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The Web of Linked Data is a huge graph of distributed and interlinked datasources fueled by structured
information. This new environment calls for formal languages and tools to automatize navigation across
datasources (nodes in such graph) and enable semantic-aware and Web-scale search mechanisms. In this
article we introduce a declarative navigational language for the Web of Linked Data graph called NAUTILOD.
NAUTILOD enables one to specify datasources via the intertwining of navigation and querying capabilities. It
also features a mechanism to specify actions (e.g., send notification messages) that obtain their parameters
from datasources reached during the navigation. We provide a formalization of the NAUTILOD semantics,
which captures both nodes and fragments of the Web of Linked Data. We present algorithms to implement
such semantics and study their computational complexity. We discuss an implementation of the features of
NAUTILOD in a tool called swget, which exploits current Web technologies and protocols. We report on the
evaluation of swget and its comparison with related work. Finally, we show the usefulness of capturing Web
fragments by providing examples in different knowledge domains.
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1. INTRODUCTION

There is an increasing availability of structured data on the Web. A vast portion of
the Web can now be thought of as a large graph where nodes represent datasources
describing entities (e.g., people, places) and edges semantic relations (e.g., born in,
located in) between them. Such an enhanced version of the Web is usually referred to
as the Web of Linked Data (WLOD). There are different projects that contribute to the
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spread of the WLOD. On one hand, Linking Open Data1 [Heath and Bizer 2011] aims
at setting some principles for the publishing and interlinking of data on the Web by
using the Resource Description Framework (RDF) [Klyne et al. 2004]. One key aspect
of such project is the decentralized nature of data. On the other hand, applications
like the Google Knowledge Graph (KG)2 and the Facebook Graph (FG)3 allow to access
structured descriptions of entities from centralized gateways.

Although different in their goals, the common technical basis of all these approaches
are large graphs that model structured information and emphasize the functionalities
of discovery and exploration that are achieved by (manual) navigation from the entity
(node in the graph) currently being visited toward semantically related entities, via
labeled edges. The querying capabilities in these approaches do not enable one to
go beyond asking “tell me friends living in my same city” or matching keywords to
specific entities. It is not possible to perform simple information requests involving,
for instance, the checking of paths, although questions like “find people up to three
hops away from me that like music and live in my same city” sound very natural when
dealing with graphs. Little flexibility is given to Web developers and users in terms of
languages and tools capable of harnessing and putting together the power of the huge
amount of structured data available in the WLOD [Weaver and Tarjan 2013].

In this article we introduce a formal graph navigational language for the WLOD
called NAUTILOD. It enables one to write navigational expressions reflecting concep-
tual specifications of both nodes and fragments (subgraphs) of interest in the WLOD.
These formal specifications are expressed in a declarative way and enable one to nav-
igate across datasources in the WLOD without human intervention. NAUTILOD also
introduces the functionality of specifying actions. Actions allow one to send alerts,
mails, and open a whole new world of functionalities that contribute to the automation
of information search on the WLOD. The technological underpinnings of our proposal
are open and standard technologies such as the RDF data format and the SPARQL
query language for RDF [Harris and Seaborne 2013]. In the remainder of this intro-
ductory section, we more formally present the WLOD; the notion of navigation on the
Web, which takes advantage of the semantics of data on the Web; an overview of the
general design of NAUTILOD; and the structure of the article.

1.1. From the Web of Documents to the Web of Linked Data

The Web is usually modeled as a graph of links between pages [Brin and Page 1998].
This model has some peculiarities. First, links between pages are unlabeled and can
only be expressed at one of the two endpoints.4 For example, in Wikipedia a link from
the HTML page about Rome (i.e., wiki:Rome5) to the page about Italy (i.e., wiki:Italy)
can only be set in the page wiki:Rome. In the WLOD links can be set and be part of any
datasource in the spirit of Tim Berners Lee’s words “Anyone can say anything about
any topic and publish it anywhere” [Berners-Lee 1998]. For instance, a link between
the DBpedia resources Rome (i.e., dbpedia:Rome) and Italy (i.e., dbpedia:Italy) can be
part of any RDF datasource. Indeed, an arbitrary datasource d identified by the URI
u can contain the triple (dbpedia:Rome, dbpo:country, dbpedia:Italy). The preceding
triple will be then available when dereferencing u. Note that differently from the case
of HTML pages, now the link includes a label that specifies one of the possible semantic
relations between dbpedia:Rome and dbpedia:Italy. Labels carry a semantic meaning

1http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData.
2http://www.google.com/insidesearch/features/search/knowledge.html.
3http://www.facebook.com/about/graphsearch.
4X-Link (http://www.w3.org/TR/xlink11/) was proposed to go beyond such limitation.
5The prefixes used in the article are those available at http://prefix.cc.
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Fig. 1. Web of documents versus Web of Linked Data (WLOD).

as being part of conceptual specifications (e.g., ontologies, thesauri) used to model
knowledge domains.

Second, although Web pages are created and kept distributively, their small size and
lack of structure stimulated the idea to view searching and querying through single
and centralized repositories. These repositories are built via crawlers that starting
from a set of seed pages navigate the Web graph to reach Web pages whose content will
be processed and stored. The WLOD can be seen as a semantic graph where nodes are
autonomous datasources identified by URIs and maintaining sets of RDF triples some
of which provide links toward other datasources. This model allows one to better express
the distributed creation and maintenance of data, and the fact that the structure of the
WLOD is provided by dynamic and distributed datasources. In particular, it reflects
the fact that at each moment in time, and for each particular agent, the whole graph
of data on the Web is unknown [Mendelzon et al. 1997].

Figure 1(a) shows an excerpt of the Web of documents with some HTML pages and
(syntactic) links between them. For instance, the page about the R. Johnson Blues
Foundation links to the (official) Web page about E. Clapton. Note that there is no link
between the page about R. Johnson and the page about the city of Greenwood where
he passed away. Figure 1(b) shows information about the same entities reported in
Figure 1(a) taken from DBpedia, the counterpart of Wikipedia in the WLOD. Here,
note the availability of structured information in RDF such as the triple that links
R. Johnson to the city of Greenwood. The label of this link, that is, dbpo:deathPlace
carries a semantic meaning as being formally defined in the DBpedia ontology.6

1.2. Semantic Navigation on the Web of Data

The availability of structured data in the form of graphs calls for adequate languages
that go beyond keyword-based mechanisms. The traditional tool to get information or
knowledge from structured data is a query language. In the world of RDF, there is
a standard query language called SPARQL [Harris and Seaborne 2013]. Querying in
SPARQL implies the access to one or more datasources to satisfy an information need.
However, the language offers limited support in terms of capabilities related to (dy-
namic) “exploration” and “discovery” of datasources that characterize all the emerging
graph applications. One fundamental ingredient toward this goal is the support for

6http://wiki.dbpedia.org/Ontology.
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graph navigation functionalities. Generally speaking, navigation is the process of go-
ing, guided by some driving directions, from the known to the unknown in a given space.
In the case of RDF graphs, the space is set by the graph topology (encoded by RDF
triples) and navigation occurs by traversing edges. Consider, for instance, the discovery
of knowledge about musicians influenced by R. Johnson in Figure 1(b); starting from
the node R. Johnson in DBpedia (the known) it is possible to navigate toward the nodes
of other musicians (the unknown) by traversing edges labeled as dbpo:influenced
(the driving directions). SPARQL (via property paths [Harris and Seaborne 2013]) and
other extensions (e.g., nSPARQL [Pérez et al. 2010]) offer graph navigational function-
alities that restrict their scope to local RDF graphs; they offer little support in terms
of navigation in the WLOD graph.

In the WLOD, navigation can go beyond the classical crawling that consists in
traversing all the edges toward other nodes; it can be driven by some high-level se-
mantic specification that encodes a reachability test, that is, the checking whether
from a given node there exists a path (defined by considering edge labels) toward other
nodes. In graph query languages, the specification is usually given by using regular
expressions over the alphabet of edge labels. Reachability as well as other approaches
to query information from graphs have been largely studied in graph data management
[Angles and Gutierrez 2008; Wood 2012]; however, no proposal has been formalized for
distributed graphs such as the WLOD. In this setting, neither querying nor navigation
alone are enough; navigation can actually be complemented with querying. Navigation
is necessary since the topology of the space of datasources to be queried is (from a
practical point of view) unbounded, not known in its entirety, and dynamic. Querying
is important since each node in the WLOD is an RDF datasource that can be queried
upon to filter and drive the subsequent steps of the navigation. The idea developed in
this article is to have a navigational language that makes usage of querying to both
(i) drive the navigation by filtering datasources according to the pieces of information
they store and (ii) dynamically retrieve data from datasources encountered during the
navigation and use such data to perform some basic actions (e.g., send notification
messages). The navigation model proposed in this article has the unique feature of
enabling the retrieval of Web fragments, that is, graphs including nodes and edges vis-
ited when evaluating an expression. This goes beyond the classical navigational model
focused on retrieving nodes. These considerations are at the basis of our proposal for a
navigational language for the WLOD.

1.3. The NAUTILOD Language: An Overview

We see a navigational language for the WLOD graph as a way of providing instruc-
tions in the form of navigational expressions. Such expressions enable one to navigate
from a given node toward nodes of interest by adjusting the navigation according to
dynamically discovered edges and nodes. Our desideratum is to define a simple lan-
guage that can help developers and users in performing at least the following basic
tasks in a declarative and integrated manner: (i) specification of driving directions,
that is, semantic descriptions of routes allowing one to traverse and retrieve nodes and
fragments of the WLOD; (ii) semiautomatic navigation across datasources “driven” by
locally found information; (iii) specification of actions to be performed over the data.

This article presents a formal language for the WLOD that we call NAUTILOD
(Navigational Language for Linked Open Data). It is based on regular expressions
over RDF predicates plus tests using Boolean SPARQL queries performed over RDF
datasources. Regular expressions enable the posing of complex information needs in-
volving navigation along the nodes of the WLOD graph, while tests enable the selection
and filtering of relevant datasources from which to continue the navigation. NAUTILOD
also features a mechanism to specify actions (e.g., send notification messages) that may
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Fig. 2. An excerpt of data that can be navigated from dbp:John_Grisham.

use data encountered during the navigation. Although there exist several languages
to process and query RDF data, the type of dynamic and open high-level specifica-
tions featured by NAUTILOD cannot be systematically simulated by these languages
(see Related Work). Some approaches enhance SPARQL with navigational features
(e.g., Alkhateeb et al. [2009], Pérez et al. [2010], and Harris and Seaborne [2013]) over
fixed sets of datasources (typically a single RDF graph) but do not address Web scale
navigation. Crawlers like LDSpider [Isele et al. 2010] offer limited semantic control
over the navigation; in other words, it is not possible to select only (a subset of) rel-
evant datasources. NAUTILOD shares some features with approaches that extend the
scope of SPARQL queries over the WLOD [Hartig 2011; Umbrich et al. 2014]. Here,
the traversal of edges is introduced as an extension of the SPARQL semantics, thus
limiting explicit control over the navigation. Finally, none of the approaches mentioned
previously incorporates the declarative specification of actions to be triggered over
datasources.

1.4. NAUTILOD by Example

The tenet of our proposal is a language to provide high-level specifications to drive the
navigation in the WLOD graph toward precise destinations. To show the potentialities
of NAUTILOD we present some examples using the excerpt of real-world data shown in
Figure 2. The formal syntax and semantics are introduced in Section 3. For the sake of
space we will use prefixes, instead of full URIs, as defined at http://prefix.cc.

Example 1.1 (Aliases via owl:sameAs). Specify and retrieve documents associated
with John Grisham in DBpedia and his possible aliases in other datasources.

In this example, the idea is to consider owl:sameAs-paths that originate from
Grisham’s URI in DBpedia, the starting point of the navigation in the WLOD graph.
The predicate owl:sameAs states that two resources of the WLOD represent the same
entity. Recursively, for each URI u reached, check in its corresponding datasource triples
of the form (u, owl:sameAs, v); select all v’s found. Finally, for each such v, return all
URIs w in triples of the form (v, foaf:primaryTopic, w). The specification can be given
via the following NAUTILOD expression:
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dbpedia:John Grisham (owl:sameAs)∗/foaf:primaryTopic

In Figure 2, when evaluating this expression starting from the URI dbpedia:
John_Grisham we get all the different representations of Grisham provided by
dbpedia.org and nyt.com. From these nodes, the expression foaf:primaryTopic
is evaluated. The results of the evaluation is the set {wiki:John_Grisham,
nyt:N88099498865828113843}. Note that the search for documents associated to Gr-
isham, if restricted only to DBpedia, would not have allowed one to include documents
available in the New York Times datasource. The high-level specification given in this
expression underlines the main feature of NAUTILOD: the capability to deal with dis-
tributed and dynamically discovered datasources.

We would like to point out that there is a substantial difference between NAUTILOD
and other approaches (e.g., crawlers like LDSPider [Isele et al. 2010]) that could retrieve
portions of the WLOD by “crawling” all the data. It consists in the fact that NAUTILOD’s
focus is on providing a declarative way to express driving directions that enable one to
locate precisely and selectively specific parts of the WLOD graph. Moreover, NAUTILOD
goes beyond the scope of current navigational languages (e.g., SPARQL property paths,
nSPARQL [Pérez et al. 2010], PSPARQL [Alkhateeb et al. 2009], RPL [Zauner et al.
2010]); while these languages are meant to be evaluated over local graphs NAUTILOD
targets navigation on the WLOD graph. A more complex example, which extends the
scope of current navigational languages with capabilities for specifying actions and
cannot be simulated by any of the existing proposals is as follows:

Example 1.2. Specify American actors (and their aliases) that have played in at
least one movie based on a book written by J. Grisham. Send by email the Wiki pages
of such actors.

