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Summary 

With the advent of high-throughput technology, Biological research widened its horizons 

in terms of biomarkers and mechanisms of action of several diseases and phenotypes. On 

the other hand, complex diseases, like diabetes, several neurodegenerative pathologies 

and cancer, are still orphan of a cause and then of a cure. One of the possible reasons is 

that these are not strictly monogenic diseases since they result from a global interplay 

between molecular players and master regulators. In this context, where “the whole is 

something over and above its parts and not just the sum of them all” (Aristotle 384-322 

B.C.), is clear that the Cartesian reductionism cannot completely help understand how a 

disease arises and develops. 

Systems Biology comes on the stage here and puts emphasis on whole behavior as being 

basically indivisible. It sustains the Smuts’s holistic theory according to which whole 

systems such as cells, tissues, organisms, and populations were proposed to have unique 

emergent properties and that it was impossible to reassemble the behavior of the whole 

from the properties of the individual components. Hence, new technologies were 

necessary to define and understand the behavior of systems. 

New mathematical models and computational approaches emerged in the past decades. 

Thereby taking inspiration from the theory of graphs. Aspects of nature that could be 

explained by the interaction of individual agents were modeled as networks and their 

properties studied topologically. Speculations on the global structure of biological 

systems were based on two important assertions: systems have a hierarchical structure, 
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and the structure is held together by numerous linkages to construct very complex 

networks. 

In this work, we retrace this path by first reconstructing and studying a complex 

molecular system made by gene and microRNA expression profiles in patients affected 

by colorectal cancer. We show how the study of topological properties of the system 

helped identifying a tiny subnetwork of master-regulator and effectors that, individually, 

were associated to poor survival rates when extremely expressed. Group-effects were not 

captured, until the development of Pyntacle, a cross-platform and open source Python 

suite of high-performance computing algorithms for the discovery of key-players in 

networks. Pyntacle is introduced and presented in this work and then used proficiently in 

two other case studies. The former regards ecological food webs and reports on the 

assessment of their nestedness property, which is an indicator of their global robustness 

and redundancy. The latter is an exploration of the relationships between sex and ageing 

process in Drosophila melanogaster, which developed into two computational steps: 

definition of co-expressing modules of genes and identification of sex independent key-

players molecules in male and female flies. 
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Introduction 

Systems Biology 

The 19th century focused on two important concepts that originate already in the 17th 

century. The former is based on the Cartesian notion of complexity according to which a 

system can be reduced to pieces that can be more easily managed individually and, then, 

reassembled to deduce the whole behavior. The theory of Reductionism was strongly 

influenced by the Newton’s success in mathematically describing planetary movements 

and characterizing gravity, and resisted till the present days, where, for example, plant 

biology grounds on the simple assumption that higher levels in a biological hierarchy can 

easily be understood from the behavior of the lower levels.  

Reaction against this reductionist attitude began among a few biologists (Von 

Bertalanffy, 1950; Smuts and Holst, 1926) in the early part of the 20th century. They 

spoke a new language of life in which complexity, organization, orchestration, holism, 

interconnectedness, and evolution became more dominant terms. Their objections to 

reductionism were twofold. First, it was apparent from simple investigations on the brain 

and animal development that the structure of an entire system actually constrained the 

behavior of the component parts. Reductionist mechanistic investigations would miss the 

vital element of orchestration. Second, many scientists were still bound to the much older 

Aristotelian view of the natural phenomena, according to which “the whole is something 

over and above its parts and not just the sum of them all” (Aristotle 384-322 B.C.). This 

theory dominated science up to the 17th century. It was then abandoned with the 

development of experimental physics and later biology, before coming up again with Jan 
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Smuts (1870–1950), naturalist, philosopher and twice Prime Minister of South Africa. 

He coined the commonly used term holism. Whole systems such as cells, tissues, 

organisms, and populations were proposed to have unique emergent properties 

(Trewavas, 2006) and it was impossible to reassemble the behavior of the whole from the 

properties of the individual components. New technologies were hence required to define 

and understand the biological systems. 

The technological response did not take long to arrive. The new microarray chips and 

high-throughput sequencing platforms were used to massively profile the Human 

Genome in the early 2000s (Venter et al., 2001), and hundreds of thousands of other 

genomes in the coming years by means of increasingly more efficient Next-Generation 

Sequencing (NGS) platforms. These new laboratory techniques allowed to dissect and 

study the individual “components” of cells, tissues, and organisms with high resolution 

and specificity, thereby opening new scientific horizons on all the omics layers (Levy and 

Myers, 2016).  

The term ‘omics’ refers to any technique that enables the massive analysis of entire 

catalogues of molecular reservoirs, such as, for example, the whole genome sequencing 

(genomics), the overall expression levels of the mRNA species (transcriptomics), or the 

quantification of the abundance of mature protein products within a cell (proteomics). 

Probably the most famous example of use of NGS techniques on multi-omics layers is 

The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015). This project, started in 2006 

as a joint initiative by the National Cancer Institute (NCI) and the National Human 

Genome Research Institute (NHGRI) and was the first global attempt to characterize and 

unravel the genomic and molecular landscapes of a few cancers. It later expanded on 
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many other cancer types and included several other institutions that, together, 

collaborated to produce genomic data for more than 11,000 patients across 33 tumor 

types. For each tumor type, information on single nucleotide variations (SNV), copy 

number variations (CNV), gene and microRNA expression profiles, and methylation 

profiles were made available together with clinical, treatment and follow-up information 

for most subjects.  

While the TCGA is a clear example of Reductionism, the consequent Pan-Cancer Atlas, 

which issued from the TCGA, is a notable example of holism. The Pan-Cancer Atlas 

provides, in fact, a uniquely comprehensive, in-depth, and interconnected understanding 

of how, where, and why tumors arise in humans (Hoadley et al., 2018). This is a 

contingent example of how reductionism and holism can be reconciled, although being 

often posed in opposition to each other. There is a need to understand how organisms are 

put together (reductionism) just as in turn there is a need to understand why they are put 

together in the way that they are (systems; holism). Systems Biology is an attempt to 

explain this embedded complexity. 

Although Systems Biology did not stem from Molecular Biology, but originated from the 

convergence of thermodynamics and chemical kinetics (Westerhoff and Palsson, 2004), 

it is widely recognized that the omics revolution widely contributed to its spreading and 

popularity. Being Systems Biology an interdisciplinary field that has its roots in the 

theorization of a mathematical model behind observational data to infer the properties of 

the system, its knowledge base can be applied to a plethora of disciplines, from Ecology 

(Purdy et al., 2010) to drug design (Cho et al., 2006). Its widespread use and the variety 

of its forms make difficult, even for researchers in the field, to give a unanimous 
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definition of Systems Biology. However, besides all point of views, being them 

methodological (Breitling, 2010), technical (Kitano, 2002; Potters, 2010) or 

philosophical (Boogerd et al., 2007), all agree on the fundamental concept that Systems 

Biology is not a mere collection of biological entities and their measurements, but of the 

relationships among them, that, if known, can be used to build a computational model of 

the system of interest. Such structure is generally named network.  

A network, often referred to as graph, is a mathematical system made by nodes, the 

entities that populates the system, and edges, the interactions that occur between nodes. 

The level of abstraction used with real world systems makes networks the model of choice 

in a variety of fields other than Biology, from Information Theory to Social Sciences. For 

example, a network might be made by all the web pages of the World Wide Web 

(WWW), the nodes being pages and the edges being hyperlinks among them. A kind of 

network like this is used by the Google search engine to traverse all web pages of the 

WWW and to rank and identify the ones that are important in terms of the number of 

hyperlinks that  points to them (Page et al., 1998). Recently, studies on the dynamics of 

social networks became popular because they attempted to explain complex social events 

and to capture the spreading of information across communities of people united by 

common beliefs. These communities, known as tribes or echo chambers (Del Vicario et 

al., 2016) spread news about their topics of interest much faster than people who do not 

belong to them can do, and often reinforce their convictions, turning people with 

moderate beliefs into one with more extreme views on the subject, a phenomenon often 

called polarization (Del Vicario et al., 2017).  
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Nowadays, networks are used ubiquitously in Systems Biology. They mainly differ for 

assortment and completeness of information. In fact, most biological networks focus on 

and depict only a portion of a natural phenomenon. This is the main reason why several 

kinds of biological networks exist: protein–protein interaction (PPI) networks, gene 

regulatory networks (DNA–protein interaction networks), signaling networks, gene co-

expression networks (transcript–transcript association networks), metabolic networks, 

neuronal networks, food webs, between-species interaction networks and within-species 

interaction networks. The p53 transcription factor of Homo sapiens is an example of PPI 

network (Figure 1A) that particularly focuses only on the proteins that physically interact 

with the human p53 transcription factor. All these kinds of networks may also be 

composed by heterogeneous nodes, namely by nodes representing different kinds of 

molecules (e.g., enzymes, genes, miRNAs). Signaling networks, also known as pathways, 

are notoriously heterogeneous networks, since they represent not only the different types 

of interactions among protein products, but the whole cellular signaling cascades and 

their actors, which enable them to function. The p53 pathway (available from the KEGG 

database (Kanehisa and Goto, 2000), Figure 1B) adds to its PPI interaction network 

available from the STRING web service (Szklarczyk et al., 2015) information on the 

nature of the interactions among protein products, feedbacks loops of activation and 

inhibition, types of molecules represented by nodes (i.e., genes, enzymes, substrates) and 

on the processes that are activated downstream.  

Irrespective of the inner semantics of networks, Systems Biology developed a big area of 

research aimed at characterizing the architectural structure of networks, irrespective of 

whether they were molecular or social. Several evidences support indeed the existence of 

a global hierarchy and, then, that the network organization is not the fruit of chance, but 
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of the emergent need to protect important properties of networks, like the robustness, 

which hold when the topology of their nodes and edges is preserved. A system is robust 

when it resists to any kind of interference in the structures of nodes and edges, thus still 

retaining most of its key functions (Csete and Doyle, 2002). The bacterial chemotaxis 

process is a notable example. E. coli has been proven to exhibit strong variations in 

enzymes concentration and time to adapt in response to chemotaxis stimuli (Alon et al., 

1999), still responding precisely to exogenous stimuli. This area of research is named 

Network Biology. 
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Figure 1: A) the interaction network of the TP53 human transcription factor and its closest neighbors as 

reported by the latest version of the STRING database (accessed Sept. 2018). B) the pathway of TP53 as 

reported by KEGG is itself a direct network in which coding genes, protein product and transcription factors 

are linked not only on the base of interactions, but by activation, inhibition, phosphorylation and other 

stimuli.  A pathway is indeed a network, and each link may correspond to a class of edges that compose it. 

 

Network Biology  

Understanding the topology of networks is the main purpose of Network Biology. 

Mathematically speaking, networks are actually graphs, which collect points and lines 

connecting some (possibly all) nodes. The points of a graph are most commonly known 

as graph vertices, but they may also be called “nodes” or “points”. Similarly, the lines are 

most commonly known as edges, even if they may also be called “arcs” or “lines”. The 

vertices belonging to an edge are called the ends or end vertices of the edge. The edges 

may either connect one vertex to another or a vertex to itself. In the second case, they 

form self-loops. It is then possible that a vertex is not connected with any other vertex. In 

this case it is called isolated node.  

Different kinds of graphs exist. When the orientation of the edges matters, the graph is 

called directed. In the opposite case, it is called undirected. One important class of graphs 

consists of those that do not have self-loops or parallel edges. Such graphs are called 

simple. In a simple graph, no two edges share the same ends, then the specification of 

two ends is sufficient to identify an edge. A simple graph G can be defined as the 

ensemble of (V, E), where V is a set of vertices and E is a set of edges. Hence, E = {(i, j) 
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| i, j ∈ V} and (i, j) is equals to (j, i) in undirected graphs. If two vertices are adjacent to 

each other, namely they are linked by one edge, they are called neighbors. When instead 

multiple edges join the same pair of nodes, the graph is said multigraph. In such case, 

each connection indicates a different type of information. This is an important feature 

since there are networks such as PPI networks in which two proteins might be 

evolutionary related, co-occur in the literature or co-express in some experiments, 

resulting by this way in three different connections, each one with a different meaning 

and representing a different layer of information. If a graph contains multiple edges and 

self-loops it is called pseudograph.  

Molecular pathways are notable examples of directed graphs (Figure 1B) since their 

edges describe the subjects and the objects of the interactions. Undirected graphs were 

extensively used to represent many other natural systems, from ecological, to population 

dynamics and molecular systems. In particular, PPI networks are actually undirected 

graphs (or multigraphs), since edges often represent a kind of relationship of which both 

the connected nodes are equally subjects and objects. Irrespective of the direction of 

edges, a graph can be weighted or unweighted, depending on the availability of numerical 

attributes of edges (Figure 2). 

A graph may be comprised of several connected components and isolates. In this case, 

the graph is a supergraph made by two or more subgraphs. The bigger subgraph is the 

largest connected component.  

As the only relevant factor that shapes a Graph is represented by the links among nodes, 

the aesthetics of the graph does not matter as long as the links are not rewired. For 

example, it does not matter whether the edges drawn are straight or curved. Edges 
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(sometimes referred to as links) can connect nodes in any way possible or curved, or 

whether one node is to the left or right of another.   

 

 

Figure 2: Different types of graphs. (Left) undirected graphs, where no orientation of edges is specified; 

(center) directed graphs, where edges have directions; (right) weighted graphs, where links are 

accompanied by numerical values indicating a sort of strength factor. 
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Network inference methods 

Several methods exist to build biological networks. These are mainly divided into two 

classes according to whether they take information from literature or public databases 

(literature-based methods) or straight from experimental data (experimental-based 

methods). 

The former class makes use of highly curated sources of molecular interactions, like for 

example STRING and BioGRID. STRING is a database of known and predicted protein-

protein interactions that contains 9.643.763 proteins from 2.031 organisms (Szklarczyk 

et al., 2015). The interactions include direct (physical) and indirect (functional) 

associations; they stem from computational prediction, from knowledge transfer between 

organisms, and from interactions aggregated from other (primary) databases. Interactions 

are derived from five main sources: genomic context predictions; high-throughput lab 

experiments, (conserved) co-expression, automated text-mining and previous knowledge 

in databases. Similarly, the Biological General Repository for Interaction Datasets 

(BioGRID) is a public database that archives genetic and protein interaction data from 

model organisms and humans (Chatr-aryamontri et al., 2017). It currently holds over 

1,400,000 interactions curated from both high-throughput datasets and individual focused 

studies, as derived from over 57,000 publications in the primary literature. Current 

curation drives are focused on particular areas of biology to enable insights into 

conserved networks and pathways that are relevant to human health. A known tool using 

these and other similar databases is, for example, GeneMANIA (Mostafavi et al., 2008). 

It finds other genes that are related to a set of input genes, using a very large set of 

functional association data. Association data include protein and genetic interactions, 

https://wiki.thebiogrid.org/doku.php/statistics
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pathways, co-expression, co-localization and protein domain similarity. The resulting 

network will be a multigraph made by as many nodes as the input genes plus the number 

of found interacting genes, and as many edges as the total number of literature hits. We 

still miss, however, detailed database that store interaction among non-coding genes, or 

non-coding-coding relationships, such as the relationships among small non-coding 

RNAs, such as miRNA and their target genes. In this regulatory network, links are drawn 

if a miRNA has a direct effect on a gene ectopic expression. Although these networks 

proved useful  in the characterization of the regulatory network of several diseases (Jiang 

et al., 2012; Yang et al., 2017; Ye et al., 2018), and some tools were developed to use 

network analysis techniques to provide insights on the role of non-coding-RNAs  and 

their coding counterparts (da Silveira et al., 2018), there is plenty of room for 

improvement. 

 

The latter class is made by slightly more complex methods that infer interactions from 

experimental data. Gene expression data are used to deduce gene co-expression. Co-

expressing genes are linked by edges in a network which, in turn, are eventually weighted 

by the statistics used to assess the co-expression. Researchers trained in statistics often 

measure gene co-expression by the correlation coefficient. Computer scientists, trained 

in information theory, tend to use a mutual information (MI) based measure. Thus far, 

the majority of published articles use the correlation coefficient as co-expression measure 

(Zhang and Horvath, 2005; Zhou et al., 2002), but hundreds of articles have used the 

mutual information (MI) measure with notable results, showing that the contribution of 
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these two means to assess gene-to-gene relationships are equivalent (Daub et al., 2004; 

Priness et al., 2007; Song et al., 2012). Several articles have used simulations and real 

data to compare the two co-expression measures when clustering gene expression data. 

Allen et al. have found that correlation based network inference method WGCNA 

(Langfelder and Horvath, 2008) and mutual information based method ARACNE 

(Margolin et al., 2006) both perform well in constructing global network structure (Allen 

et al., 2012). Steuer et al. show that mutual information and the Pearson correlation have 

an almost one-to-one correspondence when measuring gene pairwise relationships within 

their investigated data set, justifying the application of Pearson correlation as a measure 

of similarity for gene-expression measurements (Steuer et al., 2002). In simulations, no 

evidence could be found that mutual information performs better than correlation for 

constructing co-expression networks (Lindlöf and Lubovac, 2005). However, MI 

continues to be used in recent publications. Some authors have argued that MI is more 

robust than Pearson correlation in terms of distinguishing various clustering solutions  

(Priness et al., 2007). On the other hand, although MI is well defined for discrete or 

categorical variables, it is non-trivial to estimate the mutual information between 

quantitative variables, and corresponding permutation tests can be computationally 

intensive. In contrast, the correlation coefficient and other model-based association 

measures are ideally suited for relating quantitative variables. At last, it must be noted 

that the majority of network inference methods was built using microarray as main source 

of expression and questions. Co-expression analysis based on RNA-Seq data is still in its 

primes and thus many of these techniques are forwarded from one experimental setting 
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to another. This may lead to incorrect results, as the two techniques are overlapping, but 

have different source of noise that, if not addressed carefully, may undermine the 

connections in a co-expression of MI network.  Appropriate evaluations of the factors 

that may affect functional connectivity and topology in co-expression network is thus a 

main concern within the network biology community. For this purpose, a detailed 

evaluation of all the methods used in co-expression analysis was performed and revealed 

that the simpler the measure of distance, the highest is the reliability of co-expression 

network (Ballouz et al., 2015). On this regard, the size and the depth of the samples are 

more important than the normalizing procedures each method apply for noise reduction. 
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Results 

Aim of the Work 

The use of network models in Systems Biology is not just a nuance within the broad 

landscape of bioinformatics approaches, but it is the backbone, which they rely on, to 

uncover system-wide relationships among molecules. Network-based methods exploit 

solid mathematical tools to identify molecules that play critical roles in 

pathophysiological cellular processes, to unravel the complexity of natural systems, their 

structure, i,e. their topology, and to reveal the presence and the interplay of subgroups of 

nodes (communities). This work aims at presenting and using a broad set of graph-based 

algorithms and tools in several contexts, proving the usefulness of biological network 

analysis as a framework on which to rephrase biological questions.  

First, we reviewed and used the standard methods used in the Network Biology 

community to describe the architecture of the colorectal cancer molecular network 

formed by coding and non-coding genes. We studied and assessed the role of some small 

non-coding RNAs, the microRNAs, on the protein-protein interaction network made by 

the deregulated genes in colorectal cancer and found the communities of miRNAs that, 

together, contributed to the carcinogenesis. Moreover, by studying the indirect and long-

range relationships among molecules, we assessed the role of miR-145 as a master 

regulator of the population of all miRNAs. This showed that the miRNAs network is 

hierarchically organized. 

Second, we applied the same topological indices to a set of ecological networks plus some 

new metrics that accounted not only for the centrality of individual molecules but also 
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for that of groups of nodes. Group centrality metrics were developed in other scientific 

contexts and were extensively used in Ecology to search and find the species that, 

together, are responsible for an ecosystem development and maintenance. These group 

centrality metrics are almost unknown in the Network Ecology community. In fact, the 

existing software tools in this area of research still lack the ability to determine the team-

play effects in networks. 

For this reason, using Python dynamic programming, we developed Pyntacle, a swiss 

knife tool for network analysis that exploits many of the current standard analysis 

methods to find key-players. Key-players are groups of nodes that appear to be 

determinant for the fragmentation or the reachability of the network boundaries. We 

compared Pyntacle to the only other existing software tool that performs group centrality 

analysis and found that it outperforms the competitor R package by several orders of 

magnitude, with a gap in performance that increases with the network sizes.  

We thus tested Pyntacle with real ecological networks. In particular, we have 

characterized the topological structures of 27 food-webs, belonging to terrestrial 

ecosystems, and identified a nested structure within them. Then, we resorted to Molecular 

Biology and used Pyntacle to identify critical groups of molecules that, together, may 

contribute to the sex-specific aging phenotype in Drosophila melanogaster. 
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Network analysis reveals RNA-RNA crosstalk and highlights the role of 
microRNA-societies in human colorectal cancer 

1. Background 

Network analysis has particularly impacted on Biology in the understanding of the 

mechanisms that underlie the onset and progression of cancer whenever it dealt with high-

throughput data. Cancer is a multifaceted disease that causes a dramatic reshaping of the 

cellular molecular processes. This phenomenon is specific for each cancer type and 

individuals, although molecular hallmarks can be largely found in the literature (Fouad 

and Aanei, 2017; Hanahan and Weinberg, 2000). The reason why many cancer subtypes 

exhibit a low survival, coupled with the difficulty of treating two tumors of the very same 

nature can be ascribed, at least in part, in its irregular cellular heterogeneity, which makes 

diverse subpopulations of tumor cells in every individual with distinct characters 

(molecular signatures). The obvious consequence is that it is quite complicated to trace-

back the time and the causative event (the point of origin or the cellular Big Bang 

(Sottoriva et al., 2015)) which the tumor originated from. What makes things worse is 

that cellular heterogeneity impacts significantly also in the efficacy of the response to 

therapies (Fisher et al., 2014), since cells may be less susceptible to some drugs than 

others (Dagogo-Jack and Shaw, 2017). These points have encouraged the development 

of a new area of research: precision medicine (Drew, 2016; Hodson, 2016). The 

underlying concept of precision medicine is that health care is individually tailored on 

the basis of a person's genes, lifestyle and environment. Although this concept was not 

new, advances in genetics, the growing availability of health data and progress in the 
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omics, is now presenting an opportunity to make precise personalized patient care a 

clinical reality.  

Network Biology is a keystone of personalized medicine techniques, since it bridges all 

the omics and their data and helps to determine the so-called “master regulators” (Kin 

Chan, 2013). Master regulators are pivotal molecules, which are not necessarily tightly 

connected with other molecules, but which plays critical roles in sustaining cancer and 

its deadly mechanisms. Since they are supposed to be the closest molecules to the point 

of origin of a tumor, several attempts were made to discover them in different cancers. 

Colorectal cancer (CRC), also known as bowel cancer and colon cancer, is the 

development of cancer from the colon or rectum (parts of the large intestine). CRC that 

are confined within the wall of the colon may be curable with surgery, while cancer that 

has spread widely are usually not curable, with management being directed towards 

improving quality of life and symptoms.  According to the 2014 World Cancer Report, 

the five-year survival rate in the United States is around 65%. The individual likelihood 

of survival depends on how advanced the cancer is, whether or not all the cancer can be 

removed with surgery and the person's overall health. Globally, colorectal cancer is the 

third most common type of cancer, making up about 10% of all cases. In 2012, there were 

1.4 million new cases and 694,000 deaths from the disease. It is more common in 

developed countries, where more than 65% of cases are found (Stewart and Wild, 2014). 

It is less common in women than men. 

In the context of CRC, we studied the transcriptomic regulation of messenger RNA 

mediated by micro-RNAs (miRNAs), a class of a small non-coding RNA molecules that 

are involved in the post-transcriptional regulation of RNA transcripts, by base-pairing to 
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partially complementary sites on the target messenger RNAs (mRNAs), usually in the 3-

untranslated region (3 UTR). Each miRNA has the potential to target many genes, with 

many miRNAs able to synergistically regulate the same mRNA transcript (Huntzinger 

and Izaurralde, 2011; Kim and Nam, 2006). The alterations in the population of non-

coding transcripts may play important roles in cancer pathogenesis. Numerous miRNA 

encoding genes are frequently located at fragile genomic sites or within regions 

frequently deleted or amplified in neoplastic diseases (Calin et al., 2004). The 

accumulation of alteration in the miRNA population, with processes such as deletion, 

mutation or methylation of miRNA-encoding genes may cause deregulated expression of 

critical miRNAs, which can then act as oncomiRs or tumor suppressors (Calore et al., 

2013).  

In colorectal cancer,  the main hallmark of carcinogenesis is the accumulation of genetic 

alterations in oncogenes and tumor suppressor genes, which control crucial cellular 

processes such as proliferation, differentiation and apoptosis in the colorectal epithelium 

(Markowitz and Bertagnolli, 2009). The first group of genetic alterations includes 

inducers of chromosomal instability, which is driven by amplifications/deletions of whole 

or subsections of chromosomes that can underlie both the progressive inactivation of 

tumor suppressor genes, such as adenomatous polyposis coli (APC), deleted in colorectal 

cancer SMAD4 and TP53, and the activation of oncogenes such as KRAS (Cunningham 

et al., 2010; Tarafa et al., 2000). The second group of genetic alterations induces 

microsatellite instability (MSI), which is associated with mutations in genes containing 

simple repeats, such as those encoding the epidermal growth factor receptor (EGFR), the 

apoptotic factor BCL2-associated X protein (BAX) and the transforming growth factor β 

receptor II (TGFBR2). MSI results in the inactivation of genes belonging to the DNA 
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mismatch repair family (Jensen et al., 2009; Wright et al., 2005). These two genetic 

alterations rarely occur together in the same  colorectal cancer specimen (Gervaz et al., 

2002)and have a different impact on survival, with MSI showing an improved prognosis 

compared to chromosomal instability (Boland and Goel, 2010a; Saridaki et al., 2014). 

The third group of genetic alterations includes epigenetic alterations, which together 

make the so said CpG island methylator phenotype (CIMP). CIMP is characterized by 

epigenetic instability and by high methylation levels of the promoters of some tumor 

suppressor genes, such as the Cyclin-Dependent Kinase Inhibitor 2A (CDKN2/p16), 

insulin-like growth factor 2 (IGF2) and MLH1 (Pritchard and Grady, 2011).  

