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ABSTRACT We focus on the problem of managing the energy consumption of a cellular network tailored
to cover rural and low-income areas. The considered architecture exploits Unmanned Aerial Vehicles
(UAVs) to ensure wireless coverage, as well as Solar Panels (SPs) and batteries installed in a set of ground
sites, which provide the energy required to recharge the UAVs. We then target the maximization of the
energy stored in the UAVs and in the ground sites, by ensuring the coverage of the territory through
the scheduling of the UAV missions over space and time. After providing the problem formulation, we
face its complexity, by proposing a decomposition-based approach and by designing a brand-new genetic
algorithm. Results, obtained over a set of representative case studies, reveal that there exists a trade-off
between the UAVs battery level, the ground sites battery level and the level of coverage. In addition, both
the decomposed version and the genetic algorithm perform sufficiently close to the integrated model, with
a strong improvement in the computation times.

INDEX TERMS energy management; mixed integer linear programming; renewable energy sources;
Unmanned Aerial Vehicles; UAV mission scheduling; cellular networks

I. INTRODUCTION

Providing cellular connectivity in rural and low-income areas
is a complex and challenging task [3]–[5]. This is due to
multiple factors, such as the relatively low Return on Invest-
ment (RoI) rate for telecom operators, as well as a general
lack of electricity derived from the grid. In this context,
Base Stations (BSs) mounted on top of Unmanned Aerial
Vehicles (UAVs) are a promising solution to bring cellular
connectivity [6], [7]. Thanks to the decomposition of the
main networking functionalities, in fact, it is possible to
install at ground locations most of BS equipment (involving
high level tasks, such as baseband processing, handovering
functionalities, etc), while keeping on board the UAVs a limi-
ted amount of HardWare (HW) providing low level functions

(i.e., at signal level). In this way, it is possible to reduce the
amount of weight carried by the UAV, and consequently to
prolong the duration of the UAV flight. Moreover, another
great advantage of such solution is the fact that the UAVs
can be used to cover portions of territory, i.e., the ones where
the users are located, without the need of covering the whole
territory. This allows the operator to notably decrease the
costs, compared to a solution in which fixed BSs are used
to cover 100% of the territory [8].

Ensuring coverage of a set of areas by means of UAVs
is a challenging problem [9]. In fact, the limited amount of
battery capacity on board the UAVs imposes to carefully
schedule their missions as a sequence of actions over time
[1]. Typical UAV actions include moving from a ground site
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to an area that needs to be covered, serving the selected
areas, returning to the ground site, and recharging the UAV
battery on the ground site. This imposes to schedule the
UAV missions in a way to preserve as much as possible their
battery level.

On the other hand, however, the ground sites at which the
UAVs can recharge are also subject to energy constraints
[10]. Since in rural and low-income areas the connections
to the grid may be not available and/or not reliable [8], the
ground sites drain the required energy mainly from micro-
generation, by typically exploiting a set of Solar Panels (SPs).
In addition, a local battery is used to store the surplus of
energy, which can be used during night and/or bad weather
conditions. Clearly, also this system needs to be carefully
managed, in order to ensure the recharging of the UAVs that
have depleted their battery.

In this context, several questions emerge, such as: Is it
possible to define a framework to cover a set of areas by
means of the UAVs and manage their energy consumption?
How to leverage the trade-off between the energy stored in
the ground sites (for future needs) and the energy stored in
the UAVs (used to perform their missions)? Is it possible
to define efficient strategies to solve this problem in a rea-
sonable amount of time? The goal of this work is to shed
light on these issues. More in depth, we initially provide a
complete problem formulation which is able to: i) balance
the energy stored in the ground sites and the battery level of
the UAVs, ii) schedule the UAVs missions as a sequence of
actions over time, iii) ensure coverage of a set of areas. We
then face the complexity of the problem, by introducing a
decomposed version as well as by designing a sub-optimal
heuristic, which are able to notably decrease the amount
of time to retrieve a solution. In addition, we introduce a
parameter to weigh differently the battery level of the UAVs
w.r.t. the energy stored in the ground sites, thus allowing the
operator to carefully leverage the trade-off between these two
terms, by properly varying the weight of each term in the
objective function. Our results, obtained over different case
studies, demonstrate that it is possible to cover the set of
areas by means of the UAVs, while controlling the amount
of energy stored in the ground sites and the UAVs battery
level. In addition, we also show that both the decomposed
version and the proposed heuristic are sufficiently close to
the integrated problem.

To the best of our knowledge, none of the previous work
has conducted a similar analysis. Actually, the closest papers
to our work are [1], [2], in which the authors target the
minimization of the energy due to the moving actions for a set
of UAVs, by providing the problem formulation and a simple
heuristic, which is based on a genetic algorithm. Compared
to them, in this work we go five steps further by: i) targeting
a different problem, which includes the maximization of the
energy stored by the UAVs and the one stored in the batteries
of the ground sites, ii) introducing a model decomposition
to solve the problem also for large instances, iii) defining a
new heuristic approach tailored to the considered problem,

iv) solving the problem in different scenarios, ranging from a
small one to a large-scale case study, which is composed of
dozens of ground sites and hundreds of areas to be covered,
v) thoroughly comparing the solutions obtained from the
integrated problem, the decomposed one, and the proposed
heuristic.

The remainder of the paper is organized as follows. Sec. II
reviews the related work. Sec. III describes the considered
UAV-based cellular architecture. The problem formulation is
reported in Sec. IV. The proposed decomposition approach
is detailed in Sec. V. Sec. VI describes the proposed genetic
algorithm. Sec. VII thoroughly describes the scenarios and
the setting of the input parameters. Sec. VIII reports the
performance evaluation of the proposed solutions. Sec. IX
reports a discussions of the main issues impacting our ap-
proach. Finally, Sec. X concludes our work.

II. RELATED WORK
We divide the related work in three categories: i) optimization
for UAVs usage in civil applications, ii) UAV-based networks,
and iii) UAVs mission planning.

A. OPTIMIZATION FOR UAVS USAGE IN CIVIL
APPLICATIONS
In the recent years, the number of fields where UAVs are
commonly used to improve people’s quality of life has sig-
nificantly increased, thanks to the easy-going features and
acceptable costs of such solution. A great variety of civil ap-
plications currently use UAVs to improve their operation and
to save the costs, e.g., high-precision surveillance, package
delivery or disasters management. To this aim, we refer the
interested reader to the work of Otto et al. [11], who provide
a comprehensive survey of optimization approaches for civil
applications using UAVs. Hayat et al., in turn, report in [12]
the characteristics and requirements of UAV-based networks
for envisioned civil applications from a communications and
networking point of view.

One of the most common applications where UAVs are
being widely used is video surveillance [13]. Trotta et al. [14]
target the design of a multi-hop wireless network composed
of UAVs to perform city-scale video monitoring, while con-
sidering energy consumption constraints. More in depth, a
set of Points of Interest (PoIs) are covered by the UAV-based
network. Their solution includes public transportation buses
to: i) allow the UAVs recharge their batteries on top of them,
and ii) carry the UAVs to the next PoI to record. In contrast
to them, in this work we focus on a different scenario, where
the UAVs are used to deploy a cellular network, with the goal
of providing coverage to the users located inside a particular
set of areas.

Motlagh et al. [15] propose a UAV-based Internet of
Things (IoT) platform for crowd surveillance where face
recognition is applied to identify suspicious individuals.
Since UAVs have a limited processing power, video process-
ing is offloaded to mobile edge computing nodes, with the
aim of extending their batteries for surveillance purposes.
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Clearly, when the recording of the people is performed,
visual privacy has to be strictly taken into account, as also
reported by Clarke et al. [16]. Similarly to these works, in this
paper we also face the energy limitation of UAVs batteries.
However, our work is tailored to the cellular service, and
not video surveillance like in [15], [16]. Moreover, another
original aspect of our work is that we exploit the SPs and
batteries installed on specific ground sites to allow UAVs
recharge when necessary. In addition, we jointly target the
maximization of UAVs battery level and the maximization of
the sites battery levels in a multi-objective function.

Another type of application in which UAVs are widely
exploited is the so-called delivery-by-drone logistics system.
In this context, the main idea is to use autonomous UAVs
for small parcel delivery. Specifically, each UAV holds a
container where the parcel is loaded and moves it from the
distribution center (warehouse) to the destination customer.
The parcel is then dropped off near the customer’s front door
and the UAV returns to the starting point without human
interaction (see e.g., the work of Gross et al. [17]). Re-
search efforts have been made on this particular application,
mainly focused on the technical aspects of UAVs such as
endurance/safety of UAVs and the selection of the distri-
bution centers in order to be as much efficient as possible.
Specifically, Song et al. [18] propose a Mixed Integer Linear
Programming (MILP) formulation and an efficient heuristic
for derivation of persistent UAV delivery schedules. In their
work, UAVs can share multiple distribution centers across the
field of operation to reload products and recharge their batter-
ies. With this approach, the flight-time and loadable-product
limitations of UAVs can be overcome, whilst a persistent
delivery service can be achieved. Moreover, Murray and Chu
[19] exploit the combination of traditional truck delivery with
the use of autonomous UAVs that can be launched from the
truck, especially for cases where the distribution center is
far away from customers. Although with this method the
coverage range to deliver parcels is significantly increased, a
human interaction (i.e., the driver) is required to load parcels
into the UAVs and replace batteries during long trips. This
idea is also exploited by Poikonen et al. [20], where the goal
is to minimize the completion time to deliver all the packages
and to return all the trucks back to the central depot.