This request involves paths of the form dbpo:writer/dbpo:starring and aliases as
in the previous example; tests (expressed in NAUTILOD using ASK-SPARQL queries)
over the datasource associated with a given URI (if somebody that played in a movie
written by J. Grisham is found, check if s/he is an American actress/actor); and actions
to be performed using data from the datasource. The specification in NAUTILOD is

dbpedia:John Grisham dbpo:writer/dbpo:starring[Test]/ACT[Act]/(owl:sameAs)*

where the test and the action are specified as follows:

Test=ASK {FILTER EXISTS{?ctx rdf:type dbyago:AmericanFilmActors}}
Act=sdEmail(“x@y.z”,“SELECT ?p WHERE {?ctx foaf:isPrimaryTopicOf ?p.}”)

The traversal of the dbpo:writer predicate enables one to reach movies whose script
has been written by J. Grisham; whence actors of these movies are reached via the
predicate dbpo:starring. The (implicit) variable ?ctx in Act is bound to the set of URIs
dereferenced at the current step; actors that played in a movie written by J. Grisham
in this case. At this point, the test on the nationality of such actors via the ASK
SPARQL query enables one to rule out actors that are not American. This filter leaves
in this case only dbpedia:John_Cusack. Over the elements of this set (one element in
this case), the action will send via email the Wiki page (obtained via the SELECT
query). The action sdEmail, implemented by an ad hoc programming procedure, does
not influence the navigation process. Thus, the evaluation will continue from the URI
dbpedia:John_Cusack, by traversing the edge owl:sameAs (found in the set of triples
obtained by dereferencing dbpedia:John_Cusack), similarly to what is already seen in
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Example 1.1. The final result of the evaluation is (i) the set {dbpedia:John_Cusack,
fb:John_Cusack, nyt:. . . 13834}, that is, the URIs identifying John Cusack in dbpedia.
org, freebase.org and nyt.com; (ii) the set of actions performed—in this case one email
sent. The previous example underlines two of the main features of NAUTILOD. First,
it enables via tests to declaratively specify routes in the WLOD graph that have to
be explored. Second, navigation can be complemented with high-level specification of
actions to be performed over data. The combination of these two features is a powerful
support for Web developers toward building applications that consume structured data
on the WLOD.

We are now ready to show an example of how with NAUTILOD it is possible not only to
specify a set of nodes conforming to an expression, but also to keep information about
the Web fragment where these nodes are located. Connectivity information available in
Web fragments is crucial in several application scenarios such as social networks and
citation networks. On the Web, connectivity is also useful to track provenance, that is,
reconstructing the path that led to a particular datasource.

Example 1.3 (Capturing Web Fragments). Specify the coauthor network of Tim
Berners-Lee (TBL) by considering coauthorship relations on papers published between
2010 and 2013 only. The specification in NAUTILOD is

dblp:Tim Berners-Lee (foaf:maker[Test]/foaf:maker)*

where the test is defined as follows:

Test=ASK {?ctx dc:issued ?y. FILTER( ?y>‘‘2010’’∧∧<xsd:gYear>).

FILTER(?y<‘‘2013’’∧∧<xsd:gYear>).}

The purpose of Example 1.3 is that of constructing a network starting from the URI
of TBL in the RDF version of the DBLP bibliography database.7 Hence, the goal is
twofold: (i) identifying nodes (coauthors of TBL) that satisfy the expression; an (ii)
keeping track of the connections among these nodes. As we will discuss in Section 4,
this request goes beyond the scope of current navigational languages (e.g., SPARQL
property paths [Harris and Seaborne 2013] and nSPARQL [Pérez et al. 2010]) that
mainly focus on identifying nodes.

In terms of expressiveness, we want to point out that SPARQL property paths cannot
express Example 1.3 since it lacks capabilities to perform tests à la XPath [Clark and
DeRose 1999]; in other words, it is not possible while evaluating a path to check
conditions over the nodes (in this case the year of the publication) encountered in
the path. An excerpt of the coauthor network for Example 1.3 is shown in Figure 3.
To provide a user-friendly visualization, the swget tool implementing the NAUTILOD
language features a Graphical User Interface (GUI) with a rich set of functionalities
to zoom and explore Web fragments and search for specific nodes and edges.

1.5. Contributions

The following are the main contributions of this article:

(1) We present a navigational language for the WLOD graph called NAUTILOD. It pro-
vides a unique combination of navigational and querying features and incorporates
a declarative mechanism to command actions over data.

7http://dblp.l3s.de.
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Fig. 3. The fragment of the WLOD retrieved for Example 1.3.

(2) We define a simple syntax and a formal semantics that associates with a NAU-
TILOD expression the set of nodes (i.e., URIs) in the WLOD graph that satisfy the
expression plus the set of actions performed.

(3) We formalize an enhancement of the semantics of NAUTILOD to capture Web frag-
ments, that is, graphs composed by nodes visited when evaluating expressions
along with edges traversed to reach these nodes.

(4) We provide algorithms and study the complexity of evaluating NAUTILOD expres-
sions according to both semantics.

(5) We discuss an implementation of the language in the swget tool, which is readily
available on the WLOD. swget is available as an Application Programming Inter-
face (API), a GUI, and a Web portal.

(6) We analyze how the different features (i.e., navigation, tests, actions) affect the
cost of the evaluation of NAUTILOD expressions.

(7) We compare NAUTILOD (and swget) with the state of the art.

Some of the ideas presented in this article appeared in proceedings of the WWW2012
conference [Fionda et al. 2012]. This article considerably expands our previous work in
the following respects:

(1) We deepen the motivations underlying the NAUTILOD language (also in the light of
recent proposals such as the Google Knowledge Graph and Facebook Graph) and
improve its presentation.

(2) We introduce two new formal semantics for the NAUTILOD language that allow one
to capture Web fragments.

(3) We present algorithms for evaluating NAUTILOD expressions according to the new
semantics, study their complexity and discuss their implementation.

(4) We perform a detailed evaluation of swget and compare it with related research.
(5) We discuss examples of Web fragments with real data.

1.6. Organization of the Article

Section 2 provides some background. Section 3 introduces the NAUTILOD language;
Here the syntax and the semantics returning sets of nodes are introduced. Section 4
discusses the new semantics of NAUTILOD capturing Web fragments. Section 5 presents
an implementation of NAUTILOD in the swget tool. An experimental evaluation of swget
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is discussed in Section 6. Section 7 discusses related research. Finally, in Section 8 and
Section 9 we draw some conclusions.

2. PRELIMINARIES

This section provides some background on the key notions underlying our proposal.

2.1. RDF and the Linking Open Data Project

The Resource Description Framework (RDF) is a metadata model introduced by the
W3C for representing information about Web resources. RDF leverages Uniform Re-
source Identifiers (URIs) to identify resources; URIs represent global identifiers in
the Web and enable access to the descriptions of resources according to specific pro-
tocols (e.g., HTTP). RDF builds upon the notion of statement. A statement defines
the property p holding between two resources, the subject s and the object o. A
statement is denoted by (s, p, o), and thus called triple in RDF. As an example, in
Figure 2 (dbpedia:John Grisham, dbpo:writer, dbpedia:Runaway Jury) is an RDF
triple. RDF triples make usage of vocabularies (ontologies) that model domains of
interest. In the previous triple, the predicate dbpo:writer is defined in the DBpedia
ontology and expresses the relation between a person and a piece of work. A collection
of triples is referred to as RDF graph. As discussed in Section 1.1, the availability
of structured information (in RDF) enables a new (semantic) space where objects are
linked and looked-up by using (Semantic) Web languages and technologies. This space
can be thought of as a giant global graph [Berners-Lee 2006] that we will refer to as the
Web of Linked Data (WLOD). In order to publish and interlink data in the WLOD, the
Linking Open Data (LOD) project [Berners-Lee 2006] sets some informal principles:

(1) Real-world objects or abstract concepts must be assigned names in the form of
URIs.

(2) HTTP URIs have to be used so that people can look them up by using existing
technologies.

(3) When someone looks up a URI, associated information has to be provided in a
standard form (e.g., RDF).

(4) Interconnections among URIs have to be provided via references to other URIs.

A central notion in this context is that of dereferenceable URI, that is, a URI that when
looked up (via an HTTP GET) provides the representation of the resource it identifies in
a standard data format (e.g., RDF). Data in the WLOD are provided by publishers that
maintain thousands of interlinked datasets containing billions of facts covering diverse
domains, such as general knowledge provided by the New York Times, DBpedia, and
Freebase/Google; music provided by the BBC; science provided by Nature; geospatial
information provided by Geonames and OpenStreetMap; or public-sector information
provided by the US and UK governments and European agencies.

Despite the huge availability, there is still scant consumption of this enormous wealth
of structured, freely available information. Our proposal of a navigational language for
the WLOD is meant to help in filling this gap by providing developers and Web users
with a mechanism to specify, retrieve, and act over structured information on the Web.

2.2. Data Model

This section introduces a minimal abstract model of the WLOD that highlights the
main features required in the subsequent discussion. Let U be the set of all URIs
and L the set of literals, that is, strings or special datatypes. We distinguish between
two types of RDF triples. RDF links (s, p, o) ∈ U × U × U that encode connections
among resources in the WLOD and literal triples (s, p, o) ∈ U × U × L that are used
to state descriptions or features of the resource identified by the subject s. Note that
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Fig. 4. The Web vs. the Web of Linked Data.

the subject/object of a triple, in the general case, can also be a blank node, which for
most purposes could be thought of as an existential variable. However, here we will
not consider them (note also that the usage of blank nodes is discouraged [Heath and
Bizer 2011]). The following three notions will be fundamental.

Definition 2.1 (Web of Linked Data T ). Let U and L be as described previously
(infinite sets). The Web of Linked Data (over U and L) is the set of triples (s, p, o) in
U × U × (U ∪ L). We will denote it by T .

Definition 2.2 (Description Function D). The description function D : U → P(T )
associates with each URI u ∈ U a subset of triples of T . By D(u), we denote the set of
triples obtained by dereferencing u.

Definition 2.3 (Web of Linked Data Instance W). A WLOD instance is a pair
W=〈U ,D〉, where U is the set of all URIs and D is a description function.

In a WLOD instance what matters are those u ∈ U for which D(u) 	= ∅. Note that
the description function D could return the empty set for some u (e.g., if u is not
dereferenceable). To give a concrete example of how the description function models the
process of dereferencing, consider the URI fb:Runaway_Jury in freebase.org shown
Figure 2. We have that D(fb:Runaway_Jury) returns the set of triples {(fb:Runaway_
Jury, fb:starring, fb:John_Cusack), (fb:Runaway_Jury, fb:starring, fb:Dustin_
Hoffman), (fb:Runaway_Jury, fb:genre,‘‘Crime fiction’’)}.

From now on we will denote a WLOD instance simply via WLOD. Figure 4 provides a
pictorial representation of the Web of documents and the WLOD. The Web is tradition-
ally modeled as a graph of syntactic links between pages that maintain unstructured
information. The traditional way of accessing information in such graph is via crawlers.
The WLOD can be represented as a set of nodes plus data describing their semantic
structure attached to each node and their interlinks. Effectively, a node represents a
datasource (set of RDF triples) identified by a URI with links to other datasources.
These new features enable one to evolve crawling toward more sophisticated forms of
semantic navigation that can be specified via formal languages such as the NAUTILOD
language introduced in this article.
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3. NAUTILOD: SEMANTIC NAVIGATION ON THE WEB OF LINKED DATA

This section presents the NAUTILOD (Navigational Language for Linked Open Data)
language. The first goal of NAUTILOD is to enable the declarative specification of nodes
of the WLOD graph by leveraging semantic information available in both nodes and
edges. NAUTILOD incorporates two main features. First, given a high-level concep-
tual specification of some semantic nodes in the WLOD graph (e.g., Italian directors
influenced by S. Kubrick), it provides a way to drive the navigation toward the rele-
vant places where to find them. Second, NAUTILOD enables one to command actions
over data encountered during the navigation (e.g., send via email the home pages
of all the French directors encountered). Although there have been several propos-
als for accessing data in the WLOD (see Section 7), they differ from our proposal in
the following main respects: (i) they treat navigation as a second-order citizen in the
sense that such proposals do not feature either explicit constructs to perform seman-
tic navigation on the WLOD or functionalities to retrieve fragments of it; (ii) none
of them incorporate mechanisms to combine navigation and actions over data. The
formalization of NAUTILOD has been inspired by two nonrelated proposals, that is,
wget, a tool to automatically navigate and retrieve Web pages, and XPath [Clark and
DeRose 1999], a language to specify parts of a document in the world of semistructured
data.

3.1. Syntax of NAUTILOD

The syntax of NAUTILOD is defined according to the grammar reported in the fol-
lowing box. The navigational core of NAUTILOD is based on regular path expressions
[Wood 2012], similarly to Web query languages (e.g., [Mendelzon et al. 1997; Abiteboul
and Vianu 1997]) and XPath [Clark and DeRose 1999]. The navigation in the WLOD
can be controlled via existential tests in the form of ASK-SPARQL queries [Harris
and Seaborne 2013]. This mechanism allows one to redirect the navigation based on
the information present at each node of the navigational path. The language also al-
lows one to command actions during the navigation according to decisions based on
the original specification and data available in the datasources (nodes in the WLOD)
visited.

path ::=pred | predˆ | action | path/path |path∗ |
path|path | path[test] | path〈l-h〉

pred ::=RDF predicate | 〈 〉
test ::=ASK-SPARQL query

action ::=ACT[procedure(target, SELECT-SPARQL query)]

NAUTILOD is based on Path Expressions; it accepts concatenations of basic and com-
plex types of expressions. Basic expressions are predicates (path) and actions (action);
complex expressions are concatenations and disjunctions of expressions; expressions
involving repetitions using the features of regular languages [Hopcroft et al. 2000] (i.e.,
the Kleene * operator corresponding to zero or more repetitions and the 〈l-h〉 opera-
tor meaning at least l and at most h repetitions); and expressions followed by a test.
The building blocks of an expression reflect the classical functionalities of navigational
languages as described in what follows:

(1) Predicates: path is an RDF predicate or the wild card <_> denoting any predicate.
(2) Test Expressions: A test is given in the form of an ASK-SPARQL query used to

perform an existential test at a datasource (node) in the WLOD.
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NAUTILOD expressions also include the additional feature of actions:

(1) Action Expressions: An action is a procedural specification of a command (e.g.,
send a notification message). Actions neither influence the navigational process
nor change the underlying data.

