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a b s t r a c t

The generation and propagation of a second harmonic water wave have been investigated in the
frequency range between 7 Hz and 60 Hz where the velocity vs. frequency curve attains its minimum
value. A model is proposed by assuming that the second harmonic is locally generated by point
sources on the wavefront of the fundamental wave, and that at any point along the propagation
direction the second harmonic be given by the cumulative contribution from all the sources up to
the considered point. In the frequency range examined the combined effects of gravity and capillarity
yield the so called resonance condition where the fundamental and second harmonic waves share
the very same phase velocity. In such a case, wave shape matching condition is maintained between
the two waves along all the propagation directions, with the amplitude of the second harmonic
only limited by the attenuation effect. Evidence is given experimentally of such effect through the
wavenumbers mismatching produced by the model vs. frequency and the detection of the maximum
distance of second harmonic amplitude from the wave source. Furthermore, it is found that the
resonance condition is a threshold effect with respect to water depth.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear growth of harmonic components along the
propagation direction of an acoustic wave is a long known phe-
nomenon [1], responsible, for instance, of shock wave formation
in air [1,2], or in medical lithotripsy applications [3], convolutor
signal processing in electronics [4,5], resolution improvement
in acoustic microscopy [6–8], as well as in other successfully
exploited technological processes [9].

Theoretical approaches to the problem of generating har-
monic waves are variously tempted and largely depends on
the assumptions that could be correctly made upon the wave na-
ture and the propagation materials. Particularly, inhomogeneous
waves present harder solutions, since the sources of nonlinearity
are not uniformly distributed over the wavefront planes, even in
the case of planar propagation. These are the cases of surface
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acoustic waves, an important deal in high frequency ultrasonic
techniques for electronic applications [5,10,11], or in the much
lower frequency range of surface water waves. This last case
has been variously studied and approaches have been proposed
mainly based on the nonlinear interactions among surface wa-
ter waves giving rise to an energy transfer among wavetrains
affecting wavefield evolution [12–16].

Experiments of previous work are generally relative to the
spectra content of the detected signal from the surface elevation
in selected points of the field, with no description of the overall
surface second harmonic profile. Investigation of the evolution
field, indeed, allowed one to set into evidence that the non-
linearity process generates a component of the water elevation
that vibrates at double the frequency of the fundamental wave,
but does not grow as a true second harmonic wave, since it is
constantly generated out of phase with the propagating field, sug-
gesting the effect of local generation. At the resonance conditions
alone, the spatial profile follows the one of a true second har-
monic, whose growth is only limited by absorption. Experimental
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evidence will be set into evidence, which coherently follows the
proposed model.

In the present paper such a model is thus introduced for
second harmonic generation of surface water waves, where the
generated wave is locally produced proportional to the second
power of the fundamental wave and subsequently propagates as
an independent wave, producing a wavefront mismatching with
the fundamental one, that may be easily detected experimentally.
The model is then used to best fit the various physical parameters
and a strong evidence is given of the effect produced at the so
called resonance condition, where the fundamental wave and its
harmonic share the very same phase velocity. Mismatchings be-
tween wavenumbers and distance of maximum second harmonic
amplitude from the wave source are given vs. wave frequency,
which both set into clear evidence the resonance condition.

2. Second harmonic generation model

Modeling the generation of a second harmonic wave in case
of planar propagation in acoustics can be performed by assuming
a distribution of infinitesimal sources to be created along the
propagation direction; they are due to any cause of nonlinear be-
havior of the wave geometry as well as of the medium structure
at the fundamental driving frequency, each being proportional to
first approximation to the square of the local amplitude and/or
stress amplitude and to the infinitesimal volume of interaction
and, as such, varying in time as twice the fundamental wave
frequency. The model may lead to an analytical result for the
second harmonic wave field, as long as its amplitude is limited
to values considerably lower than those of the fundamental, so
that no feed back of the power should be taken into account that
contributes to vary the very same generating terms. The so called
triad interaction is then limited to just one way from the most
powerful harmonic to the others and, more specifically, to the
second harmonic.

Each perturbation produced at any given point will propagate
independently from the others as a true second harmonic wave,
though limited to an infinitesimal amplitude, with its proper
velocity of propagation. At any point, then, along the propagation
direction, a second harmonic wave will be present, given by the
sum of the contributions from all the sources as generated up to
the considered point.