All these events impact several key-signalling pathways that are commonly deregulated 

in carcinogenesis, including WNT-β-catenin, EGFR, mitogen-activated protein 

kinase(MAPK), TGF- β and phosphatidylinositol 3-kinase (PI3K). Alterations in the 

WNT-β-catenin pathway are responsible for many epithelial tumors, being involved in 

approximately 30–70% of human sporadic colorectal cancers (CRCs). Mutations in the 

APC gene, affecting the carboxy-terminal region, are implicated in β-Catenin and axin 

binding, leading to the deregulated nuclear translocation of the β-catenin transcription 

factor from the cytoplasm (Polakis, 2000). This induces the genesis of a tumor phenotype 

by enhancing the transcription of several oncogenes and target genes, such as MYC and 

CCND1 (Kobayashi et al., 2000). Sporadic CRCs, negative for APC or CTNNB1 gene 

mutations, are characterized by activation of the WNT signaling pathway via APC 

inhibition by miR-135, which, in turn, is upregulated in CRC, or by direct modulation of 

β-catenin by miR-200a, which alternatively interacts with the 3’ UTR of CTNNB1 or 

drives the down-regulation of the ZEB1/2 gene (Huang et al., 2010). EGFR is an 

important player in colorectal carcinogenesis, being a modulator of critical cellular 
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processes such as proliferation, adhesion and migration. The EGFR intracellular signal 

transduction pathways include components of the MAPK, PI3K, signal transducer and 

activator of transcription, protein kinase C and phospholipase D pathways. In particular, 

the MAPK pathway modulates numerous key kinases, which, in turn, control cell growth, 

differentiation, proliferation, apoptosis and migration through a series of intermediate 

proteins, including RAF, MEK and RAS (Dhillon et al., 2007). The latter is a critical gene 

since it can unleash its signalling cascade either by PI3K, thereby inhibiting apoptosis, or 

by RAF, thereby stimulating cellular proliferation. The anomalous activation of the 

receptor tyrosine kinases or the gain-of-function mutations occurring in the RAS or RAF 

genes are reported to cause the deregulation of the RAS-RAF-MEK-ERK-MAPK axis, 

which, in turn, is a frequent therapeutic target (Phipps et al., 2013; Roberts and Der, 2007; 

Santarpia et al., 2012). Interestingly, the down-regulation of miR143 was shown to 

contribute to ERK/MAPK activation, as well as to KRAS and ERK5 repression (Akao et 

al., 2007).  

The onset and progression of colorectal cancer are linked to a combination of causal 

perturbations occurring at any omics layer (Muzny et al., 2012) and relevant studies have 

brought out the anomalous interactions between gene transcripts and miRNA molecules 

as crucial causes of carcinogenesis (Caldas and Brenton, 2005; Hecker et al., 2013; 

Mezlini et al., 2013; Piepoli et al., 2012). Bearing these findings, we sought to define the 

mRNA–miRNA cross-talks in search of mutual and combined effects on the colorectal 

carcinogenesis process by means of computational and analytical methods from Systems 

Biology, in particular using network analysis techniques, to inspect both transcriptome 

layers and their interactions, and to look for socially central (groups of) molecules. We 
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addressed this issue by a multifaceted analysis strategy, encompassing a series of 

functional enrichment, topological and clustering analyses, which were conducted on 

genome-wide mRNA and miRNA expression profiles of matched pairs of tumor and 

adjacent non-tumorous mucosa samples obtained from CRC patients. In-silico analyses 

highlighted the prominent topological position of miRNA-145 and its mechanistic role in 

maintaining cohesiveness and functional cooperation among groups of key miRNAs and 

genes. Given the critical tumor suppressive role of miR145, its action, combined with 

several other miRs, was deemed responsible for a coordinated program of patterned gene 

regulation, whose master regulator was miR-145. The discovery of its partners and of the 

unexplored effects of their interactions in colorectal carcinogenesis was, therefore, a 

further objective of this work. This was achieved by first identifying in- silico the co-

expressing partners of miR-145, and then, by perturbing them in vitro in four CRC cell 

lines. We verified that the ectopic expression of miR-145 impacts the whole miRNA 

network and that, downstream, this perturbs the MAPK signalling cascade. 
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2. Inferring Gene-Regulatory networks from enriched biological processes 

Differential expression analysis of CRC stage IV tumor tissues at versus their matched 

adjacent non-tumorous tissues defined a total of 4.441 genes significantly deregulated 

between matched tumor and (2.549 up-regulated and 1.892 down-regulated in the CRC 

specimens), of which 1.645 and 878, respectively, maintained the same expression 

direction in at least five experiments deposited in the EBI Gene Expression ATLAS 

(Kapushesky et al., 2012). To confirm these findings, we verified that the CRC pathway 

(hsa05210 KEGG pathway, in Figure 3) was significantly impacted. Twenty-eight out of 

45 genes of this pathway were deregulated in a statistically significant way (p =1.32e-10). 

These genes are known to functionally participate in four macro biological processes 

(BPs): proliferation, (anti)-apoptosis, growth and cell cycle control. 

This list of genes was used to perform the gene enrichment functional analysis. 2091 

genes, 83% of the whole gene pool was found to be significantly associated to these BPs 

with respect to the 9089 genes, that accounted for 52.1% of the background set of genes, 

known to carry out these processes (p < 0.0001). By confronting the log-Odds ratios, the 

classes of BPs were classified as cancer-favourable (adjusted p =0.016) and cancer-

protection. This classification was done on their positive or negative association to 

colorectal carcinogenesis and in general to cancer-related processes (adjusted p < 0.001). 

Specifically, cancer-favourable processes included 48 genes hampering apoptosis, 23 

genes promoting cell cycle progression, 92 genes increasing proliferation and 9 genes 

promoting cell growth. Cancer-protection genes encompassed 106 apoptosis-favourable 

genes, 53 genes promoting cell cycle control, 95 genes hindering proliferation and 24  
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Figure 3: The landscape of the genes involved in CRC onset. Up-regulated genes (in red) and down-

regulated genes (in blue) of the CRC pathway (KEGG id: hsa05210). TFC7 and LEF1 symbols are 

encompassed in TCF/LEF, while PI3K includes PIK3R2, PIK3CG PIK3C. 

genes decreasing cell growth. The remaining genes fell in the cancer-related set of BPs, 

158 of which were apoptosis-associated, 105 involved in cell cycle regulation, 199 were 

proliferation modulators and 42 were related to cell growth. 391 genes were selected on 

the bases of these findings and were submitted to the GeneMania (Mostafavi et al., 2008) 

Cytoscape plugin, to reconstruct the interaction map among these genes. Genes were 

connected among them if at least one verified experimental interaction was stored in the 
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GeneMania database. As GeneMania also stores information from other sources, the 

resulting link in the interaction network were enriched by means of relationships of co-

expression (52.65% of the total number of relationships), co-localization (14.85%), 

physical interactions (13.52%), shared pathways (9.06%), shared predicted interactions 

(8.44%), shared genetic interactions (1.23%) and shared protein domains (0.26%). The 

network is hence a multigraph since it allows more than one edge connecting two nodes. 

As the information in this multigraph was redundant, and in order to process the network 

for further analysis, the network was reduced to a simple graph, as described in the 

Materials and Methods chapter, section 1.5. 

The resulting network is made of one connected component with relative complexity. 

The global properties of this component, when measured, yielded clustering coefficient 

= 0.257, diameter = 4 and network density = 0.095. Network density ranges from 0 to 1, 

and measures how densely a network is populated with edges (so the ratio between the 

total number of edges in a network and the number of nodes in the network). A network 

with no edges and solely isolated nodes has a density equal to 0.  This network was 

divided using the clusterONE algorithm (Nepusz et al., 2012), with default parameters.  

The tool performs modular decomposition searching for communities (i.e., groups of 

nodes) in the network, identifying 11 distinct communities in the overall interaction 

network (Figure 4). This procedure identified 11 modules, classified and divided into two 

cancer-protection and nine cancer-favourable modules, according to the BPs of the genes 

that populate them, and as to whether their genes are up-regulated or down-regulated. 

Among the most central genes, also known as intramodular hubs TP53 (module 6), MYC 

(module 10), CDK4 (module 2), CTNNB1 (module 4), CHEK1 and CDK2 (module 1) 

were found to be the top six genes, in terms of centrality measures, for at least three out 
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of the four centrality metrics (degree, closeness, betweenness, clustering coefficient), 

hence confirming their central role in the network. Intramodular hubs link to several 

proteins that are highly self-connected and that are, therefore, more likely to perform any 

biological task in cooperation (Liang and Li, 2007). Such hubs are almost never 

pleiotropic, meaning they do not take part in other functions other than the ones reported 

for each one. 

3. Functional modules in literature-based and experimental miRNA networks 

To uncover the miRNAs regulatory network for the genes responsible for the CRC 

development for the transcriptional regulation of genes responsible for the CRC, the 391 

genes were screened against the Human Molecular Disease Database (Li et al., 2014) and 

only those known to be associated to CRC were selected. The miRNAs that directly target 

these genes were retrieved through to the miRSystem online resource (Lu et al., 2012). 

The miRNA-target list is reported in Table 1. Selected miRNAs are given in input to the 

Ingenuity Pathway Analysis Software (IPA) to recreate a literature-based network for 19 

of these miRNAs, altogether with the genes controlled by them (Figure 5A). Links were 

drawn if the physical interaction between miRNAs and genes were found to be 

experimentally validated or there was concrete evidence of the participation of the same 

cancer-related biological functions.  
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Figure 4: Modules identified by network clustering using the ClusterONE algorithm. Nodes are genes that 

are connected by undirect relationships (edges). An edge between a pair of genes when at least one 

experimental evidence of interaction is present between the genes. 
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Gene Module 
Expression level in 

CRC 
Targeting miRNAs 

BCL2 
 

down miR-17, miR-20a, miR-18a 

CCNA2 module 1 up miR-145 

CCND1 module 10 up miR-17, miR-195, miR-20a, miR-19a, 

miR-99a 

CDC25A 
 

up miR-21 

CDK6 
 

up miR-185, miR-195, miR-21, miR-29a 

CXCL12 module 5 down miR-23a-3p 

E2F1 module 1 up miR-17, miR-20a, miR-21, miR-93, 

miR-18a 

E2F3 module 1 up miR-195 

FAS module 7 down miR-21 

FOXO1 
 

down miR-183, miR-27a 

HEXIM1 
 

down miR-17 

HSPA8 module 3 up miR-106a, miR-17, miR-20a, miR-26b, 

miR-93 

IL6R module 9 down miR-21 

IL8 module 3 up miR-17, miR-20a 

LRP5 module 8 up miR-23a-3p, miR-23b, miR-27a, miR-

375 

KLF4 module 5 down miR-10b 
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KRAS module 4 down miR-143, miR-18a 

MYC module 

10 

up miR-145, miR99a, miR-18a 

NOTCH1 module 4 up miR-23b 

PDCD4 module 7 down miR-21 

PPIF module 3 up miR-21 

RM1 
 

up miR-106a 

RUNX1 module 2 up miR-106a, miR-17, miR-20a, miR-27a, 

miR-18a 

SMC1A module 2 up let-7e 

SPARC module 9 up miR-29a 

VEGFA module 9 up miR-106a, miR-17, miR-20a, miR-19a, 

miR-18a 

Table 1: MiRNAs targeting de-regulated genes n CRC tumor samples when compared to matched-normal 

tissues. Cells with text in bold identify the five genes with the best scores in terms of observed identification 

probability (O) and expected probability (E) ratios. 

  



32 

 

An experimental network was derived from the 41 above-mentioned miRNAs. A miRNA 

was selected to populate this network only if it was differentially expressed between 

tumor and adjacent non-tumorous tissues and significantly correlated with at least a 

miRNA within the network. The sign of correlation was not kept into account, as we 

focused only on miRNA-gene relationships rather than their regulation pattern. Thirty-

nine out of 41 miRNAs resulted to be linked by 148 edges (Figure 5B). The experimental 

network almost included the literature-based network. MiRNAs with no links with other 

miRNAs were discarded. Moreover, the experimental network contained miRNAs not 

present in the literature-based network, such as miR-335.  

The two networks were compared in search of similarity and differences. Edges were 

compared using the assumption that if two miRNAs are connected to the same target 

gene, they are connected the same way. This analysis showed that the two networks 

presented distinct topological features. This may imply that the literature network is 

incomplete and misses unknown functional relationships between miRNAs involved in 

CRC development.  

Topological analysis based on several key centrality metrics such as degree, closeness, 

betweenness clustering coefficient and radiality of the experimental network indicated 

two significant clusters: a triangle made of miR-708, miR-18b and miR-17 and a clique 

made of miR-144, miR-1246, miR-1275 and miR-99a. Both modules were made of nodes 

not present in the literature-based network, except for miR-17. MiR-17 and miR-1246 or 

miR-99a were used as seeding nodes by Cluster ONE for the detection of the modules. 

Among these, miR-708, miR-18a, miR-18b and miR-17, together with miR-92b, miR-

10b and let-7e were the most important miRNAs of the network, from a positional 
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perspective (Table 2). These miRNAs control four of six intramodular hubs, namely 

TP53, MYC, CDK4 and CDK2 which, in this context, can be considered as intermodular 

hubs, as they connect the two modules (as depicted in Figure 6).  This intermodular hubs 

are for the most part pleiotropic and are directly linked to different biological modules, 

interacting with different partners at different moments and/or within different cellular 

compartments. These miRNAs also control the top five genes in terms of O/E scores (see 

Material and Methods, section 1.4 for a detailed explanation of the O/E scoring criterion): 

CCNA2 (module 1), MYC (module 10), LRP5 (module 8), E2F1 (module 1), HSPA8 

(module 3), from the initial list of 391 genes. 
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Figure 5: Literature-based and experimental networks of miRNA interactions. (A) Literature-based 

network: two miRNAs are connected if there is any evidence of physical or (cancer-related) functional 

interactions. (B) Experimental network: it connects any two miRNAs if they are differentially expressed 

between matched pairs of tumor and adjacent, non-tumoral mucosa samples and their expression values 

correlates significantly. Colors represent miRNA clusters. Labels are colored according to the topological 

importance of the miRNA in the network by means of classical centrality metrics: degree, clustering 

coefficient, closeness, betweenness. Edges in red emphasize if the miRNA makes a closed triangle or a 

clique. 
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Figure 6: The heterogeneous network of MiRNAs–mRNAs intermodular hubs. The triangle made of miR-

708, miR-18b, miR-17 and the clique made of miR-144, miR-1246, miR-1275, miR-99 interacts with four 

intermodular hub coding genes: TP53, CDK4 and MYC, while the triangle formed by miR-708, miR-18b, 

miR-17 controls CDK2.  
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ID Degree Betweenness Closeness Radiality Clustering Coefficient rank 

hsa-mir-17 7 0.12114046 0.48611111 0.82380952 0.52380952 4 

hsa-mir-18a 9 0.13434641 0.51470588 0.84285714 0.30555556 4 

hsa-mir-92b 10 0.16535814 0.51470588 0.84285714 0.24444444 4 

hsa-mir-708 14 0.32231693 0.55555556 0.86666667 0.14285714 4 

hsa-mir-106a 8 0.0688362 0.49295775 0.82857143 0.32142857 3 

hsa-mir-18b 10 0.10160731 0.47945205 0.81904762 0.31111111 3 

hsa-mir-10b 8 0.17204106 0.44444444 0.75 0.28571429 2 

hsa-mir-31 2 0 0.38043478 0.72857143 1 1 

hsa-mir-149 2 0 0.31818182 0.64285714 1 1 

hsa-mir-19a 3 2.40E-01 0.37634409 0.72380952 0.66666667 1 

hsa-mir-567 2 0 0.36082474 0.7047619 1 1 

hsa-mir-144 3 0 0.33333333 0.66666667 1 1 

hsa-mir-21 4 0.00640056 0.41666667 0.76666667 0.5 1 

hsa-mir-1280 3 0.15368357 0.45283019 0.75833333 0.33333333 1 

hsa-mir-27a 5 0.00584634 0.40697674 0.75714286 0.4 1 

hsa-mir-20a 5 0.01515806 0.43209877 0.78095238 0.4 1 

hsa-mir-182 8 0.09012205 0.42682927 0.77619048 0.28571429 1 

hsa-mir-1246 5 0.05109044 0.41666667 0.76666667 0.4 1 

hsa-mir-1275 7 0.03921769 0.38888889 0.73809524 0.28571429 1 

hsa-mir-99a 8 0.0829972 0.41176471 0.76190476 0.17857143 1 

hsa-mir-23b 2 0.00487995 0.39772727 0.74761905 0 0 

hsa-mir-26b 2 0.0096732 0.36842105 0.71428571 0 0 

hsa-mir-375 2 0.05714286 0.33653846 0.67142857 0 0 

hsa-mir-422a 2 0.01171669 0.30434783 0.61904762 0 0 

hsa-mir-497 3 0.00642857 0.32407407 0.65238095 0 0 

hsa-let-7e 3 0.01291116 0.41176471 0.76190476 0.33333333 0 

hsa-mir-345 3 0.0507403 0.39325843 0.74285714 0 0 
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hsa-mir-23a 5 0.01582166 0.40697674 0.75714286 0.3 0 

hsa-mir-143 3 0.07103641 0.32407407 0.65238095 0 0 

hsa-mir-150 5 0.049175 0.43209877 0.78095238 0 0 

hsa-mir-195 5 0.06793451 0.42682927 0.77619048 0.2 0 

hsa-mir-93 4 0.03502268 0.43209877 0.78095238 0 0 

hsa-mir-145 4 0.12216687 0.4375 0.78571429 0 0 

hsa-mir-133b 1 0 0.36082474 0.7047619 0 0 

hsa-mir-215 1 0 0.3271028 0.65714286 0 0 

hsa-mir-183 1 0 0.30172414 0.61428571 0 0 

hsa-mir-29a 1 0 0.33802817 0.60833333 0 0 

hsa-mir-224 1 0 0.25362319 0.50952381 0 0 

hsa-mir-185 1 0 0.24647887 0.49047619 0 0 

Table 2: Topological centralities for the miRNAs targeting CRC genes in the co-expression and interaction 

network. Yellow labeled miRNAs identify the closed triangles and the clique identified in the network. 
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4. The leading topological position of miRNA-145 is fundamental for the upholding 

of cohesiveness and functional cooperation among modules 

Upstream analysis of intra/intermodular hub genes revealed a noticeable mechanistic and 

topological position of miR-145 (z-score = 2.35), miR-9 (z-score 2.11) and miR-137 (z-

score = 2.07). Among these, only mir-145 was found to be differentially expressed in 

CRC samples. 

The hypothesis that miR-145 could be identified as a master regulator of the CRC 

network was sustained both statistically, by the experimental network and functionally 

by the literature-based network. MiR-145 was strongly correlated with the miRNAs in 

Figure 5B. To verify the importance of miR-145 in the upstream regulation of these 

miRNAs, the expression profiling was compared in the TCGA database by downloading 

CRC profile expressions. This analysis not only confirmed that the expression of miR-

145 correlates with that of miR-17, miR-23b and miR-99a (one of the seeding nodes) but 

also that these were likely to be causally dependent on miR-145 (P < 0.0001). Besides, 

let-7e and miR-92b positively correlate with miR-145 (Figures 7A and 7C) and high 

expression values of let-7e and miR-92b resulted in moderate risk factors, if coupled with 

high expression values of miR-145 (Figures 7B and 7D). Similarly, low profiles of let-7e 

and miR-92b conferred a worse prognosis, if coupled with low expression values of miR-

145. High values of miR-10b and miR-143, instead, were risk factors if concomitant with 

low values of miR-145 (data not shown). 
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More generally, miR-145 resulted to be directly connected with several components of 

important clusters of miRNAs, which in turn targeted relevant intra/inter-modular hub 

genes, as reported in Supplementary Table S3. Topologically, miR-145 was linked 

through miR-93 to the triangle made of miR-708, miR-18b and miR-17 and to the clique 

made of miR-144, miR-1246, miR-1275 and miR-99a, thereby controlling, even 

indirectly, four intramodular hubs, specifically TP53, MYC, CDK4 and CDK2. 

We will not discuss the importance here of miR-145 deregulation in colorectal 

carcinogenesis, well aware that molecular competition represents a universal and frequent 

form of gene regulation that operates also in RNA regulatory networks. Instead, we will 

focus here on the short-range interactions of miR-145 with the aim to highlight its apical 

regulative role on key genes and biological functions related to CRC development. 
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Figure 7: miR-145 associations with important deregulated miRNAs in CRC using TCGA expression level 

profiles A) correlation between miR-145 expression values and let-7e B) Kaplan-Meier curve of low 

(below median) and high (above median) expression values of let-7e compared with miR-145 C) 

correlation between miR-92b and miR-145 D) Kaplan-Meier curve of miR-92b when expression is low 

(below median) and high (above median) compared to miR-145 expression profiles.  
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5. Measuring the effect of the induced expression of miR-145 in CRC cell lines 

To test the importance of the deregulation of miR-145 and its specific effect on its 

miRNA partners, we assessed whole miRNA expression in vitro in four human colorectal 

cancer cell lines after miRNA-145 induction (Material and Methods section 1.7). Only 

miRNAs showing statistically significant differential expression (P < 0.05, log2FC ≥ 1.5, 

log2FC ≤ −1.5) after miR-145 ectopic expression were considered. Several miRNAs were 

differentially expressed in the four tested cell lines: 82 miRNAs in the CaCo2 cell line 

(32 up-regulated and 50 down-regulated), 120 miRNAs in HT-29 cells (58 up-regulated 

and 62 down-regulated), 90 miRNAs in HCT116 cells (49 up-regulated and 41 down-

regulated) and 95 miRNAs in the SW480 cell line (58 up-regulated and 37 down-

regulated). Among these, three direct partners of miR-145 were modulated in three of 

four cell lines. In particular, miR-99a was highly down-regulated in CaCo2 cells (p = 

0.036, log2 FC = −4.36), miR-23b was mildly down-regulated in the HT29 cell line (p = 

0.004, log2 FC = −1.81), and miR-143 was up-regulated in SW480 cells (p = 0.046, log2 

FC =1.52). Furthermore, among the deregulated miRNAs, we found at least one miRNA, 

for each cell line, that was indirectly connected to the miR-145: miR-23a (p =0.004, log2 

FC = −5.14) in CaCo2 cells; miR-23a (p =0.008, log2 FC = −1.84) and miR-27a (p 

=0.039, log2 FC = −2.5) in HT29 cell, with both included in miR23a∼miR27a∼miR24-

2 cluster, and being down-regulated; miR-18a* (p = 0.002, log2 FC = 2.32), included in 

the miR17∼miR92a cluster, and miR-24-1* (P < 0.001, log2 FC = 2.4), included in 

miR23b∼miR27b∼miR3074 cluster, were up-regulated in SW480 cells. MiR-1246 was 

also up-regulated in HCT-116 cells (p = 0.041, log2 FC = 3.47) and mildly in HT29 cells 

(p = 0.038, log2 FC = 1.32). 
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The enrichment of the direct and indirect targets of miR-145 that resulted from our in-

silico analysis, other than providing enrichment with several expected cell-cycle related 

processes, did significantly enrich two important pathways: the PI3K pathway through 

FGF3, FRAP1 and RPTOR (p = 0.000049), the WNT signaling pathway through FZD5, 

FZD8 and PPP3CA (p = 0.00039), and the MAPK signaling pathway through CRK, FAS, 

MAP3K5, MAP3K8, MAPK14, RAPGEF2, RPS6KA5, TGFBR2, CHUK, DUSP5, 

MAP4K3, PDGFA, RRAS2, DUSP8, FGF4, HSPA8, FGFR3, FRAP1 and PPP3CA 

genes (p = 0.0289). 

 

6. MAPK signaling pathway is modulated by miR-145 ectopic expression in CRC cell 

lines 

The main impact of miR-145 over-expression induced the expression of several genes 

participating in the MAPK signalling pathway. Their expression profiles were compared 

with those measured in cells without miR-145 overexpression, as well as in matched 

tumorous and adjacent non-tumorous colon tissues obtained from CRC patients (Figure 

8A). 

Looking in depth at the genes responsible for the CRC development, CDKN2C greatly 

increased its expression both in CaCo2 and in HT-29 cells (log2 FC = 3.43 and 4.46, 

respectively), while this differential expression was not observed in the genome-wide 

profiling study. On the other hand, MAP2K4 slightly increased its expression in both 

HCT116 and HT-29 cells (log2 FC =1.69 and 1.37, respectively), whereas it was 

significantly down-regulated in the tumor tissues (log2 FC = -2.87). A similar trend was 
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observed in HT29 cells for the following genes: CDKN1A, CDKN2B, KRAS, PRDX6 and 

SMAD4. KRAS and SMAD4 that were up-regulated after transfection (log2 FC =1.53 and 

2.74, respectively), but were down-regulated in our CRC specimens (log2 FC = −2.63 and 

−3.1, respectively). Finally, ELK1 and CDK2, which exhibited elevate closeness and 

degree centrality scores, were both up-regulated in our CRC specimens (log2 FC = 4.56 

and 4.34, respectively). In contrast, ELK1 was down-regulated in HCT116 cells (log2 FC 

= −4.64) and up-regulated in HT-29 cells (log2 FC = 1.93), while CDK2 was 

imperceptibly down-regulated in SW480 cells (log2 FC = −1.17) and up-regulated in HT-

29 cells (log2 FC = 2.27), after miR-145 transfection (Figure 7B). Interestingly, HT29 

cells showed up-regulation of most of the MAPK pathway genes, except for CDKN1C, 

LAMTOR3 and RLPO. 