Let us elaborate a bit more on the support of actions. NAUTILOD expressions enable
one to specify certain basic types of actions, more in the line of side effects than up-
dates. Indeed, in addition to computing the result (set of nodes or Web fragments)
an expression (via actions) can act on the outside world (e.g., users or devices). It is
important to point out that the kind of actions supported by NAUTILOD are not meant
to transform datasources (e.g., as in Abiteboul et al. [2002]); their main purpose is
to play the role of metacommunication, which means enabling one to perform basic
communications (e.g., sending emails with some data). Parameters values of an action
are obtained from the datasource (node) reached during the navigation via a SELECT-
SPARQL query. Moreover, the special parameter target is specified (by the user) to
indicate the communication channel (e.g., an email address, a mobile phone number, a
printer name).

A scenario where actions result useful is when one not only is interested in re-
trieving particular pieces of information (e.g., her coauthors, her coauthor network)
but also in receiving additional information that has been “encountered” during the
evaluation and is not part of the result. An example of such reasoning is the list of na-
tionalities of coauthors that can be obtained when building a coauthor network where
only the names of coauthors (and their links) are specified to be part of the network
retrieved.

If restricted to (1) and (2), NAUTILOD can be seen as a declarative language to
specify sets of datasources (nodes) or fragments of the WLOD conform to some semantic
specification. We now introduce the formal semantics of NAUTILOD capturing nodes.

3.2. NAUTILOD Semantics Returning Set of Nodes

NAUTILOD expressions are evaluated against a WLOD instance W=〈U ,D〉 from a seed
node (i.e., a URI u) that represents the starting point of the navigation in the WLOD
graph. The evaluation of an expression produces the set of nodes of the WLOD that
are reachable from the seed via paths satisfying the expression, plus the set of actions
triggered during its evaluation. The fragment of the language without actions follows
the lines of formalization of XPath by Wadler [1999]. The semantics of NAUTILOD is
reported in Table I, where W is omitted for the sake of conciseness. The semantics has
the following modules:

—Sem�path�(u): This function takes as input a path (i.e., an expression defined accord-
ing to the the syntax in Section 3.1) and a URI u. The function gives as output the
ordered pair of two sets: the set of URIs reached by the evaluation of path and the
set of actions performed during the evaluation. The function Sem is the first to be
called when evaluating a NAUTILOD expression. It uses the function U to obtain the
set of URIs while the set of actions performed is obtained via the function EA.

—U �path�(u): This function takes as input a path, which is evaluated starting from
the URI u in the WLOD instance W, and gives as output the set of URIs reachable
via sequences of edges satisfying path. In Table I, rules R2–R10 describe the result
produced by U when considering the different types of path that can be defined
according to the NAUTILOD syntax reported in Section 3.1.

—EA�path�(u): This function is responsible for the execution of the actions generated
during the evaluation of a path starting from the URI u. In Table I, rule R11 shows
that the function EA calls an additional function Exec(a, D(u)). The function Exec in
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Table I. Semantics of NAUTILOD returning nodes. The rules reflect all the possible forms of syntactic expressions
that can be given according to the NAUTILOD syntax in Section 3.1. The evaluation of an expression occurs by

calling the function Sem (rule R1). It produces two sets: (i) the set of URIs of W satisfying the expression,
obtained via the function U and (ii) the set of performed actions obtained, via the function EA, when evaluating
the expression. Exec(a,D(u)) (rule R11) denotes the execution of action a over the datasource identified by u

R1 Sem�path�(u,W) = (U�path�(u), EA�path�(u))
R2 U�p�(u) = {u′ | (u, p, u′) ∈ D(u)}
R3 U�pˆ�(u) = {u′ | (u′, p, u) ∈ D(u)}
R4 U�< >�(u) = {u′ | ∃p, (u, p, u′) ∈ D(u)}
R5 U�action�(u) = {u}
R6 U�path1/path2�(u) = {u′′ ∈ U�path2�(u′) : u′ ∈ U�path1�(u)}
R7 U�(path)∗�(u) = {u} ∪ ⋃∞

1 U�pathi�(u) : path1 = path ∧ pathi = pathi−1/path

R8 U�(path)〈l-h〉�(u) = {u} ∪ ⋃h
l U�pathi�(u) : path1 = path ∧ pathi = pathi−1/path

R9 U�path1|path2�(u) = U�path1�(u) ∪ U�path2�(u)
R10 U�path[test]�(u) = {u′ ∈ U�path�(u) : test(u′) = true}
R11 EA�path�(u) = {Exec(a,D(u)) : (u, a) ∈ A�path�(u)}
R12 A�p�(u) = ∅
R13 A�pˆ�(u) = ∅
R14 A�< >�(u) = ∅
R15 A�action�(u) = {(u, action)}
R16 A�path1/path2�(u) = A�path1�(u) ∪ ⋃

u′∈U�path1�(u) A�path2�(u′)
R17 A�(path)∗�(u) =

⋃∞
1 A�pathi�(u) : path1 = path ∧ pathi = pathi−1/path

R18 A�(path)〈l-h〉�(u) =
⋃h

l A�pathi�(u) : path1 = path ∧ pathi = pathi−1/path

R19 A�path1|path2�(u) = A�path1�(u) ∪ A�path2�(u)
R20 A�path[test]�(u) = A�path�(u)

rule R11 takes two parameters: an action a of the form procedure(target, SELECT-
SPARQL query) and the description of a datasource. Exec proceeds as follows: runs
the SELECT-SPARQL query over D(u) and communicates the results obtained to the
target. We again want to emphasize that actions are side effects and do not update
datasources. Note also that rule R11 calls the function A to obtain the pairs (u, a) to
be given as input to Exec.

—A�path�(u): This function takes as input the different types of path (see Section 3.1)
and gives as output the set of actions associated with the URIs visited during the
evaluation of path starting from the URI u. Rules R12–R20 in Table I cover all the
possible cases. Note that not all the types of path produce actions; indeed, rules R12–
R14 return the empty set ∅ since no action is syntactically specified. On the other
hand, rule R15 is the particular type of path that returns an action. For collecting
the actions inside a complex path, rules R16–R20 are used.

3.3. Examples of Expressions Returning Nodes

To clarify the semantics of NAUTILOD, we now discuss some examples. Consider the
expression consisting in the sole predicate rdf:type evaluated starting from the URI u.
The evaluation starts by applying rule R1 in Table I. Such rule requires one to use the
function U (to obtain the set of URIs) and the function EA (to trigger the set of actions).
The function U uses rule R2 since it matches the syntactic expression in input, which
consists of the predicate rdf:type. Rule R2 returns the set of URIs reachable from u
by traversing edges labeled as rdf:type. This is done by inspecting triples of the form
(u, rdf:type, u′) included in D(u). As for actions, rule R1 calls rule R11, which in its turn
calls rule R12; even in this case rule R12 is the only rule that matches the expression in
input (i.e., rdf:type). Note that since no actions have been specified, rule R12 returns
the empty set.
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Consider now the evaluation of the expression rdf:type[q], which includes a test q
(an ASK-SPARQL query). The first part is similar to the previous example; that is,
it uses rule R1 and then rules R10 and R2. Rule R2 evaluates rdf:type as discussed
previously and returns a set of URIs. This set is filtered by rule R10, which is used be-
cause it matches the syntactic expression in input containing the test [q]. The filtering
performed by using rule R10 discards those URIs u′ obtained via rule R2 for which the
ASK query q evaluated on their descriptions D(u′) returns false. Also in this example
the set of actions is empty.

Finally, consider a more complex expression rdf:type[q]/a, which also includes the
specification of an action a. The evaluation starts again by considering the rule R1. The
set of URIs that satisfy the expression is obtained by applying the rules R6, R10, R2,
and R5. The subexpression rdf:type[q] is evaluated as previously discussed (rules R10
and R2). The evaluation of the action a is done by using rule R5, which simply returns
the whole set of URIs obtained from the evaluation of the previous subexpression. This
behavior points out how actions do not interfere with the navigation.

The evaluation of actions occurs by applying the rules R16, R20, R12, and R15, and
their execution is managed via rule R11. By looking at Table I, it can be noted that
before applying rule R15 the set of actions is the empty set. Then, according to rule
R15 the action a is executed for each URI in the evaluation of rdf:type[q]. Overall, the
evaluation of the expression rdf:type[q]/a consists in (i) the set of URIs obtained by
evaluating rdf:type[q] and (ii) the action a performed on each URI u′ belonging to the
previous set (possibly using some data from D(u′)). We are now ready to introduce an
automaton-based algorithm for the evaluation of NAUTILOD expressions.

3.4. Evaluating NAUTILOD expressions: Algorithms and Complexity

This section describes an automaton-based algorithm for the evaluation of NAUTILOD
expressions according to the semantics shown in Table I. The usage of automata has
a twofold benefit. First, since NAUTILOD is based on regular expressions, for each
NAUTILOD expression e we can construct the Nondeterministic Finite-state Automaton
(NFA) [Hopcroft et al. 2000] that recognizes strings belonging to the language defined
by e. Second, the NFA associated with an expression can be given an intuitive graphical
representation, which simplifies the presentation of the algorithm. Before getting into
the technicalities, we give a high-level overview of the algorithm.

Let e be a NAUTILOD expression and W a WLOD instance. Given the automaton Ae
associated with an expression e, the evaluation algorithm builds the product W × Ae
between the automaton Ae and the data graph (the WLOD instance W). Note that since
the data graph W is not available in its entirety, W × Ae has to be built incrementally
while traversing W. The result of the evaluation of a NAUTILOD expression e is the set
of nodes in W × Ae marked with a final state of Ae.

3.4.1. Algorithm: Incremental Product Automaton Construction. Let �e be the set of RDF
predicates that appear in e and |e| the size of the expression being evaluated. We
now introduce the notion of core expression. The expression eT is the core expression
obtained from e by replacing each test with a fresh symbol α /∈ �e and each action
with a fresh symbol β /∈ �e. Let � be the set of symbols used for tests and � the set of
symbols used for actions (the sets �e, �, and � are pairwise disjoint). The cost of the
translation of an expression e into a core expression eT is O(|e|) (it can be done with a
scan of the input expression e).

The NFA Ae corresponding to eT is a tuple (Q, �e ∪ � ∪ �, δ, q0, F), where Q is the
set of states of Ae, δ : Q × (�e ∪ � ∪ � ∪ {ε}) → 2Q the transition function, q0 ∈ Q the
initial state, and F ⊆ Q the set of accepting (final) states. Ae can be built with costs
O(|eT |) = O(|e|) following the Thomson’s construction rules [Hopcroft et al. 2000]. We
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ALGORITHM 1: construct(NAUTILOD expression e, URI seed)
Input: NAUTILOD expression e, seed URI seed
Build: W × Ae = (Q′, �e ∪ � ∪ �, δ′, (seed, q0), F ′) product automaton

1 compute eT , and let � and � be the sets of labels used for tests and actions
2 build the NFA Ae = (Q, �e ∪ � ∪ �, δ, q0, F)
3 initialize the set of states of W × Ae to {(seed, q0)}
4 initialize the set of transitions of W × Ae to ∅
5 for each state (u, q) ∈ W × Ae do
6 for each transition δ(q, x) ∈ Ae do
7 if x ∈ �e then
8 for each q′ ∈ δ(q, x) AND (u, x, u’) ∈ D(u) do
9 add (u′, q′) to the set of states of W × Ae

10 add (u′, q′) to δ′((u, q), x)
11 if q′ ∈ F then
12 add (u′, q′) to F ′

13 else if (x ∈ � and evalTest(x,D(u))=true) or
(x = ε) or (x ∈ �) then

14 for each q′ ∈ δ(q, x) do
15 add (u, q′) to the set of states of W × Ae
16 add (u, q′) to δ′((u, q), x)
17 if q′ ∈ F then
18 add (u′, q′) to F ′

19 return W × Ae

assume that Ae is stored by using two adjacency lists that make explicit the navigation
of transitions and their inverses. This representation uses space O(|Ae|) = O(|e|). We
also assume that given an element q ∈ Q, we can access its associated list of transitions
in time O(1).

Given a WLOD instance W, we indicate with We the portion of W navigated when
evaluating the expression e. We denote by uris(We) the set of URIs in We and by
triples(We) its set of triples. Moreover, seed is the node in W (i.e., a URI) where
the navigation, for the evaluation of e, starts. The product automaton W × Ae is built
according to Algorithm 1. In what follows we clarify the phases of the algorithm.

(1) Initialization: W × Ae = ({(seed, q0)}, �e ∪ � ∪ �,∅, (seed, q0),∅); the product au-
tomaton at the beginning only contains the initial state (seed, q0) and its transition
function is empty (lines 3–4).

(2) For each state (u, q) of W × Ae (line 5), all the transitions originating from q in Ae
are considered (line 6). Each state of W × Ae is considered exactly once.

(3) The state (u′, q′) and the transition ((u, q), p, (u′, q′)) are added to W ×Ae if and only
if q′ ∈ δ(q, p), p ∈ �e and the triple (u, p, u′) ∈ D(u), where D(u) is the description of
u obtained by dereferencing u (lines 8–12).

(4) The state (u, q′) and the transition ((u, q), ε, (u, q′)) are added to W × Ae if and only
if q′ ∈ δ(q, ε) (lines 14–18).

(5) The state (u, q′) and the transition ((u, q), test, (u, q′)) are added to W × Ae if and
only if q′ ∈ δ(q, test), test ∈ �, and test evaluates true over D(u) (lines 14–18).

