)

= O(n2).
Any reduce 3 instance runs on graphs of at most

√
m nodes and require O(m(k−2)/2)

time for computing all local cliques Qt of size k − 2. The total work of map 3
is O(nm3/2), while reduce 3 instances require ∑ai∈V

∑
aj∈V

(|Γ+(ai)∩Γ+(aj)|
k−2

)
time,

which is at most O(m(k−3)/2 ·
∑
ai∈V

∑
aj∈V |Γ

+(ai) ∩ Γ+(aj)|) = O(nm(k−1)/2) by
Lemma 1.

Comparing the bounds of algorithm ParDk for counting k-diamonds from cases 1
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and 2 with the bounds of algorithm ParDkC3 for k-diamonds classified as cases 3,
we can assume that algorithm PDC counts all k-diamonds in a graph using O(nm3/2)
total space, O(m) local space, and O(nm(k−1)/2) work.

Focused on local running time, for k ≥ 5, reduce 3 dominates the local running
time of the algorithm. Since n ≤ 2m by Lemma 2, O(n2) ≤ O(m(k−1)/2) for
k ≥ 5. However, for k = 4, the local running time of PDC can be dominated
by map 3 phase if the number of nodes n in the input graph is large enough. By
Lemma 2,

√
m ≤ n ≤ 2m. Therefore, if n ≤ m3/4, the local work of map 3 is

O(n2) ≤ O(m3/2). In this case, reduce 3 dominates the local work of the algorithm,
being O(m3/2). On the other hand, if n > m3/4, the local work is dominated
by map 3, being O(n2) > O(m3/2). Therefore, the local running time for k = 4
is max{O(n2), O(m3/2)}. We present the bounds of the algorithm PCD for each
MapReduce phase in Table 7.2.

Algorithm ParDk counts all k-diamonds from cases 1 and 2 exactly once by
Lemma 5, while ParDkC3 counts all k-diamonds from case 3 exactly once by
Lemma 6, proving the correctness of the algorithm PDC.

Table 7.2. Analysis of PDC algorithm

MR phase Global space Local space Global work Local work

ListTri

M1 O(m) O(1) O(m) O(1)
R1 O(m) O(

√
m) O(m) O(

√
m)

M2 O(m3/2) O(
√
m) O(m3/2) O(m)

R2 O(m3/2) O(n) O(m3/2) O(n)

ParDk M3 O(m3/2) O(n) O(m3/2) O(n)
R3 - cases 1, 2 O(m3/2) O(m) O(mk/2) O(m(k−1)/2)

ParDkC3 M3 - case 3 O(nm3/2) O(n) O(nm3/2) O(n2)
R3 - case 3 O(nm3/2) O(m) O(nm(k−1)/2) O(m(k−2)/2)
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Chapter 8

Conclusions and open problems

In this thesis were addressed subgraph enumeration problems in large-scale undirected
graphs. We focused on two different structures: k-cliques and one of their relaxations,
dubbed k-diamonds.

As the first contribution of this thesis, in Chapter 4 we presented an extensive
literature review of subgraph enumeration, discussing the main previous works which
address different problems related to k-cliques, clique relaxations, and other groups
of subgraphs.

Focusing on k-clique enumeration, in Chapter 5 we proposed parallel shared-
memory algorithms. Our clique enumeration approaches, based on nodes’ neighbor-
hood intersection, can list all k-cliques in a graph with m edges in O(m3/2) work,
which is optimal in the worst case. Considering that, to the best of our knowledge,
the state-of-the-art multicore algorithms for listing k-cliques do not exist so far
in the literature, we compare the proposed approaches with the state-of-the-art
sequential and distributed algorithms, respectively. The experimental analysis shows
that the our parallel algorithms can largely outperform the running times of a
highly optimized sequential solution, especially for the most demanding datasets,
and gracefully scale to non-trivial values of k even on medium and large scale graphs
with huge numbers of k-cliques. The 1by1 variant provides on average the best per-
formance and appears to be the algorithm of choice in the setting considered in the
experiments. Moreover, a performance comparison of 1by1 with distributed solution
shows that the multicore algorithm is competitive, and in some cases much faster
than, state-of-the-art distributed solutions based on MapReduce. As a by-product
of the experimental analysis, it was computed the exact number of k-cliques in many
real-world networks from the SNAP repository for k ∈ [4, 20] and analyzed their
distribution. These number of k-cliques were not available in the literature for k ≥ 8.

The k-diamond structure was not properly addressed in the literature before
our study. Therefore, the state-of-the-art algorithms for k-diamond enumeration do
not exist so far in the literature. In Chapter 6, we addressed the problem of listing
all instances of k-diamonds in a large undirected graph, for a given integer k ≥ 4,
presenting a sequential algorithm that can list all k-diamonds in a graph with m
edges in O(m(k+1)/2) time.

An extension to parallel computation has been described in Chapter 7. Our
parallel approach is based on the MapReduce framework, and can compute all
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k-diamonds in a graph with m edges in O(m(k+1)/2) total work, O(mk/2) local
work, O(m3/2) total space, and O(m) local space. Comparing the bounds of the
sequential and the MapReduce algorithms for k-diamonds with the bounds of the
state-of-the-art k-clique enumeration approaches, the proposed solutions require
O(
√
m) extra work.

8.1 Future work
The subgraph enumeration problems addressed in this thesis could be extended
along different directions. In the following we describe a few directions that would
be a natural continuation of this work.

• Considering that the work required by the proposed algorithm for listing
k-diamonds is O(

√
m) larger than the work required by the state-of-the-art

algorithm for listing k-cliques, a first natural question is whether k-diamonds
can be computed using the same work for computing k-cliques, or proving a
stronger lower bound, should the problem be intrinsically more difficult.

• A k-diamond is a clique of size k with exactly 1 missing edge. The definition of
k-diamond can be extended to (k, s)-diamonds, consisting of cliques on k nodes
with s missing edges. Hence, listing (k, s)-diamonds can be an interesting
research line.

• The state-of-the-art MapReduce algorithms presented in [98] use as a sub-
routine the non-distributed clique counting algorithm L+N. Hence, it would
be interesting to understand whether any performance gains in MapReduce
solutions can be obtained by replacing L+N with 1by1, locally exploiting the
multiple cores likely to be available at single cluster nodes.

• Since memory appears to be heavily used in the proposed implementations, it
would be also helpful to analyze whether different multithreading libraries and
programming languages (e.g., Cilk) could provide any performance improve-
ments.

• The problem of listing/counting k-cliques or k-diamonds in large undirected
graphs should be finally extended to other types of input large graphs, especially
bipartite and directed graphs.
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