Although these works prove that there is a great interest
in exploiting the UAVs for persistent package delivery while
covering a wide area, the goal of this work is to provide a
different service, i.e., the wireless coverage to users by means
of UAV-based BSs, which are able to fly and complete their
missions without requiring any human interaction.

B. UAV-BASED NETWORKS
Recently, the optimal planning and management of networks
composed by UAVs has gained attention from the research
community. Drone networking is a recent research topic
where UAVs are intended to serve as a basic element to
sense and relay information in the next generation of wireless
networks. In [21], Bor-Yaliniz et al. introduced the UAV-

BS concept, in which a BS is mounted on top of a UAV
in order to complement terrestrial heterogeneous networks
(HetNets). A multi-tier drone-cell network is proposed to
bring the supply of wireless networks exactly to the place and
time where the demand is required. Mozaffari et al. analyze
in [22] the performance of a UAV-BS in which users can also
communicate via direct device-to-device links. In particular,
their main goal is to maximize the coverage provided by
a UAV to a particular area by considering two types of
communications: i) downlink UAV-to-user communication,
and ii) underlaid device-to-device communication, which can
generate potential interferences and affect i). In a recent
work, Bor-Yaliniz et al. [23] open a discussion about the set
of challenges that arise when combining the concept of UAVs
and wireless networks from the 5G perspective in order to
support network performance.

One of the most promising field of UAV-based networks is
natural disaster management, where UAVs can be combined
with Wireless Sensor Networks (WSN) in order to find
injured people and report their location to rescue teams. To
this aim, Adams et al. [24] review the related works in which
UAVs are used for imagery collection during the phase of
disaster monitoring. Maza et al. [25] exploit the coordination
of multiple UAVs to propose a distributed decision-making
architecture for challenging scenarios, such as disaster mana-
gement or civil security applications. The smooth integration
of autonomous vehicles from different vendors and the low
communication cost derived from the distributed scheme
make this approach particularly appealing. In contrast to
them, the problem of this work is devoted to the scheduling
of the UAVs missions by taking into account the coverage of
the areas, as well as the constraints on UAVs battery level and
on the battery level of ground sites.

Asadpour et al. [26] propose an ad-hoc multi-hop UAV
networking solution, which is able to: i) establish end-to-end
connectivity to the smartphone of a missing person, and ii)
stream high-resolution videos for scanning areas and spotting
injured and missing people. One step further, Malandrino et
al. [27] exploit the use of UAVs to improve wireless net-
work coverage during a disaster crisis by complementing or
replacing the traditional -yet affected- communication infras-
tructure. An optimization problem is presented to provide the
best possible coverage while maximizing user throughput. A
similar approach is followed by the seminal work of Erdelj
and Natalizio in [28], where a wireless communication net-
work exploiting UAVs is created between survivors, rescue
teams and still operating cellular infrastructure. Erdelj et al.
[29] also survey the related works on the joint role of WSN
and UAVs for natural disaster management and present a set
of unsolved challenges whose solution would significantly
improve the efficiency of disaster management systems. One
step further, Erdelj et al. [30] classify different types of
disasters considering geophysical, climate-induced and mete-
orological issues, and propose suitable WSN and UAV-based
network architectures for each category. Eventually, an IoT-
UAV ecosystem is devised by Erdelj et al. [31], in order to
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provide real-time data and multimedia communications in
unstable communication environments by means of a multi-
UAV system, which also offers on-demand usage of available
sensors, smartphones and UAV infrastructure.

Quality-of-Experience (QoE) of mobile users can also be
improved by means of UAV-based networks. Chen et al. [32]
propose to use cache-enabled UAVs to provide the required
QoE to mobile users within a Cloud Radio Access Network
(C-RAN) by minimizing the UAVs transmit power and re-
ducing the transmission delay in the system. By exploiting
machine learning techniques, human-centric information is
used to predict both content distribution and users’ mobility
patterns. Such learned information is then used to determine
UAVs placement and the content to cache. One step further,
gathered information from users can be of great value also
to enhance, e.g., the energy efficiency of wireless networks
[33].

In [34], Yanmaz et al. summarize the existing challenges
for the design of a system with multiple small UAVs. A high-
level architecture composed of UAVs and ground stations
with sensing, coordination and communication features is
proposed and evaluated in several real-world applications
with different demands and constraints, such as the assis-
tance during a disaster, documenting the progress of a large
construction site, and the process of search and rescue. As
conclusion, the authors remark that an effective design of
UAVs network is given by the proper definition of the inter-
actions between sensing, coordination, and communication
modules, as well as with the specific constraints imposed by
the application.

The work of Sánchez-García et al. [35] combines the com-
mon features of aerial and aquatic wireless ad hoc networks
to apply existing solutions that are valid for the aerial medium
to the aquatic one. The authors also survey evaluation tools
for this kind of scenarios and provide a set of open challenges
about the design and evaluation of both types of networks.
Reina et al. [36] target the selection of the UAVs positions
in the 2D-space in order to ensure a connected network with
redundancy and fault tolerant constraints. Our goal is instead
to schedule the UAV missions by considering the possible
UAV actions/movement which are passed to our problem as
the arcs in a multi-period graph. Actually, the output of [36]
can be used as input to our problem.

Although these works prove that there is a great interest in
exploiting UAVs for communications and monitoring, in this
work we focus on a different aspect, i.e., the provisioning of
cellular service in rural and low-income areas by exploiting
UAVs carrying BSs and powered solely by renewable energy
sources. Moreover, we target the efficient management of the
battery levels both at the ground sites and at the UAVs.

C. UAVS MISSION PLANNING
We finally review the works focused on the problem of UAVs
mission planning. As in the case of previous categories,
different applications require the planning of the missions of
a set of UAVs.

In the context of the coverage of sports events, Zema
et al. [37] introduce the sport event filming problem with
communication and connectivity constraints, where a court
or sport field is covered by a coordinated fleet of UAVs
and the spectators receive on their personal devices a high-
quality video live stream of the game. The target objective
function is the maximization of viewers’ satisfaction as well
as the minimization of the distance travelled by the UAVs.
Simulations over representative case-studies show that the
performance of the proposed scheme outperforms other re-
lated works in terms of packet loss and achieved coverage.
In contrast to them, the main differences with our work
are twofold: i) each area is served by a single UAV, and
ii) we maximize both UAVs battery level and the available
battery level on sites while respecting coverage and power
consumption constraints.

The vehicle routing problem for UAV delivery is studied
by Dorling et al. [38]. Karaman et al. [39] further generalize
this problem by introducing a MILP formulation that inte-
grates complex tasks and constraints in UAVs missions. This
problem is further analyzed by Lamont et al. [40], where a
multi-objective evolutionary algorithm is presented to tackle
the 3D vehicle routing with the use of UAV swarms.

However, UAVs mobility is highly dependent on the spe-
cific missions they have to perform. Changes in a UAV-
based network topology due to the pre-defined movements
of the swarm of UAVs can negatively affect to the network
performance. In this way, the topology management problem
is deeply studied also in the scope of this type of dynamic
scenarios in order to ensure an acceptable network perfor-
mance. In [41], Kim et al. propose a solution to create a UAV-
based network topology from the scratch, by adapting it to
the topological changes caused by the unpredictable mission-
based movements of UAVs. To do that, they rely on the
presence of special nodes, namely Relaying UAVs (RUs), to
relay data between adjacent UAVs, with the aim of support-
ing reliable communications in the UAV-ground site wireless
link and maximizing the network performance. Differently
from other works, the dependency between such metric and
the routing protocol is considered in the proposed Particle
Swarm Optimization (PSO) metaheuristic. Magán-Carrión
et al. [42] also use PSO to solve the topology problem in
generic Mobile Ad-Hoc Network (MANET) scenarios. A
centralized multi-stage methodology is applied, in which the
deployment and movement of relaying nodes contribute to
maximize both network connectivity and throughput.

The limited battery of UAVs has also opened a niche for
the research community to propose solutions with the aim
of extending the duration of UAV missions. The robustness
aspects of the problem are studied by Evers et al. [43],
where the uncertainty in the fuel usage between targets (e.g.,
due to weather conditions) is considered. Eventually, Kim
et al. [44] propose a system in which multiple-shared bases
located in different geographical places are used by UAVs
to recharge their batteries, therefore supporting long term
duration missions. In particular, their goal is to minimize
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Site Battery Level at (t� 1)

+

SPs Energy at t

�

UAVs Recharging Energy at t

=

Site Battery Level at t

FIGURE 1. Ground site battery level balance.

the total travel distance of the UAVs fleet taking into ac-
count power consumption and recharging constraints. This
problems differs, e.g., from the one studied by Trotta et al.
[9], where the focus is to maximize geographical coverage
by exploiting the 3D placement problem in conjunction with
the scheduling of the UAVs recharging actions at ground
sites. In contrast to these works, we aim at maximizing the
combination of the battery level of UAVs and the one at
ground sites for all day wireless coverage provisioning.

Amorosi et al. [1] propose an optimization framework to
schedule UAVs missions, with the goal of providing cellular
coverage in rural areas while minimizing the energy con-
sumed by UAVs when moving from the ground sites to a set
of areas. In addition, a set of SPs is considered to recharge
UAVs batteries. Eventually, the considered MILP formula-
tion exploits a graph-based structure to optimally model the
UAVs missions by solving a variant of an unsplittable multi-
commodity flow problem defined on a multi-period graph.
Since the aforementioned problem is known to be NP-hard
(see, e.g., the work of D’Andreagiovanni et al. [45]), a simple
heuristic to practically solve it is proposed by Galán-Jiménez
et al. [2]. In contrast to them, in this work we consider
a different problem, where the main goal is to target the
maximization of the battery levels of the ground sites and
of the UAVs, while ensuring cellular coverage. In addition,
we target the solution of the problem over large scenarios.
These issues are tackled in this work by: i) designing new
approaches based on decomposition methods and genetic
algorithms to practically solve the optimization problem, ii)
introducing a multi-objective function, in order to properly
balance both the UAVs and the ground sites battery levels.