(6) The state (u, q′) and the transition ((u, q), action, (u, q′)) are added to W ×Ae if and
only if q′ ∈ δ(q, action), action ∈ � (lines 14–18).

Example 3.1 (Incremental Product Automaton). Figure 5(a) shows an excerpt of real-
word data (W). Figure 5(b) shows an expression e along with the associated NFA Ae.
Figures 5(c)–5(f) describe the steps necessary to build the product automaton W × Ae.
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Fig. 5. (a) A WLOD instance W. (b) The automaton Ae for the expression in Example 1.1. (c)–(f) Steps neces-
sary for the construction of the product automatonW×Ae starting from the seed node dbpedia:John_Grisham.

Figure 5(c) shows the product automaton after the initialization (Algorithm 1, lines
3–4). Figure 5(d) show the partial automaton after the first iteration of the for (lines
5–18) when the state (dbpedia:John Grisham, q0) is considered. In particular, note that
the only transition in Ae starting from q0 is labeled by ε and leads to the state q1. This
corresponds to add to W×Ae the state (dbpedia:John Grisham, q1) and one ε transition.
When the state (dbpedia:John Grisham, q1) is considered, the two transitions in Ae from
q1 to qf labeled with foaf:primaryTopic and from q1 to itself labeled by owl:sameAs
allow one to add the two states (wiki:John Grisham, qf ) and (nyt:...64673, q1)
and the respective transitions. The partial result is shown in Figure 5(e). When
(nyt:...64673, q1) is considered the transition labeled with foaf:primaryTopic al-
lows one to add the state (nyt:...13843, qf ), while the transition labeled with
owl:sameAs does not have any effect since there are no outgoing owl:sameAs-
edges originating from nyt:...13843 in W. The result is reported in Figure 5(f).
Note that when the two states (wiki:John Grisham, qf ) and (nyt:...13843, qf ) are
considered, W × Ae remains unchanged since the state qf has no outgoing transitions
in Ae.

THEOREM 3.2. The product automaton W ×Ae can be built in time O(|We| × |e|) + CT
using Algorithm 1, where CT is the cost of the evaluation of tests.

PROOF. At the end of the execution of the Algorithm 1, we have that Q′ ⊆ uris(We)×Q.
Since in the construction of the product automaton each state of W × Ae is considered
only once, the first for loop (line 5) costs O(|Q′|)=O(|uris(We)| × |Q|). For each state
(u, q) of W × Ae the outgoing transitions of q in Ae are considered so that the inner
for loop (line 6) is executed a different number of times for each state. In particular,
each transition (q, x, q′) is examined only when considering the states ( , q) ∈ Q′. Since
the same state of Q can be examined at most once for each URI in We, each transition
(q, x, q′) is examined at most |uris(We)| times. Hence, the code inside the two for loops
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(lines 7–18) is executed at most O(|uris(We)| × |δ|) times. Inside the for loops, all
the states q′ reached by the current transition are considered. When considering the
transitions altogether, the entire automaton Ae is visited. Moreover, triples belonging
to the description of the current URI u are used to compute the states and transitions to
be added to the product automaton W ×Ae. This can be done in time O(|D(u)|) (the first
time a URI is encountered, triples in D(u) are stored so that every subsequent check
for a specific predicate can be done in constant time). When considering the URIs of
We altogether this step costs O(|triples(We)|). Thus, the total cost of the algorithm is
O((|uris(We)| + |triples(We)|) × |Ae|) = O(|We| × |Ae|) = O(|We| × |e|).

As for the transitions in δ labeled with a symbol α ∈ � (i.e., the tests) the previous
complexity bound has to be refined by considering the cost CT of evaluating tests. Each
test is considered at most once for each URI. Note that at most a number of transitions
equal to the number of triples in |triples(We)| × |Q| is added to W × Ae when dealing
with predicates (lines 9–10) and at most additional |uri(We)| × |Ae| when dealing with
tests, ε transitions, or actions (lines 15–16). Thus, the maximum number of transitions
in the product automaton is |δ′| = O(|We| × |Ae|) = O(|We| × |e|).

The complexity of the algorithm is parametric in CT , that is, the cost of evaluating
tests. NAUTILOD tests are ASK-SPARQL queries; hence, their cost can be controlled
by choosing a particular fragment of SPARQL [Pérez et al. 2009]. However, note that
the usage of tests enables one to (possibly) reduce the size of the set of nodes visited
during the evaluation. After having constructed W × Ae, the results of the evaluation
of the NAUTILOD expression can be obtained by running Algorithm 2, which checks
the final states. The final result is given in terms of (i) the set of URIs reachable by
paths satisfying the expression and (ii) the set of actions that have been executed.
The cost CA of executing actions has to be added to the cost of building W × Ae via
Algorithm 1 and checking final states via Algorithm 2. Finally, note thatW×Ae contains
O(|uri(We)| × |Ae|) = O(|uri(We)| × |e|) transitions labeled with α ∈ � (i.e., actions).

Example 3.3 (Computation of result URIs). By considering the product automaton
W × Ae in Figure 5(f), the results are wiki:John_Grisham and nyt:...13843, that is,
the URIs of the WLOD reported in Figure 5(a) reached at some final state of W × Ae.
These results were discussed in Example 1.1.

The algorithms introduced previously enable one to identify (and return) the sets of
nodes in the WLOD that conform to a specification given in the NAUTILOD language
and execute the set of actions specified. Note that the same results could have also been
computed without using Algorithm 2; in this case, results can be collected as soon as a
final state is added to W × Ae (see Algorithm 1). Moreover, actions can be handled in
different ways: either by collecting the pairs (u, action) when the corresponding state
is added to W × Ae and executing the whole set as a last step, or by executing each

ALGORITHM 2: evaluate(NAUTILOD expression e, URI seed)
Input: NAUTILOD expression e, seed URI seed
Build: R set of URIs
Uses: W × Ae = (Q′, �e ∪ � ∪ �, δ′, (seed, q0), F ′)

1 W × Ae =construct(e, seed) /* see Algorithm 1 */
2 for each state (u, q) ∈ F ′ do
3 add u to R
4 for each transition δ′((u, q), action) such that action ∈ � do
5 execute action over D(u)
6 return R
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action (u, action) as soon as the corresponding state is added to W × Ae. In the next
section we extend the scope of the semantics of NAUTILOD to capture Web fragments.

4. CAPTURING WEB FRAGMENTS

We have described NAUTILOD as a language that enables the specification of (i) sets of
nodes in the WLOD graph and (ii) actions to be performed over data encountered during
the navigation. We have presented a formal semantics (see Section 3.2) and algorithms
(see Section 3.4) to evaluate NAUTILOD expression. The possibility to specify (and
retrieve) sets of nodes misses information about the fragment of the Web navigated to
reach these nodes; in other words, connectivity information is lost. Indeed, navigation
is only referenced in the semantics as the means to get the resulting set of nodes. Such
behavior is common to many navigational languages (e.g., XPath [Clark and DeRose
1999] and nSPARQL [Pérez et al. 2010]). However, connectivity information is crucial
in some contexts [Fionda et al. 2014a, 2014c].

Consider the Web user Nick who wants to collect a fragment of the Friend-Of-A-
Friend (FOAF) social graph consisting in people he knows directly or indirectly that
have his same musical preferences. While it would not be a problem to specify and
retrieve this set of people with NAUTILOD, it is not possible to provide information
about the structure (connections) of the fragment of the FOAF graph where Nick
is linked with these people. Another domain where connectivity is crucial is that of
bibliographic/citation networks. Consider a researcher interested in a new topic who
wants to collect relevant bibliographic references. She can specify papers that cite
a given seed paper and are published at a specific conference. While it is possible to
automatically retrieve via NAUTILOD the set of papers linked with the seed, connectivity
information is lost.

In a distributed environment such as the Web, keeping connectivity information
is very useful for provenance tracking [Gil and Groth 2011], that is, understanding
from which datasources pieces of information in a path come from. Motivated by these
scenarios, we formalize two semantics of the NAUTILOD language to capture fragments
of the Web, that is, graphs including the sets of nodes satisfying an expression along
with edges connecting these nodes. From a high-level perspective, the main challenge
that we are going to face is the fact that now the evaluation of a NAUTILOD expression
has to deal with graphs representing Web fragments instead of a set of nodes, thus
requiring the definitions of both the structure of such graphs and new operators to
combine them. Although our discussion is centered on NAUTILOD and the WLOD graph,
the following results can also be generalized to other navigational languages.

4.1. Multipointed Graphs

In this section we introduce a particular type of structure called a Multipointed Graph
(MPG). Essentially, an MPG is the structure that we use to formally capture a Web frag-
ment. MPGs, as will be discussed later on in this section, have an algebraic structure
that allows composition, manipulation, and reuse.

An MPG 	 is a quadruple (V, E, s, T ) where (V, E) is a standard directed graph,
s ∈ V is a seed node (starting node), and T ⊆ V is a set of ending nodes (result nodes).
To access the elements of 	 we use the notation 	.x, where x ∈ {V, E, s, T }. Let R be
the set of nodes (URIs) obtained by evaluating a NAUTILOD expression starting from
the node (URI) seed according to the semantics returning sets of nodes; this semantics
can be captured via the MPG ({seed} ∪ R,∅, seed, R). The advantage of MPGs is that
they can additionally store the graph visited while evaluating an expression.

The semantics of NAUTILOD described in Section 3.2 deals with sets of nodes; indeed,
rules in Table I, which consider all the types of syntactic expressions defined according
to the NAUTILOD syntax presented in Section 3.1, construct sets and manipulate such
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sets by using standard operators such as set membership (e.g., rule R6 in Table I) and
union (e.g., rule R8 in Table I). In order to define the semantics of NAUTILOD returning
fragments, it is necessary to deal with MPGs and associate with each syntactic ex-
pression in the displayed box in Section 3.1 a set of MPGs. Moreover, when dealing
with MPGs (and sets of MPGs) it is necessary to (i) define operations over MPGs re-
flecting the standard operations over sets of nodes and (ii) devise specific additional
functionalities.

Definition 4.1 (Operations over MPGs). Let 	i = (Vi, Ei, si, Ti), i = 1, 2 be MPGs
and 	⊥ = (∅,∅,⊥,∅) denote the empty MPG, where ⊥ is a special symbol not in the
universe of nodes.

(1) Concatenation ◦

	1◦	2 =
{

	⊥ if s2 /∈ T1,
(V1∪V2, E1∪E2, s1, T2) if s2 ∈ T1.

(2) Union ∪

	1∪	2 =

⎧⎪⎨
⎪⎩

(V1∪V2, E1∪E2, s1, T1∪T2) if s1 = s2,
	1 if s1 	= s2 ∧ 	2 = 	⊥,
	2 if s1 	= s2 ∧ 	1 = 	⊥,
not defined if s1 	= s2 ∧ 	1, 	2 	= 	⊥.

As can be observed, the preceding operators applied to two MPGs produce another
MPG and need to be extended over sets of MPGs. Definition 4.2 formalizes such ex-
tension; here, the binary operator op ∈ {◦,∪} is applied to all pairs 	1, 	2 such that 	1
belongs to the first set and 	2 to the second one.

Definition 4.2 (Operations over sets of MPGs). Let S1 and S2 be two sets of MPGs.

(1) For each op ∈ {◦,∪} we define

S1 op S2 = {	1op 	2 | 	1 ∈ S1, 	2 ∈ S2}.
(2) (Disjoint union, direct sum) ⊕,

S1⊕S2 = {	 | 	 ∈ S1 ∨ 	 ∈ S2}.
The definition of concatenation over sets of MPGs serves the purpose of encoding

concatenation of NAUTILOD expressions. Disjoint union reflects the case of the union
operation defined for the semantics in Table I; the crucial difference is that now the
result is in terms of MPGs instead of nodes. As for the union, it encodes the stan-
dard graph union operation with an additional condition on the starting nodes. The
basic (atomic) elements are singleton sets of MPGs. We will call them MPG atomic
expressions.

PROPOSITION 4.3. The following algebraic identities between MPG atomic expressions
over a universe Un hold:

(1) The binary operation ⊕ is commutative, associative, and idempotent.
(2) The binary operation ∪ is commutative, associative, and idempotent.
(3) The binary operation ◦ is associative.
(4) The following identities hold: (a⊕ b) ◦ c = a◦ c ⊕ b◦ c and c ◦ (a⊕ b) = c ◦ a⊕ c ◦ b;

(a⊕ b) ∪ c = (a∪ c) ⊕ (b∪ c) (same left side); (a∪ b) ◦ c = a◦ c ∪ b◦ c (same left side).

The identities follow easily from the definitions; using them we can get normal forms
for MPG expressions:
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Fig. 6. MPGs and operations over (sets of) MPGs. Edges represent influenced relations from DBpedia.

PROPOSITION 4.4. Any algebraic expression of MPGs over a fixed universe Un together
with the preceding operators can be written in the following normal form, which is
crucial to enhance the semantics of NAUTILOD to capture Web fragments:

⊕
n
i=1

(⋃ki

j=1
(ei1◦ · · · ◦eiki

)
)

where the eij are atomic MPG expressions.

PROOF. The proof is a check that the rewriting system obtained by ordering the
identities in (4) from left to right, plus a ⊕ a → a and a ∪ a → a, form a confluent and
terminating system modulo associativity and commutativity of the operators ⊕ and ∪
[Baader and Nipkow 1999]. The check of the critical pairs is straightforward in this
case.

Examples of operations over MPGs. Figure 6 shows examples of MPGs and operations
over (sets of) MPGs. Recall that the definition of MPGs along with their operators is
motivated by the fact that we want NAUTILOD expressions to deal with sets of MPGs
instead of sets of nodes. In the example of Figure 6 it is shown the concatenation
◦ between the two sets of MPGs S1={	1,	2} and S2={	3,	4}. Such operation, as is
shown in Table II (rule R7), is necessary to deal with NAUTILOD expressions involving
path concatenation (expressed in the NAUTILOD syntax with the symbol /). According
to Definition 4.2, it is necessary to apply the operator ◦ to the elements in the two
sets pairwise, thus obtaining a total of four concatenation operations as reported in
Figures 6(a)–6(d).