A monochromatic unidirectional plane wave is supposed to
propagate along x direction, produced at point x = 0 with
amplitude A1 and attenuation coefficient α, as

a1(x, t) =
1
2
A1e−αx [ei(ωt−k1x) + e−i(ωt−k1x)

]
. (1)

Within any interval dx′ positioned around point x′ a perturbation
is produced due to first order nonlinear effect proportional to
a21 that propagates along x direction, reaching point x at a time
delayed by the lapse it takes a second harmonic wave to travel a
space interval equal to x − x′ > 0, with its amplitude reduced by
the attenuation produced within that very same interval
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Γ , being a phenomenological complex constant that takes into
account the nature of the wave (longitudinal, shear, surface etc.),
and that depends upon the propagation medium. It represents
how much of the fundamental wave energy, which at any time

t is present in the volume interval dx′, is flowing outward to the
second harmonic wave.

Its amplitude describes the efficiency of the nonlinear inter-
action and its phase relates to the phase lag between the local
values of the fundamental and the generated harmonic wave;
ω, is the angular frequency of the fundamental component; k1
and k2, the fundamental and second harmonic wavenumbers,
respectively; v2 = 2ω/k2, the second harmonic wave velocity
of propagation; α and β , the fundamental and second harmonic
component attenuation factors, respectively. A dc term is present
within graphs in Eq. (2), resulting from the square of the cos term
of the fundamental wave; it locally adds to the second harmonic
source term, though it does not propagate. At point x the second
harmonic wave takes the form
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that may be finally reduced to

a2(x, t) =
Γ A2

1e
−βx

2(k2 − 2k1)

×
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)]
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The perturbation thus produced oscillates in time with angu-
lar frequency 2ω at any point along the propagation direction;
however, it is not to be considered as a true second harmonic
wave, since its phase does not vary linearly along the propagation
direction as k2x, as one would expect, rather through a proper
combination of the wavenumbers k1, k2. In addition, its amplitude
is also modulated by a combination of the wavenumbers k1, k2,
and is linearly related to the forcing term Γ times the square of
the fundamental wave amplitude A1 and the attenuation factor
e−βx. It is worth noting that the dispersionless case, correspond-
ing to condition k2 = 2k1, represents the well known resonance
effect [17], where there is no modulation of the generated wave,
which grows as a true second harmonic wave at a constant rate,
as it could be proved by letting k2 → 2k1, thus giving

|a2(x, t)| ∼=
1
2
Γ A2

1e
−βxx cos (2ωt + k2x) ≪ A1. (5)

It is useful to recall that it has been shown that resonance con-
ditions are not possible in case of deep water gravity waves [16],
and that the condition can be verified [17–19] only if capillarity
terms are introduced. Capillarity waves, indeed, are of interest in
remote sensing techniques, and in the generation of water waves
by wind, having the highest efficiency [20].

This case clearly sets the limit for the model to satisfy the
above mentioned condition of validity, where the generated har-
monic wave maintains its amplitude well below that of the gen-
erating fundamental. That is up to the point x satisfying the
condition

xe−βx
≪

2
Γ A1

.
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Fig. 1. (Color online) Attenuation coefficient α vs. driving frequencies used in
the experiment; Linear fit of the data is displayed as a dashed line.

Fig. 2. (Color online) Waveforms of the fundamental (a) and second harmonic
wave (b), vs. distance x from the piston-like source oscillating at frequency
f1 = 14 Hz.

3. Experimental results and discussion

Surface waves are produced on deionized water by horizon-
tally moving as a harmonic motion a thin aluminum plate (source
transducer), 15 cm wide and 2 mm thick, vertically set into the
water and partially immersed by an amount d = 4 mm into
the liquid [21]. Oscillatory frequencies produced by a piston like
source, properly connected to the plate, can be varied from dc to
few tens of hertz in a linear regime, with amplitudes sufficiently
high to produce harmonic, as well as subharmonic waves.

Previous to experiments on the nonlinear generation efficiency
of the water waves, spurious nonlinear generation directly pro-
duced at the plate source was carefully tested and no output was
detected relative to such effect, though the meniscus oscillatory
deformation was found to be responsible for the generation ef-
ficiency of the fundamental mode [22]. This effect, however, has
no influence on the efficiency of the second harmonic generation,
once the fundamental wave has been produced. In addition, water
surface contamination has been carefully taken into account, and
a measurement of the absorption coefficient α in the frequency
range 7–60 Hz has been carried out (see Fig. 1). Values fully match
the literature parameters [23], making us confident of the validity
of the experimental conditions.

The oscillatory motion of the water surface is detected with a
laser optical probe and the scanning of the surface by means of
a point-to-point motor along the axis of the source transducer.

The signal is then properly treated to perform complex Fourier
analysis of each single component. Experiments are all performed
in a water tank 40 × 40 cm by size, with water depth equal to
h = 10 mm. Typical results of a line scanning of the water surface
along the transducer axis are given in Fig. 2 for the fundamental,
(a), and its second harmonic, (b), wave component at excitation
frequency f1 = 14 Hz. The fundamental wave profile evidently
proves the attenuation of the wave while the second harmonic
feels the modulation due to the phase lag at each x position
described above between the generated wave and the locally
generated one. A best fit is subsequently produced between the
waveforms from the experiment and the model.