III. ARCHITECTURE DESCRIPTION
We briefly describe the considered UAV-based cellular ar-
chitecture, whose main functionalities are implemented as
5G components. We refer the reader to [5], [8] for a com-
prehensive description. In brief, we assume that most of

BS equipment, and in particular the dedicated HW one, is
carried on board of the UAV. The dedicated HW includes a
Remote Radio Head (RRH) and part of the Base Band Unit
(BBU), which ensure low-level tasks on the communication
between the UAV-based BS and the user equipment. The
RRH is connected to a set of antennas that are also carried
by the UAV. The remaining tasks (which are performed by
higher layers) are realized by virtualized elements installed
on the commodity HW, which is placed at a ground site. The
separation between high-level and low-level functionalities
is peculiar of next-generation cellular equipment, like the
forthcoming 5G. This solution reduces the amount of HW
carried by the UAV, and consequently tends to prolong the
duration of the flight compared to the case in which all the
functionalities are carried on the UAV (thus increasing its
weight). Finally, the high-level HW functionalities hosted at
the ground site and the low-level ones carried on board of the
UAV need to establish a radio link (separated from the ones
between the UAV and the users), which has to guarantee high
levels of reliability.

The considered architecture can be extended also to pre-
5G networks, like 4G. However, bringing the 4G radio func-
tionalities on board the UAV is more challenging than in a
5G scenario, due to the fact that 4G Base Stations (BSs) are
pretty monolithic and less flexible compared to 5G ones. For
example, a 4G BS would likely require to bring on board the
UAV a large amount of HardWare (HW), due to the fact both
low level functionalities and high level ones are typically run
on the same set of devices. On the other hand, bringing 5G
equipment seems a more viable solution, due to the fact that
the 5G BS functionalities can be split over a set of devices,
part of them located at ground and other ones placed on the
UAV. This architecture allows to decrease the weight of the
UAV, and thus increasing the duration of the UAV flight.

Apart from hosting the commodity HW, each site is con-
nected to a set of SPs and batteries, which are installed in
the same site location. In particular, we assume that SPs and
batteries are the only sources of energy (i.e., no connection
is requested to the grid). On the other hand, the UAVs are
equipped with batteries, and they are recharged by a ground
site when needed. We also assume that the total amount of
time is discretized in a set of Time Slots (TSs). In each
TS, the battery level of the ground site is computed as the
composition of different terms, as reported in Fig. 1. In
particular, an amount of energy may be derived from SPs (if
the energy from the sun is available). Moreover, an amount of
energy may be used to recharge the UAVs that have depleted
their batteries. At last, the remaining energy is stored in the
battery for the following TSs. Clearly, the battery level is kept
between a minimum and a maximum value. Without loss of
generality, we assume that, in case there exists a surplus of
energy coming from SPs, which is not used by UAVs that
are being recharged and which is higher than the maximum
battery level, the battery level is saturated to the maximum
one. In addition, we always ensure a minimum battery level.
In particular, this constraint is critical to prevent battery
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3. Cover

1. Recharge

cellular Site

2. Move

4. Move

Covered Area

FIGURE 2. a UAV mission requiring recharging, moving and covering actions.

UAV Battery Level at (t� 1)

+

UAV Recharge at t

�

UAV Moving/Covering Actions at t

=

UAV Battery Level at t

FIGURE 3. UAV battery level balance.

failures, which may occur when the battery is completely
depleted [10].

We then detail the main UAVs features assumed in this
work. Fig. 2 shows an example of a typical mission per-
formed by a UAV carrying a BS. In particular, each UAV
has a battery of a given (limited) capacity. The battery may
be initially recharged by draining an amount of energy from
the ground site. In the following, the UAV moves from the
ground site to the area to be covered. When the area to be
covered is reached, the UAV activates the BS functionalites.
In the following, the UAV moves back to the ground site.
Similarly to the ground sites, the UAV needs to ensure a
battery level balance, which is reported in Fig. 3. In addition,
the battery level is always kept between a minimum level and
a maximum one.

IV. PROBLEM FORMULATION
We model the problem as a Mixed Integer Linear Program-
ming (MILP), tracing it back to a variant of the unsplit-
table multicommodity flow problem defined on a multiperiod
graph. More formally, we denote: i) by A the set of areas to
be covered; ii) by S the set of available ground sites; iii) by
D the set of UAVs; iv) by T = {0, 1, 2, . . . , |T |} the set of
Time Slots (TSs). We also define the set of places P , obtained
as the union of the set of areas and sites (i.e., P = A [ S).
In each TS each UAV can perform one among the following

Site 1 Area 1

Site 2 Area 2

STAY

STAY

MOV

MOV

COVREC

MOV

MOV

COVREC

MOV

MOV

MOVMOV

MOV

MOV

FIGURE 4. Set of UAV actions between two sites and two areas to be
covered. Each action is represented as an arc between two places and
consumes one TS.

⌦

p1, T

p2, T

p1, (t+ 1)

p2, (t+ 1)

p1, t

p2, t

p1, (t� 1)

p2, (t� 1)

MOV

MOV

MOV

MOV

p1, 1

p2, 1

⌥

STAY
REC
COV

COV
REC
STAY

STAY
REC
COV

COV
REC
COV

⌦

⌦

⌥

⌥

FIGURE 5. General arc transitions between consecutive TSs. The source
node ⌥, a set of two places {p1, p2}, and the final sink node ⌦ are shown.

actions:
• REC: the UAV recharges itself at a given site;
• STAY: the UAV is idle at a given site (not consuming

any energy);
• MOV: the UAV moves from a site to an area, or from an

area to another area, or from an area to a site;
• COV: the UAV covers a given area.

Each of the aforementioned actions requires one TS to be
executed. An example of possible actions performed by the
UAVs between two sites and two areas is reported in Fig. 4.

In order to model the actions performed by the UAVs
over the considered set of TSs, a multiperiod directed graph
G(N ,L) is introduced. The set of nodes N includes one
node (p, t) for each place p 2 P and for each TS t 2 T .
In addition, we add to the set of nodes one source node ⌥

and one sink node ⌦ to track the UAVs paths. We denote a
generic arc l 2 L by [(p1, t1), (p2, t2)], where t(l) = (p1, t1)

and h(l) = (p2, t2) are the tail and the head of the arc,
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respectively. We then introduce the set of arcs LREC, LSTAY,
LMOV and LCOV to denote the admissible transitions between
(p1, t1) and (p2, t2) for the recharging, staying, moving and
coverage actions, respectively. Additionally, we define the
sets L⌦ and L⌥ connecting the source node to all places at
the first TS and all places at the last TS to the sink node,
respectively. The union of sets LREC[LSTAY[LMOV[LCOV[
L⌥ [ L⌦ defines the entire set of links L. Fig. 5 shows
the admissible arcs for a toy case example composed of two
places. To ease the figure, we collapse in a single arc all the
parallel links between two nodes in the graph.

In the following, we associate an energy weight for each
arc in L, as reported in Fig. 6. More in detail, when the UAV
does not change the site between two consecutive TSs, STAY
and REC links are defined (Fig. 6(a)). Specifically, when the
UAV is recharging the link weight is E

REC. Alternatively,
when the UAV is in the STAY state, the link weight is zero
(i.e., the UAV does not consume any energy). In addition,
when the UAV moves from a site s 2 S to an area a 2 A
(Fig. 6(b)), an arc l 2 LMOV is defined.1 In this case,
the link weight is �E

MOV
s,a , which denotes the amount of

energy consumed for moving the UAV from site s to area
a. Similarly, when the UAV moves from an area a to a site s

(Fig. 6(c)), a link l 2 LMOV is introduced, with weight equal
to �E

MOV
a,s . On the other hand, when the area is not changed

(Fig. 6(d)), the UAV performs a coverage action. In this case,
the corresponding link l 2 LCOV has a weight of �E

COV,
denoting the amount of energy spent to cover an area in one
TS. Eventually, when the UAV moves from area a1 2 A to
a different area a2 2 A (Fig. 6(e)), a link l 2 LMOV with
weight �E

MOV
a1,a2

is introduced. Finally, the links connecting
⌥ and ⌦ to the other nodes are defined in Fig. 6(f)-6(i).
Clearly, such links do not consume any amount of energy,
since both ⌥ and ⌦ are fictitious nodes. Consequently, their
energy weight is set to zero.

We then introduce the following decision variables:

1) binary flow variable f

d
l 2 {0, 1} 8 l 2 L, d 2 D,

equal to 1 if the UAV d uses the arc l (0 otherwise);
2) binary variable z

t
a 2 {0, 1} 8 a 2 A, t 2 T equal to 1

if area a is not covered in TS t (0 otherwise);
3) continuous variable bts � 0 8 s 2 S, t 2 T , represent-

ing the battery level of site s at TS t;
4) continuous variable e

t
d � 0 8 d 2 D, t 2 T , repre-

senting the battery level of UAV d at TS t.

The overall Optimal Energy Management of UAV-based
cellular networks (EMUC) problem is then formulated as:

max(

X

s2S

X

t2T
b

t
s + ↵ ·

X

d2D

X

t2T
e

t
d � � ·

X

a2A

X

t2T
z

t
a) (1)

Subject to:

1The set LMOV may not include all the possible links between each pair
of places. This occurs, e.g., when a maximum distance between a UAV and
the ground site has to be ensured.