Consider the computation of 	1◦	3. Here, 	1.s=J. Ford, 	1.T ={S. Kubrick,
M. Scorsese}, and 	3.s=S. Kubrick, 	3.T ={T. Burton, P. T. Anderson}, respectively.
According to Definition 4.1, the result of the operation is not empty if 	3.s ∈ 	1.T
(which is the case). The resulting MPG (reported in Figure 6(a)) will be composed by
the union of the two node and edge sets (i.e., 	1.V ∪	3.V and 	1.E∪	3.E), the node 	1.s
as starting node and the set 	3.T as ending nodes. If we now consider the computation
of 	2◦	3, by looking at Definition 4.1 and Figure 6, it is easy to see that the result
will be empty since 	3.s /∈ 	2.T . The operations between the remaining pairs can be
computed similarly. The final result (see Definition 4.2) will be the set of MPGs {	1◦	3,
	1◦	4,	⊥}.
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Table II. The VISITED (V) and SUCCESSFUL (S) semantics. The rules reflect all the possible forms of syntactic
expressions that can be given according to the NAUTILOD syntax in Section 3.1. The rules for the syntactic

expression path〈l-h〉 are omitted since they are simple adaptations of rules R8, R16, and R25 where the
⋃

or
the

⊕
is defined for the interval [l, h] instead of [1, ∞] as already shown for the semantics returning nodes

shown in Table I. To access the elements of an MPG � we use the notation � · x where x ∈ {V, E, s, T}.

R1 EV �path�(u,W) =

{ ⋃
	∈V�path�(u)

	, EA�path�(u))

}

R2 ES�path�(u,W) =
{ ⋃

	∈S�path�(u)|	.T 	=∅
	, EA�path�(u))

}

R3 V �p�(u) =
⋃

(u,p,v)∈D(u)
({u, v}, {(u, p, v)}, u, {v})

R4 V �pˆ�(u) =
⋃

(v,p,u)∈D(u)
({u, v}, {(v, p, u)}, u, {v})

R5 V �< >�(u) =
⋃

p ∈ U

⋃
(u,p,v)∈D(u)

({u, v}, {(u, p, v)}, u, {v})
R6 V �act�(u) = ({u}, ∅, u, {u})
R7 V �path1/path2�(u) = V �path1�(u) ◦

( ⊕
v∈	.T |	∈V�path1�(u)

(V �path2�(v)⊕({v}, ∅, v, ∅))
)

R8 V �(path)∗�(u) = ({u}, ∅, u, {u}) ∪( ⋃∞
i=1V �(pathi)�(u) | path1 = path ∧ pathi = pathi−1/path

)
R9 V �path1|path2�(u) = V �path1�(u) ∪ V �path2�(u)

R10 V �path[test]�(u) =
⊕

	∈V�path�(u)
(	.V, 	.E, 	.s, {v ∈ 	.T | Evaluate(test, v) = true})

R11 S�p�(u) =
⊕

(u,p,v)∈D(u)
({u, v}, {(u, p, v)}, u, {v})

R12 S�pˆ�(u) =
⊕

(v,p,u)∈D(u)
({u, v}, {(v, p, u)}, u, {v})

R13 S�< >�(u) =
⊕

p ∈ U

⊕
(u,p,v)∈D(u)

({u, v}, {(u, p, v)}, u, {v})
R14 S�act�(u) = ({u}, ∅, u, {u})
R15 S�path1/path2�(u) = S�path1�(u) ◦

( ⊕
v∈	.T |	∈S�path1�(u)

S�path2�(v)
)

R16 S�(path)∗�(u) = ({u}, ∅, u, {u}) ⊕ (⊕∞
i=1S�(pathi)�(u) | path1 = path ∧ pathi = pathi−1/path

)
R17 S�path1|path2�(u) = S�path1�(u) ⊕ S�path2�(u)

R18 S�path[test]�(u) =
⊕

	∈S�path�(u)
(	.V, 	.E, 	.s, {v ∈ 	.T | Evaluate(test, v) = true})

R19 EA�path�(u) = {Exec(act,D(u)) : (u, act) ∈ A�path�(u)}
R20 A�p�(u) = ∅
R21 A�pˆ�(u) = ∅
R22 A�< >�(u) = ∅
R23 A�act�(u) = {(u, act)}
R24 A�path1/path2�(u) = A�path1�(u) ∪ ⋃

v∈	.T |	∈(S|V )�path1�(u) A�path2�(v)
R25 A�(path)∗�(u) =

⋃∞
1 A�pathi�(u) : path1 = path ∧ pathi = pathi−1/path

R26 A�path1|path2�(u) = A�path1�(u) ∪ A�path2�(u)
R27 A�path[test]�(u) = A�path�(u)

4.2. NAUTILOD Semantics Returning Web Fragments

We are now ready to introduce the two formal semantics of NAUTILOD that deal with
MPGs and operations over (sets of) MPGs. Abstractly speaking, an MPG captures
both nodes and edges traversed while evaluating an expression. In what follows we
distinguish between V (VISITED) semantics and S (SUCCESSFUL) semantics. The first
semantics returns the MPG consisting of all the nodes and edges navigated during the
evaluation of an expression while the SUCCESSFUL semantics returns the MPG obtained
as the union of all paths that satisfy the expression (i.e., all the successful paths).
Table II shows the two formal semantics.
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Fig. 7. An excerpt of the WLOD taken from DBpedia.

The evaluation of an expression e over the WLOD instance W according to the new
semantics is performed starting from a seed node u according to the rules R1–R27 in
Table II. The evaluation returns an ordered pair composed of the MPG that captures
the fragment of W (according to either the VISITED or the SUCCESSFUL semantics) and
the set of actions performed during the evaluation. The main modules are the functions
EV (rule R1) and ES (rule R2) that represent the starting points for the evaluation of
a NAUTILOD expression according to the VISITED or the SUCCESSFUL semantics, respec-
tively. The definition and application of the rules in Table II follows the same reasoning
described in Section 3.2 with the difference that now the functions EV , V , ES, and S
deal with (sets of) MPGs. Indeed, the V and S semantics are given by considering
all the types of syntactic expressions that can be defined according to the NAUTILOD
syntax (see Section 3.1).

It is worth pointing out that the evaluation of an expression always returns an MPG.
Indeed, rules R1 and R2, which are the main modules, always perform the union ∪ of
all resulting MPGs, which gives an MPG as a result (see Definition 4.1). Moreover, also
note that the union is always defined since all resulting MPGs have the same starting
node (i.e., the seed node u). Indeed, the final MPG has u as the starting node; moreover,
the ending nodes (i.e., the set T ) are the nodes reachable by paths that satisfy the
expression. Actions are handled by the two functions EA (execution) and A (collection).
The crucial aspect of the new semantics is that, as we will show in Section 4.4, the cost
of obtaining the MPG is the same as that of the traditional semantics outputting only
the nodes reached by evaluating an expression.

4.3. Examples of NAUTILOD Expressions Returning Web Fragments

We now provide an example of evaluation for the NAUTILOD expression e=
dbpo:associatedBand/dbpo:genre according to both the VISITED (V ) and SUCCESSFUL

(S) semantics on the excerpt of WLOD shown in Figure 7. We consider the node db-
pedia:Eric_Clapton as seed. Moreover, for sake of space, we will adopt the follow-
ing URI shorthands (also reported in Figure 7): dbpedia:Eric_Clapton (EC), dbpe-
dia:Plastic_Ono_Band (POB), dbpedia:The_Beatles (TB), dbpedia:The_Rolling_Stones
(TRS), dbpedia:Dire_Straits (DS), dbpedia:Rock_music (RM), dbpedia:Blues_rock (BR),
dbpo:associatedBand (AB), and dbpo:genre (G).

VISITED semantics. The starting point for the evaluation of e is rule R1, which will
then trigger rules R7, R19, and R24. Here, it is necessary to evaluate the two parts
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Fig. 8. The MPG as for the VISITED semantics. Fig. 9. The MPG as for the SUCCESSFUL semantics.

of the concatenation both for building the MPG (rule R7) and collecting actions (rule
R24). To build the MPG, the subexpression Associated Band (AB) is evaluated by using
Rule R3 starting from Eric Clapton (EC):

V �AB�(EC) = {({EC, POB, TB, TRS, DS}, {(EC, AB, POB), (EC, AB, TB), (EC, AB, TRS),
(EC, AB, DS)}, EC, {POB, TB, TRS, DS})}.

Then, from each ending node of each MPG in V �AB�(EC) (i.e., POB, TB, TRS, DS) the
subexpression dbpo:genre (G) is evaluated by applying again rule R3, thus obtaining

V �G�(POB) = 	⊥,
V �G�(TB) = {({TB,RM}, {(TB, G, RM)}, TB, {RM})},
V �G�(TRS) = {({TRS,RM, BR}, {(TB, G, RM), (TB, G, BR)}, TRS, {RM, BR})},
V �G�(DS) = 	⊥.

Then, according to rule R7, the results of V �G�(POB), V �G�(TB), V �G�(TRS), and
V �G�(DS) are combined through the disjoint union (i.e., ⊕ operator) with the MPGs
({POB},∅, POB,∅), ({TB},∅, TB,∅), ({TRS},∅, TRS,∅), ({DS},∅, DS,∅); this gives the set

V 	 = {({TB,RM}, {(TB, G, RM)}, TB, {RM}),
(TRS,RM, BR}, {(TB, G, RM), (TB, G, BR)}, TRS, {RM, BR}),
({POB},∅, POB,∅), ({TB},∅, TB,∅), ({TRS},∅, TRS,∅), ({DS},∅, DS,∅)}

Then, the set V �AB�(EC) is composed (i.e., ◦ operator) with V 	, thus giving

V �AB/G�(EC) = {({EC, POB,TB,TRS,DS,RM}, {(EC, AB, POB), (EC, AB, TB),
(EC, AB, TRS), (EC, AB, DS), (TB, G, RM)}, EC, {RM}),
({EC, POB,TB,TRS,DS,RM,BR}, {(EC, AB, POB), (EC, AB, TB),
(EC, AB, TRS), (EC, AB, DS), (TRS,G,RM), (TRS,G,BR)}, EC, {RM,BR}),
({EC,POB,TB,TRS,DS}, {(EC, AB, POB), (EC, AB, TB), (EC, AB, TRS),
(EC, AB, DS)}, EC,∅)}.

Finally, according to rule R1, the union (∪ operator) of all MPGs in V �AB/G�(EC) is
computed, thus returning the following MPG (reported in Figure 8):

EV �e�(EC,W) = {({EC, POB,TB,TRS,DS,RM,BR}, {(EC,<AB>, POB), (EC, AB, TB),
(EC, AB, TRS), (EC, AB, DS), (TB,G,RM), (TRS,G,RM),
(TRS,G,BR)}, EC, {RM,BR})}

A similar process is performed to collect and execute actions. In this case, since the
expression does not contain actions the final set of actions is the empty set.
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ALGORITHM 3: visited(NAUTILOD expression e, URI seed)
Input: NAUTILOD expression e, seed URI s
Build: WV = MPG visited during the evaluation of e

1 build the NFA Ae = (Q, �e ∪ � ∪ �, δ, q0, F)
2 W × Ae = construct (e, seed)
3 set seed as the starting node of WV
4 for each state (u, q) ∈ W × Ae do
5 add u to the set of nodes of WV
6 if q ∈ F then
7 add u to the ending nodes of WV
8 for each transition δ′((u, q), x) ∈ W × Ae do
9 for each (u′, q′) ∈ δ′((u, q), x) do

10 if x ∈ �e then
11 add u′ to the set of nodes of WV
12 add (u, x, u′) to WV
13 return WV

SUCCESSFUL semantics. The evaluation is similar to the previous case, but the starting
point for the evaluation of e is rule R2. According to the SUCCESSFUL semantics the
resulting MPG (reported in Figure 9) is

ES�e�(EC,W) = {({EC,TB,TRS,RM,BR}, {(EC, AB, TB), (EC, AB, TRS), (TB,G,RM),
(TRS,G,RM), (TRS,G,BR)}, EC, {RM,BR})}

4.4. Capturing Web Fragments: Algorithms and Complexity

We are now ready to present algorithms to capture Web fragments according to the
VISITED and SUCCESSFUL semantics. We recall the following notation: W denotes a WLOD
instance; We denotes the fragment of W navigated when evaluating an expression e
while uris(We) and triples(We) are its set of URIs and triples, respectively. �e is the
set of RDF predicates that appear in e and |e| the size of the expression. eT is the core
expression associated with e and � and � the set of symbols used in lieu of tests and
actions, respectively. Moreover, Ae = (Q, �e ∪ � ∪ �, δ, q0, F) is the NFA that accepts
the language generated by eT . Now, we introduce some definitions.

Definition 4.5 (MPG of a Web fragment). Given a WLOD instance W, a NAUTILOD
expression e, and a seed node, WV is the MPG obtained by evaluating e over W starting
from seed according to the VISITED semantics. WS is the MPG obtained by evaluating e
over W starting from seed according to the SUCCESSFUL semantics.

THEOREM 4.6. The MPG WV of a NAUTILOD expression e can be computed in time
O(|We| × |e|) + CT , where CT is the cost of evaluating tests.