These genes are not direct targets of miR-145, but of miR23a, miR-23b, miR-26b, miR-

99a and miR-18a, which in turn, were deregulated in the four cell lines, as an effect of 

the ectopic expression of 7. miR-145. In fact, we found alterations of both miR-23a and 

miR-23b in HT-29 cells. Being highly similar in their mature sequences, they are 

expected to control the same transcripts, which are known to mostly belong to the KRAS 

and TGFβ signalling pathways, and which, in our study, are those of the K-RAS, cMYC 

and E2F1 genes, as reported in Figure 8B. 
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Figure 8: A) Heatmap of the expression levels of the genes composing the MAPK signaling pathway in 

four CRC cell lines after miR-145 ectopic expression. For comparative purposes, gene expression values 

of matched pairs of tumor and adjacent non-tumorous mucosa samples are also reported. B) The 

downstream effects of miR-145 ectopic expression: Pathway map representing the downstream effects of 

the miR-145 ectopic expression in the HT-29 cell line. 
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7. Conclusions 

The integrative analysis of mRNA–miRNA and miRNA–miRNA interactions identified 

two cancer-protection and nine cancer-favourable modules of genes and provided 

interesting evidence on mRNA–miRNA crosstalk in CRC. Several genes emerged that 

demonstrated a relevant dual role, both being intramodular and intermodular hubs in the 

interaction network built from experimental interaction evidences. A strongly connected 

sub-network was made up, in fact, by TP53, MYC, CDK4, CTNNB1, CHEK1 and CDK2, 

which were the most central genes (some of the intramodular hubs). CDK4, CDK2 and 

especially TP53 and MYC also acted as intermodular hubs because they connected two 

cohesive clusters, the one made of miR-99a, miR-144 and miR-1275, for which miR-

1246 worked as seeding node, and the triangle made up of miR-18b, miR-708 and miR-

17, the latter being the seeding node. 

The expression level of miR-145 was highly correlated with the above-mentioned clique 

and triangle and, directly or indirectly, with miR-93, miR-143, miR-18a, miR-23a and 

miR-23b, miR-31, miR-345, miR26b, miR-185 and miR-20a, thus acting as potent 

modulator of four intramodular hubs, namely TP53, MYC, CDK4 and CDK2I, and as the 

genuine actuator of a number of important biological functions and pathways 

(Mogilyansky and Rigoutsos, 2013; Olive et al., 2010; Sylvestre et al., 2007). 

First, miR-145 demonstrated to exert a certain control on the cell cycle process through 

a series of partners: BCL2, FAS, PPIF, MYC and E2F1.  The control of mir-145 over 

MYC is of particular importance, as it promotes the transcription of the polycistronic 

cluster miR-17∼92 (also known as oncomiR-1) one of the most potent oncogenic 
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clusters, participating to cell proliferation and apoptosis control  (Woods et al., 2007). 

The regulation of miR-145 to E2F1 is also crucial because it binds to the promoter region 

of the miR-17∼92. In particular, miR-145 evidenced a significantly negative causal 

influence on two of the six members of this cluster, miR-17 and miR-18a. The 

concomitant lower expression values of miR-145 and miR-18a are prognostic evidence 

of poor survival as emerged from analysis of TCGA data. In a network perspective, we 

notice that E2F1 exhibits the highest clustering coefficient score, confirming its high 

connectedness in the whole network and of their tight relationships with its interacting 

neighbourhood. Most of the components of this cluster are directly linked to miR-145 

(Figure 3B). The control on cell cycle-related processes by miR-145 is strengthened by 

its indirect modulation of the expression of miR-21 (Figure 3B) and by the direct control 

of CDC25A and CDK6 genes (the CDK6 gene, in particular, was the 10th gene in 

descending order for closeness centrality). 

Second, miR-145 ectopic expression in CRC cell lines triggered the downstream 

deregulation of critical genes, a significantly high number of which are closely related to 

the MAPK signaling pathway. MYC is activated by various mitogenic signals, such as 

WNT, SHH and EGF, via the MAPK/ERK signaling pathway, and was found to be 

aberrantly expressed in our dataset. Equally, ELK1, which is known to induce the c-fos 

proto-oncogene upon phosphorylation by MAPKs (Hipskind et al., 1991), was 

deregulated in our cell lines, being under the control of miR-143, which in turn correlates 

with miR-145. CDK2 regulates G1/S transition and S phase progression in association 

with cyclin E and A. Its activation is dependent on its localization in the nucleus, which 

can happen upon the formation of CDK2/MAP Kinase complexes (Blanchard et al., 

2000). MiR-145 has a double indirect influence on this gene, via the MAPK signaling 
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pathway and because of its negative correlation with miR-18a, of which CDK2 is a 

theoretical target. MAPKs are also known to modulate the outcome of SMAD activation 

by TGF-β. Cross-signalling mechanisms between the SMAD and MAPK pathways take 

place and affect cell fate in the context of carcinogenesis (Javelaud and Mauviel, 2005). 

MiR-145 exerts a double control even on SMAD4 (module 3), modulating the MAPKs 

and directly targeting SMAD4. 

Third, miR-145 was tightly connected with miR-143, in line with the literature. They 

share numerous target genes involved in various cancer-related events, with both 

influencing phenotypic patterns, as evidenced by experiments entailing the concomitant 

ectopic expression of the miR-143∼miR-145 polycistronic cluster in the HT-29, HCT116 

and SW480 cell lines, and showing significant decrease in proliferation, migration, 

anchorage-independent growth and chemoresistance; these miRNAs can work 

independently or synergistically, with an effect on the colon cancer transcriptome and 

proteome being characterized by distinct and shared functional effects (Akao et al., 2006; 

Bauer and Hummon, 2012; Pagliuca et al., 2013). The miR-143∼miR-145 polycistronic 

cluster targets the RAS-responsive element-binding protein (RREB1) and KRAS (Chen 

et al., 2009b), which, in turn, induce down-regulation of the cluster, thereby sustaining a 

feed-forward mechanism (Kent et al., 2010) that could explain the concurrent down-

regulation of KRAS and miR-143∼miR-145 cluster in our CRC cohort. From this study, 

it emerges that it is likely that miR-143 is an effector of miR-145, rather than being equal 

cooperators. By the analysis of TCGA data it comes out that the expression of miR-143 

is linearly dependent on the expression of miR-145 and that the prognosis of the patients 

with low levels of miR-145 and high levels of miR-143 is dismal. 
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In conclusion, the simultaneous evaluation of the transcriptome and miRNAome of 

matched pairs of tumor and adjacent non-tumorous mucosa samples of CRC patients 

helped to identify several modules of genes and miRNAs. A multifaceted enrichment 

analysis through network construction revealed that these modules can cooperate, rather 

compete, as micro-societies, in the fulfilment of pathophysiological mechanisms 

underlying the onset and development of CRC. Although several, if not all, members of 

these clusters could potentially be considered good prognostic and therapeutic targets, 

many of them, alone, proved to be globally ineffective in the treatment of the disease. For 

this reason, the hunt for biomarkers shifts attention towards the master-regulators, i.e. the 

molecules that, when pharmaceutically targeted, can plausibly result in a maximal 

derangement and destabilization of the core tumor machinery. We focused on miR-145, 

which, following in silico and in vitro analysis, demonstrated a high potential in this 

direction and could be reliably targeted for diagnostic and prognostic purposes, and, 

indirectly, to provide new therapeutic targets for coding genes using known and novel 

gene-to-miRNA relationships. 
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Pyntacle: a tool for the assessment of critical properties of networks 

1. Background 

The plasticity of the relationships among cellular functions was well explained using 

network models for several model organisms such as for example, the Saccharomyces 

cerevisiae. The study of the geometrical organization (topology) of its PPI network 

allowed the identification of a group of key proteins that are more tightly connected than 

the rest of the proteins in the interactome network (Figure 9), a typical feature that 

characterizes the so called scale-free networks (Barabási and Albert, 1999). This result 

supported several other studies to establish a direct relationship between the connectivity 

of proteins and their importance in a network. Another important feature of PPI networks, 

which arose after this first result, was that the removal of single genes in a PPI network 

does not alter dramatically the phenotype of an organism, as the removal of hub proteins 

does. Hence, PPI networks were reported to be scale-free, although statistical analysis 

has refuted many of these claims and seriously questioned others (Clauset et al., 2009), 

and that their architectural configuration was an immediate proxy for the functional 

activity of the organism that network was abstracted from. The echoes of these 

achievements were sensed by Medicine as well. Graph models were used to attempt to 

figure out disease mechanisms of onset and development. The key point of view was that 

a disease phenotype is rarely the consequence of the malfunctioning of an individual 

effector molecule, rather it summarizes various pathophysiological processes that result 

from several components of the network. 
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Figure 9: The largest component of the S. cerevisiae PPI network taken from (Jeong et al., 2001). Protein 

(nodes) are colored according to their phenotypic effect when deleted: red = lethal, green = non-lethal, 

orange = slow growth, yellow=unknown. 

Network medicine (Barabasi et al., 2011) exploits graph theory to thoroughly understand 

the architecture of the human diseasome (Goh et al., 2007; Wysocki and Ritter, 2011), a 
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graph in which nodes are cellular components linked if they contribute to the disease 

phenotype.  

 

Figure 10: The Disease Gene Network (DGN) of Homo sapiens taken from (Goh et al., 2007). Each node 

is a gene, and they are connected if they are implicated in the same disorder. The width of the node is 

proportional to the number of disorders the gene is found to be implicated in. Colored nodes mark genes 

that are implicated into a single disease family, dark grey genes mark genes that are associated with multiple 

diseases class and light grey genes are unclassified. 
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This theoretical approach is particularly beneficial when dealing with polygenic disorders 

or complex traits, where the abnormality in a single effector gene product fails to explain 

the pathogenesis of a disease. These models, like the one depicted in Figure 10, enabled 

to study the interplay among biomarkers of distinct phenotypes and to find and 

acknowledge the common molecules among several diseases. Graph theory provides a 

number of tools to identify the most central nodes within a network. Here the concept of 

centrality is synonymous of importance. A topologically important node may be that with 

many relationships with other nodes or the one that lies in many pathways or again that 

is closer to most other nodes (Pavlopoulos et al., 2011). In this context, importance 

matters and is secondary to the topological structure of a network. A basic assumption is 

in fact that biological systems are nonrandom in nature, but that are tightly organized in 

structures that underlie hierarchical structures (Ravasz et al., 2002). Besides, the study of 

local and global properties of individual nodes and networks partially explained the 

mechanics of complex systems, leaving the team play effect of nodes on the whole 

systems largely unexplored. In fact, although much explicative, global and local 

centrality metrics such those described in Materials and Methods, Section 2.4) do not 

capture the combined effects of groups of nodes, their systemic interplay and the role 

they exert on a network. The majority of cellular functions are in fact fulfilled by groups 

of genes, each playing a peculiar role in the cell functioning. Programmed Cell Death, 

for example, is a multifaceted, intracellular process that requires the cooperative effects 

of many genes to occur, as there is no upstream gene that can initiate the apoptotic cascade 

alone (Xu et al., 2009). Moreover, these genes often do not directly interact with each 

other, rather they target overlapping sets of genes and transcription factors to exert their 
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functions. For this reason, new topological metrics able to measure the centrality of 

groups of nodes are needed. Pyntacle attempts to answer this need.  

 

 

Figure 11: The Pyntacle Official Logo. 

 

2. Pyntacle functionalities 

Pyntacle is both an open-source command line tool and a Python 3 package. Its dual 

nature allows its use as both a command line and as a standalone tool for network 

analysis. Pyntacle faces the problem of identifying key-player nodes that, together, 

optimally diffuse something through a network or that maximally disrupt or fragment a 

network when removed. These problems can be solved optimally, by the greedy 

heuristics presented in (Borgatti, 2006), or exactly by a brute-force combinatorial 

optimization strategy. The latter yields all tied groups of nodes that exhibit the best 

solutions for both problems. It is implemented to fits snugly into the memory of a PC and 

to mitigate the combinatorial explosion phenomenon of huge networks when using HPC 
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clusters equipped with many computing cores. Table 3 pinpoints the main Pyntacle 

functions.  

The possibility to choose between an exact, but slow optimization method rather than a 

suboptimal, but fast method ensures flexibility to researchers: the greedily optimized 

search of groups of key-players is recommended when dealing with big networks (over 

1,000 nodes). On the other hand, brute-force search reports all the best solutions, at the 

cost of increasing running times. It is thus recommended with small networks. More 

details regarding the key-player metrics implemented in Pyntacle can be found in 

Material and Methods, section 2.5. Although real-world problems are typically sparse 

and can be solved by algorithms that work best with graphs that have few edges, many 

of the algorithms in Pyntacle are optimized to work with increasingly complex networks. 

Along with key-players concepts, we have implemented indices to quantify the 

sparseness of graphs (Mazza et al., 2010; Randic, 1997), including the compactness and 

completeness indices, which Pyntacle takes as reference metrics to assess the global 

complexity of graphs. Additionally, Pyntacle implements the radiality topological index. 

Radiality is a node centrality measure that is commonly used to assess node centrality in 

combination with closeness and eigenvector centrality. In a PPI network, radiality can be 

interpreted as the probability of a protein to be functionally relevant for several other 

proteins, but with the possibility to be irrelevant for a few other proteins. Thus, a protein 

  



55 

 

Command  Modules Brief Description 

keyplayer kp-finder Find the set of length X for each KP metric 

 
kp-info Find KP metrics for a specific set of nodes 

metrics global Compute Global Metrics for the whole graph 

 
local Compute local metrics for each node, or a subset of nodes 

set union Merge two graphs 

 
intersection Intersect Two graphs 

 
difference Find the exclusive edge set in two graphs 

convert 
 

Convert one network file into another one 

communities fastgreedy Divide your sugraph into modules (A Clauset, MEJ Newman and C Moore: Finding 

community structure in very large networks) 

 
leading-

eigenvector 

Divide your sugraph into modules (Newman: Finding community structure in networks 

using the eigenvectors of matrices) 

 
community-

walktrap 

Divide your sugraph into modules using random walks (Pascal Pons, Matthieu Latapy: 

Computing communities in large networks using random walks) 

 
infomap Divide your sugraph into modules (M. Rosvall and C. T. Bergstrom: Maps of information 

flow reveal community structure in complex networks) 

generate 
 

Generate Random networks based on several topologies and criteria (for simulation 

purposes) 

Table 3: Pyntacle command line main commands and subcommands, when available. 
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with high radiality, compared to the average radiality of the network, will be easily central 

to the regulation of other proteins but with some proteins not influenced by its activity. 

Thus, a network with a very high average radiality is more likely to be organized in 

functional modules, whereas a network with very low average radiality will behave more 

likely as an open cluster of proteins connecting different regulatory modules. All these 

interpretations are often accompanied with the contemporary evaluation of eccentricity 

and closeness. Since radiality suffers for networks with one giant component and many 

small components, we implemented the radiality-reach metrics, which simply applies to 

each component, independently. A detailed description of all the implemented metrics in 

Pyntacle is given in the Materials and Methods chapter, section 2.4. 

Analysis of signaling pathways and their cross-talks is a cornerstone of Systems Biology. 

A number of developmental processes rely on cross-talk, and their aberrant regulation 

was associated to inflammatory response defects as well as to cancer and 

neurodegeneration (Espinoza and Miele, 2013; Mazzoccoli et al., 2014; Yu and Kang, 

2013). Studying the cross-talks among interacting pathways is challenging, also because 

it depends on the organism, tissue, environment, and the experimental settings. Looking 

at pathways as individual networks, Pyntacle eases the exploration of their cross-talks by 

means of logical set operations: union, intersection, and difference. Isolated pathways 

can thus be compared or merged and then studied topologically using the set of operations 

available in Pyntacle. 

Biological organization of real systems has been proven to be modular, also at a 

molecular level (Hartwell et al., 1999). Molecular systems often exert their activity by 

organizing the genome into regulatory modules, which are sets of co-regulated genes that 
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share a common function (Segal et al., 2003). These modules undergo aberrant reshaping 

when molecular functions are altered, such as in cancer (Thiagalingam, 2006; Wu and 

Stein, 2012). Hence, the identification of modules in networks is a compelling task in 

Network Biology. The literature is wide on this regard, and the quest for optimally 

defining communities is still open, with many algorithms proposed in as many contexts 

(Habib and Paul, 2010). A carefully selected subset of them where wrapped and added to 

Pyntacle, which include: the well-known community fastgreedy algorithm (Clauset et al., 

2004), especially designed for large networks (over 1,000 nodes);  the eigenvector 

method (Newman, 2006), which defines a measure of modularity between groups of 

nodes and tries to maximize it by iterative node swapping; two methods based on random 

walks, namely the community infomap (Rosvall and Bergstrom, 2007) and the 

community walktrap algorithm (Pons and Latapy, 2006). (For details please jump to the 

Materials and Methods chapter, section 2.7). These algorithms can partially be tuned by 

passing specific command line parameters. In addition, modules can be filtered according 

to specific criteria (e.g., minimum or maximum number of nodes, number of components, 

etc.).  

Networks can be represented in a variety of data formats. This is a crucial issue, as these 

data formats vary greatly in size, structure, and metadata attached to nodes and edges. 

When designing Pyntacle, we committed to the task of relieving the user from the burden 

of creating Pyntacle-compliant input files. Pyntacle can load and write adjacency 

matrices, edge lists and DOT files as textual files or Python pickles as binary files in order 

to be compatible with the major network analysis and visualization tools, like Gephi 

(Bastian et al., 2009) and UCINET (Borgatti et al., 2002). Moreover, it is fully compatible 

with Cytoscape (Shannon et al., 2003) through the SIF and DOT languages. Additional 
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information, namely properties and attributes of graphs, nodes or edges can be imported 

both via command line and through the Pyntacle library. These file formats are 

thoroughly addressed in the Material and Methods, chapter, section 2.8. Furthermore, 

thanks to the Pyntacle convertion tool, it is possible to quickly convert one file format 

into another. 

 

 

Figure 12: Pyntacle example report of the results obtained using the greedy optimization method on the 

Caenorhabditis elegans connectome. 

When studying real-world networks, it is common practice to compare any finding 

obtained with them with those obtained with simulated, theoretical, networks. The 
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Connectome of Caenorhabditis elegans (White et al., 1986), which is the first complete 

map of all the connections among the neurons of the small nematode, for example, has 

been long since thought to have a scale-free topology, whereas several studies proved 

that the assortment of its links and the node degree distribution approximate its topology 

to a small-world network (Amaral et al., 2000; Towlson et al., 2013). This incongruence 

has, of course, an important impact on any topological interpretation one might conclude 

on this network. For this reason, we equipped Pyntacle with a series of in-silico network 

generators. They can create Erdos-Renyi models (Erdős and Rényi, 1959), Watts-

Strogatz small-world networks (Watts and Strogatz, 1998), Barabasi-Albert scale-free 

graphs (Barabási and Albert, 1999) and hierarchical tree networks (Bradley, 2001). 

Pyntacle reports the results of its analyses in textual, Excel or binary files. One example 

report is shown in Figure 12. In particular, the binary file is actually a pickle binary file 

that can be easily imported in other Python programs and that significantly compresses 

the size of the embedded network. Visualization is also a key-feature of Pyntacle. It 

produces ready-to-publish graph images using the cairo package 

(https://cairographics.org/), a cross-platform graphic library with portings for several 

interpreters, from C to Python. Plots are produced, by default, for small networks (less 

than 1000 nodes), although the user can choose not to plot the graph at all. Images can be 

saved in several file formats, like svg, pdf and png. Nodes in graphs can be arranged by 

means of known layout algorithms as, for example, the Fruchterman-Reingold layout 

(Fruchterman and Reingold, 1991), the force-directed layout, which is best suited for 

graphs that exhibit scale free topologies, the Reingold-Tilford layout (Reingold and 

Tilford, 1981), which is best suited for trees and networks with hierarchies, such as 

transcriptional cascades. Plots features are customized according to the type of analysis. 

https://cairographics.org/


60 

 

For key-player analysis, for example (Figure 13A), key-player nodes are greater in radius 

than the other nodes and are colored differently, according to the key-player metric. When 

measuring the global properties of a network, the user can choose to remove a subset of 

nodes and then compare how global properties change with and without the removed 

nodes. In this case, we provide two plots, one before and one after the node removal, 

marking the nodes that have been removed with different colors and sizes (Figure 13B 

and Figure 13C) When detecting communities, we plot all the communities found in a 

network in separate files using custom color-codes option, as shown in Figure 13D and 

Figure 13E. 

Many of the Pyntacle functionalities are prone for High-Performance Computing (HPC) 

devices, thereby allowing the user to speed up the code execution. Pyntacle is in fact able 

to use both CPU multi-threading and GPU acceleration by resorting to Numba, a Python 

library that translates a subset of Python and NumPy instructions into machine code using 

Just-In-Time (JIT) compilation. The core of Pyntacle is built around the igraph package 

(Csárdi and Nepusz, 2006), an open source portable Python library capable of handling 

huge graphs with millions of vertices and edges. We choose to resort to igraph not only 

for its capability of storing networks of considerable sizes but also because its graph 

object can encase several layers of information and allows fast computation of a wide 

variety of network types. While, currently, Pyntacle supports only unweighted, 

undirected graphs with binary relationships, the use of the igraph library allows further 

extensions to other network types, such as directed, weighted, signed and bipartite 

networks. Finally, igraph is widely used in the network biology community: several tools 

were designed around it (Cowley et al., 2012; Revell; Türei et al., 2016) and its use was  
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Figure 13: Examples of Pyntacle plots for the C. elegans connectome. A) optimal key-player set for dF (in 

pink), and its direct neighbours; B) Plot produced before and C) after the removal of the nodes marked in 

blue; D) communites identified with the fastgreedy algorithm; E) the induced subgraph of D) for the dark 

green community. 

proficient in several independent studies (Xie et al., 2018). Hence, its universality allows 

Pyntacle to be used in different contexts and to be exploited maximally. 

On our official website: http://pyntacle.css-mendel.it, we provide full documentation, 

installation guides, tutorials, case studies, benchmarks and other information about 

Pyntacle. Some of these are reported in the Appendix of this work of thesis. 

 

3. Pyntacle benchmarks and performance comparisons 

Pyntacle is not the only tool that can search set of key-player nodes. To date, two other 

network analysis tools exist that are able to perform this task using a greedy optimization 

strategy. The first one is a standalone application that runs on Windows and was designed 

by Borgatti in 2006 (http://www.analytictech.com/keyplayer/keyplayer.htm). This 

software package is part of the UCINET software ecosystem (Borgatti et al., 2002) and 

is accessed through a graphical user interface. Unfortunately, it crashes and stops working 

when importing networks of moderate size (N>500), regardless of the machine’s memory 

and hardware architecture. These two hurdles made difficult to perform benchmarks of 

this tool. The other available tool is the keyplayer R package (An and Liu, 2016a), a 

collection of different R scripts that compute the key-player search over adjacency 

matrices imported in R as dataframes. The performances of the two packages were 

measured on single-core greedy optimization runs on a series of both real and in-silico 

http://pyntacle.css-mendel.it/
http://www.analytictech.com/keyplayer/keyplayer.htm
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test networks of different sizes, setting the kp-set size to 2. We distinguished between 

small, medium and large size networks and measured the elapsed time in seconds (Figure 

14). Extensive description of the test datasets and the benchmarks setup can be found in 

Materials and Methods, section 2.9 and 2.10. Each measurement was done in triplicate. 

A notable difference in computing times was found between Pyntacle and the R library, 

as Pyntacle was generally faster for all metrics and with small and medium-sized 

networks (Figure 14). Besides, only Pyntacle was able to find optimal key-player sets for 

large-sized graphs in a reasonable amount of time (<1 week). The dF metrics is the most 

computationally complex since it requires to recompute the shortest path distance matrix 

for all nodes at each algorithm iteration. Despite this, Pyntacle is still faster than the 

keyplayer R package.  

The brute-force search was run in parallel on 1, 4, 8, 16, and 32 CPU cores on small and 

mid-size networks. Speedups measurements revealed that the peak in performance was 

generally achieved with 8 CPU cores when calculating the dF index (Figure 15). Since 

the other indices were generally simpler than dF, we did not verify any improvement in 

performance resorting to parallel computing. This finding is expected, as the parallel 

brute-force execution is designed for large graphs.  
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Figure 14: Computation times for the greedy optimization search performed with Pyntacle (green bars) 

and the keyplayer R package (orange bars). Times are measured in seconds and averaged over three 

replicates. For small networks (A-C), medium networks (D-F) and large networks (D-F). Each column 

represents a different comparable key player metric. For large networks, the R keyplayer package failed to 

make a single run after 1 week of execution, hence it’s not shown. 
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Figure 15: Speedup times for dF using Pyntacle key player search by means of the brute-force search 

algorithm. Times were computed for 4,8 16 and 32 CPU cores over the times at a single core. 

4. The future of Pyntacle 

Pyntacle is still in its primes and is actively implemented and extended. To present (Oct 

2018), 12 versions of Pyntacle were released on our GitHub page 

(https://github.com/mazzalab/pyntacle). These releases added several new 

functionalities, corrected bugs, increased portability, usability and interoperability across 

operative systems and greatly enhanced the speed and the reliability of algorithms, as 

https://github.com/mazzalab/pyntacle
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well as providing insightful documentation on methods, classes and case examples. The 

ultimate goal is to make Pyntacle a swiss-knife for network analysis, encasing both 

known algorithms in molecular network biology, metrics and techniques for 

disentangling the complexity of biological systems. The focus remains on the 

understanding of the orchestrated role of key groups of nodes. Indeed, other measures of 

group centrality exist, other than the fragmentation and reachability, like for example the 

group centrality metrics (Everett and Borgatti, 2005), that we plan to implement in the 

next releases. These metrics were conceived in the context of social sciences and consist 

in the adaptation of classical topological metrics designed for individual nodes, like the 

degree, betweenness and closeness, to groups of nodes. Their main implications are in 

the assessment of network redundancy: in a social network, if the ties issuing from a node 

are redundant, then they can be removed without affecting the centrality of the group of 

nodes which it belongs to. Similarly, with PPI network, a protein with high degree may 

be thought to be very important. However, its removal may have no effect on the overall 

network connectivity because there might exist other nodes whose links might equally 

bridge the neighborhood of the removed node.  