It should be pointed here that the dispersive profile would
not be the same, would have the two waves being produced
independently one from the other. That also justifies the appli-
cation of the model even to the generation of harmonic waves
at frequencies different from that of the so-called resonance, in
as much as there is no triadic interaction of the waves, but a
local generation that matches always and at any point the funda-
mental. This is performed by successively varying the dispersion
parameter ∆k = k2 − 2k1, the absorption β (supposedly equal
to 2α) and the coupling coefficient Γ . It should be mentioned
that the first two are quite independent one from the other, since
dispersion is responsible for the modulation periodicity, while
absorption modulates the overall shape of the waveform. They
are then easily best fitted from the waveform shape. The coupling
coefficient Γ , in addition, increases the maximum attained value
of the waveform as far as its amplitude value is concerned, while
its phase is responsible for the phase matching between the
fundamental and the second harmonic waveforms.

As an example, Fig. 3 reports the best fitting result of the sec-
ond harmonic wave shape along propagation direction (Fig. 3a)
and, for evidence sake of the sensitivity to the various parameters,
the same fitting performed when changing the phase γ alone
of the coupling factor Γ from the best fitting case (γ = 2.8 in
Fig. 3a) to a different value (γ = 2.0 in Fig. 3b). A substantial dif-
ference is evident in the phase matching, that makes us confident
of the robustness of the method. A series of measurements and
the relative best fitting curves have been done for water wave
frequencies within the range 7 Hz < f < 60 Hz. The dispersion
curve of water waves is theoretically evaluated through the use
of the expression

ω2
=

(
gk +

τ

ρ
k3
)
tanh kh (6)

and it is plotted as the velocity term v = ω/k versus frequency
in Fig. 4 for the value of the water surface tension τ equal
to 72 × 10−3 N m−1; g is the gravity acceleration and ρ the
water density. With regard to harmonic wave generation, it is
worth to note that at the frequency fres = 9.8 Hz the wave
shares the same phase velocity with its second harmonic f2 =

19.6 Hz (see Fig. 4). This is the situation generally recalled as
the resonance condition [24], where matching of the wave shape
is maintained throughout all the propagating distance, produc-
ing the highest value of the second harmonic, only limited by
attenuation effects [16,17]. Our experimental conditions produce
a well defined one-dimensional wave propagation without two-
dimensional evolution of the wave front such as in Henderson
& Hammack [14]. Taking the product between the wavemaker
amplitude stroke (s) and the wavevector of the fundamental (k1)
as a parameter measuring of the nonlinearity in the generation
process, our experimental conditions are in the range 0.02 ≤

sk1 ≤ 0.15 that is well below the values (sk1 > 0.20) for the
appearance of a wide variety of lengthscales in the water surface
pattern [14]. The absence of other frequencies except f1 and 2f1
is shown in Fig. 5 that reports the frequency content of the wave
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Fig. 3. Best fitting representation (solid dark line) of the second harmonic waveform, for two values of the phase γ of the coupling coefficient Γ : γ = 2.8 (a) and
γ = 2.0 (b), in the case of the fundamental driving frequency value equal to 14 Hz. The measured waveform is represented in red light line . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Dispersion curve for water surface waves (blue solid line) for h = 10 mm water depth. The curve is also represented in the inset on an enlarged frequency
scale, together with the dispersion curve for long wavelengths (gravity waves — red dashed line), and short wavelengths (capillary waves — green dashed line). The
dashed black circle localizes the region of the dispersion curve shown in the foreground: fres = 9.8 Hz, f2 = 19.6 Hz . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

elevation taken along the transducer axis and off-axis for different
excitation frequencies f1.

Evidence of the resonance effect is given in Fig. 6, where the
mismatching effect is reported as the ratio n = k2/(k2 − 2k1)
between second harmonic wavenumber and the wavenumber
mismatching; experimental values are reported (closed circle)
together with those from the fitting model (open circle). Contin-
uous line represents the function v(f1)/[v(f1) − v(f2)], as it can
be obtained from the analytical expression given by Eq. (6). The
overall correct fitting between the series of data enforces the
confidence in the model adopted, that may be well set into use for
further development of nonlinear phenomenology of water sur-
face waves. It has to be noted that resonance in dispersive wave
propagation can only be attained in case that the velocity curve
vs. frequency presents a stationary point with zero derivative and
that is possible in surface water waves because of the converging
effect of capillarity and gravity. For sake of evidence the inset in
Fig. 4 reports the wave velocity curve in the hypothetical case
that only one of the effects be present separately, corresponding
to the extreme cases of low and high frequency waves.