PROOF. The MPG corresponding to the VISITED semantics is obtained by executing
Algorithm 3. WV can be computed by building the product automaton W × Ae =
(Q′, �e ∪�∪�, δ′, q′

0, F ′) with cost O(|We|× |Ae|) + CT (see Theorem 3.2). Starting with
an empty MPG, WV can be built by visiting W ×Ae (lines 4–12). In particular, for each
transition ((u, ), x, (u′, )) in δ′such that x ∈ �e, the edge (u, x, u′) and the nodes u and u′
are added to WV . It is also necessary to specify the starting node and the set of ending
nodes. In particular, the starting node of WV is the seed URI (line 3) and the set of
ending nodes is T = {u | (u, qf ) ∈ Q′ ∧qf ∈ F} (lines 6–7). Given the product automaton
W × Ae, WV can be computed by visiting each transition and each node exactly once
with a cost O(|Q′| + |δ′|) = O(|uris(We)| × |Q| + |We| × |Ae|) = O(|We| × |e|). The total
cost of the algorithm (also considering the cost of building the product automaton) is
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ALGORITHM 4: successful(NAUTILOD expression e, URI seed)
Input: NAUTILOD expression e, seed URI seed
Build: WS = MPG of all the paths in WV that spell e

1 build the NFA Ae; assume q0 as its initial state and F as the set of final states
2 W × Ae = construct (e, seed)
3 set seed as the starting node of WS
4 initialize toVisit with all state (u, qf ) ∈ W × Ae, such that qf ∈ F
5 put each u such that (u, qf ) ∈ W × Ae, with qf ∈ F in the set of ending nodes of WS
6 while toVisit is not empty do
7 remove from toVisit a pair (u, q)
8 add u to the set of nodes of WS
9 for each transition δ((u, q), x) ∈ W × Ae do

10 for each (u′, q′) ∈ δ((u, q), x) such that (u′, q′) has not been already checked do
11 add u′ to the set of nodes of WS
12 if x ∈ �e then
13 add (u, x, u′) to WS
14 add (u′, q′) to toVisit
15 return WS

O(|We|× |e|) + CT . Note that WV could also be built without any overhead with respect
to the construction of W ×Ae; this could be done by adding on-the-fly to WV nodes and
edges encountered during the navigation by slightly modifying Algorithm 1.

THEOREM 4.7. WS can be computed in time O(|W|×|e|)+CT by navigating the product
automaton backward (from the final states to the initial state).

PROOF. WS can be built by using W × Ae according to Algorithm 4. In particular,
again, the idea is to start with an empty MPG and navigate the product automaton
backward (from the final states to the initial) by adding nodes and edges to WS (lines
8, 11, and 13). Each state and each transition (in the opposite direction) is visited at
most once with cost O(|Q′| + |δ′|) = O(|uris(We)| × |Q| + |We| × |Ae|) = O(|We| × |e|).
Thus, the total cost, when also considering the cost of building the product automaton,
is O(|We| × |e|) + CT .

5. AN IMPLEMENTATION OF NAUTILOD

This section presents an implementation of NAUTILOD in the swget tool. swget has
been implemented in Java in different versions: (i) a developer release, which includes
a command-line tool and an API; (ii) an end user release, which features a GUI; (iii) a
Web portal8 [Fionda et al. 2014b]. swget uses Jena9 to deal with RDF data. Besides the
features presented in Sections 3 and 4, swget adds a set of ad hoc options to further
control the navigation from a network-oriented perspective.

Such options include, among others, the possibility to limit the size of data trans-
ferred and enable/disable caching. In particular, swget can be configured to use a cache
that keeps Jena Model objects associated to dereferenced URIs. The cache has the life-
time of the evaluation of an expression. However, it could also be made persistent, for
instance, via a hashtable-like structure with keys being URIs and values Jena Model
objects built from data obtained by dereferencing such URIs. This will improve the
runtime performance of the system by avoiding dereferencing the same URI multiple
times. However, the cache introduces problems of data freshness (e.g., how often the

8http://swget.inf.unibz.it.
9http://jena.apache.org.
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Fig. 10. The swget high-level architecture.

cache has to be updated). This issue can be addressed either by setting a cache lifetime
or by looking at the header of HTTP connections when dereferencing a URI and getting
data only if changes are detected with respect to data in the cache. Further information
and examples are available at the swget website.10

5.1. The swget Tool

We now provide an overview of the implementation of NAUTILOD in swget. The con-
ceptual architecture of swget is reported in Figure 10, which also shows the flow of
information. The user submits a script that contains a NAUTILOD expression plus other
metadata (e.g., parameters, comments in natural language). The script is received by
the Interpreter module, which checks the syntax and initializes both the Execution
Manager (with the seed URI) and the Automaton Builder.

The Automaton Builder, via a JavaCC-based parser,11 generates the automaton as-
sociated with the expression; it will be used to drive the evaluation of such expression
on the WLOD. The Execution Manager controls the execution and passes the URIs
to be dereferenced (i.e., ids of nodes encountered when navigating the WLOD) to the
Network Manager that performs the dereferencing of URIs via HTTP GET calls. This
set of links is given to the Execution Manager, which starts over the cycle. The execu-
tion ends either when some navigational parameter imposes it (e.g., a threshold on the
network traffic has been reached) or when there are no more URIs to be dereferenced.

At the end of the execution, the results include (i) the Web fragment (represented
in RDF) obtained according to the VISITED/SUCCESSFUL semantics (see Section 4) and
(ii) the execution of the actions fired during the navigation. The Web fragment can be
locally stored and manipulated via third-party tools or can be accessed via the swget
GUI or the Web portal. The GUI makes usage of the Prefuse API12 for the visualization

10http://swget.wordpress.com.
11http://javacc.java.net.
12http://prefuse.org/.
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Fig. 11. The swget GUI. On the left-hand side, the log area prints messages about the current evaluation.
On the right-hand side, it is possible to input the NAUTILOD expression and set network parameters.

and manipulation of graphs. The Web portal has been developed by using the Flash
technology (i.e., the Flex application framework) and the Flare visualization library.13

The command line implementation of swget has been thought for developers that
need low-level access to the swget functionality. This implementation is in the same
spirit of tools like wget14 and curl.15 Our implementation features a Java API that can
be used to embed swget’s features into third-party applications. As an example, a user
could leverage this API to embed in a standard HTML page structured information
taken from the WLOD about his/her favorite movies, books, or scientific papers. In this
respect, the swget expression used to achieve this goal can be thought of as a view over
the WLOD that can be run on a regular basis to keep the page up-to-date.

The swget GUI facilitates the writing of swget scripts and provides a visual overview
of the results of the execution of such scripts. Figure 11 shows the interface for the
creation of scripts. As can be observed, it is possible to specify the seed URI plus
the other parameters (e.g., the NAUTILOD expression). Figure 12 shows the fragment
visualization tab of the swget GUI. In this particular case, the coauthor network of
Alberto O. Mendelzon (the node in red) when considering papers published between
1980 and 1990 is shown. Besides the ending nodes (nodes in violet), the fragment
also contains other nodes (nodes in blue) that belong to paths from Mendelzon to
his coauthors satisfying the expression. Note that the GUI enables one to search for
nodes/edges, zoom in/out, and rearrange the visualization of the Web fragment.

6. EXPERIMENTAL EVALUATION

We have introduced the NAUTILOD language and described three formal semantics:
one that captures sets of nodes (Section 3.2) and two that capture Web fragments
(Section 4). We have also described automaton-based algorithms to evaluate NAU-
TILOD expressions according to the different semantics and discussed their complexity

13http://flare.prefuse.org/.
14http://www.gnu.org/software/wget/.
15http://curl.haxx.se/.
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Fig. 12. Exploring the results of the evaluation of a NAUTILOD expression.

(Sections 3.4.1 and Section 4.4). In addition, in Section 5 we introduced an implemen-
tation of NAUTILOD in the swget tool, which is available in three different releases.
In this section, we discuss an experimental evaluation aimed at assessing the cost of
evaluating NAUTILOD expressions (via swget) on the WLOD. All the experiments have
been performed on a PC with an Intel 2.5GHz Core i5 processor and 8GBs of RAM
memory. Running times are the average of 5 runs; moreover, the number of results and
the number of dereferenced URIs are rounded to the next integer value. The objective
of the evaluation was to measure (i) execution time, (ii) the number of URIs derefer-
enced, (iii) the number of results retrieved, and (iv) performance of swget as compared
to related systems.

6.1. Experiment 1: Semantics Returning Nodes

The first experiment focuses on the semantics of NAUTILOD returning nodes introduced
in Section 3.2 and the associated algorithms (i.e., Algorithm 1 and Algorithm 2).

6.1.1. The Cost of Evaluating NAUTILOD Expressions. In this section we discuss the various
components that affect the cost of the evaluation of a NAUTILODexpression. We first
introduce some notation. We denote by e a NAUTILOD expression, A the set of actions,
and T the set of tests specified in e that have to be performed when evaluating it, and
by e the action-and-test-free expression obtained by removing from e all tests in T and
actions in A. Abstractly, we can separate the cost of evaluating e over a WLOD instance
W in three parts:

cost(e,W) = cost(e,W) + cost(A) + cost(T ). (1)

The first component considers the cost of evaluating the expression by taking out
actions and tests. Actions do not affect the navigation process and then we can treat
their cost separately. Moreover, tests are ASK-SPARQL queries having a different
structure from the pure navigational path expressions of the language; even in the
case of tests we can treat their cost independently. The cost of actions has essentially
two components: execution and transmission. The execution cost boils down to the cost
of evaluating the SELECT SPARQL query that gives the action’s parameters. As for
transmission costs, a typical example is the sending of an email message including
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Fig. 13. Expressions used in the evaluation. Expressions have been executed incrementally and as a whole.

some data. In this case the cost is that of sending such email. Note that what really
matters for our discussion is not the whole W, but only the set of nodes visited when
evaluating the expression; we will refer to such set as We. Thus, we have

cost(e,W) = cost(e,We) + cost(A) + cost(T ). (2)

Note that the usage of tests possibly reduces the size of the set of nodes visited during
the evaluation. Thus, the cost(e,We) has to be reduced to take into account the effective
subset of nodes reachable after the filtering performed via tests. Let WT be the portion
of We when taking into account this filtering. We have

cost(e,W) = cost(e,WT ) + cost(A) + cost(T ). (3)

Finally, we want to point out that there is a relation between the diffusion (portion
of linked datasources using a given predicate) and selectivity (the number of RDF
links with a given predicate for a given URI) of the predicates used in the NAUTILOD
expression and its evaluation cost. In particular, the usage of predicates having lower
diffusion and higher selectivity allow one to reduce the size of the portion of the WLOD
visited during the evaluation and the generated network traffic. For example, we no-
ticed that some predicates (e.g., dbpedia:influenced) have a high diffusion and a low
selectivity thus allowing one to span a larger portion of the WLOD and causing the
dereferencing of several URIs. Some other predicates (e.g., dbpedia:director) have a
lower diffusion allowing one to reduce the portion of the WLOD that is reached during
the evaluation of an expression. Finally, other predicates such as dbpedia:birthDate
have a high diffusion but very high selectivity (having at most one occurrence for each
URI visited). An interesting study about these aspects has been recently performed
[Schmachtenberg et al. 2014].

6.1.2. Experiments. We evaluate the impact of the different components of a NAUTILOD
expression according to the equations introduced previously. We chose two complex
expressions (shown in Figure 13) and measured execution time (t), number of URIs
dereferenced (d), and number of triples retrieved (n). To investigate how the various
components affect the parameters t, d, and n, each NAUTILOD expression has been
divided into five parts (i.e., σi, i ∈ {1 . . . 5}). Such parts have been executed as a
whole (i.e., σ[1–5]) and as action-and-test-free expressions (i.e., σ[no AT]), for which we
use the notations e1 and e2, respectively. Moreover, the various subexpressions (i.e.,
σ[1–i], i ∈ {1 . . . 4}) have also been executed. This leads to a total of 12 expressions.

The results, in logarithmic scale, are reported in Figures 14 and 15. In particular, in
the x axis are reported from left to right: the four subexpressions, the full expression
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Fig. 14. Evaluation of swget on e1 and e2.

Fig. 15. Evaluation of swget on e1 and e2.

(i.e., σ[1–5]), and the action-and-test-free expression (i.e., σ[no AT]). The first expression
(e1) starts by looking for people influenced by Stanley Kubrick up to distance 3 (subex-
pression σ[1-1]). This operation requires ∼61 s, for a total of 221 URIs dereferenced. On
the description of each of these 221 URIs, an ASK query is performed to select only
those people that were born after 1961 (subexpression σ[1–2]). The execution time of the
queries was about 4 s (i.e., �0.02 sec, per query) with 31 entities selected. Then, an
action is performed on the descriptions of these 31 entities by selecting the foaf:name
to be sent via email (subexpression σ[1–3]). The select operation, the rendering of the
results in HTML format, and the transmission of the emails had a cost of about 25 s.
The navigation continues from the 31 entities found before the triggering of the action
to retrieve movies via the RDF property dbpo:director (subexpression σ[1–4]). The cost
was about 34 s, for a total of 136 movies. Finally, for each movie only one level of possible
additional descriptions is searched by the owl:sameAs property (the whole expression
σ[1–5]) whose cost is 1638 sec, for a total of 409 new URIs available from multiple
servers (e.g., linkedmdb.org, freebase.org) of which only 289 were dereferenceable.

Thus, we have that cost(e1,W) = cost(e1,WT1 ) + cost(A1) + cost(T1) = 1763; with
cost(A1) � 25 s, cost(T1) � 4 s and cost(e1,WT1 ) � 1738 s. When considering the test-
and-action-free expression, cost(e1,W) � 20018 secs. Note that the evaluation of the
ASK-SPARQL queries had a cost of about 4 s, and allowed one to reduce the portion
of the WLOD navigated by e1; this enabled one to save about 20,018 − 1,738 = 18,280
s. Such a larger difference in the execution time is justified by the fact that the 221
initial URIs, selected by σ[1−1] were not filtered in the case of (e1,W) and then caused
a larger amount of paths to be followed at the second step of the evaluation. Indeed,
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Fig. 16. Comparison between swget and SWGETM on e3.

the total number of dereferenced URIs for (e1,W) was 6,053, with about 660 K triples
retrieved, while for (e1,WT1 ) it was 646, with 125 K triples retrieved.