While Social Sciences contribute significantly in the development of Network Biology, 

Ecology was second to none. Ecological networks were used to represent trophic 

interactions among species in the same ecosystem (food webs), relationships between 

individuals of the same species (animal social networks) or the population flow between 

habitable patches (landscape ecology) (Pereira and Jordán, 2017). These systems are very 

different. The study of complex ecological systems is challenging, as the spectrum of 

problems is wide. Thus, ecologists need effective tools to get insights onto their systems 

of interest. These same tools could then be used with the molecular networks, even though 
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most of them are still unknown to the molecular biology community. This is an issue 

largely underrated, as these tools could bring novelty to the field and propose new 

strategies for determining key-molecules in a molecular network. For example, a known 

rule of thumb is that a protein exerts its function at-most within its two steps 

neighborhood, in a molecular network. After two steps, its effects are irrelevant. At 

present, no topological measures are used to quantify the indirect effects of molecules in 

a network, measures that are instead being theorized for decades in Ecology (Wootton, 

1994), to assess how the dramatic changes in a population may affect the rest of the 

ecological niche. These indirect interactions can be weighted and measured, to a certain 

extent, with various topological measures. Among these, we put particular attention to 

the Ti and Wi indices (Jordán et al., 2014), which are used to measure the importance of 

keystone species  (species that are important for the essential maintenance of a system) 

in a food web. With Pyntacle, we aim to implement these new features soon and test them 

on known biological networks, with the aim at analyzing the whole human interactome. 

Currently, Pyntacle deals only with graphs. We plan to enable Pyntacle to also work with 

weighted and signed networks and to make it more accessible to the scientific community. 

Finally, while Pyntacle is already able to import and export networks in a variety of data 

formats, it will be compatible with all tools that speak the Systems Biology Markup 

Language (SBML)(Hucka et al., 2003) and the KEGGML 

(https://www.kegg.jp/kegg/xml/docs/) format. Parsers for these file formats will be 

designed and implemented in the next Pyntacle releases. 

  

https://www.kegg.jp/kegg/xml/docs/
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The nestedness of food-webs 

1. Background 

Our planet is currently facing the sixth mass extinction from the origin of life. Extinction 

rates of species rose dramatically, from one to three species per hour in the last decades 

(Lawton and May, 1996); anthropogenic contribution was essential to this acceleration 

(De Vos et al., 2015), and apparently no solution exists a to slow down  this process in 

the short term. We know that biodiversity is important, but we do not yet clearly 

understand its functional aspects and the possible ways to maintain it (Terborgh, 1999). 

To understand the functional diversity, we would need to know more about the roles that 

species play in ecological communities (Jones et al., 1994; Timon McPhearson, 2003).  

For these reasons, food webs, complex ecological networks depicting the relationship 

among species and their hierarchies, became a proxy to understand the dynamics of 

ecosystems and to develop strategies for ecosystem management and upkeep. The ability 

of an ecosystem to function depends on its state and the processes that support it  (Mumby 

et al., 2014). Because ecosystem state and processes are dynamic and influenced by many 

forms of stress (Hastings, 2010), a vast literature exists on the subject of food webs 

resilience (Gunderson). Resilience in ecology is the ability of ecosystems to shift the 

communities that composes them even in the absence of acute disturbance events 

(Scheffer and Carpenter, 2003), while maintaining their balance. Resilience is a proxy to 

study the evolutionary trajectories of endangered ecosystems such as coral reefs (Mumby 

et al., 2013) where it was used to prove that, in the Caribbean reefs, the ecosystem could 

resist by replacing corals with seaweed. 
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While resilience is a proxy for vulnerability studies and ecosystem maintenance, other 

indicators exist that can be used to assess ecosystem properties and their reaction to 

external changes, such as vulnerability (Füssel and Klein, 2006; Turner et al., 2003) and 

robustness (Carlson and Doyle, 2002). These features are widely studied not only in 

ecology, but in social network analysis as well. The first one attempts to measure the 

expected harm experienced by a system due to its exposure to a disturbance, and it is 

widely used in risk-hazard research when assessing the anthropogenic effect or major 

climate change disruption on endangered ecosyst2. ems.  

The second one, robustness, was borrowed from engineering and control theory (Carlson 

and Doyle, 2002). Robustness is defined as the capacity of a system to maintain a desired 

state despite fluctuations in the behavior of its component parts or its environment. 

Robustness does not imply that the system must remain unchanged, but also describes 

the ability of the system to adapt and innovate in anticipation or in response to a 

disturbance. Hence, a robust system requires functional redundancy and feedback 

controls to compensate for changes in environment. A good analogy is an aircraft in 

flight. A robust flight does not deviate in altitude yet might adapt to changing 

environmental conditions by altering the angle of its wings while also having redundant 

systems so that a single engine failure does not prevent function. A large fluctuation in 

function is undesirable as it may be fatal for the passengers, and this is the main difference 

between robustness and vulnerability. Vulnerability can be kept low in a system that 

experiences large fluctuations in state (or, in our example, altitude) providing that it 

recovers quickly, but a robust system cannot tolerate a large fluctuation in state. 

Therefore, robustness is a key property that must be assessed when studying food webs 

in economical contexts, such as fisheries management, as the depletion of a series of 
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species within the ecosystem may have profound impact on the ecosystems populations 

and on the maintenance of the ecosystem itself. In food web ecology, robustness is used 

to quantify the change in network properties that result from a loss of individual or groups 

of species.  

Understanding and predicting the robustness and vulnerability of complex ecological 

networks is a topic of increasing relevance. There is a general agreement among the 

network ecology community that nodes in certain critical network positions may have an 

area of effect that is greater than their neighborhood, thus having a much higher impact 

on network functioning. The loss of these key nodes may easily generate cascading 

effects in the network. This is particularly crucial in ecosystem management when 

assessing the importance of keystone species, species that has a disproportionately huge 

effect on the food web compared to their topological position and the direct neighbors in 

terms of consumptions (Mills and Doak, 1993). These species play a key role in 

maintaining the structure of an ecological community (Jordán, 2009). The removal of key 

species in a food web can compromise the whole system, breaking the balance between 

species consumption and creating irreversible damages (Cohn, 1998). The cascade of 

interactions among species are hard to predict since secondary effects depend on the 

architecture of the network. Thus, the issue is to relate the role of these groups of nodes 

to the overall architecture of the network, a question that remains open and has been 

widely addressed in the past few years (Gunderson; Jones et al., 1994; Jordán et al., 2005). 

Focusing research on these key nodes can be one way to tame and handle complexity 

(Jordán, 2009) and assess the relative importance of species in ecological communities  

(Mills and Doak, 1993; Paine, 1969; Power et al., 1996). Various network centrality 

measures at node levels were previously tested on food webs to quantify and identify 
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important network positions (Estrada, 2007; Jordán and Scheuring, 2004) and structural 

analyses (Allesina and Bodini, 2004; Jordán, 2009) are increasingly supported by 

dynamical studies (Jordán et al., 2008; Livi et al., 2011).  

These latter suggest that key positions may not be identified only by local indices (like 

node degree). Other measures that considers the indirect neighborhood of nodes are 

needed to assess the importance of species in a food web. A number of experimental and 

modelling works (Brose et al., 2005; Menge, 1995)  support the importance of indirect 

effects in biological systems. This justifies the search of other non-local mesoscale 

metrics that could explain the indirect effects better than the standard metrics and assess 

the overall role of groups of unconnected nodes within the network. Apart from 

expanding the neighborhood of focal nodes (increasing the distance for network effects), 

it has also been suggested that the number of local nodes may also be expanded from 1 

to n. Group metric centralities such as key players and others (Borgatti, 2006; Borgatti et 

al., 2002), were applied in other fields of science, such as landscape ecology, to identify 

the importance of unconnected habitat patches spanning wide areas for bird migrations 

(Pereira and Jordán, 2017; Pereira et al., 2017). This approach suggests that the positional 

importance of network nodes may not be characterized independently, one by one, but 

rather simultaneously. The importance of mesoscale  analyses to address ecosystem 

vulnerability was proven both empirically, with the discovery of keystone species 

complexes (Daily et al., 1993) and theoretically, by means  of network  modelling 

techniques in ecosystem management studies focusing on the consumption of  fisheries 

(May et al., 1979). Recent attempts have been made to model and determine the identity 

of keystone species complexes in real ecosystems by network analysis (Ortiz et al., 2013, 

2015, 2017). Although the predominant view on network robustness is focused on local 
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and single-node analyses (by modelling for example the degree distribution of food webs 

(Dunne et al., 2002)),  little or no efforts were made to quantify group centrality effects 

that underlie the functioning of an ecosystem. Besides, key player sets of large size may 

perfectly or partly include the members of smaller ones, i.e., they may be nested to some 

extent. This property of key-player sets, called nestedness, has been already used to study 

the relationship between important species and network conservation  (Benedek et al., 

2007). 

In this chapter we move from centrality metrics to the use of non-local, multi-node 

approach based on key players by means of Pyntacle. We have quantified the 

macroscopic (network-level) topological properties of 27 real food webs derived from 

marine ecology studies, calculated local centrality for each species and ranked species by 

importance accordingly, computed key-player centrality metrics using Pyntacle on 

increasing size and quantified the nestedness of these group of nodes, focusing on the 

correlation between nestedness and other topological network properties. We reasoned 

on the nestedness concept, and of its consequences on the efficiency and success of 

conservation efforts. We argue that large nestedness makes the network more predictable 

and manageable (Benedek et al., 2007), so our results may have implications to the 

efficiency of conservation efforts of terrestrial ecosystems.  

2. Food Webs network analysis 

The studied macroscopic network parameters are presented in Table 5. The smallest and 

the largest network, in terms of the number of nodes, were the cat (N = 48) and the 

carpinteria food web (N = 128), respectively. Depending on the various actual numbers 
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of links (E), density ranged from Δ = 0.06 (aka a, cow17, martins, narr, troy) to Δ = 0.16 

(demp su). Average degree ranged from <k>= 4 (aka b, cow17, narr) to <k>= 18.72 

(carpinteria). Diameter ranged from D= 4 (black, cow17, german, healy, stony) to D= 7 

(cow1), and the average shortest path length ranged from <SpL>= 2.19 (carpinteria) to 

<Sp>= 2.9 (cow1). The average clustering coefficient ranged from CC= 0.02 (cat, kyeb, 

sutton sp, sutton su) to CC = 0.25 (carpinteria) and the weighted clustering coefficient 

ranged from CCw= 0 (broad, sutton sp, sutton su) to CCw= 0.25 (carpinteria).  

Finally, to enrich the topological information, we measured the overall fragmentation 

status of each food web using the distance-based fragmentation (dF, see Materials and 

methods, section 2.5) (Table 5). The initial mean fragmentation value was 0,54, ranging 

from dF = 0.48 (carpinteria, demp su) to dF = 0.6 (troy). These findings show that food 

webs exhibit a high fragmentation (54%) and that, despite the short distances, the 

potential to stretch them is quite high. 
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Food web N E D <k> <SpL> Δ CC CCw dF 

aka a 84 221 5 5.26 2.72 0.06 0.04 0.01 0.58 

aka b 54 108 5 4.00 2.60 0.07 0.10 0.03 0.56 

ber 77 232 5 6.03 2.63 0.08 0.03 0.01 0.57 

black 85 366 4 8.61 2.45 0.10 0.04 0.03 0.53 

broad 94 559 6 11.89 2.47 0.13 0.03 0.00 0.52 

cat 48 107 5 4.46 2.42 0.09 0.02 0.01 0.53 

cow1 58 118 7 4.07 2.90 0.07 0.11 0.06 0.59 

cow17 71 142 4 4.00 2.73 0.06 0.15 0.04 0.59 

demp au 83 410 6 9.88 2.47 0.12 0.03 0.01 0.53 

demp sp 93 535 5 11.51 2.47 0.12 0.04 0.01 0.53 

demp su 107 918 5 17.16 2.21 0.16 0.09 0.06 0.48 

german 84 347 4 8.26 2.58 0.10 0.07 0.05 0.55 

healy 95 603 4 12.69 2.30 0.13 0.07 0.03 0.50 

kyeb 98 616 5 12.57 2.40 0.13 0.02 0.02 0.52 

lilkye 78 372 5 9.54 2.49 0.12 0.07 0.02 0.53 

martins 104 311 5 5.98 2.65 0.06 0.11 0.04 0.58 

narr 71 142 5 4.00 2.55 0.06 0.07 0.02 0.57 

north 78 228 5 5.85 2.54 0.07 0.12 0.04 0.55 

powder 78 252 6 6.46 2.58 0.08 0.06 0.01 0.56 

stony 112 824 4 14.71 2.35 0.13 0.07 0.02 0.51 

sutton au 80 331 6 8.28 2.59 0.10 0.03 0.01 0.55 

sutton sp 74 388 5 10.49 2.39 0.14 0.02 0.00 0.51 

sutton su 86 417 5 9.70 2.34 0.11 0.02 0.00 0.51 

troy 76 170 6 4.47 2.87 0.06 0.05 0.03 0.60 

ven 65 184 5 5.66 2.57 0.09 0.06 0.03 0.56 

carpinteria 128 1198 5 18.72 2.19 0.15 0.25 0.25 0.48 

cant 108 693 5 12.83 2.37 0.12 0.04 0.01 0.52 



76 

 

Table 4: Overall properties of the 27 food webs: N = number of nodes; E=number of links, D=diameter, 

<k>= average degree, <Sp>=average shortest path, Δ=density, CC=average clustering coefficient, 

CCw=weighted clustering coefficient, dF=distance-based fragmentation status. 

3. Key player and nestedness analyses reveal common features in food webs 

To understand whether key species were peculiar to specific food webs, and to reveal the 

underlying organization of food webs, we computed key-player sets of increasing sizes 

(1 to 4) for each key-player metric, both for fragmentation and reachability. Moreover, 

since the m-reach reachability metric requires the specification of a maximum distance 

length, we set m = 1 to 3. Results are shown in Figure 16A for all measures but 

reachability and Figure 16B for m-reach. The increase in size of the kp-set has dramatic 

consequences on most of the fragmentation metrics, showing a linear relationship 

between the increasing set size and the increase in fragmentation.  

Moreover, two nodes resulted to be required to reach the majority of nodes in any of such 

networks with a maximum m-reach distance of 2 since a single node alone was not able 

to reach the whole network. This confirms that the study of groups of nodes are critical 

and more relevant than the study of single nodes in terms of reachability in heterogeneous 

food webs. Moreover, keystone species exert their functions in groups, reinforcing the 

idea that more than one keystone species is present in each ecosystem.  

We then computed the nestedness between kp-set for each metric (Materials and 

Methods, section 2.3) and reported results in Table 5. We wondered whether food web 

topology has any significant effect on the nestedness of keystone species complexes in 

these 27 food webs. For this reason, we computed the Spearman correlation coefficient 
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(P) between 9 topological metrics that are strongly related to the topology and 6 measures 

of nestedness for each food web. Among the 6 topological indices, only 6 were significant 

(Figure 17), and in each of these, M2 was the nestedness index (F, dF, dR, M1 and M3 

did not show any significant correlation). M2 correlated positively with dF and <SpL>, 

and negatively with Δ and <k> (N, E, d, CC and CCw did not show any significant 

correlation). The four significant correlations are between M2 and dF (ρ = 0.681; p = 

0.0009), M2 and Δ (ρ = -0.678; p = 0.001), M2 and <k> (ρ = -0.637; p = 0.00035) and 

M2 and <SpL> (ρ = 0.605; p = 0.00084). All of them are strongly significant. Only a few 

topological features can be used as a proxy for assessing the nestedness of central node 

sets, but most of these show quite strong correlations. Our results suggest that in networks 

where shortest paths are shorter, and density is higher, nestedness is lower, so systems-

based conservation can be less predictive and efficient. One example is the Sutton tussock 

grassland in springtime (Figure 18A). Here, the single most central organism in the 

network is Unidentifiable detritus (#0, black in Figure 18A). The most central pair is the 

diatom Cocconeis sp. and the larvae of the riffle beetle Hydora nitida (#10 and #61, blue). 

The group of the three most central network positions are the red alga Audouinella sp., 

the diatom Navicula avenacea and the caddisfly Pycnocentrodes spp. (#9, #30 and #70, 

red). The four most central organisms are the alga Epithemia zebra, the diatom Eunotia 

spp., the fishfly Archicauliodes diversus and Chironomid type 'Diamesid Blond' (#18, 

#19, #49 and #52, orange). Hence, the increasing core of key organisms is perfectly 

unnested (M2 = 0, up to 4 groups). Accordingly, dF is low (0,51), Δ is high (0,14), <k> 

is high F (10,49) and <SpL> is small (2,39). 
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 Figure 16: Fragmentation and reachability tendencies of food webs. A) Evolution of fragmentation 

metrics using F and dF and of dR reachability. B) m-reach tendencies for each m-reach distance value for 

node set of size 1 to 4 for a series of food webs. The majority of food webs (98%) are reached by 2 nodes 

in at most 2 hops.  

 

Apart from the single-node core (n = 1), the larger cores (n > 1) are always composed of 

both plants (e.g. diatoms) and animals (e.g. caddisfly). On the contrary, in less connected 

and less compact networks, nestedness is higher, so a multi-species approaches fairly 

reinforce the results of single-species analyses. One example is the Dempsters tussock 

grassland in autumn (Figure 18B). Here, the single most central organism in the network 

is Unidentifiable detritus (#0, black). The most central pair is Unidentifiable detritus and 

Terrestrial invertebrates (#2, blue). The group of the three most central network positions 

are Unidentifiable detritus, and the caddisflies Olinga feredayi and Tiphobiosis sp. (#68 
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in orange and #76 in red). The four most central organisms are Tiphobiosis sp. as well as 

the alga Epithemia zebra (#18, yellow), another alga Spirogyra sp. (#37, yellow) and a 

mayfly Nesameletus ornatus (#66 yellow). Here, the composition of the core is a little bit 

more nested (M2 = 47,22) and, accordingly, dF is somewhat higher (0,53), Δ is lower 

(0,12), <k> is a little lower (9,88) and <SpL> is longer (2,47). The Supplementary 

material shows the nestedness patterns for each food web. The nestedness patterns for 

each kp-set iteration (data not shown) does not allow to compare the nestedness patterns 

for specific species in different food webs, limiting the search for keystone species. It 

must be noted, however, that node #0 is almost always Unidentifiable detritus (or some 

similarly large aggregated group, e.g. Terrestrial invertebrate remains), underpinning the 

importance of inorganic material for the development of ecosystems. In many networks, 

this is part of the key player complexes. Biologically speaking, this is an artefact: the 

detritus is clearly a well-connected component of food webs. 
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Food web F dR dF M1 M2 M3 

aka a 100 100 80.56 100 77.78 0 

aka b 100 100 94.44 91.67 77.78 0 

ber 94.44 100 100 86.11 38.89 5.56 

black 100 94.44 77.78 100 41.67 5.56 

broad 100 100 94.44 61.11 5.56 0 

cat 100 100 100 100 8.33 16.67 

cow1 100 36.11 86.11 30.56 72.22 16.67 

cow17 100 86.11 100 77.78 33.33 0 

demp au 100 91.67 100 100 50 0 

demp sp 100 100 55.56 100 72.22 0 

demp su 50 100 27.78 100 47.22 0 

german 100 69.44 72.22 63.89 8.33 0 

healy 100 100 100 94.44 5.56 16.67 

kyeb 100 100 100 94.44 27.78 0 

lilkye 91.67 100 100 94.44 16.67 0 

martins 100 47.22 83.33 66.67 22.22 0 

narr 91.67 100 94.44 100 41.67 8.33 

north 100 91.67 66.67 91.67 72.22 5.56 

powder 100 100 94.44 100 77.78 0 

stony 100 100 100 100 5.56 8.33 

sutton au 100 61.11 91.67 77.78 38.89 0 

sutton sp 100 100 86.11 100 16.67 8.33 

sutton su 100 100 100 94.44 25 0 

troy 100 100 100 100 0 8.33 

ven 100 58.33 94.44 66.67 16.67 0 

carpinteria 100 100 91.67 94.44 77.78 11.11 

cant 94.44 100 100 100 41.67 0 

Table 5: Nestedess computed for the kp-sets of sizes from 1 to 4 nodes for each of the key-player metrics. 

Kp-sets were found using the Pyntacle greedy optimization algorithm.  
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Figure 17: Correlations between nestedness values of m-reach metrics vs. topological features of the 

network. A-D: correlations between m-reach nestedness with a maximum distance length of 2 (M2) and 

distance-based fragmentation (A), density (B), average degree (C) and average shortest path length (D). E: 

correlation between nestedness computed for m-reach at a maximum distance of 3 (M3) and average 

degree. 
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Figure 18: Network views of two food webs and the kp-sets found using the m-reach metrics. A) Sutton 

tussock grassland in spring (sutton sp) food web and the identified keystone species using m-reach group 

centrality metrics. In black the set of size 1, in blue the set with size 2, in red the set with size 3, in orange 

the set with size 4. B) Dempster tussock grassland in autumn (demp au) food web. In black the set made 

with size 1; the set with size 2 includes both the black and the blue sets; the set with size 3 includes the 

black set, the orange set and the red set. Finally, the set with size 4 includes the orange and the yellow sets. 

 

It is worth noticing that Unidentifiable detritus, even if it is frequently the key-group with 

size 1, is frequently missing in larger key-player sets (e.g. for n = 4 in the demp au food 

web). So, even if it single-handedly dominates the network structure, its position is not 

significant anymore if we think in terms of a larger network core. Apart from the large 

aggregated groups typically being in the center of the network, the four organisms that 

can be in key position also in single-species cores (n = 1) are the diatom Fragilaria 

vaucheriae (#19 in the broad food web), the shore crab Hemigrapsus oregonensis (#45 

in the carpinteria food web), the mayfly Deleatidium spp. (#34 in the north food web) 

and the diatom Rhoicosphenia curvata (#16 in the powder food web). Hemigrapsus 

appears in all of the four studied kp-sets in the carpinteria food web (n = 1, 2, 3, 4). Some 

communities are described by several versions of the food web (e.g. seasonal versions 

like demp au, demp sp, demp su). In some cases, these versions differ a lot in nestedness 

(demp and sutton), while in others there is only a small difference between the versions 

(aka, cow). 
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4. Conclusions 

The dynamical behavior of complex ecological systems can be dominated by a few 

critically important components. Finding these could dramatically increase our 

understanding, the predictability of models and the efficiency of management efforts. We 

studied a comparable set of empirical food webs and identified the structurally most 

important n nodes in them. Whether or not these small sets were nested was correlated to 

some topological properties of these networks.  

Network features influencing nestedness can be regarded as topological constraints on 

the predictability and efficiency of management and systems-based conservation. It 

remains unclear to us how can M2 and M3 be negatively and positively correlated with 

<k>, respectively. There is a need for a better understanding of the biology of the key-

groups and the ecology of nested vs non-nested communities. If certain groups (e.g. 

zooplankton, diatoms) appear frequently in the core of food webs, these can be thought 

to be real keystone species. This is especially important if the core is nested: this means 

that the community is really dominated by a single species. We still know nothing about 

the kinds of communities (or the set of abiotic factors) that can be associated with nested 

patterns. Biologically speaking, this is the most promising future research line.  

Our results are based on a set of 27 empirical food webs in the size range between 48 and 

128 trophic groups. This is the typical size scale for food webs in the literature. All the 

webs were described by the same methodological standards, so they are comparable to 

each other. In order to see if these results are generalizable, research is needed in at least 

two directions. First, one wants to see if topological properties scale with network size. 
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For this, much larger networks should be studied – and the topological properties studied 

here can be more and more relevant and interesting for larger graphs. The limitation here 

is that empirical networks are not larger. Much larger networks (N>500) could be 

constructed by dramatically increasing the resolution of trophic groups (e.g. by adding 

bacteria and replacing trophic groups by biological species) but these networks would not 

be biologically comparable to the present ones (even if being mathematically more 

interesting). Second, toy networks of the same size ranges can be generated by various 

algorithms (i.e. by using the pyntacle generate command) and empirical topologies 

could be compared to the theoretical distributions. This kind of randomization analysis is 

fairly straightforward in community ecology; however, it is not easy to see which 

generative algorithms give the most realistic results as the nature of the current models 

available in the ecological community yield particular issues that must be addressed (W. 

Fox, 2006; Williams and Martinez, 2000). These studies could reveal if the reported 

relationships are universal properties of networks in general or they are specific to only 

food webs for some biological (ecological) reasons. If the results are food web-specific, 

we need to understand the biological reasons. If the results will be shown to be of general 

nature, conclusions can be drawn also in other fields of research. For example, terrorist 

networks have been shown to have large average shortest paths and low density (Krebs, 

2002), properties suggesting that their efficient “management” is possible – in the context 

of homeland security. This work is of mostly conceptual and methodological nature. We 

suggest that the search for the cores of ecosystem networks opens several research lines 

that could massively contribute to systems-based conservation biology and management, 

with applications ranging from marine fisheries to pollination systems. 
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Characterization of sex-specific mechanisms of aging in correlation 
networks of adult Drosophila Melanogaster 

1. Background  

Aging is a natural process that occurs, continuously, through the entire individual’s life. 

This process develops a progressive loss of physiological integrity, leading to impairment 

of vital functions, increased vulnerability and, finally, to death. This deterioration is the 

primary risk factor for major human pathologies, including diabetes, cardiovascular 

disorders, neurodegenerative diseases, and cancer. The identification of the markers of 

aging is one of the major challenges of biomedical research of the 21st century. One of 

the major hallmarks of aging was the discovery that the progress in aging is controlled, 

to some extent, by genetic pathways and biochemical processes that are evolutionarily 

conserved across complex multicellular organisms. The expansion of this field parallels 

that of cancer biology: the continuously increasing availability of molecular data in 

cancer research from the early 2000s onwards allowed to better understand the molecular 

mechanisms underlying cancer initiation and maintenance. This was possible by merging 

and studying together several kinds of data, from metabolomics to epigenetics (Fouad 

and Aanei, 2017; Hanahan and Weinberg, 2011). The current scientific consensus 

supports nine main hallmarks of physiological aging, which can be manipulated 

experimentally to accelerate aging or ameliorate the health span: genomic instability, 

telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient 

sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered 
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intercellular communication (López-Otín et al., 2013). A major challenge is to dissect the 

interconnectedness between the candidate hallmarks and their relative contributions to 

aging, with the final goal of identifying pharmaceutical targets to improve human health 

during aging, with minimal side effects. Transcriptional changes are the core of these 

hallmarks since the reshaping of the transcriptome constantly models these processes. 

Changes in the expression levels and interactions of multiple gene networks occur in an 

aging multicellular organism.  A major challenge is to understand which pathways and 

processes are altered and thus contribute to the manifestation of the hallmarks of aging. 