X

l2L:
h(l)=(p,t)

f

d
l �

X

l2L:
t(l)=(p,t)

f

d
l = �

d
(p,t)

8p 2 P, d 2 D, t 2 T (2)

X

d2D

X

l2LCOV:
h(l)=(a,t)

f

d
l + z

t
a = 1, 8a 2 A, t 2 T : t � 1(3)

b

t
s  b

t�1
s + E

t
s ·NSP

s �
X

d2D
El · fd

l , 8s 2 S, t 2 T ,

8l 2 LREC
: h(l) = (s, t) ^ t(l) = (s, t� 1) (4)

B

MIN ·NB
s  b

t
s  B

MAX ·NB
s , 8s 2 S, t 2 T (5)

e

t
d  e

t�1
d +

X

l2LMOV[LREC[LCOV:
t(l)=(⇤,t�1)
h(l)=(⇤,t)

El · fd
l

8d 2 D, t 2 T (6)

E

MIN  e

t
d  E

MAX
, 8d 2 D, t 2 T (7)

Under variables: f

d
l 2 {0, 1} 8 l 2 L, d 2 D, zta 2

{0, 1} 8 a 2 A, t 2 T , b

t
s � 0 8 s 2 S, t 2 T ,

e

t
d � 0 8 d 2 D, t 2 T .

The objective function (1) is the maximization of the site
battery level and the UAV one. A parameter ↵ is used to
change the weight of the UAV battery level w.r.t. to the one
of the ground sites. When ↵ << 1 the problem tends to max-
imize the ground site battery level, thus possibily limiting the
amount of energy stored by the UAVs. This policy is useful to
preserve the ground sites battery level when, e.g., the energy
from SPs is not available. On the other hand, when ↵ >> 1

the EMUC problem tends to pursue the maximization of
the energy stored by the UAVs, thus (possibly) involving
frequent recharging actions at the ground sites. This policy is
effective when it is critical to preserve the UAV battery level,
e.g., to always ensure that each UAV has enough battery to
complete a mission. Finally, the last term of (1) is a penalty
associated when an area is not covered by a UAV. In this case,
in fact, there is a loss of connectivity. We model this aspect
by multiplying the boolean variables zta for a penalty weight
�. Note that, for sufficiently large values of �, an area may be
not covered due to two main reasons: i) no UAV can serve the
area, ii) the current instance of the problem can not guarantee
full coverage of the whole set of areas. The first aspect can
be overcome by imposing a sufficiently large set of UAVs
(as done in this work). The second issue instead may arise
from the problem decomposition, which is described in the
following section.

Focusing then on constraints (2)-(7), (2) impose the con-
servation of the flow variables f

d
l , where the term �

d
(p, t)

appearing in the constraint is defined in Tab. 1. The coverage
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s, (t� 1)

s, t

El12LREC = E

REC

El22LSTAY = 0

t(l2) h(l2)

t(l1) h(l1)

(a) Same Site: REC and STAY

s, (t� 1)

a, t

t(l) h(l)

El2LMOV = �E

MOV
s,a

(b) Site to area: MOV

a, (t� 1)

s, t

t(l) h(l)

El2LMOV = �E

MOV
a,s

(c) Area to site: MOV

a, (t� 1)

a, t

t(l) h(l)

El2LCOV = �E

COV

(d) Same Area: COV

a1, (t�1)

a2, t

a1 6= a2
t(l) h(l)

El2LMOV = �E

MOV
a1,a2

(e) Different Areas: MOV

⌥

s, 1

t(l) h(l)

El2L⌥ = 0

(f) Source Node to Site: ⌥

⌥

a, 1

t(l) h(l)

El2L⌥ = 0

(g) Source Node to Area: ⌥

s, T

⌦

t(l) h(l)

El2L⌦ = 0

(h) Site to Sink Node: ⌦

a, T

⌦

t(l) h(l)

El2L⌦ = 0

(i) Area to Sink Node: ⌦

FIGURE 6. Admissible arcs and energy values for each pair of places and consecutive TSs.

of each area is imposed through constraints (3), by consider-
ing only the LCOV arcs incoming to each area. This constraint
also sets the variable z

t
a when it is not possible to cover area

a at TS t. Constraints (4) impose then the battery balance
for each TS t and for each site s. The balance is computed by
adding to the battery level at previous TS the energy produced
by the SPs (equal to the production of energy of a single
SP E

t
s times the total number of installed SPs N

SP
s ) minus

the energy requested to recharge the UAVs at current TS. In
addition, the minimum and the maximum battery levels are
enforced by constraints (5), where N

B
s is the total number of

batteries installed in site s. In the following, we set the UAV
battery level through constraints (6), by considering: i) the
contributions of the LMOV [ LREC [ LCOV energy arcs used
by the UAV at the current TS, ii) the UAV energy at previous
TS. The minimum and the maximum UAV battery levels are
then ensured by constraints (7).

We then focus in more detail on constraints (4)-(7), and in
particular on the reason why an inequality is set in constraints
(4) and (6) instead of equality. Actually, both the battery and
the energy levels have to be lower than the maximum values
appearing in (5) and (7), namely B

MAX · NB
s and E

MAX .
When solving the model, the values of the variable b

t
s and

variable e

t
d will be the minimum between the expression in

(4) and B

MAX · NB
s and between the expression in (6) and

E

MAX , respectively. However, as we maximize both battery
and energy levels, constraints (4) and (6) will be active in all
cases in which the right hand side of (4) and (6) is less than
or equal to B

MAX ·NB
s and E

MAX , respectively.

TABLE 1. Setting of the �d(p, t).

Condition �d(p, t) Value

(p, t) = ⌦ 1
(p, t) = ⌥ -1
otherwise 0

V. PROBLEM DECOMPOSITION
The EMUC problem is challenging to be solved, due to the
fact that the underlying multi-period graph tends to grow very
quickly as the total number of places and the total number
of TSs are increased. To tackle this issue, we apply a divide
et impera approach, which is based on the decomposition
of the original problem in subproblems of smaller size,
each of them (potentially) easier to be solved compared to
EMUC. More in depth, we split the original problem into
sub-problems by first introducing a spatial decomposition
between the ground sites, and then by including a temporal
decomposition across the set of TSs. In the following, we
detail the two decomposition approaches, and then we sketch
the entire methodology.

A. SPATIAL DECOMPOSITION
We initially split the original problem into a set of subpro-
blems, each of them including a single ground site. For each
ground site s 2 S , we find a set partition of A by identifying
a cluster As of areas that will be covered only by UAVs
whose missions originate/terminate solely from/in s. This
partition is found according to a minimum cost rule, which
is expressed as the amount of energy consumed by a UAV
for moving from a given ground site to a given area. More
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formally, the following optimization problem is solved:

min

X

l2LMOV:t(l)2S,h(l)2A

El · xl (8)

Subject to:

X

l2LMOV:t(l)2S,h(l)=a

xl = 1, 8a 2 A (9)

xl 2 {0, 1}, 8l 2 LMOV
: t(l) 2 S, h(l) 2 A (10)

where the binary variable xl 2 {0, 1} 8l 2 LMOV is equal
to 1 if area h(l) 2 A is assigned to the ground site t(l) 2 S
and 0 otherwise. The solution of this set partitioning model
provides the clusters of areas associated with the ground sites
and reduces the problem size. However, due to the temporal
dimension of the problem, the size of the multi-period graph
underlying the model remains quite large and its resolution
to optimality is still challenging. Thus, we introduce an
additional level of decomposition, which is detailed in the
following subsection.

B. TEMPORAL DECOMPOSITION
In order to further reduce the size of each problem instance,
we apply a temporal decomposition on each cluster As.
Specifically, we split the set of TSs T into subsets of con-
secutive TSs, denoted as Ti (each of them with the same
cardinality), such that T = T1 [ T2 [ ...Tn. Clearly, in order
to ensure the continuity of the UAV missions as well as the
proper computation of the battery levels of the ground sites
and of the UAVs, we need to include an additional set of
constraints. More in depth, the UAVs location at the first
TS of subset Ti must be equal to the one of the last TS
of the previous subset Ti�1, as guaranteed by the following
constraint:

X

l2L:
t(l)=(p,Ti(1))

f

d
l = 1, 8d 2 D, 8p 2 As : I(d) = p (11)

where Ti(1) is the first TS of the subset Ti and I(d) 8d 2 D
represents the position of the UAV d at the last TS of the
previous subset Ti�1. In addition, the UAVs battery level at
the first TS of subset Ti must be equal to the one of the last
TS of the previous subset Ti�1, denoted by E

IN
d 8d 2 D, as

imposed by the following constraint:

e

Ti(1)
d = E

IN
d , 8d 2 D (12)

Moreover, the battery level of the ground site at the first TS
of subset Ti must be equal to the one of the last TS of the
previous subset Ti�1:

b

Ti(1)
= B

IN (13)

where BIN is the battery level of the recharging site at the last
TS of the previous subset Ti�1.

The variables for each subset Ti are then retrieved by
solving the following problem:

max(

X

s2S

X

t2Ti

b

t
s + ↵ ·

X

d2D

X

t2Ti

e

t
d � � ·

X

p2A

X

t2Ti

z

t
a) (14)

subject to (2)-(7),(11)-(13), by considering only the subset of
areas in cluster As and the ground site s.

C. OVERALL METHODOLOGY
The overall Decomposed optimal Energy Management of
UAV-based Cellular networks (D-EMUC) methodology con-
sists of: i) solving the problem (8)-(10) to find the clusters
As 8s 2 S , ii) solving the problem (2)-(7),(11)-(14) for
each Ti of each cluster As.