Monotonic dependence of dispersion curve vs. frequency can-
not produce resonance conditions, as they are truly possible in
our case. Additional evidence of the resonance condition is given
in Fig. 7, where the distance from the oscillating plate where
the maximum second harmonic wave amplitude is attained is
reported vs. second harmonic wave frequency. At the resonance
condition frequency (f2 = 19.6 Hz), the growth of the second
harmonic wave is only limited by attenuation effects and not by
dispersion, thus allowing the amplitude to grow farther away

with respect to other frequencies. It is worth stating that reso-
nance condition is a threshold effect with respect to the water
depth hth, once that a particular liquid (water, in our case) has
been selected. It is given by the relation:

hth =

√
3τ
ρg

(7)

and is easily obtained by setting equal to zero the second deriva-
tive of the velocity curve with respect to the wavenumber. The
value for water waves is hth ≃ 4.7 mm and slightly changes with
the surface tension parameter τ . Once the resonance is available,
the fundamental and second harmonic wave frequencies localize
at the left and the right position with respect to the curve velocity
minimum, represented in Fig. 4. Fig. 8 reports the value of the
frequency for which such a minimum is attained versus water
depth: it can be seen that no minimum is attained below the
threshold value hth ≃ 4.7 mm and that there is an asymptotic
value of the frequency (fres = 9.6 Hz) at increasing depths. It is
worth to focus that the value of hth is equal to the water depth
for which water waves behave almost as dispersionless waves for
a great range of wavelengths [25]. Actually only for water depths
higher than hth the dispersion curve shows a finite minimum
value, so as to satisfy resonance condition. This has been found
experimentally, by decreasing the water depth below 5 cm.

It might be of interest to note that the threshold depends upon
the inertial forces, as well, as it is suggested by the g factor in
Eq. (7). That means that in case of not inertial systems or, more
practically, in case of rotating liquids, resonance conditions may



16 A. Alippi, A. Bettucci and M. Germano / Physica D 396 (2019) 12–17

Fig. 5. Spectral content of the wave elevation for different excitation frequencies, f1 , measured 7.5 cm far from the source transducer along its axis (left panel, blue
curve) and 2.5 cm off-axis (right panel, red curve). (a) f1 = 8.0 Hz, sk1 = 0.02; (b) f1 = 10.0 Hz, sk1 = 0.04; (c) f1 = 19.0 Hz, sk1 = 0.03; (d) f1 = 30.0 Hz, sk1 = 0.1
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

be canceled or, the other way around, enforced. That may par-
ticularly affect subharmonic generation, and chaos development
there hence, where reinforcement of the effect is more easily
achievable in resonance conditions.

4. Conclusion

In the present paper evidence has been given of the resonant
generation of second harmonic water waves in the frequency
range between 7 Hz and 60 Hz. At the resonance condition, the
combined effects of gravity and capillarity – which produces a
minimum in the dispersion curve of water waves – cause the
fundamental and second harmonic waves to share the very same
phase velocity. In such a case, the wave shape matching condition
is maintained between the two waves along the propagation
direction, producing the highest value of the second harmonic
wave amplitude, only limited by attenuation effects. A theoretical
model is presented in which the second harmonic wave has been
assumed to be locally generated, due to the nonlinear behavior
of the propagating medium, by point sources on the wavefront of
the fundamental wave. At any given point along the propagation
direction, the amplitude of the second harmonic wave has been
supposed to be produced by the cumulative contribution from
the second harmonic water waves produced by point sources

Fig. 6. (Color online) Parameter n = k2/(k2 − 2k1) = v1/(v1 − v2) of
the mismatching condition between second harmonic and fundamental wave.
Resonance condition (k2 ≃ 2k1) is attained at frequency f2 = 2fres = 19.6 Hz.
Open circles refer to the fitting model, closed circles to the experimental values
and solid line to the dispersion curve.

up to the considered point. The model provides that resonance
condition is a threshold effect with respect to water depth.
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Fig. 7. (Color online) Distance x from the piston-like source where the maximum
value of the amplitude of the second harmonic surface water wave is attained.
At the resonance condition (f2 = 2fres = 19.6 Hz) second harmonic wave
amplitude is only limited by the attenuation factor, attaining its maximum
value farther away from the source compared to off resonance conditions, where
second harmonic wave amplitude is modulated by a combination of k1 and k2
wavenumbers.

Fig. 8. (Color online) Frequency value of the minimum water surface wave
velocity (blue line, continuous) and of the fundamental resonant wave (red line,
dashed) vs. water tank depth, with threshold value at about 4.7 mm.

Second harmonic resonant generation around 9.8 Hz has been
put in evidence through the mismatching condition between the
wavenumber of the fundamental and second harmonic waves vs.
frequency, as calculated from the model, and the detection of
the maximum distance from the wave source where the second
harmonic attains its maximum value.
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