The overall balance of these events articulates at the organismal level into the integrative 

hallmarks to achieve the “aging phenotype” (Aunan et al., 2016).  

A growing body of evidence (Frenk and Houseley, 2018; Kenyon, 2010; Seim et al., 

2016) suggests that changes in the levels of expression of different genes reflect in 

changes in pathways which contribute to the manifestation of different hallmarks. These 

changes occur relatively early in life (Aunan et al., 2016; Bryois et al., 2017). In the past 

years, many studies have focused on describing the aging-related transcriptomic changes 

(da Costa et al., 2016; Doroszuk et al., 2012; Swindell, 2009). For technical and economic 

reasons, most studies on human (and vertebrate models) aging transcriptomics have 

focused on one or few cell types from single or few tissues (Boisvert et al., 2018; 

Haustead et al., 2016; Wood et al., 2013). Such conditions fail to underpin how each 

pathway contributes to the “aging phenotype” at the organism level. In order to overcome 

this difficulty, several studies in whole invertebrates have proven insightful. These 
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studies have mainly been conducted on Drosophila melanogaster in different times of 

development by means of the microarray technology (Girardot et al., 2006; McCarroll et 

al., 2004) (Zhan et al., 2007). Analysis of parts of the body of this organism as well as of 

the whole organism determined a large number of sex-specific transcripts downregulated 

during aging and a set of age-specific changes, correlating to a limited number of 

biological processes differentially expressed in the head or thorax of the fly (Carlson et 

al., 2015). Refinement of spatial-temporal expression of these results by Zhan et al. (Zhan 

et al., 2007), showed that gradual changes in different aging tissues have little overlap. 

However, these pioneering studies were performed using microarray platforms and did 

not explore sex-specificity that could have a reshaping effect on the aging phenotype. 

Currently, high-throughput RNA sequencing (RNA-Seq) allows for a higher sensitivity 

even for lowly expressed transcripts and a wide range of techniques that can be used to 

model the expression data according to the research aims. Among the landscape of 

possibilities, correlation networks have grown in popularity in the last few years as they 

enable the integration of large transcriptional datasets (Li et al., 2015; Liseron-Monfils 

and Ware, 2015). Co-expression network analysis allows the simultaneous identification, 

clustering, and exploration of thousands of genes with similar expression patterns across 

multiple conditions (co-expressed genes). Their use allowed for a better understanding of 

the functional dynamics of gene interplay, to the characterization of biological processes, 

and to the study of the expression dynamics of complex disease mechanisms 

(Emamjomeh et al., 2017). By means of gene correlation networks, it was possible to 

define modules of tightly knit of co-expressed genes and to identify peculiar gene 
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signatures related to clinical traits of the human prefrontal cortex of old human brains 

when compared to young ones (Hu et al., 2018). It was also possible to reveal aging-

related gene/pathway and cross-tissue relationships that had been observed for a long 

time by physiologists without being validated at the molecular level (Huang et al., 2011). 

The human brain co-expression network, in particular, was the object of intense studies, 

as it was also possible to spot that schizophrenia and normal human aged brains show 

similar patterns of co-expression in the frontal cortex (Kim et al., 2018). These works, 

however, lack the characterization of the co-expression network communities that are 

embedded within aging tissues. 

In the present study, we tried to extend the current knowledge of aging mechanisms in 

Drosophila and the techniques that are based on co-expression networks using the theory 

of graphs. Centrality indices and algorithms for the measurement of team-play effect of 

conserved genes in both sexes were used to assess their importance within the co-

expression modules. We made use of publicly available RNA-Seq data (Graveley et al., 

2011), to build co-expression networks for male and female flies using the Weighted 

Gene Clustering Network analysis (WGCNA) (Langfelder and Horvath, 2008) method. 

These networks were then compared. A list of genes that are important in the architecture 

of sex-specific modules was finally obtained. We studied the functional enrichment of 

sex-specific genes in female and male flies using the Gene Ontology. We then assessed 

the common genes between the paired overlap consensus and each sex-specific module. 

To assess their importance in the corresponding networks, we applied local and global 
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centrality indices on each sex-specific correlation network. This revealed several groups 

of genes that can be considered potential markers of the sex-specific aging process. This 

work is part of a broader analysis of sex and aging in fly and serves as a backbone to 

select candidate genes to be screened using other data wrangling techniques and in vitro 

assays.  

2. Co-Expression analysis of sex-specific transcriptomes reveals different co-

expression module hubs  

In a first step, we sought to reconstruct stage-specific correlation modules of co-

expression for male and female flies. Using the data from (Graveley et al., 2011), we run 

the Weighted Gene Co-expression Network Analysis (WGCNA) method on RNA-Seq 

data obtained on samples of of adult flies. The procedure for detecting these modules is 

described in Materials and Methods, section 5.2. This analysis allowed to retrieve 27 

modules for male and 28 for female. The size and number of these showed a remarkable 

variance, both within the same sex and between genders. The majority of genes in males 

was clustered in 6 big modules, each containing more than 500 genes (blue cluster 

N=535, brown N=688, brown2 N=1264, floral white N=536, and pale turquoise N= 

2280) (Figure 19, left panel). The network of co-expression in females was centered 

around two hub co-expression modules: black (N=2461) and turquoise (N=2280) (Figure 

19, right panel). In both cases, half of the coding genes did not cluster together (56.6% 

for male and 50.6% for female). We then sought to analyze the interplay among these 
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modules. We summarized the overall expression values within modules using the module 

eigengenes (Materials and Methods, section 5.2). We assessed the relationships between 

the eigengenes by computing the correlation among summarized expression levels and 

by using hierarchical clustering to identify the groups of synchronized module 

eigengenes. This allowed calculating also the distance between modules. In males (Figure 

20), we observed that the majority of hub module eigengenes exhibited positive 

correlations with other small hubs, except for the brown2 and pale turquoise hubs that 

grouped together. In female (Figure 21), the black hub was separate from the other 

module eigengenes, while the turquoise module eigengenes aggregated with a series of 

smaller module eigengenes: salmon4 (N=34), darkorange2 (N=44) and red (N=215). This 

suggests that the turquoise hub may function as an aggregator of smaller functions, 

possibly leading to a hierarchical organization between turquoise and its neighbors. 

To conclude the exploration of sex-specific modules, we performed gene set enrichment 

analysis (GSEA) on each module. The enriched functions were aggregated into macro 

functional categories by REVIGO (Supek et al., 2011). Treemaps for each module, 

depicting the most important biological processes (BPs) represented in each module, 

were created. Figure 22 shows the most notable example, which is the bisque4 module 

(N=54) that has been characterized later in this chapters by means of network analysis: 

this module is represented by a plethora of BPs, which are summarized into two macro 

functional categories important for aging: the oxidative stress-related processes and the 
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metabolic functions. This reinforces the idea that the aging process is altogether sustained 

and fed by modules of co-expressing genes. 
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Figure 19: Bubble plots representing the modules and their sizes of co-expressing genes in the population 

of female (right) and male (left). 
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Figure 20: Clustering dendrogram (upper plot) that summarizes the eigengenes correlations (lower plot) 

in male co-expression networks. 
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Figure 21: Clustering dendrogram (upper plot) that summarizes the eigengenes correlations (lower plot) 

in female co-expression networks. 
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Figure 22: GO enrichment as summarized by REVIGO in a treemap showing the most important BPs for 

the bisque4 co-expression module in the male flies. Aggregated processes have the same colors, and the 

aggregated GO processes are shown in bold in each group of tiles.  

 

3. Network analysis of consensus overlap reveals common key-players in male and 

female co-expression modules in Drosophila 

Gene co-expression networks constructed from Drosophila RNA-Seq data allowed to 

capture the relationships between genes. The built of the sex-specific functional modules 

bridged the gap between individual genes and emergent global properties of the interplay 
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among genes in the two genders. This variability may underlie a different contribution of 

genes in the establishment of different biological processes in aging. Some biological 

functions could be performed by the same genes, while others can be more associated to 

one sex than another. For this reason, we identified common mechanisms of co-

expression by building a common co-expression network between both sexes in order to 

find consensus modules across the two genders (Langfelder and Horvath, 2007; 

Langfelder et al., 2013). A total of 18 co-expression consensus modules were found. 

These modules include genes that premusibly participate to common functional 

mechanisms among the two sexes. We measured the preservation index between the 

consensus network and the sex-specific networks, discovering that the sex-specific co-

expression networks and the consensus network were moderately well-preserved 

(preservation=0.6), with a greater contribution on the consensus network of the male 

dataset than the female one (data not shown).  

We then reasoned on the common features. First, we identified the common genes 

between each sex-specific module and selected only significant overlaps between each 

consensus/sex-specific module pair with a hypergeometric test (Figure 23, both 

matrices). Significant gene overlaps were then traced back to the original sex-specific 

modules and their orchestrated effects of each overlap were explored by measuring the 

distance-based fragmentation (dF) key-player measure before and after node removal. 

We found that, on overall, the removal of the overlaps had a double effect on the initial 

network fragmentation status. Removing some nodes resulted in an increase in 
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fragmentation, while removing other nodes resulted in a decreased fragmentation, 

suggesting that these last nodes might play peripheral roles in the network. We focused 

our attention on the bisque4 male module, identified before. This small module, 

composed by 37 nodes and 358 edges, has a significant overlap with the magenta 

consensus module (n=16, -logo-value=11), whose removal increased the overall module 

fragmentation by 10% (dF=0.1), as shown in Figure 24, top panel. We then evaluated 

the overlap with the turquoise female module (-logp=18) and found that its removal did 

not modify considerably the fragmentation status of the network, with a <0.2% increase 

(dF<0.001) (Figure 24, bottom panel). On overall, these findings suggest that consensus 

modules are able to spot key players selectively, pinpointing that sex-specific genes have 

different functional roles in aging according to the gender of flies. 
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Figure 23: Number of overlapping genes between sex-specific (rows) and consensus co-expression 

modules (columns), for male (upper plot) and female (lower plot) flies. Numbers represent counts and the 

colors highlight the significance of the overlap between the two gender datasets. 
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Figure 24: Distance-based fragmentation measured for the male bisque4 co-expression module (top) and 

the female turquoise co-expression module (bottom) before and after overlaps removal. Dotted red line 

shows the the initial fragmentation value. Point colors represent the consensus module from which the 

overlap has been derived. 
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4. Conclusions 

The aging phenotype is not the consequence of a single gene malfunctioning, but of the 

constant, concerted, transcriptome-wide modification of gene abundances over the 

lifespan on an adult individual (Harris et al., 2017). The relationship between sex and 

aging has been object of intense researches over the past few years (Berghella et al., 2014; 

Harris et al., 2017; Kamei et al., 2018). Multicellular model organisms provide an ideal 

benchmark on which to study the dynamics of aging, and the small fly Drosophila 

melanogaster is a key organism to characterize aging processes due to its short lifespan 

and its low maintenance cost (Girardot et al., 2006); the search for molecular determinant 

of aging is already begun. In this study, we provided an analytic blueprint for the 

exploration of the relationships between sex and gender in the fly. We used publicly 

available adult fly RNA-Seq data and showed that modules of correlation networks 

strongly differ from adult and female flies in size and composition. A vast portion (over 

50%) of the Drosophila correlation networks is scattered, and not connected enough to 

trace their origin to a single co-expression module. These preliminary data suggest that a 

consistent part of the transcriptome of female and male flies does not depend on tight 

mechanisms of co-expression for determining their regulation. Moreover, males exhibit 

a more homogeneous distribution of genes within modules, with a series of medium-sized 

hubs that are supported by small hubs, each devoted to its functional, cellular tasks. We 

hypothesize that the failure (or removal) of one of these hubs may not bring major 

perturbation to the overall co-expression network architecture, because of the distributed 
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load of biological processes that is compensated by other co-expression modules. Female 

co-expression modules, on the other hand, lack this homogeneity and are completely 

summarized by their two giant hubs. While this modular configuration makes the removal 

of one of them critical for the overall co-expression network, this should occur unlikely 

by simply removing sets of genes. Moreover, since the majority of biological processes 

are exerted by genes clustered in these modules, the female flies are more subjected than 

males to bear the consequences of the aging process. Then, to assess if part of each sex-

specific network organization was shared across different modules, we built a consensus 

correlation network and used it to derive the consensus modules This analysis showed 

that the two genders contribute differently to all the correlation network modules. While 

a weak preservation value was found among the consensus module and its sex-specific 

counterpart, the consensus between the two transcriptomes was marginal, with genes of 

a sex-specific module spread over many other consensus modules in the opposite gender 

counterpart. The different gene distribution can have dramatic effects on the overall 

architecture of the two co-expression transcriptomes. This dissimilarity was found also 

at the module level. In fact, common genes among two different co-expression modules 

may have different topological importance, thus not contributing equally to their 

corresponding networks of origin. This concept pointed us to characterize the common 

genes in the consensus modules and their counterpart, to assess their topological 

importance. Group centrality metrics such as the key-players were ideal candidates to 

explore this contribution to the consensus network since they could measure the team-

play effect that these genes exhibit in their network niche altogether. We focused on the 
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overlap between bisque4, a small module of the male fly found relevant in the oxidative 

stress and the metabolic processes and the turquoise female co-expression hub, a giant 

subcomponent of the female co-expression network. We found that the contribution to 

the overall fragmentation of the network is higher when removing the overlapped genes 

than its female counterpart, a clear index of how the organization of the communities 

within each co-expression network differs greatly, with a higher degree of conservation 

in the turquoise female network. All in all, these data point to different mechanisms of 

aging between genders in fly. 
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Discussion 

 

With the increased availability of biological data, Biology is questioning its roots. High-

throughput techniques, coupled with novel massive scale assays and computer science 

advancements are producing data faster than what researchers take to analyze them and 

yielding results. Data regard each layer of the omics world, from genomics to 

epigenomics. They make increasingly more sense if considered together, namely if 

shifting from the classical reductionist approach, that focus on the individual molecules, 

to the holistic view, which considers, instead, the whole system of molecules taken 

together. Besides its roots dates much earlier than these couple of decades, Systems 

Biology is the ideal framework to make this transition possible (Westerhoff and Palsson, 

2004). The field takes from the reductionist approach to overlap a holistic approach, thus 

studying how a system is made and the relationships among its components.  

The knowledge of how a system is shaped is crucial. Its particular form has direct 

consequences on the observed phenomena of interest. It has been proven, in fact, that the 

geometrical organization of a system, also known as topology, tightly characterizes the 

dynamical behaviors of the system itself. This is particularly important in the context of 

molecular biology, where changes between the patterns of interaction between genes or 

their protein products can have dramatic consequences on the system itself (Cho et al., 

2016). Moreover, by predicting the functioning of a system, a systems biologist can 
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foresee which perturbations might lead to a new or altered phenotype (Cho et al., 2016). 

Networks, which are simple mathematical abstractions that model the interactions among 

components of a system, are at the core of Systems Biology. By means of Graph Theory, 

we are able to spot network features using a wide range of mathematical metrics, which 

study the centrality, namely the importance, of single entities with respect to the system’s 

functional behavior.  

This work aimed at exploring the potential of Network Biology in different biological 

areas of research. We first used widely known centrality indices to study the regulome of 

miRNAs, short non-coding sequences that modulate gene expression in colorectal cancer. 

By first identifying differentially expressed genes between CRC specimens and their 

matched normal tissues, we reconstructed the interactome of deregulated proteins in this 

disease. We then performed an integrative analysis of mRNA–miRNA and miRNA–

miRNA interactions and identified two cancer-protection and nine cancer-favorable 

modules of genes, providing interesting evidence on mRNA–miRNA crosstalks in CRC. 

The analysis of the miRNA regulome also allowed to derive a series of miRNAs, chosen 

through a core-set of local topological centrality indices, that controlled important key 

genes in the process of CRC development. These resulted to be controlled, in turn, by the 

deregulated expression of miR-145, which we defined a master regulator of the small 

non-coding transcriptome and, hence, of some critical biological functions involved in 

the carcinogenesis. 
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The aforementioned node indices, e.g. degree and betweenness, are well-known in 

molecular network analysis and are widely used for tackling the most basic problems in 

network analysis. However, the landscape of centrality indices is large, as networks are 

used as a reasoning framework in several scientific disciplines, from Social Sciences to 

Ecology. These indices are not necessarily local or global in nature but can account for 

other levels of detail. For example, one could reason on the team-play effects of a group 

of nodes in a network, and their overall contributions to the topology and the information 

flow within it, rather than sticking to classical centrality indices. These classes of metrics, 

mostly unexplored by the molecular network community, can be crucial to pinpoint the 

role of groups of nodes in a network. For example, it is common knowledge that, even if 

a gene exhibit an extraordinary pleiotropic character, pathways and processes are rarely 

deregulated (activated or silenced) by a single gene perturbation (El-Brolosy and Stainier, 

2017; Xu et al., 2009). The perturbation of a group of genes can instead have major effects 

on the same network, thereby deranging the cell’s normal state.  

Group centrality metrics enable to screen and evaluate for these types of dynamics. In 

line with these arguments, we introduced Pyntacle, a Python 3 library and a command 

line cross-platform tool for the exploration and search of groups of nodes, also known as 

key-players, that can potentially affect the fragmentation on the network, when removed, 

or that can be used as proxies to quickly reach the boundaries of a network. Pyntacle was 

equipped with the most disparate tools and algorithms for local and global topological 

studies, in order to make a swiss knife tool for network analysis.  
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We made huge efforts to make Pyntacle available through different channels. A website 

was provided (http://pyntacle.css-mendel.it) with extensive documentation and case 

studies. To boost Pyntacle performances, we equipped it with a series of algorithms that 

execute algorithms efficiently both on individual CPU processors, as well as in parallel 

on multicore processors and on CUDA cores of HPC graphics card, NVIDIA-enabled. 

To test the ability of Pyntacle to spot key-nodes, we compared Pyntacle performance 

versus those of a R library, keyplayer, which similarly performs group centrality analysis. 

Pyntacle outperforms this library by several orders of magnitude and is able to spot key-

players even with large graphs, as well as with the interactome of small multicellular 

eukaryotic organisms, such as the one of the small nematode C. elegans. Pyntacle is 

actively maintained and reviewed and future plans include the extension of its 

functionalities with novel topological indices, which are used in Ecology and Social 

Sciences, and the improvement of its performance, allowing it to search and find key-

players through the greatest biological network known to date: the human interactome 

(~20000 coding proteins).  

We tested the usefulness of Pyntacle in two studies, presented in this work. The first one, 

to date in press, is a methodological study in the area of Network Ecology. In this work, 

we explored the role of key-players in a series of food webs, binary graphs that depict 

trophic relationships among species in an ecosystem. Key-players of different sizes were 

computed for each of the group centrality metrics available in Pyntacle, and a measure of 

nestedness, a probability that a smaller set of size k is included in a bigger one j, was 

http://pyntacle.css-mendel.it/
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measured. Through nestedness linked to a reachability measure (i.e., m-reach of distance 

2), we found a positive correlation between the average degree of <k> of food webs and 

reachability, a feature more relevant in tightly connected networks than in sparse graphs. 

Network features correlated with nestedness can be regarded as topological constraints 

on the predictability and efficiency of management and systems-based conservation, 

hence providing a series of insights useful to decide which species to take into 

consideration, a task that is of increasing importance considering the current warnings on 

the climate changes and ecosystems deterioration.  

The second study is instead a classic example of network analysis to infer structural 

properties of molecular networks. This work, currently ongoing, is part of a more general 

effort to identify the role of sex in the aging process in a model organism, the fly 

Drosophila melanogaster. In this work, we reconstructed the co-expression network 

architecture of adult female and male fly specimens using publicly available RNA-Seq 

data measured along the developmental stages of the male and female flies. These 

networks were built by means of the Weighted Gene Clustering Network Analysis, a 

computation tool that allows building a series of gene-to-gene relationships by means of 

fine-tuned measures of signed weighted correlations, other than raw correlation 

coefficients. It also allows the detection of modules of co-expression, communities of 

tightly linked nodes that exhibit strong inter-correlations. This first step of analysis 

concluded that half of the coding and non-coding transcriptome of the fly is located 

outside the identified communities, pointing to them as candidates for being object of 
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regulation by other means other than co-expression. The genes belonging to the 

communities, on the other hand, were differently distributed through the two stages, 

showing that the underlying architecture of the two genders is variable to some extent. 

This is expected, as during adulthood, female and male flies perform reproduction, hence 

their overall transcriptome abundance may exhibit different properties that require a 

reshaping of these connections. Sex-specific gene set enrichment analysis allowed us to 

identify a series of sex-specific co-expression modules that could be linked to the aging 

processes to assess similarities between co-expression modules. We reconstructed the 

consensus co-expression networks of the two genders and compared them with the two 

co-expression networks of the two stages. This analysis showed that common co-

expression modules are weakly correlated to the sex-specific ones, reinforcing our idea 

according to which the transcriptomes vary based on the genders. We then computed the 

overlaps between each sex-specific modules of co-expression and their consensus 

counterparts and found that these genes had a different effect on the fragmentation of the 

sex-specific modules of origin. These findings would have not been possible without 

Pyntacle, that was also used to perform a series of ancillary operations (not reported here) 

to study the topology of these co-expression modules.  

We showed the power of network models in biological studies. This opens new 

horizons for the analysis of complex molecular networks using non-trivial mathematics. 

This will help making new discoveries, thereby allowing to unravel the complexity of 

life, one index at a time.   
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Materials and Methods 

 

Network analysis reveals RNA-RNA crosstalk and highlights the role of 
societies of microRNAs in human colorectal cancer 

1. Data sources 

The datasets analyzed in this study consists of the transcriptome and miRNAome (Piepoli 

et al., 2012) of a set of 14 matched pairs of tumor and adjacent non-tumorous mucosa 

samples obtained from colorectal cancer (CRC) patients and evaluated with the GeneChip 

Human Exon 1.0 ST array and GeneChip miRNA 2.0 array (Affymetrix, Santa Clara, 

CA, USA). Raw data are available in the ArrayExpress platform with ID: E-MTAB-829 

and E-MTAB-752.  

 

2. Statistical analyses 

Expression data analyses were performed using GNU R ver. 3.0.2 (http://www.r-

project.org) and the Partek Genomics Suite ver. 6.6 (Partek, St. Louis, MO, USA). Low-

level analysis and normalization were performed using GCRMA (Wu et al., 2005) and 

Partek. We evaluated the probeset intensity values and kept only those significantly 

detected in at least six samples. To reduce noise, we also removed the probesets that do 

not map to an Entrez gene. Batch effects were removed by the Partek's batch effect 

removal algorithm. The resulting genes and miRs were tested for differential expression, 

http://www.r-project.org/
http://www.r-project.org/
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using the paired t-statistics. Under the assumption of equal variance between groups, 

allowing a number of false positives equals to 2% of the genome and setting the minimum 

log2 fold change (log2 FC) expression barriers to ±1.5, we achieved a statistical power 

of 0.8. Correlations between miRNA expression values were estimated using the 

Spearman's rank correlation coefficient (rs) using Rcmdr (Fox, 2005). The relationships 

between miR-145 and its direct and indirect partners were ascertained by regression 

analysis. Time-to-event analysis was performed by the Mantel-Haenszel test and the 50% 

percentiles of miRNAs were used to dichotomize patients into low and high expression 

groups. Kaplan–Meier curves were drawn for CRC patients taken from The Cancer 

Genome Atlas (TCGA) dataset (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). A p-

value <0.05 was considered statistically significant. Equality of proportion was assessed 

by the Chi-squared test. 

 

3. Gene selection strategy and in silico functional and pathway analyses 

To make results more reliable, only differentially expressed genes deregulated in at least 

five CRC-related experiments retrieved from Gene Expression Atlas (Kapushesky et al., 

2012) were selected. These underwent functional enrichment analysis against the Gene 

Ontology FAT subset and the set of genes with probe sets included in the used Affymetrix 

chips. Results obtained with DAVID (Huang et al., 2009) web services were cross-

checked with Babelomics (Medina et al., 2010) and considered for inclusion if 

Bonferroni-corrected significance levels did not exceed 5%. General functional classes 

were refined by a mixture test between the elim and weight algorithms (Alexa et al., 

2006). These determined the best enrichment in a bottom-up order, by progressively 

https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
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removing genes from functional classes, which were enriched by more specific 

categories. This analytical procedure facilitated the identification of specific cancer-

favorable and cancer-protection processes, with statistical confidence. Pathways were 

detected by ToppGene (Chen et al., 2009a), where the hypergeometric distribution with 

False Discovery Rate (FDR) correction was used as the standard method for determining 

statistical significance. The P-value cut-off was set to 0.05, while the gene limits ranged 

from 1 to 1500 

 

4. MiRNA selection strategy 

We obtained a list of miRs that were reliably associated with CRC by intersecting the set 

of miRs reported by miRSystem (Lu et al., 2012) to target the genes selected in the 

previous analytical steps with that of miRs associated to CRC, according to the Human 

microRNA disease Database (HMDD) (Li et al., 2014). MiRSystem is a database that 

integrates seven well-known target gene prediction programs: DIANA, miRanda, 

miRBridge, PicTar, PITA, rna22 and TargetScan. The observed identification probability 

(O) for a given gene is the proportion of the queried miRNAs predicted to target that 

gene, whereas the expected probability (E) is the proportion of all miRNAs in the 

miRSystem database predicted to target that gene, i.e. the number of target gene-miRNA 

pairs deposited in the miRSystem database. This expected probability represents the 

chance of one gene being randomly selected by miRNAs. We only considered 

experimentally validated targets, with an O/E ratio greater than 1.5. 
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5. Networks construction 
  

We obtained multigraphs connecting genes by querying a number of heterogeneous data 

sources: (i) Interpro and PFAM, (ii) Gene Expression Omnibus, (iii) BIOGRID and IREF, 

(iv) PathwayCommons, IMID, NCI-NATURE, REACTOME, KEGG, BIOCARTA and 

(v) BIOGRID, BIND, HPRD, INTACT, MINT, MPPI, OPHID, through GeneMANIA 

(Mostafavi et al., 2008). We linked any two genes by an undirected edge, whenever an 

evidence of interaction was found, which we weighted with a value provided by 

GeneMANIA that indicates the predictive power of the selected dataset for that edge. 