VI. GENETIC ALGORITHM DESCRIPTION
Apart from targeting the solution of EMUC and D-EMUC,
we design a new heuristic, called Genetic Algorithm for
UAVs Planning on Large-Scale Scenarios (GAUP-LS). As
suggested by its name, our solution aims at solving the
problem in large-scale scenarios. To pursue this goal, we
adopt a methodology based on a Genetic Algorithm (GA).
We refer the reader to [46] for the main theory behind the
branch of research of GAs, while here we report the main
steps.

A. MOTIVATION
Although our problem may be solved by using different kind
of metaheuristic algorithms, such as Single-State methods
(e.g., Simulated Annealing, Tabu Search, etc.), or Population-
based ones (e.g., GAs), Particle Swarm Optimization, Differ-
ential Evolution, etc.), we chose to use GAs since they have
traditionally been used to tackle the routing problem in the
networking context. More in depth, GA-based heuristics have
been demonstrated to be well suited for proposing adaptive
routing solutions on all-sized and all-type network scenar-
ios. Starting from wireless environments, GAs have been
exploited to solve routing-related problems in a variety of
wireless settings, such as dynamic shortest path routing [47],
[48], cluster-based schemes for MANETs [49], multicast [50]
and broadcast routing [51]. If we move our attention to wired
networking, the problem of dimensioning dynamic Wave-
lenght Division Multiplexing (WDM) networks has been
solved in [52] and [53] by exploiting the evolutionary concept
of GAs. Moreover, several solutions based on GAs have also
emerged to improve the energy efficiency of wireless [54],
wired [55], and optical network scenarios [56].

B. CHROMOSOME AND FITNESS FUNCTION
Focusing on the set of chromosomes forming the population
M, each chromosome cM 2 M is denoted as a succession
of |D| ⇥ |T | genes of type g

t
d representing the place p 2 P

where the UAV d 2 D is located or moving to during TS
t 2 T . More formally, we define the chromosome as:

cM =

n

g

1
1 , ..., g

1
|D|, ..., g

t
d, ..., g

|T |
1 , ..., g

|T |
|D|

o

(15)
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8gtd 2 [1, |P|]; 8d 2 [1, |D|]; 8t 2 [1, |T |]
In our context, therefore, a chromosome represents a po-

tential solution for the UAVs mission planning. In order to
evaluate each solution and obtain the best one in terms of the
pursued objective function, we define the following fitness
function:

f(cM ) =

0

@

X

s2S

X

t2T
b

t
s + ↵ ·

X

gt
d2cM

e

t
d

1

A

 (16)

In the previous equation, the first term aggregates the sum
of the battery level of each site b

t
s over the full set of TSs.

The second term aggregates the energy level of each UAV
d located at place g

t
d. Similarly to the objective function of

EMUC, this term is multiplied by the weight ↵. However,
differently from EMUC, we introduce a parameter, denoted
as  , which is set to 1 if the solution represented by the
current chromosome is feasible. Otherwise, if the current
solution is not feasible,  is set to a low value (e.g.,  =

��

B

MIN ·NB
s

� · |S|+ E

MIN · |D|� · |T |), which is the least
amount of total battery level on sites and on UAVs throughout
the set of considered TSs. In order to assess the feasibility
of the considered chromosome, a feasibility check function
is applied to verify if the individual represents a solution that
satisfies all the required constraints. The constraints that must
be met are listed next:

1) Coverage constraint. Each area a 2 A ✓ P must be
covered at each TS t 2 T by exactly one UAV d 2 D
(corresponding to constraint (3) of EMUC with z

t
a =

0 8a 2 A, t 2 T );
2) UAV battery level constraint. The energy level of

each UAV d 2 D at each TS t 2 T must be a value
in the range e

t
d = [E

MIN
, E

MAX
] (corresponding to

constraint (7) of EMUC);
3) Ground site battery level constraint. The battery

level of each site s 2 S ✓ P at each TS t 2 T must
be a value in the range b

t
s = [B

MIN · NB
s , B

MAX · NB
s ]

(corresponding to constraint of (5) of EMUC);
4) Mission consistency constraint. The action of each

UAV d 2 D at each TS t > 0 must be valid,
i.e., a UAV is able to perform an action (e.g., STAY,
REC, MOV, COV) only between admissible places.
This condition corresponds to the existence of an arc
l 2 L with t(l) = (g

(t�1)
d , t � 1) and h(l) = (g

t
d, t),

8t : t > 1 2 T in the input graph of EMUC).
Finally, we stress the fact that both b

t
s and e

t
d depend on the

procedure adopted to set the UAV actions, starting from the
initial population, and detailed in the following subsection.

C. INITIAL POPULATION AND GENETIC OPERATORS
As regards the setup of the GAUP-LS algorithm, we generate
suitable missions for the initial population by means of a
keep covering strategy. The principles behind this strategy
is to force the UAVs to consecutively cover the same area

during the largest possible number of TSs. Clearly, a UAV
da 2 D has a maximum number of TSs, denoted with �COV

da

in Eq. (17), during which it is able to consecutively perform
coverage actions over the area a 2 A:

�

COV
da

=

j

E

MAX �max{EMOV
a,si }

E

COV

k

; 8si 2 S (17)

where max{EMOV
a,si } is the maximum amount of energy

consumed by a UAV to reach the farthest site si 2 S among
the available ones in order to be recharged in the next TS.
In addition, while a set of |A| UAVs covers the areas for
�

COV
da

consecutive TSs, another fleet of UAVs staying on the
sites will move to the closest areas in order to cover them
during the next �COV

da
TSs. Eventually, when a UAV ends its

covering mission, it also moves to the closest site in order
to be recharged. This process is iteratively repeated for the
whole set of TSs.

In order to perform the evolution procedure, the genetic
algorithms apply biologically inspired operators (selection,
crossover, mutation) to the individuals in the population.
In the GAUP-LS, these parameters were empirically set
after performing different tests on the considered scenarios.
Regarding the selection procedure, three different functions
were tested: stochastic uniform, roulette wheel, and tour-
nament selection. In order to crossover selected parents to
create offspring that become part of the next generation, three
different methods were analyzed: one-point, two-point, and
uniform crossover. Finally, two additional mutation func-
tions were tested to make small changes in the individu-
als of the population and create mutation children, namely
gaussian and uniform mutation. As a result of a set of
experiments over the Frascati scenario, the 3-tuple of type
geneticOperators = {selection, crossover ,mutation}
that best fits the problem in terms of fitness func-
tion and computation time was geneticOperators =

{roulette_wheel , one � point , uniform}. From such previ-
ous results, this parameters setting is considered to be applied
in our scenarios.

Therefore, the set of individuals which survive and form
part of the next generation in the GAUP-LS algorithm is
selected by applying the classical roulette wheel criterion.
Moreover, the combination of individuals to generate off-
spring is performed by means of the single-point cross-
over function. Regarding the mutation process, a two-step
uniform mutation function is applied. First, a fraction of each
individual is selected for mutation. Every gene in this fraction
has a probability rate of being mutated. The second step is
to replace each selected gene by another valid value. The
application of selection, crossover and mutation operators is
repeated in each generation of the GAUP-LS algorithm.

Once genetic operators are applied at each generation, a
new population of chromosomes (i.e., the places visited by
the UAVs) is formed. Thus, each new chromosome represent-
ing a potential set of UAV missions over |T | TSs must first
be checked in order to consider such solution as a valid one
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(a) Aerial View (Source: Google Earth)

(b) Locations of the places (Source: Google Earth)
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FIGURE 7. The Frascati scenario.

( parameter in (16) of Sec. VI-B). The mission consistency
constraint described in Sec. VI-B must be satisfied, as well
as the ones related to coverage and maximum and minimum
battery levels both on sites and on UAVs.

D. COMPLEXITY ANALYSIS
In the following, a complexity analysis of GAUP-LS is pro-
vided. Three variables must be considered for this analysis:
i) population size |M|, ii) chromosome length, denoted as
|cM | = |D| · |T |, and iii) number of generations ✓ required

by GAUP-LS to find the solution.
GAs complexity strongly depends on the fitness function

to be optimized and on the type of genetic operators selected
for crossover, offspring generation and genes mutation. In
particular, the fitness function used by GAUP-LS during a
particular generation, which is reported in eq. (16), takes
O(|M| · |cM |) to complete the evaluation of the whole
population, M. Since the choice of individuals to generate
offspring follows the classical roulette wheel criterion, a
complexity of O(|M|) is associated for the selection pro-
cedure. Finally, the process of creating the new generation
by means of crossover and mutation operators also requires
O(|M| · |cM |). Therefore, the GAUP-LS resulting complex-
ity is O(|M| · |cM | · ✓).

VII. DESCRIPTION OF THE SCENARIOS
We define a set of realistic scenarios to assess the perfor-
mance of EMUC, D-EMUC and GAUP-LS. We initially de-
tail one scenario located in Frascati (Italy). In the following,
we move our attention to a second scenario located in Cáceres
(Spain).

A. FRASCATI SCENARIO
We initially consider a rural territory in Frascati, a town in
the countryside of central Italy. Fig. 7(a) shows the aerial
view of the considered zone. Interestingly, the terrain un-
der consideration includes roads, fields, small houses, and
buildings having at most 3-4 floors. Thanks to the fact that
there are not tall obstacles (e.g., skyscrapers), this zone can
be attractive for the deployment of a UAV-based cellular
architecture. Fig. 7(b) reports the locations of the selected
places, which are spread over the Frascati territory. In order
to select the subset of installed sites over the set of places, we
solve the minimum cost design problem of [57]. We refer the
reader to [57] for the details. Fig. 7(c) reports the outcome in
terms of installed sites. In addition, the centers of the areas to
be covered and their boundaries (obtained through a simple
Voronoi tessellation) are also reported. In this case, a set S
of 3 sites and a set A of 8 areas are selected. Interestingly, a
center of an area may be co-located with a ground site.