The second expression e2 specifies the navigation of the property dbpo:homeTown to
find entities living in Italy (subexpression σ[1-1]); this had an execution time of about
84 s with a total of 400 dereferenced URIs (one seed plus 399 additional URIs). On the
description of each URI, an ASK query filters entities that are of type dbpo:Person and
dbpo:MusicalArtist (subexpression σ[1–2]). All the queries were performed in about
3.8 s, with an average time per query of 0.01 s; this enabled one to select 156 people. At
the second step, the navigation continues via the RDF property dbpo:birthPlace to find
the places where these people were born (subexpression σ[1–3]); this had a cost of about
14 s. In total, 42 new URIs were reached. The navigation continued with a second ASK
query to select only those places where less than 15,000 habitants live (subexpression
σ[1–4]). The cost of performing the 42 ASK queries was of about 3 s and five places were
selected. Finally, for each of the five places additional descriptions were searched by
navigating the owl:sameAs property (the whole expression σ[1-5]). This allowed one to
reach a total of 29 URIs, some of which were external to dbpedia.org. The cost for this
operation was of about 57 s.

As for the total cost, we have cost(e2,W) = cost(e2,WT2 ) + cost(A2) + cost(T2) = 161.
The factor cost(A2) = 0 since e2 does not contain any action whereas cost(T2) � 6 s,
which gives cost(e2,WT2 ) = 155 s. The cost of the action-and-test-free expression (i.e.,
e2) over W is cost(e2,W) � 1600 s, with 1277 URIs dereferenced. This is because the
expression is not selective since it performs a sort of “semantic” crawling only based
on RDF predicates. In fact, the number of triples retrieved (see Figure 14(b)) is almost
three times higher than in the case of the expression with tests. By including the tests,
the evaluation of e2 is 1445 s faster.

6.2. Experiment 2: swget vs SWGETM

We now compare swget against a new implementation that leverages multithreading
(referred to as SWGETM). For this comparison we used the following expression:

(foaf:knows)<1-X> (e3)

The notation <1-X> is a shorthand for the concatenation of up to X foaf:knows
edges. In the experiment, we considered values of X ranging from 1 to 5 and used
A. Polleres’ FOAF profile16 as the starting node. The results of the comparison are
reported in Figure 16. In particular, Figure 16(a) compares swget with SWGETM when

16http://www.polleres.net/foaf.rdf#me.
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Fig. 17. Comparison between SWGETM and SQUIN on e4.

using 40 threads. As can be observed, there is a major improvement especially for long
running queries.

As an example, at dist5 in Figure 16(a), SWGETM is ∼17 times faster than swget.
In Figure 16(b) it can be observed that for SWGETM, a sensible speedup is obtained by
increasing the number of threads up to 30. To test the benefit of SWGETM, we have also
executed expressions e1 and e2 (see Section 6.1.2) with a pool of 30 threads; even in this
case we obtained a significant speedup (∼5x).

6.3. Experiment 3: Comparison with Related Work

We compared SWGETM against SQUIN17 and SPARQL 1.1’s property paths (for
which we considered the DBpedia SPARQL endpoint18). Since SQUIN is based
on a multithread implementation, we compared it with SWGETM only. Further de-
tails about the experimental setting and the complete query set are available at
http://swget.wordpress.com/evaluation. We considered three different sets of ex-
pressions. The first set (e4) includes the influence network of Tim Berners-Lee (TBL)
in DBpedia restricted to scientists only. The seed node (i.e., TBL’s URI in DBpedia) is
dbpedia:Tim_Berners-Lee while the NAUTILOD expression is

(dbp:influenced)<1-X>[Test] (e4)

where the test is defined as follows:

Test=ASK {?ctx rdf:type dbpo:Scientist.}

In the expression, the notation <1-X> is shorthand for the concatenation of up to X
dbp:influenced while the test is used to filter ending nodes identifying scientists. In
the experiment we considered values of X ranging from 1 to 6.

The execution times for e4 are shown in Figure 17(a). As for SWGETM, we used a thread
pool of size 5 to avoid many simultaneous connection requests that may overload servers
and generate errors that would result in the loss of results. As compared to SQUIN,
SWGETM reported a higher running time at dist6. However, by looking at Figure 17(b) it
can be noted that SWGETM performs a much larger number of dereferencing operations
(433 vs. 117).

This latter aspect had an impact on the number of (valid) results shown in
Figure 17(c). Indeed, SWGETM retrieved 56 results while SQUIN retrieved 18. The rea-
son for these differences stems from the link-traversal-based query execution mech-
anism based on nonblocking iterators implemented by SQUIN [Hartig 2011]. This
approach cannot guarantee to discover all reachable URIs that may contribute to the
final results [Hartig 2011] (a more detailed comparison is provided in Section 7). On

17http://www.squin.org.
18http://dbpedia.org/snorql/.
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Fig. 18. Comparison between swget multithread (SWGETM) and SQUIN over e5.

the other hand, NAUTILOD at the core of SWGETM guarantees that all the parts of the
WLOD graph that may contribute to the results are visited. We also want to point out
that with SQUIN it was not possible to consider the closure via (owl:sameAs)∗ that
would enable one to find aliases of TBL in other datasources. To make the comparison
possible, we considered an additional expression (not reported here) where up to three
levels of owl:sameAs were considered. The running times of SWGETM and SQUIN were
comparable (∼45 s at distance 6 with three levels of owl:sameAs). However, the number
of results provided by SWGETM was higher.

The second set of expressions used in the comparison (i.e., e5) considers the expres-
sions previously discussed in Experiment 2. The comparison between SWGETM and
SQUIN over e5 is reported in Figure 18 (results are in log scale). The number of results
varies from 43 to 2.6 K. The number of results between SWGETM and SQUIN varies due
to the fact that SQUIN can return blank nodes identifiers as results while NAUTILOD
discards blank nodes. Also for this experiment, the size of the thread pool has been set
to five. As for SQUIN, the running time ranges from ∼4 s to ∼250 s. As for SWGETM,
the running time varies from ∼1 s to ∼50 s. During the evaluation of e5, the running
times have been affected by I/O exceptions due to missing FOAF profiles.

Comparison with SPARQL 1.1’s Property Paths. In this experiment, we used another
expression (e6) that looks for Stanley Kubrick’s codirectors at distance 6. The seed node
is dbpedia:Stanley_Kubrick while the NAUTILOD expression is

(dbpo:director/dbpo:director)<6-6> (e6)

On e6, we compared SWGETM with SPARQL 1.1’s Property Paths (PPs) and SQUIN.
It is crucial to note that PPs are a means to deal with paths that link RDF triples
available in a local graph while SWGETM and SQUIN target the WLOD graph where
paths exist between distributed (and a priori unknown) datasources. Nevertheless, we
compared SWGETM against PPs on DBpedia’s SPARQL endpoint (DBse). This expression
took ∼50 s on DBse, ∼180 s on SWGETM, while we stopped the execution of SQUIN after
∼2 h. It is interesting to observe that DBse uses a local triplestore, while SWGETM and
SQUIN work on the Web. Indeed, SWGETM performed a total of ∼3,400 dereferencing
operations.

The last set of expressions (e7) asks for the influence closure of TBL
((dbp:influenced)∗ (e7.1) and the influence closure by only considering scien-
tists (dbp:influenced[ASK {?ctx rdf:type dbpedia:Scientist}])∗ (e7.2). As for e7.1,
SQUIN cannot express such request since it does not support PPs. And, even if this
would be possible, PPs cannot be evaluated over the WLOD graph. On this query, DBse
did not provide any result because of a memory overflow after ∼2 min, while SWGETM
provided 1,792 results in ∼172 s. As for e7.2, note that this request cannot be expressed
either by PPs or by SQUIN due to the lack of tests when using closure operators (i.e.,∗,
+). SWGETM provided eight results with 21 dereferencing operations in ∼2.5 s.
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Fig. 19. Fragments obtained according to the VISITED (a) and SUCCESSFUL semantics WS (b) for TBL.

6.4. Experiment 4: Semantics Returning Web Fragments

In this section we provide some examples of Web fragments that can be specified with
NAUTILOD. We report results according to both the VISITED semantics V and SUCCESSFUL

semantics S indicated as WV and WS, respectively.

6.4.1. Influence Networks. An influence network is a graph where nodes are different
kinds of persons and edges represent influence relations. We leverage information
taken from dbpedia.org where the notion of influence is captured via the property
dbp:influenced defined in the DBpedia ontology. We consider two different fragments:
a fragment built starting from TBLand another starting from Stanley Kubrick (SK).
Figures in higher quality along with the representation in RDF of the Web fragments
are available at the swget Website.19 Such fragments can be loaded and explored by
using the swget GUI.

Example 6.1. Specify two Web fragments including scientists that have influenced
or have been influenced up to distance 6 by TBL and SK, respectively.

The Web fragments can be specified via the NAUTILOD expression e4 in Section 6.3
by considering the URIs of TBL and SK in DBpedia as seed nodes.

Influences of TBL. Figure 19(a) reports the Web fragment obtained with the VISITED

semantics for TBL. This fragment contains 149 nodes and 236 edges. Recall that ac-
cording to the specification of the fragment only scientists have to be considered as
ending nodes. As can be observed, there are two main influence clusters: the first (c1)
around Whitehead and the second (c2) around Otlet. Note also that Latour is the bridge
between the two clusters but he is not a scientist. In the fragment there are several
nodes that were visited during the evaluation of the expression but did not lead to any
result. For instance, the cluster of nodes (c3) did not contribute to reach any scientist.
Moreover, observe that while Otlet is an ending node, Whitehead is not; however, via
Whitehead other scientists (e.g., Peano) have been reached. TBL belongs to the influ-
ence cluster (c2). By looking at the fragment it is possible to reconstruct the whole
influence path (also including nonscientists) between any two nodes. As an example
it is possible to get the the full path between TBL and G. Peano, that is, TBL→P.
Outlet→S. Briet→B. Latour→A. N. Whitehead→B. Russel→G. Peano. The swget GUI
facilitates the discovery and exploration of such paths.

Figure 19(b) reports the fragment obtained with the SUCCESSFUL semantics for TBL;
the fragment contains 40 nodes and 70 edges. Here, the two clusters identified before

19http://swget.wordpress.com.
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Fig. 20. Comparison between SUCCESSFUL and VISITED semantics on e4 starting from TBL.

Fig. 21. Fragments obtained according to the VISITED (a) and SUCCESSFUL semantics (b) for SK.

are clearer, and the cluster (c3) disappeared since it did not lead to any result. The
flexibility of NAUTILOD to provide the two semantics is useful to understand why a
node has been considered or not in the fragment. As an example, in clusters (c1) and
(c2) identified before it was possible to understand the importance of B. Latour in the
influence network of TBL. Figure 20 provides a comparison between the two semantics
on e4. In particular, Figure 20(a) shows the difference in time to build the fragment
according to the SUCCESSFUL and VISITED semantics. Figures 20(b) and 20(c) show the
difference in terms of the number of nodes and edges retrieved with the two semantics.
As can be observed, the SUCCESSFUL semantics enables one to reduce the number of
nodes by ∼75% and edges by ∼73% at distance 6.

Influences of SK. Figure 21(a) reports the VISITED Web fragment associated with the
influence network of SK. The fragment contains 2,981 nodes and 7,893 edges. In the
figure, five clusters of nodes can be recognized centered around SK and four other hub
nodes (i.e., Lovecraft, Lynch, Chesterton, and Hegel). However, clusters are too big to
single out nodes satisfying the expression and influence paths among them. This is also
true for hub nodes. In this particular case, none of the four hub nodes is a scientist.
Hence, one may wonder whether these four hub nodes belong to some influence path
connecting S. Kubrick with ending nodes. This question can be answered by looking at
the SUCCESSFUL fragment shown in Figure 21(b), which contains 530 nodes and 1,375
edges. The same clusters, now containing a significant lower number of nodes are
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Fig. 22. Fragments obtained according to the VISITED (a) and SUCCESSFUL semantics (b).

shown. Since all the previous four hub nodes belong to the SUCCESSFUL fragment they
allow one to reach some scientist indirectly influenced by Kubrick. Indeed, by exploring
such a fragment one can discover that from Kubrick we can reach C. Segan (a scientist)
by passing through H. P. Lovecraft; O. Rank by passing through D. Lynch; S. Freud by
passing through G. K.Chesterton; and J. Kepler and N. Tesla by passing through G. W.
F. Hegel.

6.4.2. Coauthorship Web Fragments. In this scenario, nodes represent authors and papers
and edges authorship relations. To give an example, we leverage information in RDF
taken from dblp.l3s.de where the notion of authorship is captured via the property
foaf:maker. We have built the network starting from Alberto O. Mendelzon (AOM) by
considering his coauthors up to distance 2 only on papers published between 1980 and
1990. The Web fragments can be specified via the following NAUTILOD expression and
using the URI of AOM in the dblp.l3s.de datasource as the starting node:

dblp:Alberto O. Mendelzon (foaf:maker[Test]/foaf:maker)<1-2>

where the test is defined as follows:

Test=ASK{?ctx dc:issued ?y. FILTER( ?y>‘‘1980’’^^<xsd:gYear>).

FILTER(?y<‘‘1990’’^^<xsd:gYear>).}

Figure 22(a) reports the fragment associated to AOM according to the VISITED seman-
tics. The fragment contains 2,110 nodes and 2,929 edges. The SUCCESSFUL fragment is
shown in Figure 22(b), which contains 549 nodes and 1,268 edges.