Several pairs of genes could be connected by more than one edge. In such a case, we 

agglomerated the weights of multiple edges by the injective function: 

𝑊𝐴𝐵 = ∑ 𝑊𝐴𝐵𝑖

𝑛

𝑖=1
 

where n is the number of edges connecting any two nodes A and B, and i refers to the ith 

edge. WABi stands for the weight of the ith edge. The multiplicative factor 
𝑒𝑛

𝑛
 is meant to 

give increasing importance to multiple links in respect to isolated links (Mazzoccoli et 

al., 2013). We then built weighted graphs with weights over the edges (carrying the 

reliability of the corresponding interactions). 

MiRNAs were given in input to Ingenuity Pathway Analysis (IPA), which wired a 

network based on the Ingenuity Pathways Knowledge Base. This knowledge base has 

been abstracted into a large network, called the Global Molecular Network, composed of 

thousands of molecules that interact with each other. Two molecules (miRNAs and genes 
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here) are connected if there is a path in the network between them. Interactions can be 

physical and functional. We considered only physical interactions and cancer-related 

functions, to build a literature-based network. Dashed edges stand for indirect 

relationships between molecules, i.e. they summarize paths longer than one step. 

The same set of miRNAs was filtered to contain only those that were differentially 

expressed between our CRC and control tissues as well as those that exhibited any 

significant correlation of expression with at least another miRNA (P-value < 0.05, rs > 

0.4 or rs < −0.4). The resulting miRNAs were linked with non-oriented edges, since 

correlation is a symmetric measure, and weighted using the Spearman's rank correlation 

coefficient (rs), to make an experimental network (Piepoli et al., 2012) 

 

6. Topological network analysis 

Genes and miRNAs were assigned a topological importance. All the considered metrics 

were based on the enumeration of links (or shortest paths). Considering a path from s ∈ 

V to t ∈ V, with V the set of nodes, as an alternating sequence of nodes and edges 

beginning with s and ending with t, such that each edge connects its preceding with its 

succeeding node, we calculated the length of a path by summing the inverse weights of 

its edges. The idea is that highly correlated miRNAs or functionally closest genes 

minimize their distance. We calculated degree, betweenness, closeness, radiality, and 

clustering coefficient centrality indices, as described below, and ranked miRNAs and 

genes accordingly. The privileged topological position of miRs was inferred by a 

combination of the IPA's tools: BioProfiler and Upstream Regulatory Analysis. These 
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allowed inferring both which molecule might be considered causally relevant. Activation 

z-scores were conservatively kept to a minimum of ±2. Networks were drawn by 

Cytoscape 3.0 (Shannon et al., 2003). 

 

7. Strongly connected components 

Functional affinities of genes and miRNAs were sought among highly cohesive groups 

of genes and miRNAs. To this end, we used the ClusterONE algorithm (Nepusz et al., 

2012). It handles weighted graphs and generates overlapping clusters. It starts from a 

single node and greedily adds or removes new nodes if they alter the cohesiveness of the 

group. Subgroups of less than five nodes or having a density less than a given threshold 

(set at 3) were discarded. Finally, redundant cohesive subgroups were merged to form 

larger subgroups to make the results easier to interpret. 

 

8. MiRNAome and MAPK signaling pathway profiling after miR-145 transfection in 
CRC cell lines 
 

To identify any functional synergistic pairs of miRNAs, the global miRNA expression 

profile was obtained in the transfected CRC cell lines, as previously reported (Piepoli et 

al., 2012) (ArrayExpress ID: E-MTAB-2704). Briefly, CaCo2, SW480, HCT116, and 

HT-29 cell lines were transiently transfected using HiPerfect Transfection Reagent 

(QIAGEN), with synthetic miR-145 mimic (MSY0000437, QIAGEN), following the 

manufacturer's instructions, as previously described (Panza et al., 2014). The total RNA 
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was purified using the RNeasy kit (QIAGEN) and labeled using the 3DNA Array 

Detection FlashTagTM RNA Labeling Kit (www.genisphere.com). Samples were 

hybridized on Gene-Chip miRNA Array (www.affymetrix.com), washed and scanned 

with an Affymetrix Scanner. MiRNA expression data were then processed and analyzed 

using the Robust Multi-array Average algorithm and deposited in the EMBL-EBI 

ArrayExpress.  

To assess the effect exerted by miR-145 on the MAPK signaling pathway, gene 

expression levels of the transfected cell lines were quantified by using RT2 MAP Kinase 

Signaling Pathway PCR Arrays (SABiosciences). Briefly, mRNA and cDNA were 

prepared using reagents and equipment from QIAGEN (QIAGEN Hamburg, Germany) 

and assayed with the RT2 MAP Kinase Signaling Pathway PCR Arrays (SABiosciences) 

with SABiosciences RT2 qPCR Master Mix according to the manufacturer's instructions. 

Plates were read on 7900 TaqMan (Applied BioSystem, Life Technologies Corporation) 

with 1 cycle of 10 min at 95°C followed by 45 cycles of 15 s at 95°C and 1 min at 60°C. 

SYBR Green fluorescence was monitored at the annealing step of each cycle and 

analyzed with SDS v.2.4 software (Applied BioSystem, Life Technologies Corporation). 

The analysis of the gene expression was completed using the SA Biosciences PCR Array 

Data Analysis Web Portal, as recommended by the manufacturer, and verified using the 

ΔΔCt method. 
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Pyntacle 

Pyntacle is a multifaceted library designed for Python 3.5 version onwards. The package 

has been tested for all the subsequent Python 3 versions including the latest Python 

release (3.7). Pyntacle is designed to be both a Python library and a command line tool. 

The command line interface is more straightforward. It is designed to run automatically 

the majority of Pyntacle functionalities and is addressed to the user with limited 

programming knowledge. On the other hand, the Python 3 code library is highly 

customizable and allows to fine-tune a variety of operations. It targets the experienced 

Python users that perform bioinformatic tasks on a daily basis and would like to add 

Pyntacle to their custom scripts or to their automated pipelines. For users with basic 

programming skills that would still like to use Pyntacle in conjunction with their scripts 

and code, we provided a utility, called octopus, that wraps many of the Pyntacle 

functionalities to finally make them easily approachable.  

Other than providing a series of classical centrality metrics to topologically analyze a 

network, Pyntacle implements a few algorithms for the discovery of important groups of 

nodes, or key players. Moreover, Pyntacle is optimized to perform a series of ancillary 

operations, such as set operations between graphs, community finding, and file format 

conversion. We provide the hereafter a detailed overview of the most prominent 

functionalities, along with some supplementary materials (guides and network 

specifications) described in Appendix. The same material, along with a complete 

documentation, is available on our website (http://pyntacle.css-mendel.it) as a series of 

Jupyter Notebooks. 

 

http://pyntacle.css-mendel.it/


122 

 

1. Technical specifications  

All classes and methods in Pyntacle are arranged in a directory-tree like fashion (Figure 

25). This organization helps to compartmentalize each functionality, to quickly debug 

and control the soundness of the code and to ensure that new functionalities can be added 

without the risk of breaking the whole package.  

We built Pyntacle around the igraph package (Csárdi and Nepusz, 2006), a widely known 

cross-platform library for network analysis. The igraph.Graph object, is the very heart 

of Pyntacle, as it allows to store and manage huge graphs. Wùith igraph, we were able to 

store networks  as big as  the PPI network of  Homo sapiens, stored in APID (Prieto and 

De Las Rivas, 2006), encompassing ~15000 nodes and ~175000 edges. Moreover, igraph 

allows enriching nodes, edges, and the whole graph with attributes, which are 

implemented as unordered collections of keys:values. Pyntacle reserves a set of 

private attributes, which are listed and described in Appendix 2 – Minimum Graph 

Requirements. While the igraph.Graph object allows to represent any type of network, 

the currecnt version of Pyntacle works with simple graphs only. Moreover, to avoid 

ambiguities, nodes are required to have a unique name (stored by default in the name 

attribute). For the same reason, multigraphs, namely networks with more than one edge 

connecting two nodes, are not supported, as edges are identified by the nodes they 

connect.  
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Figure 25: The directory tree of the command line interface and the Pyntacle library: green shapes enlist 

all the possible Pyntacle command line sub-commands. Violet boxes represent the most important Pyntacle 

modules upon which the command line is built. 
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2. Availability, installation, and testing 

Pyntacle is cross-platform and can be installed on a wide range of operating systems 

(Table 6). The main distribution channel is the Anaconda package manager, which is an 

open-source repository and environment management system that runs on Windows, 

macOS, and Linux. Users can install Pyntacle through Miniconda, a mini version of 

Anaconda, which includes the most essential binaries for Python from the version 2.3 

onwards. Miniconda allows to install automatically Pyntacle and to take care of its 

software dependencies. The source code is versioned and made available on the Pyntacle 

official GitHub page: https://github.com/mazzalab/pyntacle. Finally, to make the 

installation and usage of Pyntacle easier, we built a Docker image on Ubuntu 16.04 and 

have made it available on the Docker Hub website: 

https://hub.docker.com/r/mazzalab/pyntacle. The Docker machine contains all the 

necessary requirements to run Pyntacle in a virtualized system and is best suited for 

servers equipped with high-performance computing hardware. A second Docker machine 

was built for benchmarking Pyntacle and the keyplayer R package by (An and Liu, 

2016a). Apart from Pyntacle itself, this Docker machine contains the binary files of the 

keyplayer R package, several sample networks and a Python program that automatizes 

the execution of the benchmarks. Finally, a series of unit tests to ensure that Pyntacle has 

been correctly installed are provided and executed through the pyntacle test 

command by the Pyntacle command line. Appendix 1 contains a Quick Startup Guide, 

available taken verbatim from Pyntacle website, that allows the user to familiarize with 

the core abilities of Pyntacle. 

 

https://github.com/mazzalab/pyntacle
https://hub.docker.com/r/mazzalab/pyntacle/
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 Conda Docker Binaries 

Windows ✔ ✔  

Mac ✔ ✔ ✔ 

Debian/Ubuntu ✔ ✔ ✔ 

Centos ✔ ✔ ✔ 

Other Linux Distributions ✔ ✔  

 

Table 6: Availability of Pyntacle for each supported operative system and all the distribution channels. 

 

3. Shortest Path search strategies 

The shortest path is the minimum least distance that occurs between a pair of vertices 

{i,j} in a network with the assumption that they are connected, meaning that at least one 

path exists that connects the two pairs. If the nodes are disconnected, the distance is 

infinite by definition. In simple graphs, this distance is measured in terms of hop, which 

is the minimum number of edges between the node pairs. This distance is computed 

differently according to the network type: in undirected weighted networks, for example, 

the shortest path is the one with the minimum sum of the weights over the edges that 

make the path between two nodes. Computing the shortest path is a computationally 

intensive task since its execution time increases with the size of the network. Solving the 

problem of finding the shortest path between two nodes in the least amount of time has 

been widely explored. For simple graphs, all shorting paths connecting a given node to 
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all other nodes of a network can be computed by the Dijkstra’s algorithm (Dijkstra, 1959) 

with a temporal complexity of 𝑂(|𝑉|2), where V is the number of nodes of a graph. 

Finding all the shortest paths between any pair of nodes is as challenging as propedeutical 

for the key-player algorithms implemented in Pyntacle. To this extent, we provided two 

parallel versions of the Floyd-Warshall algorithm (Floyd, 1962), one running on 

multicore computers and the other on CUDA-enabled graphic processors. This was made 

possible resorting to Numba, a Python library that translates Python functions into 

machine code optimized for high-performance computing (HPC) hardware and relieves 

the heavy computational requirements (𝑂(|𝑉|3)). However, CPU and GPU accelerations 

are not required with small graphs, since the computing overheads are largely greater that 

the overall computing times on single CPU cores. For this reason, we implemented a 

decision-tree-based algorithm that drives the choice of the best computing mode (i.e., 

single CPU, multi-CPU in parallel or GPU) based on the topological features (i.e., 

number of nodes and density) of the network to be analyzed (Figure 26). As anticipated, 

one of the criteria used to choose the best computing mode is the graph density (Δ), which 

is defined as: 

𝚫 =
2𝐸

𝑁(𝑁 − 1)
 

where E is the total number of edges over the total number of nodes N.  
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Figure 26: A decision tree driving the chosen of the best computing mode for the computation of the 

shortest paths. N=number of nodes in the graph; =graph density; igraph BF: the igraph shortest path 

implementation through brute-force. 

 

4. Canonical and non-canonical centrality indices 

Pyntacle is equipped with a series of classical local and global centrality metrics. The 

complete list of these metrics is available in Table 6, where it is also specified whether 

the measure was borrowed from igraph or designed and implemented in Pyntacle. We 

distinguish between three groups of metrics. 

 Local metrics for individual nodes; 
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 Global metrics for the whole graph; 

 Key-Player metrics for groups of nodes. 

All these metrics are implemented through Python static methods, which thus can be 

quickly used in Python shell environments and in interactive notebooks, as for example 

the popular Jupyter Notebook (Kluyver et al., 2016; Pérez and Granger, 2007).   

Among these metrics, the most known is the degree, k. It is defined as: 

𝑘𝑖 =  ∑ 𝑎𝑖𝑗
𝑗

 

where a is a link between the node i and j. For binary networks, a=1, as multigraphs are 

not currently supported. The degree distribution of all nodes is fundamental to define the 

overall topology of a graph as well as to calculate the average degree (< 𝑘 >) of a 

network: 

< 𝑘 > =  
∑ 𝑘𝑖1≤𝑖≤𝑛

𝑛
 

where n is the total number of vertices of a network.  

Another core metrics universally considered to be a good evaluator of node centrality is 

the betweenness (g). It is defined, for a vertex v, as: 

 𝑔(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡
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where 𝜎𝑠𝑡 is the total number of shortest paths from node s to node t and where 𝜎𝑠𝑡(𝑣) is 

the number of the paths that pass through the vertex v. It is then clear that the betweenness 

is important whenever searching for vertices that are essential in the information flow 

through a graph. Node betweenness (b) is based on the shortest path calculation, 

introduced in the previous section. The same holds for the closeness (c) centrality, which 

is another local metrics based on the reciprocal of the sum of the length of the shortest 

paths between the node of interest and all the other nodes, over the total number of nodes 

in the graph: 

𝑐(𝑣) =
𝑉

∑ 𝑑(𝑦, 𝑥)𝑦
 

where d(y,x) is the distance between vertices x and y. The distance between disconnected 

nodes, in this case, is defined as the reciprocal of infinity, hence 0. The closeness 

measures how easily other vertices can be reached from a node.  

Another good evaluator of centrality is the diameter (D), which is the longest shortest 

path in a network: 

𝐷 = 𝑚𝑎𝑥(𝑑(𝑥, 𝑦)) 

Finally, it is important in real-world networks to measure the degree to which nodes in a 

group tend to cluster together. For this reason, we included in Pyntacle the well-known 

clustering coefficient (CC), an index that can be computed both locally and globally.  The 

global version is meant to quantify the overall clustering in the network, whereas the local 

gives an indication of the embeddedness of individual nodes. The local clustering 

coefficient for a vertex vi is then calculated as the proportion of links between the vertices 



130 

 

within the neighborhood of vi divided by the number of links that could possibly exist 

between them: 

𝐶𝐶𝑖 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑐𝑜𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑣𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑎𝑟𝑜𝑢𝑛𝑑 𝑣𝑖
  

where a triple centered around vi is a set of two edges connected to i. Hence, two measures 

of CC can be derived, both included in Pyntacle. The first one, the average clustering 

coefficient (CC) is defined as the average of all clustering coefficients of a network: 

𝐶𝐶 =  
1

𝑁
 ∑ 𝐶𝐶𝑖

𝑛

𝑖=1

 

where N is the total number of nodes in the graph. High values of clustering coefficients 

of a network denote the tendency of the network to be highly clustered and connected, a 

property that is typical of small-world networks (Watts and Strogatz, 1998).  

The second global clustering coefficient index is the weighted clustering coefficient 

(CCw) (Scott et al., 1996), which is the average of each node’s clustering coefficient 

weighted by their degree values: 

𝐶𝐶𝑤 =  
1

𝑁
∑

𝐶𝐶𝑖

𝑘

𝑛
𝑖=1 . 

Furthermore, the PageRank algorithm (Page et al., 1998) was added to the Pyntacle’s 

collection of algorithms. It was already used in biology to derive hierarchies among nodes 

(Li and Zhao, 2016). Similarly, the radiality (R) metrics, also known as integration 

centrality, was implemented to measure the closeness of a node in respect to the other 

nodes of a network. It is defined as:  



131 

 

𝑅 =
∑ 𝐷 − 𝑑𝑖𝑗 + 1𝑖≠𝑗

𝐷(𝑛 − 1)
 

where n is the total number of nodes in a graph, d is the distance between a vertex i and 

all other nodes j and D is the diameter. High values of radiality denote that a node is 

generally closer to the other nodes. Lower values, on the contrary, mean that a node is 

peripheral. 

The second global clustering coefficient index is the weighted clustering coefficient 

(CCw) (Scott et al., 1996), which is the average of each node’s clustering coefficient 

weighted by their degree values: 

𝐶𝐶𝑤 =  
1

𝑁
∑

𝐶𝐶𝑖

𝑘

𝑛
𝑖=1 . 
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Metric Property of Implemented in 

Degree node igraph 

Shortest Path node igraph and Pyntacle 

Betweenness node igraph 

Closeness node igraph 

Clustering Coefficient node igraph 

Eccentricity node igraph 

Pagerank node igraph 

Eigenvector Centrality node igraph 

Radiality node Pyntacle 

Radiality Reach node Pyntacle 

Diameter graph igraph 

Radius graph igraph 

Number of Components graph Pyntacle 

Density graph igraph 

Pi graph Pyntacle 

Average Clustering Coefficient graph igraph 

Weighted Clustering Coefficient graph igraph 

Average Degree graph Pyntacle 

Average Radiality graph Pyntacle 

Average Radiality Reach graph Pyntacle 

Average Closeness graph Pyntacle 

Average Eccentricity graph Pyntacle 

Completeness - naive graph Pyntacle 

Completeness graph Pyntacle 

Compactness graph Pyntacle 

F group of nodes Pyntacle 

dF group of nodes Pyntacle 

m-reach group of nodes Pyntacle 

dR group of nodes Pyntacle 
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Table 7: The topological indices implemented in Pyntacle, along with the nature of the metrics and their 

source (if ported from igraph or written from scratches in Pyntacle.  

Furthermore, the PageRank algorithm (Page et al., 1998) was added to the Pyntacle’s 

collection of algorithms. It was already used in biology to derive hierarchies among nodes 

(Li and Zhao, 2016). Similarly, the radiality (R) metrics, also known as integration 

centrality, was implemented to measure the closeness of a node in respect to the other 

nodes of a network. It is defined as:  

𝑅 =
∑ 𝐷 − 𝑑𝑖𝑗 + 1𝑖≠𝑗

𝐷(𝑛 − 1)
 

where n is the total number of nodes in a graph, d is the distance between a vertex i and 

all other nodes j and D is the diameter. High values of radiality denote that a node is 

generally closer to the other nodes. Lower values, on the contrary, mean that a node is 

peripheral. The formulation of the radiality lacks precision when a network has more than 

one component, as the distance between disconnected nodes is infinite by definition. 

Considering that many biological networks, such as pathways or correlation networks, 

are often composed of several components, we reformulated the radiality equation. The 

modified version is called radiality-reach (RR) and, for any vertex i belonging to the 

component k, it can be formulated as: 

𝑅𝑅𝑖 = 𝑅𝑖𝜖𝑘  
𝑠𝑘

𝑁
 

where sk is the size of the component k for the node i and where N is the overall size of 

the network. This ensures that the radiality is proportional to the size of the component 
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in a network and that nodes with high radiality and that belong to a bigger component 

counts more than nodes in other components. The radiality-reach has the same numerical 

boundaries than the radiality. It equals 0 when the node is an isolate, while it holds the 

same value of radiality if the network is composed by a single component only. 

Finally, we addressed in Pyntacle the issue of providing the biological community clear 

metrics to measure the sparseness of a graph. The definition of the level of denseness (or 

sparseness) of a network was relegated to abstract concepts or rule-of-thumbs. Generally 

speaking, a dense graph is meant to have a number of edges (E) that is closest to the 

maximum number of possible edges. Conversely, a sparse graph has a number of edges 

that is close to the number of nodes (N). While these assumptions hold true for when the 

number of edges is higher or lower than the total possible number of nodes, this definition 

become weaker when E/N approximates to the 0.5 threshold, as this raises uncertainty in 

whether to classify the network as dense or sparse. Moreover, graphs with different sizes 

may have the same density, still exhibiting different numbers of zeros and non-zero 

elements in their adjacency matrices. For this reason, in the past few decades researchers 

struggled to propose clear and distinct definitions of network sparsity. Ràndic and De 

Alba proposed the compactness index (𝜌) (Randic, 1997) as: 

𝜌 = (
𝑁2

2𝐸
− 1) ∗ (1 −  

1

𝑁
) 

where E and N are the total number of nodes and edges, respectively. This formula is 

asymptotical, as networks with ρ > 1 are classified as dense, while graphs with ρ < 1 are 

classified as sparse. Every graph exhibits either a greater or a smaller ρ number than the 

critical value since this last is not analytically obtainable by the formula. Inspire by this 
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index, other metrics were proposed such as the completeness index  () (Mazza et al., 

2010), which is defined as: 

 =  
𝐸

𝑍
=

∑ ∑ 𝑎𝑖𝑗𝑗∈𝑉,𝑗≠𝑖𝑖∈𝑉

∑ ∑ 1 − 𝑎𝑖𝑗𝑗∈𝑉,𝑗≠𝑖𝑖∈𝑉
 

Although the two indices look really close in most cases, their difference increases when 

the size and the density of the graphs increase. This is a direct consequence of the 

unbalanced formula of the compactness index which underestimates (and hence 

misclassifies) large and extremely dense graphs. Both these metrics, as well as other less 

notorious definition of sparseness are implemented in Pyntacle. 

 

5. Group-centrality and key-player metrics 

The negative key-player problem (KPP-NEG) aims at defining metrics that better 

represent the role of a group of nodes in terms of cohesiveness. Some local metrics exist 

that can be calculated to assess the overall network cohesion, as e.g., the node degree or 

betweenness centrality. However, there are cases where these may fail. Let us consider, 

for example, the toy network in Figure 27 and reported in the original Borgatti’s paper. 

Degree and betweenness would agree to consider node 1 the best option to fragment the 

network. However, this choice has no effect on disconnecting the network, since a link 

between nodes 7 and 8 remains that keeps the total number of components to 1. In 

contrast, removing node 8 does create two components, although itself does not exhibit 

the highest centrality values. 
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Figure 27: The toy network used by Borgatti to explain the KPP-NEG problem. Node 1 (in blue) is the 

node with the highest degree (k=9). However, its removal has no effects on the network cohesiveness 

compared to the removal of node 8 (in red), that creates, instead, two separate components even if its degree 

is lower than that of node 1 (k=6). 

To solve this problem, two metrics were proposed: F and dF. These two metrics are both 

global metrics that represent the overall fragmentation status of the network. The first one 

stands for fragmentation. It counts the number of sub components and is defined as: 

𝐹 =
∑ 𝑠𝑘(𝑠𝑘−1)𝑘

𝑛(𝑛−1)
  

where n is the number of nodes, and sk is the size (number of nodes) of the kth component. 

F ranges from 0 to 1. If a network has only one component, F = 0. If a network consists 

of only isolates, F = 1. 
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The other fundamental fragmentation metric is distance fragmentation, dF and is defined 

as: 

𝑑𝐹 = 1 −

2 ∑
1

𝑑𝑖𝑗
𝑖>𝑗

𝑛(𝑛 − 1)
 

where dij is the distance between the ith node and the jth node and is 1 when the nodes are 

adjacent and 0 (the inverse of the distance) when the nodes are unconnected, as they 

belong to different network subcomponents. As for F, dF ranges from 0 to 1, with 0 

representing a clique (every node is connected to each other) and 1 representing a network 

of isolates.  

Biological networks are less susceptible to fragmentation than other kinds of networks. 

This might be due to their high redundancy that, in turn, works protecting from different 

types of perturbation (e.g., genetic mutations, environment). Perturbations are tackled by 

robust traits, like modularity, bow-tie architectures, degeneracy, and other topological 

features. Robustness is a topological property and is linked to the network density only 

marginally. Removal of only the edge connecting two groups of nodes in a dense network 

might, in fact, be critical and cause the fragmentation of the network. 

The second concern relates to the shortest path calculation for the dF metrics. The 

calculation of the shortest paths for all nodes in a graph is a computationally intensive 

task, whose time of execution scales with the size and the sparsity of a network. The 

formulation of the dF includes the calculation of the shortest paths between any pair of 

nodes in a network. This might be computationally demanding and time-consuming when 

computing dF on a large network (>103 nodes), especially when searching for key-player. 
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Moreover, network density appears to heavily impact on running times, as shown in our 

benchmarks. Multicore/GPU computing techniques were exploited to alleviate the 

overall computational load and increase algorithmic performance.  

The second problem is known as the positive key-player positive (KPP-POS). It concerns 

the accessibility and the information spreading from a group of nodes of a network 

through their direct and indirect partners. This problem can be formulated as follows: 

“Given a graph G, with n nodes and l links, what is the subset of n of size k that can reach 

as many remaining nodes as possible via direct links or shortest paths?” 

This problem introduces the concept of reachability. When dealing with reachability, one 

immediately thinks to the closeness metrics. Thus, the more central a node, the closer it 

is to all other nodes. However, even if node 4 of the graph in Figure 28 has the highest 

closeness measure, it is not the most central node in terms of reachability, since it reaches 

6 nodes with 2 links or less, while node 3 can reach 8 nodes with 2 links or less.  