Tab. 2 summarizes the setting of the parameters in this
scenario. More in depth, the solution of the problem of [57]
allows also to dimension each site in terms of number of SPs
and batteries, which are reported in the table. In addition, we
have assumed a total number of UAVs much larger than the
number of areas. In this way, we (possibly) ensure coverage
over the territory in each TS, despite the fact that each UAV
may be recharged, moved to an area, or moved to a site during
a given TS.2 Moreover, the mimimum B

MIN and maximum
B

MAX battery levels are set in accordance to [10]. We remark
the fact that, while B

MAX is fundamental to satisfy the
energy demand, the setting B

MIN is important to reduce as
much as possible the detrimental effect of battery failure. In
addition, the dimensioning of the number of SPs N

SP
s and

2The investigation of the impact of varying |D| is left for future work.
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TABLE 2. Parameters Setting for the Frascati Scenario

Parameter Value

A {A8, A9, A10, A11, A12, A13, A15, A16}
|A| 8
S {S9, S10, S15}
|S| 3
T 1 [day] divided in 24 TSs of 1 [h]
|D| 25 UAVs

ECOV 200 [Wh]
EREC 1000 [Wh]
Et

s see Fig.8
EMOV

p1,p2 see Fig.9
NB

s NB
S9 = 21, NB

S10 = 15 NB
S15 = 15

NSP
s NSP

S9 = 10, NSP
S10 = 8, NSP

S15 = 7
BMIN 720 [Wh]
BMAX 2400 [Wh]
EMIN 100 [Wh]
EMAX 1000 [Wh]

5 10 15 20

TS Index

0

100

200

300

400

500

600

700

E
n
e
rg

y 
[W

h
]

E
s
t

FIGURE 8. SP energy production (Et
s [Wh]) - Frascati scenario.

the number of batteries N

B
s , whose values are reported in

the table, is done by solving the dimensioning problem of
[57]. In particular, the dimensioning aims at minimizing the
total installation costs SPs and batteries, while taking into
consideration the areas to be served and the energy produced
by a single SP. Focusing on this last parameter, whose trend is
shown in Fig. 8, we consider historical SP production data of
Frascati from one day in June [58], which are obtained from
the PVWatts calculator. In this way, we take into account
realistic data, which are based on the weather conditions
observed on the location for over 30 years. The resulting
data are then the average energy production of the SP over
the month under investigation. Clearly, the actual weather
observed in the location may include also bad weather condi-
tions that are different from the average trend. However, we
point out that these variations may be easily introduced in the
model of [57], and hence be reflected into a different set of
batteries deployed in each site. Moreover, we point out that
the SP energy production is also an input parameter of the
problem studied in this work.

Focusing then on the parameters related to the energy
consumption of the UAVs, we assume that each UAV can
be charged up to E

MAX
= 1000 [Wh]. Moreover, we assume

that the UAV energy can be decreased up to a minimum value
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FIGURE 9. EMOV
p1,p2

8p1 2 P, p2 2 P [Wh] (NOTE: cells with value "NO"
denote place pairs not connected with an LMOV arc) - Frascati scenario.

E

MIN
= 100 [Wh]. In this way, each UAV has an amount

of energy sufficiently high to safely land on a site upon an
emergency and/or bad weather condition. In addition, Fig. 9
reports the energy values of the LMOV arcs. Intuitively, we
have set EMOV

p1,p2
8p1 2 P, p2 2 P by considering an amount

of consumed energy proportional to the distance between
p1 and p2. However, an arc is included only if the distance
between p1 and p2 is lower than a maximum value, which is
set equal to 900 [m]. In this way, for example, the distance
between a site and the UAV serving an area can guarantee
an adequate Signal To Interference plus Noise Ratio (SINR)
for the backhaul radio link established between the site and
the UAV.3 Moreover, the value set for the maximum distance
and the considered TS duration allow the UAV coming back
to the ground site in one TS, which would be not always
feasible (due to energy limitations and/or speed constraints)
with larger distances and/or shorter TSs. Consequently, the
LMOV graph is not a full mesh (see the yellow cells of Fig. 9,
corresponding to the “NO” label in the colorbar of the figure).
In addition, there are places p1 and p2 with E

MOV
p1,p2

= 0 [Wh],
corresponding to: i) same areas or same sites pairs, or ii) area-
site pairs which are co-located, and hence not consuming
energy values for moving the UAVs between them (see e.g,
the S10-A10 pair).

B. CÁCERES SCENARIO
In the following, we move our attention to the definition of a
large-scale scenario located in Cáceres (Spain). The selected
territory, spanning over an area 1,750 m

2, is reported in
Fig. 10(a) (aerial view) and Fig. 10(b) (top view with place
locations). Similarly to the Frascati scenario, we solve the
minimum cost problem of [57] to retrieve the set of places,
as well as the number of installed SPs and batteries. The
resulting outcome is shown in Fig. 10(c) and in Tab. 3,
while Fig. 11 reports the SP energy during the month under
consideration (i.e., June). As a result, we have |A| = 184

areas and |S| = 56 sites.

3A more detailed evaluation of this aspect is left for future work.
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(a) Aerial View (Source: Google Earth)

(b) Locations of the places (Source: Google Earth)
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FIGURE 10. The Cáceres scenario.

Focusing on the values of UAV energy needed to move
between places (EMOV

p1,p2
), we adopt a similar procedure to the

Frascati scenario. The resulting values of EMOV
p1,p2

are reported
in Fig. 12. Finally, we keep the same value as in the Frascati
scenario for what concerns BMIN, BMAX, EMIN, EMAX.

TABLE 3. Parameters Setting for the Cáceres Scenario

Parameter Value

A {A1, ..., A184}
|A| 184
S {S185, ..., S240}
|S| 56
T 1 [day] divided in 24 TSs of 1 [h]
D 368 UAVs

ECOV 200 [Wh]
EREC 1000 [Wh]
Et

s see Fig. 11
EMOV

p1,p2 see Fig. 12
NB

s 16 (S23,S68,S76,S93,S105,S109,S113,S122), 19
(S45,S79,S97,S104,S106,S112,S115, S144,S158,S183),
22 (S4,S18,S37,S57,S60,S69,S88,S89,S92,S121,S178), 26
(S13,S19,S22,S27,S38,S55,S56,S67,S75,S77,S110,S118,S133,
S137,S142,S175,S180), 29 (S6,S41,S59,S86,S98,S136,S141,
S150,S159,S165)

NSP
s 7 (S23,S68,S76,S93,S105,S109,S113,S122), 8

(S45,S79,S97,S104,S106,S112,S115, S144,S158,S183),
9 (S4,S18,S37,S57,S60,S69,S88,S89,S92,S121,S178), 10
(S13,S19,S22,S27,S38,S55,S56,S67,S75,S77,S110,S118,S133,
S137,S142,S175,S180), 11 (S6,S41,S59,S86,S159), 13
(S98,S136,S141,S150,S165)

BMIN 720 [Wh]
BMAX 2400 [Wh]
EMIN 100 [Wh]
EMAX 1000 [Wh]
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FIGURE 11. SP energy production (Et
s [Wh] (Cáceres scenario).

VIII. RESULTS
We have implemented the EMU and D-EMUC in Cplex
12.7.1. Both the models are run on a high performance
computing cluster, composed of four nodes, each of them
with 32 cores and 64 GB of RAM. On the other hand, the
GAUP-LS algorithm is coded in Matlab and run on a dual-
core Intel-based machine at 3.1 GHz with 16 GB of RAM.

A. EVALUATION OF THE FRASCATI SCENARIO
We initially run EMUC, D-EMUC and GAUP-LS on the
Frascati scenario. Focusing on the input parameters used
to tune our algorithms, we assume a variation of ↵ 2
{0.01, 0.1, 1, 10, 100} to weigh differently the ground sites
and the UAVs battery levels. In addition, we always set very
large values of the penalty weight �, in order to ensure that
even a single area not covered during a single TS has an
impact on the objective function. Specifically, we set � = 10

5
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p1,p2

8p1 2 P, p2 2 P [Wh] (NOTE: cells with value "NO"
denote place pairs not connected with an LMOV arc) - Cáceres scenario (figure
best viewed on screen).

when ↵ = {0.01, 0.1, 1} and � = 10

6 when ↵ = {10, 100}.
For what concerns the EMUC formulation, we set a maxi-
mum time limit of 18000 [s]. In case the computation is still
running after this amount of time, we get the best solution
retrieved so far. Focusing on the D-EMUC parameters, we
assume a spatial decomposition over the three sites installed
in this scenario. Moreover, a temporal decomposition of 6
sets of TS, each of them lasting for 4 hours, is assumed.

Since GAs are evolutionary metaheuristic algorithms, a
(near) optimal solution is found after the execution of a
set of iterations (generations). Generally, the quality of the
solution is improved if the maximum number of generations
to be set in the GA is increased. Another parameter to be
tuned for improving such solution quality is the population
size. However, if a big search space is considered, a penalty
in the computation time must also be paid. Therefore, in
order to set GAUP-LS parameters, we previously analyze
the impact of varying the population size, |M |. Fig. 13
reports the convergence of GAUP-LS for different |M | when
↵ = 0.01. Remarkably, when using the setting |M | = 20,
GAUP-LS converges faster (around generation 40) than in
the case where larger populations are considered. Moreover,
as shown in Tab. 4, the computation time required to find
the solution is reduced in comparison with EMUC and D-
EMUC, while the optimality gap paid is negligible once the
algorithm converges.