Some of the clusters present in the VISITED fragment disappear in the SUCCESSFUL

fragment due to the test in the NAUTILOD expression (i.e., clusters c6–c11). As an
example, Mariano P. Consens belongs to the ending nodes of the NAUTILOD expression
because he coauthored a paper with AOM in 1989 and also his papers belong to the
VISITED fragment (Figure 22(c)). However, the cluster to which he belongs disappears
from the SUCCESSFUL fragment (see Figure 22(f)) since all the other papers he coauthored
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(that belong to the VISITED fragment) have been published after 1990. On the contrary,
the cluster c5 around M. Y. Vardi belongs both to the VISITED and SUCCESSFUL fragments
since he published papers in the decade 1980–1990 that allow one to reach other ending
nodes (e.g., S. Salfra and P. G. Kolaitis). However, also in this case, the cluster in the
VISITED fragment (Figure 22(d)) contains many more nodes representing papers. These
nodes disappear from the SUCCESSFUL fragment (see Figure 22(e)) since they have been
published after 1990.

7. RELATED WORK

Many of the ideas underlying our proposal have been around in particular settings. We
owe our inspiration to several of them. We will organize the discussion of the different
influences and related works by topics.

Browsers. The first class of tools developed to access data in the WLOD were browsers
such as Tabulator [Berners-Lee et al. 2006] and OpenLink Data Explorer;20 such tools
enabled manual navigation on the WLOD graph in the sense that they require human
intervention to perform the traversal of edges. These tools have evolved to include
support for faceted navigation ([Hildebrand et al. 2006], BrowseRDF [Oren et al. 2006])
where information is classified in facets that can be used to filter RDF data. Other
proposals such as Explorator [Araujo and Schwabe 2009] and RExplorator [Cohen and
Schwabe 2012] have been proposed to also support direct manipulation of the pieces
of RDF information being navigated. The departure point of NAUTILOD is different;
it formalizes and features a declarative and automatic navigation mechanism for the
WLOD. NAUTILOD enables one to express high-level specifications of information on
the WLOD that can be retrieved without human intervention. Such specification can
also include actions to be performed using data encountered during the navigation.

Retrieval of Sources (crawling). Specification (and retrieval) of collections of sites was
addressed earlier, and a good example is the wget GNU tool.21 Besides being nondeclar-
ative, it is restricted to almost purely syntactic features. The execution philosophy of
wget was a source of inspiration for the incorporation of actions into NAUTILOD and
for the design of swget. At the semantic level, Isele et al. [2010] proposed LDSpider, a
crawler for the Web of Data able to retrieve RDF data by following RDF links according
to different crawling strategies. LDSpider has little flexibility and is not declarative.
After NAUTILOD, another language, called LDPath [Schaffert et al. 2012], has been
proposed to enable navigation on the WLOD. Differently from NAUTILOD, LDPath does
not have a formal semantics and does not allow the specification of actions.

Graph Navigational and Query Languages. Languages for the navigation and specifi-
cation of nodes in graphs have a long tradition. Among them, we recall XPath (for XML)
and some proposals extending SPARQL with navigational features (e.g., Alkhateeb
et al. [2009], Kochut and Janik [2007], Pérez et al. [2010], Zauner et al. [2010], and
SPARQL 1.1). Also several query languages for the Web have been proposed (see
Florescu et al. [1998] for a survey) but these are not grounded on semantic technologies
and languages. Nonetheless, all these languages have inspired the navigational core
of NAUTILOD. A recent survey on graph query languages is given by Wood [2012].

In general, languages to query the Web enable the evaluation of path expressions
also including tests, and NAUTILOD uses the core functionality of them (very much like
XPath). In almost all such languages the evaluation of an expression returns a set of
nodes. In our case, NAUTILOD expressions can also return graphs (i.e., fragments of the

20http://demo.openlinksw.com/ode.
21www.gnu.org/software/wget/.
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Table III. Comparison with Related Research in Graph Query/Navigational Langauges

System/Language Scope Output
NAUTILOD WLOD Regions

LDSpider [Isele et al. 2010] WLOD Nodes
LDPath [Schaffert et al. 2012] WLOD Nodes
SPARQL 1.1 SERVICE Federated queries Nodes
PSPARQL [Alkhateeb et al. 2009] Local graph Nodes
nSPARQL [Pérez et al. 2010] Local graph Nodes
Property paths [Harris and Seaborne 2013] Local graph Nodes
Zauner et al. [Zauner et al. 2010] Local graph Nodes
SPARQLeR [Kochut and Janik 2007] Local graph Path expressions
ECRPQ [Barceló et al. 2012] Local graph Regular expressions

Web). Recently (in parallel to the development of NAUTILOD) there has been research
on graph languages returning graphs. For example, in the formalism ECRPQ [Barceló
et al. 2012] the output are paths found by the query. Also another work that introduced
path variables was SPARQLeR. The fundamental difference with respect to NAUTILOD
is that, while they return the expressions formed by the labels of the subgraph tra-
versed (e.g., regular expressions in ECRPQ), NAUTILOD returns the actual nodes of the
subgraphs traversed plus their labels, that is, actual pieces of the Web subgraph. Fi-
nally, NAUTILOD does not assume data stored in a central repository (typically a single
RDF graph), but target distributed graphs such as the WLOD. NAUTILOD incorporates
a basic type of actions, technically side effects, to allow basic communication to users
and shipping of data. Table III summarizes the comparison between NAUTILOD and
related graph/navigational languages.

Distributed and active approaches. Active XML [Abiteboul et al. 2002] is a declar-
ative framework for peer-to-peer data and service integration for the Web. It defines
a datatype for documents, which has embedded calls to web services, plus a language
to define them. Its goals are different from NAUTILOD, in the sense that NAUTILOD is
designed to take advantage of the current data over the WLOD (which do not have calls
incorporated), and actions (calls) do not transform datasources, but have the meaning of
metacommunication channels; in particular, sending data to final users and performing
basic communication (e.g., sending emails).

In the Semantic Web world, Papamarkos et al. [2004] proposed an “Event-Condition-
Action” language for RDF called RDFLT. It was motivated by the need of having, in
distributed environments, timely notifications of metadata changes and “mechanisms
for monitoring and processing such a changes.” It has similarities with NAUTILOD in
the notion of navigation. But RDFLT is oriented to catch events and fire insertion or
deletion of a set of nodes defined by a navigational expression, and NAUTILOD was de-
signed to specify/retrieve expressions of regions of the Web. Another language, called
Data-Fu, was proposed by Stadtmüller et al. [2013] for interactions in the WLOD based
on a RESTful approach. Data-Fu points to a different goal than NAUTILOD. While the
former works to allow interactions between multiple providers with read/write data
functionalities (assuming data extended with RESTful descriptions), NAUTILOD points
to read, filter, and integrate standard data from multiple distributed sources on the
WLOD. Finally, regarding distribution, there have been many proposals in the Seman-
tic Web landscape. Rakhmawati et al. [2013] surveys different models of federation
that use endpoints. Again, NAUTILOD was used to take advantage of standards for
data on the Web, thus does not consider endpoints (although it could be extended to
that functionality).
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Querying/Navigation on the WLOD. Here we identify three main lines of research:
(1) Load the desired data into a single RDF store (by crawling parts of the WLOD)

and process queries in a centralized way [Hose et al. 2011]. There have also been
developments in indexing techniques for semantic data like Swoogle [Ding et al. 2004],
Sindice [Oren et al. 2008], and Watson [d’Aquin and Motta 2011]. An approximate
index structure has been proposed in Harth et al. [2010].

(2) Process queries in a distributed form by using a federated query processor. The
SERVICE feature of SPARQL 1.1 and proposals like DARQ [Quilitz and Leser 2008]
and FedX [Schwarte et al. 2011] provide mechanisms for transparently query answer-
ing on multiple query services. The query is split into subqueries that are forwarded
to the individual datasources and their results are processed together. An evaluation
of federated query approaches can be found in Haase et al. [2010].

(3) Extend SPARQL with navigational features to discover datasources relevant
for answering SPARQL queries on the WLOD. This approach is referred to as “Link
Traversal-Based Query Execution” (LTQBE). SQUIN [Hartig et al. 2009; Hartig 2011]
and LiDaQ [Umbrich et al. 2014] are two implementations (and formalizations) of such
an approach. At their core, there is the possibility to navigate toward distributed data-
sources while executing a query. SQUIN22 is an iterator-based implementation of the
LTQBE paradigm, while LiDaQ [Umbrich et al. 2014] also considers lightweight rea-
soning extensions to find additional sources on-the-fly and generate further answers.
Recently, an analysis of subwebs that are reachable by LTQBE engines was performed
[Hartig and Ozsu 2014] giving some hints about why results obtained with these en-
gines are not complete. We discuss the differences between LTQBE engines and swget
both in terms of scope and expressiveness.

First, we want to point out that LTQBE and swget have different departure points.
LTQBE uses “implicit” (noncontrolled) navigation to collect information from the
WLOD to perform query answering (i.e., obtain a set of variable mappings). Hence,
navigation is a “means” to retrieve such information. Approaches based on LTQBE
do not mean to be (pure) navigational languages. swget leverages NAUTILOD, which
is a pure navigational language that uses (Boolean ASK SPARQL) queries to select
datasources. Hence, navigation (not querying) is the main actor. While NAUTILOD uses
queries to enhance/control the navigation, LTQBE proceeds in the reverse order. For
example, the SQUIN implementation of the LTQBE mechanism based on nonblocking
iterators cannot guarantee that all reachable URIs that may contribute to the final
results are discovered. This is because the building blocks of a SQUIN query (i.e.,
SPARQL BGPs) are evaluated in a fixed order; when an iterator obtains an intermedi-
ate solution from the previous iterator, it replaces the previously obtained intermediate
solution. Hence, the (replaced) intermediate solution cannot be combined with any data
that arrives later. As for SPARQL 1.1’s, its navigational core (i.e., property paths) is
meant to deal with paths that link RDF triples available in a local graph. On the other
hand, NAUTILOD (and swget) deals with the WLOD graph where paths exist between
distributed (and a priori unknown) datasources.

Overall, there are some substantial differences between our proposal and the pre-
viously mentioned strands of research in terms of querying/navigating the WLOD (as
also summarized in Table IV): NAUTILOD focuses on navigational functionalities, thus
departing from querying as in (2); emphasizes specification of autonomous distributed
sources, as opposed to (1); uses SPARQL querying to enhance navigation, while (3) pro-
ceeds in the reverse direction; and incorporates actions that in some sense generalize
procedures implicit in the evaluation over the Web (e.g., “get data” in crawlers and
“return data” in query languages).

22http://squin.org.
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Table IV. Comparison with Related Research about Querying/Navigation on the WLOD

System/Language Scope Techniques and Features
NAUTILOD WLOD Controlled Navigation, Actions,

Web fragments

SQUIN [Hartig et al. 2009; Hartig 2011] WLOD Navigation for Querying
LiDaQ [Umbrich et al. 2014] WLOD Navigation for Querying
Swoogle [Ding et al. 2004] Crawled data Indexing for querying
Sindice [Oren et al. 2008] Crawled data Indexing for querying
Watson [d’Aquin and Motta 2011] Crawled data Indexing for querying
Harth et al. [Harth et al. 2010] Federated queries Indexing for querying
DARQ [Quilitz and Leser 2008] Federated queries Querying
FedX [Schwarte et al. 2011] Federated queries Querying
RDFTL [Papamarkos et al. 2004] Local graph Navigation, Events
Data-Fu [Stadtmüller et al. 2013] WLOD Actions

8. DISCUSSION

We now deepen some aspects underlying the practical usage of NAUTILOD and swget.

Datasource navigation. Similarly to other navigational and query languages for RDF,
the usage of NAUTILOD requires some familiarity with the schema of the data. In par-
ticular, the user should have some knowledge of which RDF predicates can help in
expressing a conceptual specification. An increasing level of difficulty with NAUTILOD
is the fact that the evaluation of an expression can span over multiple (and differ-
ent) schemata. Fortunately, there is an increasing adoption of metaschemata such as
schema.org whose underlying idea is that of providing a common vocabulary to struc-
ture knowledge domains. Indeed, mappings from schema.org already exist with other
schemata such as DBpedia.23 Hence, NAUTILOD users should only learn one schema
as expressions written in schema.org will be dynamically translated into the schemata
of the datasources encountered during the navigation. Another way of circumventing
such problem would be the analysis of metadata about datasets (e.g., VoID descriptions
[Alexander et al. 2010]). Last but not least, a challenging research goal is that of pro-
viding translations from natural language questions to NAUTILOD expressions as done
for SPARQL queries by systems like DEANNA [Yahya et al. 2012].

Performance. swget expressions are evaluated over the live WLOD without the need
of SPARQL endpoints. Performance (in terms of execution time) depends on different
factors: (i) load of the servers (and polite crawling), (ii) quality of the Internet connec-
tion, (iii) use of cache (as described in Section 5), and (iv) complexity of the expression.
As for point (iv), the availability of statistics about the usage of predicates can help in
determining their selectivity; this will help in estimating the cost of the evaluation of
NAUTILOD expressions. We want to point out that the swget engine can be configured
(by passing a flag) to stream results as they are available. Hence, for queries that may
take long, users can stop the execution and still get some results. Finally, the system
also enables one to specify a budget in terms of maximum number of dereferencing
operations and stop the execution when reaching the budget.

9. CONCLUDING REMARKS

Knowledge in the form of semantic graphs pervades everyday life. Initiatives such as
Facebook Graph, Google Knowledge Graph, and Linking Open Data are examples of
this trend. In this new world of structured data at Web scale, navigation becomes a
relevant part of the toolbox to query and extract knowledge from the Web. As thousands

23http://schema.rdfs.org/mappings.html.
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of distributed and interlinked semantic datasources are becoming available, navigation
can be raised to the level of semantic navigation. We showed the importance of having
a declarative language for the automatic navigation on the Web. This language, called
NAUTILOD, and its implementation in swget show the feasibility and potentialities of
semantic and automatic navigation at a Web scale. Our experience indicates that there
are still some pieces missing to bring this potential to a planetary level. Among the most
important there is the need for standardized semantic metadata about datasources and
protocols to publish data.
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