The conclusion is that canonical metrics may provide sub-optimal solutions, that however 

might be improved by topological metrics designed for groups of nodes. We hence 

implemented two reachability metrics to cope with this issue: m-reach and dR. 

m-reach (Ck) is a reachability measure that counts how many unique nodes can be reached 

from a node set in m steps, where m is the maximum distance (shortest path) between the 

set and the remaining nodes. The formulation is: 

𝐶𝑘 =  ∑ ⋃ 𝑟𝑖𝑗
𝑚
𝑖 𝜖 𝐾𝑗𝜖 𝑉−𝐾   

where m is the minimum distance between any node i belonging to the set K and any node 
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Figure 28: Toy network to explain the concept of reachability. Node 4 (in blue) has the highest closeness 

value (C=0.5). However, if we aim at finding the node that reaches the most of other nodes in two steps or 

less, node 3 (in red) is the best choice although having a closeness value of C=0.48. 

j outside the set, while mr is a reachability matrix, where mrij = 1 if i can reach j via a path 

of length m or less, and mrij = 0 otherwise. The m-reach ranges from 0 to n-k, where n is 

the total number of nodes while k is the size of the set. The disadvantage of this measure 

is that it assumes that all paths of length m or less are equally important and that all paths 

longer than m are wholly irrelevant. 

dR stands for distance-weighted Reach and, as dF, is a more sensitive measure of the 

distances (shortest path) between the node set and the remaining nodes in the graph. It is 

defined as: 

𝑑𝑅 =  

∑
1

𝑑𝐾𝑗
𝑗

𝑛
 

where n is the total number of nodes in the graph and dKj is the minimum distance 

(shortest path) between any member i of the node set and the remaining nodes in the 
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graph. In the toy graph shown in Figure 29, the distances between the nodes {1,7}, which 

make the set of interest, are set to 1 by convention. Thus, dK,1 = 1 and dK,7 = 1. The 

distance from the set to node 5 is 1, since 1 is the length of the shortest path from either 

1 or 7 to 5. Similarly, dK,3 = 1, dK,4 = 2, dK,2 = 2, dK,6 = 2. Hence, dR ranges from 0 and 1. 

It is 0 when the set is completely disconnected from the other nodes. It is 1 when the set 

is adjacent to all other nodes of the network. 

 

 

Figure 29: Toy network to explain the dR metrics. Node 5 (pink) is reach by node 1 in two hops, and by 

node 7 in 1 hops the latter is taken as the minimum distance between the set {1,7} and node 5.   

 

6. Key player search optimizations 

Pyntacle allows to search for the best key-player set (kp-set) that maximizes the 

fragmentation or the reachability of a given set of size k. Two methods currently exist to 
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do that. The first one is a greedy optimization search algorithm. It does not aim at finding 

the best kp-set, as this would require:  

𝑁!

(𝑁 − 𝑘)! ∗ 𝑘!
 

iterations, where N is the size of the graph and k is the size of the group. While these 

operations can easily be performed on small networks (<= 1000 nodes), the increase of 

both the size of the network and of k may have dramatic consequences in terms of 

computating time. The optimization works by first selecting a group of nodes of size k, 

and then by swapping every member in the node set with each other nodes in the graph 

until there is no set with a better centrality value. The following pseudocode summarizes 

the operation performed during any iteration: 

 

1. select k nodes at random to populate the set S 

2. define an initial value for the kp metric of choice for S 

3. for each node u in S and each node v not in S: 

a. compute DELTAkp = difference in the kp-metric if u and v 

were swapped 

4. select the set with the highest DELTAkp 

a. if DELTAkp > max(all DELTAkp recorded), terminate, else: 

b. swap nodes with the greatest improvement in fit and store 

the DELTAkp value and the node set 

5. Go to step 3 
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The greedy optimization is the default method in the pyntacle kp-finder command 

line tool, while it can be enabled using Pyntacle as a library by either importing and using 

the GreedyOptimization class in the algorithms.greedy_optimization 

module or through the add_GO method of octopus. For the moment, in the official 

release of Pyntacle the Greedy optimization cannot run in parallel. The pitfall of the 

greedy optimization method is that, only one kp-set is found for a given metric and it 

might not be the best solution, but only a suboptimal (local minimum) solution.  

To address this issue, we implemented another strategy that implement a brute-force 

search algorithm. As previously stated, this is a computational intensive method and 

requires high computing times that will tend to infinity on a network of even moderate 

size using a modest computing hardware. Thus, we implemented a brute-force search that 

exploits parallel computing on multiple CPUs through the multiprocess python library 

(https://docs.python.org/3.4/library/multiprocessing.html). The brute-force search 

simply enumerates all possible sets of nodes and calculates the selected centrality for each 

of them. Finally, it ranks all sets and returns the best solutions. The following pseudocode 

generalizes the brute-force search for any key player metric: 

1. let N be the number of available threads 

2. define all combinations c of size k for all the vertices v in a graph 

3. assign an equal number of combinations to each thread 

4. for each thread in N: 

a. compute all the values for each subset of k  

5. regroup all the combinations and  

6. select the kp-sets that hold the maximum value for the given kp metric 

https://docs.python.org/3.4/library/multiprocessing.html
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Bruteforce search can be enabled in the pyntacle kp-finder command line tool by 

passing the –implementation brute-force argument, while the number of threads 

can be passed through the --threads argument. If not specified, Pyntacle uses all the 

threads available on the machine in which it is running minus one. In the Pyntacle library, 

brute-force can be invoked using the BruteForce class in the 

algorithms.brute_force module or through the add_BF method of octopus.  

 

7. Ancillary operations 

A plethora of ancillary functionalities was added to Pyntacle. We divided these graph 

operations in two classes: 

 Logical set operations and 

 Community finding algorithms 

The first class of operations is used to perform the union, intersection and difference 

among two graphs as described in (Harary, 1994; Skiena, 1990). For intersection, we 

consider the intersection G3 between two graphs G1, formed by v1 and e1 vertices and 

edges, and G2, with v2 and e2 edges, the common set of nodes and edges between the two, 

such as: 

𝐺3[𝑣3, 𝑒3] =   𝐺1[𝑣1, 𝑒1]  ∩  𝐺2[𝑣2, 𝑒2]  

The union of two graphs on the other hand, is the union of edges and vertices of G1 and 

G2: 
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𝐺3[𝑣3, 𝑒3] =  𝐺1[𝑣1, 𝑒1]  ∪  𝐺2[𝑣2, 𝑒2]  = [𝑣1 ∪ 𝑣2 , 𝑒1 ∪ 𝑒2] 

Finally, the difference graph G3 is the intersection among the set of edges minus the 

connecting edges in common between the two graphs G1 and G2, such as: 

𝐺3[𝑣3, 𝑒3] =  𝐺1[𝑣1, 𝑒1] \ 𝐺2[𝑣2, 𝑒2]  = [𝑣1 ∪ 𝑣2, 𝑒1\𝑒2] 

Community finding algorithms on the other hand are means to divide a graph into several 

induced subgraphs of tightly associated nodes with respect to the rest of the graph. 

Community finding is an open field and different algorithms are used depending on the 

scientific context. In general, there is no correct solution when defining communities, 

because the definition of a community is itself questionable. Each partitioning algorithm 

relies on its definition of modularity, a measure to distinguish how tight is the group of 

nodes identified as a community, and on specific thresholds that are used to distinguish 

one community from another one. For this reason, we implemented some of the most 

famous algorithms in community finding for scale free, small-world and random graphs. 

Specifically, we focused on the fastgreedy algorithm (Clauset et al., 2004), the infomap 

algorithm (Rosvall and Bergstrom, 2007), the leading eigenvector algorithm (Newman, 

2006) and the walktrap algorithm (Pons and Latapy, 2006). The explanation of each 

algorithm is beyond the scope of this work, but to generalize, we will focus on the 

fastgreedy algorithm by Clauset, that works best on large and sparse networks with an 

underlying hub-and-spoke configuration, such as many biological networks. This 

algorithm assigns at first a modularity score on each node of the network based on the 

interconnectedness with its neighbors. Through a series of iteration, adjacent nodes with 

similar modularity scores are merged until the difference between each group of nodes is 

such that they cannot be merged anymore. The threshold for defining the merge cut point 
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is found through a clustering based on Euclidean distances, that dynamically defines the 

modularity threshold according to the distance between branches. Dense networks or 

small networks may not show distant cut points; hence the algorithm could also fail at 

defining distinct communities. Therefore, it is suited for large graphs.   

8. Supported network file formats 
 

Pyntacle is compliant to a variety of network file formats. The first and most common is 

the network representation through adjacency matrix. An adjacency matrix is a squared 

nxn table. 

Both row i and column j indices refer to nodes in a network. Non-zero values filling cells 

(aij) indicate the presence of connecting edges between the relative nodes, so that  

𝑎𝑖𝑗 =  {
≠ 0 if there is an edge from 𝑗 to 𝑖

0 otherwise
 

The values stored in each cell of the matrix represent connection among nodes. Several 

types of matrices exist that can represent different network types, from unweighted and 

undirected to weighted and directed. In Pyntacle, we only support simple graphs. Their 

adjacency matrices will hold ones between two distinct nodes if these are connected by 

an edge, and zeroes otherwise. 

𝑎𝑖𝑗 = {
1 if there is an edge between 𝑗 and 𝑖 ≠ 𝑗

0 otherwise
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Self-loops are not allowed. Adjacency matrices usually have a header, but this is optional. 

In the first scenario (header is present), we assume that the header is in both the first row 

and the first column of the file and identical, like in the example in Figure 30A.  

 

Figure 30: Toy examples of network text file formats supported by Pyntacle. A) Adjacency matrix B) Edge 

list C) Simple Interaction File (SIF). 

 

In the case the matrix does not have a header, the vertices are enumerated from the first 

to the last row. Adjacency matrices can have any file extension. By default, the .adjm 

extension is used. Cells in an adjacency matrix file are supposed to be delimited by 

tabulation (\t, or tab) unless otherwise specified. If not explicitly specified, the separator 

character will be inferred, before resorting to the default choice. 
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Edge Lists files are another common way to store a graph. An edge-list is a list, or array, 

containing pairs of nodes. Thus, each element of the array represents a link directionally 

connecting the first (a) to the second (b) node of the pair. If a network is meant to be 

undirected, each pair a→b must be accompanied by a pair b→a, such as the example 

reported in Figure 30B. We support undirect, unweighted edge lists, separated by a 

uniform separator character. As for adjacency matrices, Pyntacle uses the .egl file 

extension by convention, but files can have any extension as long as they store text. 

Pyntacle was equipped with a parser for the Simple Interaction File (SIF) format. It is the 

most used format by standard application for biological networks analysis and 

visualization, like Cytoscape (Shannon et al., 2003). Its syntax is agile and simple. It 

allows Cytoscape to represent properties of both networks and edges. Usually, the file is 

made by 3 or more columns (see Figure 30C). The first and third column represent the 

source and target nodes with the type of their interaction specified in the 2nd column. The 

order of the columns is just conventional, and it is generally not relevant, as the user can 

choose what is the meaning of these columns in the process of importing a network in 

Cytoscape. 

The last textual file format supported is the DOT file format. DOT is a widely known file 

format with an easy syntax that is well suited to graph plotting. It is widely used by 

graphical visualization tools such as Graphviz (Ellson et al., 2004). The power of DOT 

relies just on its syntax, that allows to interpret and store much graphical information (like 

edge thickness or node colors with gradients), thus representing networks used in several 

kinds of contexts. More information on the DOT file format can be found on the official 

Graphviz documentation. Many tools already support the importing and exporting of 

DOT files, such as the popular NetworkX library. igraph, on the other hand, supports only 
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the exporting of DOT files. We implemented a parser that addresses the specific problem 

of importing undirected networks. 

Finally, networks can be given to Pyntacle as pickled binary files containing igraph 

objects, if these graphs are compliant with the minimum requirements described in 

Appendix 2. 

9. Benchmarks data 
 

We performed benchmarks on a dataset comprising 12 test networks, that are listed in 

Table 8. The dataset contains a variety of small (N<100), medium (N100 and N<1000) 

and large (N1000) sized graphs, stored in binary adjacency matrices. These networks 

come from two sources. Six of them are real networks. The three food webs (carpinteria, 

north, cat) were downloaded from the NCEAS ecological repository 

(www.nceas.ucsb.edu/interactionweb) and have the minimum, maximum and median 

number of nodes among all the food webs available in NCEAS. These case studies allow 

studying the interplay among species using the key-player algorithms, as described in the 

chapter 4 of Results. The Caenorhabditis elegans connectome  (CAEEL_connectome), 

downloaded from wormbase database 

(http://www.wormatlas.org/neuronalwiring.html#Connectivitydata), represents a well-

studied case of a small world network (Towlson et al., 2013). The PPI interactome of the 

small nematode is a well-known example of scale-free topology (Li et al., 2004). The 

advice-seeking ties among global consulting companies (AdvSeek network) is the 

smallest network (N=32, E=55, =0.11089) taken  from (Borgatti, 2006) (Figure 8 in the 

corresponding paper). The biggest is the interactome of C. elegans (N=3303, E=5561, 

file://///vboxsrv/Volumes/wariodrive/Dropbox/Research/BFX_Mendel/Tommaso/PhD_Thesis/www.nceas.ucsb.edu/interactionweb
http://www.wormatlas.org/neuronalwiring.html#Connectivitydata
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=0.00102) downloaded from APID on February 2018. All the networks were converted 

into undirected networks while weights were neglected. Only the largest component of 

each network was considered. 

The remaining six models are binary networks that follow random topologies. They were 

created according to the Erdős–Rényi model (Erdős and Rényi, 1959) by means of one 

of the Pyntacle’s generators. The size of the networks ranges from n=100 to n=1000, 

while the wiring probability ranges from P = 0.3 to P = 0.7 at steps of 2, where P is the 

probability that a link is placed among a pair of nodes. 

Network  Type N E  

Carpinteria NCEAS Food Web 128 1198 0.14739 

North NCEAS Food Web 78 228 0.07592 

Cat NCEAS Food Web 48 107 0.09486 

AdvSeek  Borgatti Case Study 32 55 0.11089 

CAEEL_connectome Neuronal wiring of the nematode C. elegans 279 1960 0.05054 

Random 100-0.3 Artifical  network 100 1492 0.30141 

Random - 100-0.5 Artificial  network 100 2489 0.50283 

Random - 100-0.7 Artificial  network 100 3426 0.76582 

Random 1000-0.3 Artificial  network 1000 149998 0.3003 

Random 1000-0.5 Artificial  network 1000 249983 0.50047 

Random 1000-0.7 Artificial  network 1000 349370 0.69944 

APID_CAEEL Level 2 interactome of C. elegans downloaded from APID 3303 5561 0.00102 

Table 8: Description of the test networks used for benchmarking Pyntacle. N=total number of nodes; 

E=total number of edges, =graph density. Blue, orange and green colors mark big, medium and small 

sized graphs, respectively.  
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10. Benchmarks specifications 

Benchmarks were performed on a custom Docker Image running Ubuntu 16.04, that can 

be downloaded at https://hub.docker.com/r/mazzalab/pyntacle_benchmarks/.  This 

Docker machine was deployed into a local server equipped with 4 AMD Opteron® 

processor 6172 @2100MHz frequency, with 12 CPU cores each, 256 GB of RAM and 

connected by InfiniBand through Mellanox/Intel host bus adapters and network switches. 

CUDA acceleration was not available. 

Pyntacle version 0.2.4 and the keyplayer R Package (An and Liu, 2016b) version 1.0.3 

were installed in the Docker machine. Binaries for the two packages were retrieved from 

Conda and CRAN, respectively. The key-player search was performed by means of the 

greedy optimization algorithm, which was run for all the small and medium-size networks 

described in the previous section. For Pyntacle, we run the keyplayer kp-finder 

command, setting a seed of 100. For the R keyplayer package, we wrapped its greedy 

optimization method in a custom R script, and timing was measured using the default 

timing libraries provided by R version 3.4.  

A kp-set size of 2 was sought with both software. The timing of the greedy optimization 

was calculated only for comparable key-player metrics. The R package lacks for the F 

fragmentation measure, while the dR formulation slightly differs from the one described 

by Borgatti (section 5 of this chapter).  

The remaining key player metrics, dF fragmentation and m-reach reachability, were 

comparable in their formulations. For m-reach, its maximum distance was set to 1 for 

both tools. The maximum allowed execution time for each algorithmic iteration was set 

https://hub.docker.com/r/mazzalab/pyntacle_benchmarks/
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to 1 week. For Pyntacle, the brute-force search for was performed for small size networks. 

Speedup plots for each key-player metric were obtained by dividing the execution times 

measured on single cores over their timings using 4,8,16 and 32 CPU cores. For all 

benchmarks, times were measured in triplicate, and the results were summarized by 

computing the mean of the times 𝜇𝑇 and their standard deviations σ𝑇. 
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The nestedness of food-webs 

1. Food webs 

We used 27 food webs freely available from the NCEAS database 

(www.nceas.ucsb.edu/interactionweb). These describe various, mostly terrestrial 

ecosystems. Before conducting any analyses on them, we deleted isolated nodes and 

small components from the networks and focused only on their giant component (this 

typically meant to delete only 0-5% of the original nodes).  

 aka an (Akatore A, pine forest, Otago, New Zealand);  

 aka b (Akatore B, pine forest, Otago, New Zealand);  

 ber (Berwick, pine forest, Otago, New Zealand);  

 black (Blackrock, pasture grassland, Otago, New Zealand); 

 broad (Broad, pasture grassland, Otago, New Zealand);  

 cant (Canton, pasture grassland, Otago, New Zealand); 

 carpinteria (Carpinteria salt marsh, California, USA); cat (Catlins, pine forest, 

Otago, New Zealand); cow1 (Coweeta1, pine forest, North Carolina, USA); 

cow17 (Coweeta17, pine forest, North Carolina, USA);  

 demp au (Dempsters tussock grassland in autumn, Otago, New Zealand);  

 demp sp (Dempsters tussock grassland in spring, Otago, New Zealand);  

 demp su (Dempsters tussock grassland in summer, Otago, New Zealand);  

 german (German, tussock grassland, Otago, New Zealand);  

 healy (Healy tussock grassland, Otago, New Zealand);  

 kyeb (Kyeburn, tussock grassland, Otago, New Zealand);  

file://///vboxsrv/Volumes/wariodrive/Dropbox/Research/BFX_Mendel/Tommaso/PhD_Thesis/www.nceas.ucsb.edu/interactionweb
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 lilkye (LilKyeburn, tussock grassland, Otago, New Zealand);  

 martins (Martins, pine forest, Maine, USA);  

 narr (Narrowdale, pine forest, Otago, New Zealand);  

 north (NorthCol, broadleaf forest, Otago, New Zealand);  

 powder (Powder, broadleaf forest, Otago, New Zealand);  

 stony (Stony, tussock grassland, Otago, New Zealand);  

 sutton au (Sutton tussock grassland in autumn, Otago, New Zealand);  

 sutton sp (Sutton tussock grassland in spring, Otago, New Zealand);  

 sutton su (Sutton tussock grassland in summer, Otago, New Zealand);  

 troy (Troy, pine forest, Maine, USA);  

 ven (Venlaw, pine forest, Otago, New Zealand).  

 

 

Geographic distribution is thus quite narrow, but this does not seem to have any known 

effect on the results. 

2. Network analysis 

We calculated nine global (macroscopic) topological properties for each network using 

Pyntacle. The number of nodes (N) and the number of interactions (E) are trivial 

properties of every network. We used this information to compute the density Δ of each 

food web (see the “Shortest Path search strategies” section above). For each species in 

each food web, we also computed the degree k, and used it to compute the average degree 

<k> for all nodes in the network. Finally, we computed the clustering coefficient CCi and 
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used it to derive for each network its average clustering coefficient CC and its weighted 

global clustering coefficient CCw. This latter puts larger emphasis on clusters around 

more connected nodes. The whole networks were characterized by the average shortest 

path lengths (<Sp>) and their maximum values, the diameters, D. Finally, the distance 

weighted fragmentation (dF) was computed for each network before performing the final 

key-player analysis.  

 

3. Multi-node centrality 
 

Multi-node centrality analyses have already been performed on different types of 

ecological networks including food webs (González et al., 2016) and habitat networks 

(Rubio et al., 2015). The most central multi-node sets of n = 1 to n = 4 nodes were 

identified for the 27 food webs that solved the KPP-POS and KPP-NEG problems. For 

the latter problem, F and dF where calculated. For the former problem, the m-reach 

centrality (M) with m = 1, 2 and 3 steps (M1, M2, and M3, respectively) and dR where 

computed. Each of these metrics were computed for groups of 1 to 4 nodes. 

4. Nestedness 
 

The nestedness of presence-absence ecological data (Podani and Schmera, 2011) has a 

rich literature with well-developed methods (An and Liu, 2016a; Kelt, 1997; Podani et 

al., 2013). The nestedness approach has also been extended to ecological interactions in 

simple graphs (Fortuna et al., 2010). Here we study the nestedness of ecological 
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interaction networks in a very different way (Benedek et al., 2007; Ortiz et al., 2013), 

quantifying the set–subset relationships of central nodes in a network. We calculated the 

nestedness of central node sets (i.e. the overlap among the sets of size n = 1 to 4) using 

the Nrow metric (Boland and Goel, 2010b). Nrow is the average percentage of nodes of 

the smaller sets that are contained in the larger sets, taking all possible pairs of sets. For 

example, for the food web demp au, the key player sets for M2 (m-reach using a 

maximum distance of 2) n = 1 to 4 nodes were {0} for n = 1, {0 ,2} for n = 2, {0,68,76} 

for n = 3 and {76,18,37,66} for n = 4. For n =1 and n = 2, there is perfect overlap. For n 

=1 and n = 3, there is partial overlap, since the smaller set (n =1) is a subset of the larger 

one (n = 3). For n= 2 and n = 4, there is no overlap, since the two sets have no common 

elements. Averaging all the 6 overlaps, we have Nrow = 47.22, which is the nestedness 

value for M2 in the demp au food web (see the species identities for this food web in 

Discussion). The same was done for the remaining centrality measures (F, dF, M2, M3, 

and dR). 
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Characterization of sex-specific mechanisms of aging in correlation 
networks of adult Drosophila Melanogaster 

1. RNA-Seq data availability and processing 

We downloaded the publicly available data used by Graveley (Graveley et al., 2011) from 

the small read archive (SRA) available at NCBI (accession number ID:SRA009364). This 

dataset comprises 234 raw fastq files corresponding to Drosophila development and 

aging timepoints. Each timepoint encompassed 4 to 6 biological replicates per sampling. 

We assessed read quality using the FastQC (Andrews, 2010) software version 0.11.5 and 

used Trimmomatic (Bolger et al., 2014) version 0.36 to perform read trimming and 

filtering. Specifically, reads were trimmed using a sliding window of 4 base calls and a 

minimum window average PHRED quality of 30. Reads with less than 15 nucleotides 

after trimming were removed.  Reads were mapped by means of Tophat2 (Trapnell et al., 

2009) against the Drosophila genome version 6.10 downloaded from NCBI, following 

developer’s recommendations. Raw counts for each gene were estimated by first piling-

up aligned reads on the Drosophila GFF annotation version 6.13 provided by FlyBase 

(Gramates et al., 2017), encompassing 16,271 genes, by means of the HTSeq pipeline 

(Anders et al., 2014) using the intersection-nonempty criterion for counting features. 

2. Sex-specific co-expression network analysis and module eigengenes detection 
 

To search for modules of sex-specific gene correlation in female and male flies, we made 

use of the Weighted Gene Clustering Network Analysis (WGCNA) R package 

(Langfelder and Horvath, 2008) version 1.64.1. WGCNA includes a series of utilities to 

perform module detection of groups of tightly connected genes and to summarize these 
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modules into module eigengenes. Module eigengenes are used to study the relationships 

between groups of nodes using standard correlation techniques. To build co-expression 

networks, raw counts of adult male and female flies were converted to reads per kilobase 

per million (RPKM) with edgeR (Robinson et al., 2010) and then log2 transformed adding 

a pseudo-count of 1 to correct genes with no counts, following the guidelines described 

in the WGCNA documentation. Counts with no expression over each stage were removed 

by means of the goodSampleGenes function by WGCNA, thereby filtering 4277 and 

759 genes for female and male, respectively. Sample outliers were removed by 

performing an explorative hierarchical clustering on each development stage, and by 

removing samples from male 5-days replicate #1 and #4, replicate #4 and #5 for female 

at 5 days and the replicate #3 for female 30 days.  

Signed correlation networks were derived by computing a signed correlation adjacency 

matrix A. Each cell aij stores correlations measures that lie between 0 (unconnected) and 

1 (fully connected) that are computed using the signed correlation formula: 

𝑎𝑖𝑗
𝑠𝑖𝑔𝑛𝑒𝑑

=  [
𝑐𝑜𝑟(𝑥𝑖, 𝑥𝑗)

2
]



 

where cor is the Pearson correlation coefficient r between any pair of summarized gene 

expression (by average) xij.  is a soft power threshold that is determined by means of the 

pickSoftPowerThreshold WGCNA function. This soft power filters weak and 

negative correlations and allows to approximate the corresponding correlation network 

to a scale-free topology. The threshold for each dataset was set to =20 for both female 

and male and was chosen by looking at the connectance (average degree, <k>) plotted 
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over each soft power value, from 2 to 20, for each dataset. The correlations were then 

used to derive an unsigned Topological Overlap Measure (TOM) (Yip and Horvath, 

2007), an index of connectedness among gene pairs that kept into account the 

connectance of each pair and the contribution of the common neighbors of each gene pair 

using the following formula: 

𝑇𝑂𝑀𝑖𝑗 =  
|𝑎𝑖𝑗 +  ∑ 𝑎𝑖𝑢𝑎𝑢𝑗𝑢≠𝑖,𝑗 |

min(𝑘𝑖, 𝑘𝑗) + 1 − |𝑎𝑖𝑗|
 

where k is the degree and u is any common neighbor of the aij pair. 

Each value of the TOM matrix was then subtracted to 1 for creating a dissimilarity TOM 

(dissTOM) matrix, on which a hierarchical clustering was applied to detect modules that 

were labeled using RGB colors. These modules were then merged if their distance in the 

clustering dendrogram was lower than a threshold (2 for male and 1.7 for female), 

allowing to detect 27 final co-expression modules for male and 25 for female. Finally, 

module eigengenes were derived by computing the principal components of each 

correlation module detected, and another network of module eigengenes was computed 

by means of the correlations among module eigengenes. This module eigengene network 

was then used to assess the similarity and commonality among module eigengenes.  