As a result of this analysis, we set a population size of
|M | = 20 individuals, a maximum number of ✓MAX =

100 · |cM | generations, and a maximum number of ⌧ = 50

consecutive generations without improvement in the value of
the fitness function (i.e., the average relative change in the
best fitness function value over ⌧ consecutive generations is
less than or equal to a minimum value). Moreover, the type of
mission defined for each UAV in the population follows the
keep covering strategy described in Sec. VI.

Tab. 4 reports the breakdown of the results from the
Frascati scenario, which are obtained by varying the ↵ pa-
rameter. We report the total value of the objective function,
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FIGURE 13. GAUP-LS convergence as a function of the population size, |M|.
- Frascati Scenario.

as well as its main components, in terms of: i) total ground
sites battery level

P

s2S
P

t2T b

t
s, ii) total UAVs battery

level
P

s2S
P

t2T e

t
s. Focusing on the ground sites battery

levels, the table reports upper and lower bounds, which
are computed as

P

s2S N

B
s · BMAX and

P

s2S N

B
s · BMIN,

respectively. Moreover, we report upper and lower bounds for
the UAVs battery levels, which are computed as |D| · EMAX

and |D| · EMIN, respectively. In addition, the table includes
the computation time (for D-EMUC it is defined as the sum-
mation of the computation time for all slots and all clusters
considering a specific value of parameter ↵), as well as the
percentage of the TSs during which an area is not covered by
any UAV, which is computed as:

P

p2A
P

t2T
stp

|A|·|T | .
Several considerations emerge from Tab. 4. First, the total

values of the objective function tend to increase with ↵

(as expected), due to the fact that this term multiples the
UAVs battery level. Focusing then on the single terms of the
objective function, we can see that, when ↵ is increased, the
battery level of the ground sites is reduced. This outcome
suggests that, when the UAVs battery level becomes the
predominant term, the best choice is to transfer the energy
from the ground sites to the UAVs, in order to maximize their
battery level. Clearly, the UAVs battery level tends to have a
specular trend compared to the ground site battery level.

We then continue our analysis of Tab. 4 by comparing
the outcomes of the different algorithms. Both D-EMUC
and GAUP-LS perform very close to EMUC in terms of
total objective function, ground sites battery level, and UAVs
battery level for values of ↵ < 100. Interestingly, all the
algorithms are pretty close to the upper bound of the total
battery level of the ground sites. This is due the fact that
our algorithms are able to efficiently exploit the SP energy to
recharge the UAVs, while allowing an high amount of energy
being stored in the battery of the site. Moreover, the UAVs
battery level is clearly lower than the upper bound. This is
due to the fact that the UAVs are used to cover portions of
the territory, and hence during their missions they tend to
deplete their batteries. Nevertheless, we can note that the
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TABLE 4. Breakdown of the results from the Frascati scenario.

Metric Algorithm ↵ = 0.01 ↵ = 0.1 ↵ = 1 ↵ = 10 ↵ = 100
EMUC 2.77 · 106 2.79 · 106 3.02 · 106 5.36 · 106 31.99 · 106

D-EMUC 2.77 · 106 2.80 · 106 3.03 · 106 5.39 · 106 32.75 · 106Obj. Function [Wh]
GAUP-LS 2.75 · 106 2.79 · 106 3.01 · 106 5.36 · 106 28.71 · 106

Upper bound 2.93 · 106
EMUC 2.77 · 106 2.77 · 106 2.78 · 106 2.71 · 106 2.59 · 106

D-EMUC 2.77 · 106 2.78 · 106 2.77 · 106 2.76 · 106 2.65 · 106
GAUP-LS 2.75 · 106 2.76 · 106 2.76 · 106 2.74 · 106 2.71 · 106Sites Batt. Level [Wh]

Lower bound 0.88 · 106
Upper bound 6 · 105

EMUC 2.41 · 105 2.39 · 105 2.43 · 105 2.65 · 105 2.94 · 105
D-EMUC 2.57 · 105 2.58 · 105 2.59 · 105 2.63 · 105 3.01 · 105
GAUP-LS 2.52 · 105 2.56 · 105 2.57 · 105 2.62 · 105 2.60 · 105UAVs Batt. Level [Wh]

Lower bound 0.6 · 105
EMUC 18000 18000 18000 18000 18000

D-EMUC 10.16 10.75 10.10 6.79 19.11Comp. Time [s]
GAUP-LS 4.87 5.08 4.73 4.91 5.18

EMUC 0 0 0.52 0 10.41
D-EMUC 0 0 0 0 12.05Not Covered TSs [%]
GAUP-LS 0 0 0 0 0

UAVs battery level is strongly higher than the minimum one.

Focusing on the computation times of the different algo-
rithms, both D-EMUC and GAUP-LS are able to retrieve
a solution in few seconds at most, while EMUC strongly
suffers from the complexity of the scenario, resulting in
computation times of several hours. For this formulation,
in fact, we have set a time limit of 5 [hours], and after
this amount of time the best solution available so far has
been retrieved. The percentage gap associated with the best
obtained solution is about 5.5% for ↵ 2 {0.01, 0.1, 1} and
it increases for higher values of ↵ assuming respectively a
value of 23.12% for ↵ = 10 and 36.73% for ↵ = 100.
This poses challenges about the adoption of EMUC in a real
deployment, where the management of the UAVs has to be
performed in short time scales. On the contrary, both D-
EMUC and GAUP-LS appear to be good candidates in this
context. Observing the percentage of TSs in which an area
is not covered by any UAV, we can note that this is equal
to 0 with the exception of the solution provided by EMUC
for ↵ = 1. However, we have to take into account that this
solution is not an optimal one but just the best one found
within the time limit, hence, it is a case in which the solution
found leaves a not covered area in a certain TS.

In the following, we concentrate our attention on the
differences between the algorithms when ↵ = 100. Both
EMUC and D-EMUC tend to perform better compared to
GAUP-LS in terms of total objective function and UAVs
battery level. By further investigating this issue, we have
found that the percentage of not covered TSs is not negligible
for EMUC and D-EMUC when ↵ = 100. In this case,
in fact, keeping the UAVs fully recharged and not using
them for territory coverage becomes an attractive choice,
despite the relatively high penalty for not covering the areas.
Moreover, we point out that GAUP-LS always ensure full
coverage of the territory, resulting in a lower UAVs battery
level compared to EMUC and D-EMUC.

B. EVALUATION OF THE CÁCERES SCENARIO
We then run our algorithms on the Cáceres scenario. In this
case, the EMUC formulation is too challenging to be solved,
mainly due to the large number of sites and areas (much
larger than the Frascati scenario). Therefore, we concentrate
our attention on D-EMUC and GAUP-LS, which are de-
signed to tackle large problem instances. Similarly to the
Frascati scenario, we consider a variation of ↵ 2 [0.01, 100].
Moreover, we set the following parameters for D-EMUC: i)
a penalty � = 10

5 when ↵ = {0.01, 0.1, 1, 5} and � = 10

6

when ↵ = {10, 100} (as in the Frascati scenario), ii) a spatial
decomposition over the 56 ground sites characterizing this
scenario and iii) a temporal decomposition of 6 sets of TS,
each of them lasting for 4 hours. As in the case of the Frascati
scenario, we set |M | = 20, ✓MAX = 100 · |cM |, and ⌧ = 50

for GAUP-LS, where the keep covering strategy is again used
for UAVs missions in the initial population.

Fig. 14 reports the values of the objective function of D-
EMUC and GAUP-LS. Also in this case, when ↵ is increased,
the total objective function tends to increase too. Compared
to the Frascati scenario, the values of the objective function
are almost two order of magnitude higher, due to the increase
in the number of sites as well as in the total number of UAVs.

In the following, we investigate the variation of the total
battery levels for the ground sites and for the UAVs, as
reported in Fig. 15. Interestingly, both the algorithms reveal
a similar trend: when ↵ is increased, the UAVs battery level
tends to increase, while the ground sites battery level tends
to decrease. However, we can note that D-EMUC tends to be
more efficient than GAUP-LS, since the battery levels (for
both UAVs and ground sites) are constantly higher for the
former compared to the latter. This is due to the fact that D-
EMUC applies a divide et impera approach, by splitting the
original problem into smaller ones, and by optimally solving
each subproblem. However, we stress the fact that GAUP-LS
is always pretty close to D-EMUC.

In the next part, we shed light on the different components
affecting the UAVs battery level e

t
d. We recall that e

t
d is
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Scenario.

computed from Eq. (6), by also ensuring that the resulting
battery level is kept between minimum and maximum values
through Eq. (7). By extending this metric to the whole set
of TSs and UAVs, the different components of the total
UAVs battery level are the following ones: i) total energy
from COV actions

P

d

P

l2LCOV El · fd
l , ii) total energy for

MOV actions
P

d

P

l2LMOV El · fd
l and iii) total energy for

REC actions
P

d

P

l2LREC El · fd
l . The three components

are reported in Fig. 16 for D-EMUC and GAUP-LS vs. ↵.
Interestingly, the largest amount of energy is due to UAVs
recharging. However, the energy due to area coverage is also
not negligible. Finally, the energy due to moving is lower
compared to the previous two terms. This outcome suggests
that, when the UAVs are used, they frequently cover the
areas, while they tend to spend less energy in moving actions
(possibly to the moving from a site to an area, and vice-
versa). In addition, we can note that the total energy due to
recharge tends to increase when ↵ is increased. This results
is expected, as maximizing the UAVs battery level is the
predominant objective for large values of ↵. In addition, we
can note that the energy due to coverage actions is decreased
for D-EMUC when ↵ 2 {10, 100}. By further investigating
this issue, we have found that, in these cases, the percentage
of not covered TSs is close to 10%, thus revealing that not
all the areas are covered for the whole set of TSs. Finally,
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we also stress the fact that the term
P

d

P

l2LREC El · fd
l is

a potential amount of energy injected to the UAVs. Thanks
to Eq. (7), in fact, the UAV battery level etd is saturated to
E

MAX.
We then move our attention to the duration of the missions

performed by the UAVs. More in depth, we define a mission
as the number of TSs between two REC actions. Therefore,
a mission can be a sequence of MOV, COV, REC and STAY
actions. Fig. 17 reports the durations of the UAVs missions
(in terms of TSs) for D-EMUC and GAUP-LS vs. ↵. The
figure reports minimum, average, and maximum mission
durations. Interestingly, we can note that the average mission
duration is in the order of different TSs, thus suggesting
that the UAV battery does not need to be recharged very
frequently. However, the mission durations tends to decrease
when ↵ 2 {10, 100}. In this case, in fact, the problem
tends to pursue the maximization of the UAV battery level,
thus shortening the mission duration to guarantee high bat-
tery levels. Moreover, we can note that the minimum and
maximum mission durations tend to the average one when
↵ 2 {10, 100}, thus suggesting that the variability in the mis-
sions is also reduced, i.e., all UAVs tend to perform similar
(short) missions. Finally, by comparing the GAUP-LS and D-
EMUC trends, we can note that the average mission duration
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TABLE 5. Computation time of D-EMUC and GAUP-LS.

↵ D-EMUC GAUP-LS

0.01 2381.89 [s] 106.45 [s]
0.1 3645.63 [s] 113.38 [s]
1 5416.52 [s] 128.26 [s]
5 1464.92 [s] 115.91 [s]

10 2288.85 [s] 99.87 [s]
100 2121.85 [s] 96.90 [s]

is pretty similar across the two algorithms. However, GAUP-
LS enforces maximum and minimum mission duration closer
to the average compared to D-EMUC.

In the last part of our work, we have compared D-EMUC
and GAUP-LS in terms of computation time, as reported in
Tab. 5. Interestingly, both the algorithms are able to retrieve
a solution in a reasonable short amount of time. Moreover,
we stress the fact that the D-EMUC time is computed by
sequentially solving the different subproblems, and that this
time may be further reduced by running in parallel the
temporal decomposition for each site and each set of areas
As retrieved during the spatial decomposition.

IX. DISCUSSION
We then discuss two main issues that may impact the pre-
sented results, namely: i) the introduction of wireless channel
features, and ii) the consideration of battery ageing effects.

A. IMPACT OF WIRELESS CHANNEL
CHARACTERISTICS
The features of the wireless channel are left outside the
formulations and the algorithms. This is due to the fact that
our primary goal is to study the impact on the battery levels
of the ground sites and the UAVs as a consequence of the
scheduling of the UAVs missions. Integrating the wireless
channel characteristics, e.g., to ensure a minimum rate to
users, would require to add the users in the formulations
and the algorithms, thus dramatically complicating the con-
sidered problem. For example, Wu et al. [59] focus on the
joint-aware trajectory and communication design in a UAV-
based architecture. The considered model is a mixed-integer
non-convex problem, which is solved in scenarios with at
most two UAVs and one BS by means of an approximated
technique. In addition, the impact on the UAV battery levels
and the ground site battery level is not taken into account at
all by [59]. Moreover, the scenarios considered in this work
are 1-2 orders of magnitude larger than [59].

We also point out that our architecture is conceived to
be applied in rural areas, where the connectivity is mainly
provided by the UAVs. Hence, the primary goal is coverage,
which is ensured when the UAV reaches the central location
of an area. In this position, we assume that the channel
characteristics are the best ones, i.e., short distance to users,
Line-of-Sight conditions,and minimum interference with the
neighboring UAVs.

Finally, focusing on bandwidth allocation, we assume that
each UAV realizes a small cell. Therefore, a bandwidth of

5 [Mhz] can be assumed. Clearly, in case a single frequency
is assumed for the UAVs, the set of areas, which is an input to
our problem, should be built in such a way to limit the effect
of interference among neighboring UAVs.

B. IMPACT OF BATTERY AGEING EFFECTS
In our work, we have assumed that the batteries of ground
sites and of the UAVs are recharged and discharged over
time. In the long-term, this operation may introduce ageing
effects on the batteries, in terms e.g., of capacity degradation
and lifetime. We then provide in the following some insights
about this aspect, by drawing also some possible future
research directions.

Focusing on the ground sites, we have assumed the ex-
ploitation of lead acid batteries. In this case, we always
guarantee a minimum battery charge of 30% to ensure that
the battery is kept in a healthy condition [10]. This setting
should also prevent (up to a certain level), the ageing effects.
Focusing instead on the UAVs, we have assumed lithium-
based batteries. In this case, the ageing effects are strongly
impacting the features of the battery. For example, Tröltzsch
et al. in [60] reports a decrease in the battery capacity equal
to 14% after some hundreds of cycles of discharge/charge.
Moreover, the battery lifetime is limited to a maximum num-
ber of recharge/discharge cycles [61]. In our case, therefore,
the capacity of the battery, and also its lifetime, may be
influenced by the amount of REC actions performed by the
UAVs. Both these features can be easily added to our model,
as shown in the following.

Let us introduce the integer variables c

t
d, which store the

number of REC actions for UAV d up to the current TS t. For
a generic TS t, ctd is computed as:

c

t
d = c

t�1
d +

X

l2LREC:
t(l)=(⇤,t�1)
h(l)=(⇤,t)

f

d
l , 8d 2 D, t > 1 2 T (18)

Let us denote with C

IN
d the number of recharging actions

that the UAV d has done in the past (from its first usage up to
the initial TS of the current simulation). More formally, we
have:

c

1
d = C

IN
d , 8d 2 D (19)

Let us denote now with E

MAX
(c

t
d) the maximum level of

energy for UAV d at TS t after ctd transitions. The new energy
bounds for the UAV are computed as:

E

MIN  e

t
d  E

MAX
(c

t
d), 8d 2 D, t 2 T (20)

Moreover, we need to include the binary variable ytd, which
is equal to 0 when c

(t�1)
d reaches a maximum number of

transitions C

MAX
d , 1 otherwise. When this condition holds,

the UAV d can not be used any more, since it has reached its
end of lifetime. More formally, we have:

y

t
d  (C

MAX � c

(t�1)
d ), 8d 2 D, t 2 T (21)
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When y

t
d is 0, then all the MOV, REC and COV arcs are

prevented for the current UAV (i.e., the UAV can be only in a
STAY state). More formally, we have:

f

d
l  y

t
d, 8l 2 LMOV [ LREC [ LCOV

:

t(l) = (⇤, t� 1), h(l) = (⇤, t), d 2 D, t 2 T (22)

Summarizing, we have introduced the ageing effect of
capacity degradation in Eq. (20), the maximum number of
REC actions in Eq. (21) and the auxiliary constraints of
Eq. (18), Eq. (19), Eq. (22).

We then define the overall EMUC-AGE model by intro-
ducing in the EMUC one constraints (18)-(22). We then
test EMUC-AGE over a simple, yet representative, example.
More in detail, we consider the Frascati scenario with ageing
parameters: C IN

d = 228 8d 2 D, CMAX
d = 230 8d 2 D,

E

MAX
(c

t
d) = 986 [Wh] (we assume a 14% of battery

degradation in accordance to [60]). In this way, we test our
problem in an extreme case, where all the UAVs have almost
reached their end of lifetime. We then run the EMUC-AGE
problem with ↵ = 1 and we retrieve a total objective function
equal to 2.74 · 106 and 62.5% of not covered TSs. Both these
metrics are clearly lower compared to the results obtained
by EMUC in Tab. 4. This suggests that the ageing effects
have an impact on the UAVs battery and consequently on
the results. The evaluation of more detailed ageing models,
including e.g., more complex interactions among the battery
components and/or the physical properties, is an interesting
aspect that is left for future work.

X. CONCLUSIONS AND FUTURE WORK
We have targeted the problem of jointly managing the bat-
tery levels of UAVs and ground sites in a cellular network
powered by renewable energy sources. After formulating the
EMUC problem, we have designed the D-EMUC and GAUP-
LS algorithms to solve even large instances composed of
dozens of sites and hundreds of areas. We have then built a
set of representative case-studies, including a small scenario
from Italy and a large one from Spain. Results demonstrate
that both D-EMUC and GAUP-LS perform sufficiently close
to EMUC, with a clear improvement in terms of computation
times. In addition, we have investigated the trade-off between
maximizing the UAVs battery level and maximizing the
ground sites battery level, by showing also its impact in terms
of coverage, energy components and UAVs mission duration.

We believe that this work is a first step towards a more
comprehensive approach. To this aim, the control issues
related to the communication aspects between the UAVs and
the machine running the problem have to be faced as future
work. In addition, another interesting topic is the modeling
of the throughput provided to users, and how this term can
be introduced in our problem. Eventually, the throughput
constraints on the link of backhauling between the UAV
and the ground site require a further study. Moreover, we

will consider the impact of introducing different sources of
energy, such as wind and geo-thermal ones. Further research
will be also dedicated to study new different mathemati-
cal programming models and decomposition techniques or
ad hoc optimal solution procedures (e.g., Branch&Bound).
Finally, we plan to evaluate the impact of detailed ageing
models for the batteries.
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