The genes contained in both the unmerged and merged modules for sex-specific analyses 

were functionally enriched in silico, using the Drosophila Gene Ontology (GO) 

vocabulary downloaded from R on March 2017.  The redundancy in the list of 

significantly enriched GO terms and their summarization in upper-tree GO processes was 

performed by iteratively querying all the modules to ReviGO (Supek et al., 2011), a Web 



160 

 

server that summarizes lists of GO terms by finding a representative subset of the terms 

using a simple clustering algorithm that relies on semantic similarity measures.  

3. Paired consensus analysis of module eigengenes of male and female flies 

We performed consensus module eigengene analysis, described in (Langfelder and 

Horvath, 2007), in order to assess commonalities in the architecture of the corresponding 

adult co-expression networks. We followed the standard procedure described in the 

WGCNA website documentation. In brief, log2 RPKMs for each gene were filtered using 

the goodSampleGenes for multi-leveled expression data available in WGCNA filtering 

a total of xxx genes. Then signed correlations and the corresponding TOM matrices for 

each sex were computed using the same rationale described in the previous paragraph. 

The soft power threshold was raised to 20 for both data sets after evaluating topological 

measures for approximating both networks to a scale-free topology. To correct for the 

statistical variance of the two datasets, we scaled the male TOM such that the 95th 

percentile equals the 95th percentile of the female TOM. A quantile-quantile (Q-Q) 

distribution was estimated to assess the impact of the scaling on the two TOMs before 

computing the consensus TOM and the relative dissTOM. The latter was used to create a 

dendrogram based on hierarchical clustering by means of Euclidean distance. Adjacent 

modules were merged using a dynamic-tree cut algorithm and allowing the algorithm to 

choose the appropriate threshold.   

 

The correlation network of consensus module eigengenes was then compared to each sex-

specific module eigengene network. Correlation among the sex-specific and the 
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consensus module eigengenes was computed along with the preservation, the absolute 

correlation among the two classes of module eigengenes over the total number of 

consensus eigengenes.  

Finally, overlaps among each consensus modules and each sex-specific module were 

assessed by creating a matrix of overlaps containing the common genes between any 

consensus modules and the sex-specific ones. A hypergeometric test was performed on 

each overlap to assess the significance and to filter out overlaps due by chance (-log(p) > 

3). 

4. Network analysis of overlapping genes among consensus and sex-specific 
modules 

We used the overlaps resulting comparing the consensus and the stage-specific modules 

and analyzed their effect on the corresponding stage-specific networks by means of 

Pyntacle. We filtered out non-significant overlaps, the overlaps whose dimension was 

inferior to 10 (n=10) and considered only sex-specific modules of at least 50 nodes 

(N=50). Modules of co-expression were mined from the global correlation networks of 

each stage and correlations were filtered by dividing each correlation distribution into 

quartiles and taking only the upper quartile, to retain only the strongest co-expression 

measures in the module. These induced weighted subgraphs were later turned to 

undirected graphs. 

We first measured the global topology indices for each consensus modules and assessed 

the local centrality measures of module overlap measuring the degree, clustering 
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coefficient, closeness, and the betweenness centrality metrics for each gene in each 

overlap. Moreover, we performed group-centrality analysis using the distance-based 

fragmentation (dF) measure in Pyntacle by means of the pyntacle keyplayer kp-info 

command line tool to weight the effect of the removal of overlapped genes in their 

corresponding sex-specific modules (see “Group-centrality and key-player metrics” 

section). 
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Appendix - Excerpt of Pyntacle site material  

Quick startup guide 

In this brief tutorial, we will show you how to use Pyntacle to find key player nodes (the 

kp-set) through a network using the key-player metrics of fragmentation and reachability. 

Fragmentation is the effect of removing nodes on the communication and structure of a 

network. Reachability is the property of nodes to reach their direct or indirect neighbors 

in a network. Although we will provide here a brief explanation of these concepts, we 

recommend reading the Material and Methods section for detailed description of the key 

player metrics. 

This guide will help using Pyntacle both from your command shell and as a Python 

library. All data used in this tutorial are available for download at http://pyntacle.css-

mendel.it/resources/tutorials/startup_guide/startup_guide_data.zip. 

1. Setting Pyntacle for the first use 

After installing Pyntacle as described in Installation Instructions available at 

https://github.com/mazzalab/pyntacle, you can find the binary files by typing in your 

shell: 

which pyntacle 

For example, this is the location of the Pyntacle’s binaries on a Linux Mint 18 system 

where Pyntacle was installed through the Conda distribution on the user’s home 

directory: 

http://pyntacle.css-mendel.it/resources/tutorials/startup_guide/startup_guide_data.zip
http://pyntacle.css-mendel.it/resources/tutorials/startup_guide/startup_guide_data.zip
https://github.com/mazzalab/pyntacle
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/home/d.capocefalo/miniconda3/bin/pyntacle 

Alternatively, you may run Pyntacle through our Docker Image or build a custom 

Pyntacle Docker Image by editing the Dockerfile provided on our website at 

http://pyntacle.css-mendel.it/resources/docker/pyntacle.dockerfile. 

It is suggested to create a new Python virtual environment using the virtualenv tool 

or a Conda environment and install Pyntacle there. This will avoid any conflict among 

libraries. 

If using Pyntacle as a Python library, typing: 

import pyntacle 

on a Python 3 shell will end with no error if Pyntacle was successfully installed.  

 

2. Dataset description 

The toy dataset is the network of advice-seeking ties among global consulting companies 

(also called in this tutorial the AdvSeek network). This network was already used in the 

original paper by Stephen P. Borgatti, in which Key Player metrics are introduced, 

Identifying sets of key players in a social network. 

The network can is the following: 

http://pyntacle.css-mendel.it/resources/docker/pyntacle.dockerfile
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Figure 31: The AdvSeek Network used by Borgatti. 

 

this network is available at the following link:  

http://pyntacle.css-mendel.it/resources/tutorials/startup_guide/Figure_8.adjm as an 

adjacency matrix (see Materials and Methods, section 2.8). Nodes in the network are 

labeled with the initials of the consultants. Since some of the consultants share the same 

initials, we appended progressive numbers to their initials (e.g. BS, BS2, BS3, etc.) to be 

http://pyntacle.css-mendel.it/resources/tutorials/startup_guide/figure_8.adjm
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compliant with the Pyntacle Minimum Requirements (see the Minimum Requirements 

section in Appendix 2). Edges represents relationships among consultants. 

 

3. Command line Startup Guide 

TESTING THE PYNTACLE COMMAND LINE 

To check that Pyntacle is properly installed and working, a set of unit tests can be run by 

typing in the command shell: 

pyntacle test 

Pyntacle will perform several operations that will end with a similar message no errors 

will be encountered. 

Ran 23 tests in 1.002s 

OK 

<pyntacle.pyntacle.App object at 0x7f7c22f8be10> 

Once verified the correct installation of Pyntacle, we replicated some of the results of 

Borgatti’s original article (Borgatti, 2006) in two steps. 

 

KP-INFO - COMPUTE KEY-PLAYER METRICS FOR A GIVEN SET OF NODES 

As a first step, the Pyntacle kp-info module will be used to measure the dF metric 

(fragmentation) for a specific node set of the AdvSeek network. Borgatti measured the 
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dF value of the pair {HB, WD} and obtained a value of 0.817. We recall here that dF 

ranges from 0 to 1, when 0 means maximum connectedness (i.e., the network is a clique) 

and 1 means maximum disconnection (all nodes are isolates). This result can be replicated 

by typing: 

pyntacle keyplayer kp-info -i Figure_8.adjm -t dF --nodes HB,WD 

This command returns the following output on your shell: 

Reading input file... 

Adjacency Matrix from Figure_8.txt imported 

 

Nodes given as input: ['HB', 'WD'] 

Computing dF for nodes HB,WD 

Elapsed Time: 0.00 sec 

Keyplayer metric(s) DF: 

Starting value for dF is 0.64755. Removing nodes ['HB', 'WD'] gives a 

dF value of 0.81506 

Producing report in txt format. 

Generating plots in pdf format. 

pyntacle Keyplayer completed successfully. Ending 
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The resulting fragmentation can be better assessed comparing the dF of the original 

network (before removal) with that calculated after the removal of the set. For this reason, 

the kp-info module returns also the dF value of the original network. 

Results of the kp-info module can be saved in several file formats (default is the tab-

separated value file format), along with a graphical network representation, when the 

network is small enough to be clearly represented in a picture (generally in the order of 

hundreds of nodes). These plots will be stored in a sub-directory, “pyntacle-plots”, of the 

current working directory.  

Note: you can redirect both the report and the plots to a custom directory, using the --

directory/-d argument. 

The representation of the AdvSeek network follows where the removed nodes were 

represented in purple. 



193 

 

 

Figure 32: the AdvSeek Network reported by Pyntacle keyplayer kp-info command. Nodes in purple 

shows the input set used to compute their dF index. Thicker edges around the kp-set highlight the {HB, 

WD} neighborhood.  
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KP-FINDER - GREEDY OPTIMIZATION SEARCH 

In case one wants to find the set of nodes of a particular size that maximally fragments 

the network or reaches the highest number of other nodes, a greedy optimization 

algorithm was implemented. It may not obtain the best unordered set of nodes of size k 

for the selected metrics, since this task would require: 

𝑁!

(𝑁 − 𝑘)! ∗ 𝑘!
 

operations, where N is the size of the graph. Starting from a random set of nodes and then 

swapping nodes with others outside the set until the key-player metrics cannot be 

improved, one dramatically reduces the number of operations at the cost of suboptimal 

solutions. This algorithm is particularly useful when dealing with large networks, in the 

order of thousands or tenth of thousands of nodes, like a whole mammal PPI network. 

The key-player metric chosen in this tutorial is the m-reach, which is a measure of 

reachability. It aims at counting the number of nodes reached by a key-player set of size 

k in m steps or less. In Borgatti’s paper, the m-reach metrics is calculated on the AdvSeek 

network, with the number of steps set to 1, as shown in Table 9. 

kp-set size Nodes reached % of network 

reached  

kp-set 

2 17 53 {BM, BS3} 

3 23 72 {BM, BS3, NP} 
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Table 9: The best key player (kp) set of different sizes for the m-reach metric using a maximum distance 

(m) of 1, along with the number of nodes reached and the percentage of the network covered. Note: The 

node BS is here called BS3 as there are 3 synonymous nodes in the original graph) 

To reproduce this result, type: 

pyntacle keyplayer kp-finder -i Figure_8.adjm -k 2 -m 1 -t mreach --

seed 100 

The kp-finder enables the use of the greedy optimization search algorithm by 

default. This behavior can be changed using the -I/--implementation argument 

and setting the brute-force option (as you will read in the next paragraph). The --

seed argument ensures results reproducibility, as the random initial set selection and 

node swapping will always be the same. 

Pyntacle will output: 

Reading input file... 

Adjacency Matrix from Figure_8.txt imported 

Using Greedy Optimization Algorithm for searching optimal KP-Set 

Finding best set of kp-nodes of size 2 using an MREACH measure of 1 (kp 

pos measure) 

An optimal kp-set of size 2 is (BS3, BM) with score 15 

Elapsed Time: 0.02 sec 

Search for the best kp set completed! 
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### RUN SUMMARY ### 

kp set size: 2 

With the given distance of 1, 15 nodes are reached by the kp-set (BS3, 

BM). 

The total percentage of nodes, which includes the kp-set, is 53.12% 

### END OF SUMMARY ### 

Producing report in txt format. 

Generating plots in pdf format. 

2018-08-06 10:54:41,569 - WARNING - A directory named "pyntacle-plots" 

already exists, I may overwrite something in > there 

pyntacle Keyplayer completed successfully. Ending 

Note: We report the number of only the nodes reached by the kp-set (m-reach) and the 

percentage of reached nodes, which includes the kp-set (as from Borgatti’s paper). 

Results are stored in a text file in the current working directory, together with a visual 

plot that will highlight the nodes being part of the resulting kp-set. Thickness of edges 

will decrease as the distance from the kp-set (m) will increase. 

Similarly, the optimal set of size 3 can be sought typing: 

pyntacle keyplayer kp-finder -i Figure_8.adjm -k 3 -m 1 -t mreach --seed 

1 

This will produce the following output: 
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Reading input file... 

Adjacency Matrix from Figure_8.txt imported 

Using Greedy Optimization Algorithm for searching optimal KP-Set 

Finding best set of kp-nodes of size 3 using an MREACH measure of 1 (kp 

pos measure) 

An optimal kpp-set of size 3 is (KR, BM, NP) with score 20 

Elapsed Time: 0.05 sec 

Search for the best kp set completed! 

 

### RUN SUMMARY ### 

kp set size: 3 

With the given distance of 1, 20 nodes are reached by the kp-set (KR, 

BM, NP). 

The total percentage of nodes, which includes the kp-set, is 71.88% 

### END OF SUMMARY ### 

 

Producing report in txt format. 

Generating plots in pdf format. 

2018-08-06 11:00:19,952 - WARNING - A directory named "pyntacle-plots" 

already exists, I may overwrite something in there 



198 

 

pyntacle Keyplayer completed successfully. Ending 

The resulting kp-set ({KR, BM, NP}) is not the same reported by Borgatti ({BM, BS3, 

NP}), despite their scores being identical. This means that this network holds more kp-

sets of size 3 with equal fragmentation scores. 

A way of getting all these sets would be to run the greedy optimization search algorithm 

several times, setting different seeds. But this will not guarantee to capture all existing 

kp-sets. Another, exact, way would be to switch to the Brute-force search algorithm, as 

we will discuss in the next section. 

 

KP-FINDER - BRUTE-FORCE SEARCH  

Contrary to the greedy optimization search algorithm, the brute-force search algorithm 

seeks and finds the best solutions at the price of high demand of computing resources and 

running times. However, it was implemented to calculate the desired metrics for all 

combinations of size k of nodes in parallel on multiple CPUs, if available. The brute-

force algorithm can be enabled by setting the -I/--implementation parameter with 

brute-force. By default, Pyntacle will use all available computing cores minus one (e.g. 

7 cores out of 8 in an octacore processor). However, this can be tuned by the -T/--

threads parameter. 

Let's consider again the AdvSeek network and the case discussed in the previous 

section. The greedy optimization search did not replicate Borgatti's findings on the 
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AdvSeek network. Searching again the best kp-sets of size 3 with the brute-force search 

algorithm: 

pyntacle keyplayer kp-finder -i figure_8.adjm -k 3 -m 1 -t mreach -I 

brute-force 

Note: The brute-force algorithm does not need to specify a seed, because it will always 

converge to the best solutions. 

The command will result in: 

Reading input file... 

Adjacency Matrix from 

/home/local/MENDEL/d.capocefalo/Desktop/benchmarks/test_networks/Real_

Borgatti_figure_8.adjm imported 

Using Brute Force for searching optimal KP-Set 

Finding best set of kp-nodes of size 3 using an MREACH measure of 1 (kp 

pos measure) 

The best kp-sets for metric mreach of size 3 are [('KR', 'BM', 'NP'), 

('BS3', 'BM', 'NP')] with score 20 

Elapsed Time: 0.97 sec 

Search for the best kp set completed! 

 

### RUN SUMMARY ### 

kp set size: 3 

With the given distance of 1, 20 nodes are reached by the kp-sets ((KR, 

BM, NP), (BS3, BM, NP)). 

The total percentage of nodes, which includes the kp-set, is 71.88% 
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### END OF SUMMARY ### 

 

Producing report in txt format. 

Generating plots in pdf format. 

The two best solutions were finally found. This concludes the quick start guide of 

Pyntacle via command line. The same problems will be tackled using Pyntacle as a 

Python library. 
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4. Pyntacle library startup guide  

The library is designed for intermediate-to-expert Python users with a basic knowledge 

of object-oriented programming and some experience with the igraph package (not 

necessarily for python, as igraph is available also for the C and R languages). If you are 

not familiar with igraph, we recommend reading its python tutorial, available at 

http://igraph.org/python/doc/tutorial/tutorial.html. 

Pyntacle is built around igraph and perform its calculations on instances of 

igraph.Graph objects. Pyntacle provides several utilities for importing/exporting 

from/to igraph.Graph objects to/from several textual network file formats. We refer 

in this context to the file formats description depicted in Materials and Methods, section 

2.8 for more details on regard. Moreover, we recommend reading the Appendix 2 on 

minimum network requirements to see whether your network can be parsed and used by 

Pyntacle. Finally, a complete description of each class and method is available from our 

API Documentation page. 

 

IMPORT A NETWORK USING PYNTACLE  

Networks can be imported from file via the PyntacleImporter class of the io_stream 

module. This class contains a series of handy methods that parse and store an input graph 

into an igraph.Graph object and initialize all the Pyntacle reserved attributes (described 

in Appendix 2). 

http://igraph.org/python/doc/tutorial/tutorial.html
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Considering again the AdvSeek network, which is available as an adjacency matrix from 

file “figure_8.adjm”, it is imported with the following command: 

>>> from pyntacle.io_stream.importer import PyntacleImporter 

>>> adv = PyntacleImporter.AdjacencyMatrix("figure_8.adjm") 

Adjacency matrix from figure_8.adjm imported 

It is an igraph.Graph object, that can exploits all the built-in igraph functions: 

 

>>> type(adv) 

igraph.Graph 

The adv object can be also inspected thoroughly to see its composition using igraph 

summarization functions to see the Advseek nodes, edges and attributes: 

>>> adv.summary() 

"IGRAPH UN-- 32 55 -- ['figure_8']\n+ attr: __implementation (g), 

__sif_interaction_name (g), name (g), __parent (v), name (v), 

__sif_interaction (e), adjacent_nodes (e)" 

 

OCTOPUS: A CONVENIENT PYNTACLE WRAPPER  

The classes and methods used to perform all the operations described in the command 

line guide are not encompassed into a single module, but they are rather divided in 

appropriate sub-methods, that can be recalled. A handy wrapper of all these methods is 
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the Octopus class. It is contained in the tools module. The list of all the Octopus 

methods can be inspected: 

>>> from pyntacle.tools.octopus import Octopus 

>>> dir(Octopus) 

['__class__','__delattr__','__dict__','__dir__','__doc__','__eq__','__

format__','__ge__','__getattribute__','__gt__','__hash__','__init__','

__init_subclass__','__le__','__lt__','__module__','__ne__','__new__','

__reduce__','__reduce_ex__','__repr__','__setattr__','__sizeof__','__s

tr__','__subclasshook__','__weakref__','add_BF_F','add_BF_dF','add_BF_

dR','add_BF_mreach','add_F','add_GO_F','add_GO_dF','add_GO_dR','add_GO

_mreach','add_average_closeness','add_average_clustering_coefficient',

'add_average_degree','add_average_eccentricity','add_average_radiality

','add_average_radiality_reach','add_average_shortest_path_length','ad

d_betweenness','add_closeness','add_clustering_coefficient','add_compa

ctness','add_compactness_correct','add_completeness','add_completeness

_naive','add_components','add_dF','add_degree','add_density','add_diam

eter','add_eccentricity','add_eigenvector_centrality','add_kp_F','add_

kp_dF','add_kp_dR','add_kp_mreach','add_median_shortest_path_length','

add_pagerank','add_pi','add_radiality','add_radiality_reach','add_radi

us','add_shortest_path','add_shortest_path_igraph','add_weighted_clust

ering_coefficient'] 

When calling an Octopus function on an igraph object, Octopus will execute the 

corresponding Pyntacle function and will assign a new attribute to the graph with the 

result of the function as a value. For example, let's suppose one wants to compute the 

average degree of the AdvSeek network. Typing: 

>>> Octopus.add_average_degree(adv) 
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will trigger the computation of the average degree, will create an average_degree 

attribute for the graph and will set the result (3.4375) to it. We can check it by recalling 

all the attributes of the adv object: 

>>> adv.attributes() 

['name', '__sif_interaction_name', '__implementation', 

'average_degree'] 

And then inspecting the value stored in the average_degree attribute: 

>>> adv["average_degree"] 

3.4375 

 

OCTOPUS - COMPUTE KEY-PLAYER METRICS FOR A GIVEN SET OF NODES  

Let's say we want to reproduce Borgatti's results for network fragmentation on the 

AdvSeek network we already discussed in the previous command line tutorial. We can 

do this using Octopus like in the following example: 

>>> Octopus.add_kp_dF(adv, nodes=["HB", "WD"]) 

Computing dF for nodes (HB, WD) 

Elapsed Time: 0.00 sec 

Where nodes is a list of names of the nodes belonging to the kp-set. 

Octopus will add a new attribute, dF_kpinfo, to the graph adv. This attribute is a 

dictionary, where each item is a key:value pair made by a (sorted) tuple of nodes (the kp-
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set) and the corresponding dF value. This is valid for each of the key player metrics we 

implemented. 

>>> adv.attributes() 

['name', '__sif_interaction_name', '__implementation', 

'average_degree', 'dF_kpinfo'] 

and 

>>> adv["dF_kpinfo"] 

{('HB', 'WD'): 0.81716} 

dF is a relative metric, in the sense that the effect of removing a set can be appreciated if 

compared with the fragmentation level of the original network. The initial dF value of a 

network we can be computed by using the add_dF method: 

>>> Octopus.add_dF(adv) 

The initial dF is stored in the corresponding dF attribute: 

>>> adv["dF"] 

0.64939 

Now, we can conclude that removing HB and WD will result in an increase in 

fragmentation of (roughly) 17%. 
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OCTOPUS - GREEDY OPTIMIZATION SEARCH  

The previous greedy optimization, which was performed by the command line kp-finder 

command, can be replicated with the add_GO_mreach method. 

>>> Octopus.add_GO_mreach(adv,kp_size=2, m=1, seed=100) 

An optimal kp-set of size 2 is (BS3, BM) with score 15 

Elapsed Time: 0.02 sec 

Like in the previous section, Octopus adds an attribute to the graph that stores a 

dictionary of node names (kp-set) and centrality measures. In this example, the attribute 

will be called mreach_1_greedy, since the centrality metrics is the m-reach with m=1 

argument and obtained with a run of the greedy optimization search algorithm 

>>> adv.attributes() 

['name', '__sif_interaction_name', '__implementation', 

'average_degree', 'dF_kpinfo', 'dF', 'mreach_1_greedy'] 

The name is as much informative as possible. It shows that the m-reach metric with an 

m distance of 1 was searched with the greedy optimization criteria. This ensures that all 

the greedy optimization key player search for m-reach of distance 1 will be stored here. 

As before, we can see the corresponding dictionary keys and their values associated to 

them: 

>>> adv["mreach_1_greedy"] 

{('BM', 'BS3'): 15} 
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OCTOPUS - BRUTEFORCE SEARCH  

Finally, the brute-force search performed before using Pyntacle Command line can be 

replicated with Octopus using the maximum number of available computing cores 

minus one. 

>>> Octopus.add_BF_mreach(adv, kp_size=3, m=1) 

The best kpp-sets for metric mreach of size 3 are [('KR', 'BM', 'NP'), 

('BS3', 'BM', 'NP')] with score 20 

Elapsed Time: 1.07 sec 

Again, we can see that a new attribute storing the BruteForce search is stored into the 

adv object. This attribute is stored in the mreach_1_bruteforce attribute. This 

attribute will contain a tuple of 3 storing the node names as key and the corresponding 

m-reach result as value. This attribute does not overlap with the other key player searches 

we performed, to ensure a different layer of information for each search. 

>>> adv["mreach_1_bruteforce"] 

{(('BM', 'KR', 'NP'), ('BM', 'BS3', 'NP')): 20} 

 

EXPORT THE IGRAPH.GRAPH OBJECT  

Any igraph.Graph can then be saved to a text or binary file. Additionally, graphs stored 

in binary files retain all their attributes. The export utilities are implemented in the 

PyntacleExporter class of the io_stream module. Let's export the adv network into 

a binary format: 
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>>> from pyntacle.io_stream.exporter import PyntacleExporter 

>>> PyntacleExporter.Binary(adv, "advseek.graph") 

Graph successfully exported to Binary at path: 

/home/d.capocefalo/Quick_Startup_Guide/advseek.graph 

this will return a file named ‘advseek.graph’ in our current directory (we print the 

absolute path by default). 

 

KEY PLAYER SEARCH WITHOUT OCTOPUS - BRUTE - FORCE SEARCH (CASE EXAMPLE) 

The same operations performed with Octopus can also be performed by resorting to the 

Pyntacle APIs (algorithms and tools modules). These methods rely on an array of 

enumerators by which specifying: 

the key-player metrics to be calculated;  

the computing modes for some of the Pyntacle’s methods (i.e., serial, parallel CPU, 

parallel GPU).  

These enumerators are implemented in the tools module and can be imported as: 

#this enumerator stores all the reachability metrics 

>>> from tools.enums import KpposEnum  

#this one handles all the implementations 

>>>from tools.enums import CmodeEnum  

KpposEnum currently includes two reachability metrics: m-reach and dR: 

>>> dir(KpposEnum) 
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['__class__', '__doc__', '__members__', '__module__', 'dR', 'mreach'] 

CmodeEnum contains four values: auto, igraph, cpu and gpu; auto is the default 

choice and commands Pyntacle to choose the best computing mode, according to the 

specific features of the graph is working on. The igraph value is chosen if one relies 

on the single-core implementations of igraph of some algorithms underlying the Pyntacle 

methods, while cpu is used when one relies only on Pyntacle functions, the 

computationally heavy ones being just-in-time compiled by Numba and run in parallel 

on multicore processors. Finally, gpu is used to defer computationally heavy functions 

to be executed on GPU-enabled NVIDIA graphics cards, if available. The value of this 

enumerator can be passed to the implementation parameter of any key-player methods. 

>>> dir(CmodeEnum) 

['__class__', '__doc__', '__members__', '__module__', 'auto', 'cpu', 

'gpu', 'igraph'] 

For example, the brute-force search executed before with Octopus can be replicated 

using the BruteForceSearch method this way: 

>>> from pyntacle.algorithms.bruteforce_search import BruteforceSearch  as bfs 

>>> bfs.reachability(graph=adv, implementation=CmodeEnum.igraph,            

kp_type=KpposEnum.mreach,m=1,kp_size=3) 

The best kp-sets for metric mreach of size 3 are [('KR', 'BM', 'NP'), 

('BS3', 'BM', 'NP')] with score 20 

([('KR', 'BM', 'NP'), ('BS3', 'BM', 'NP')], 20)   
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Minimum Graph requirements 

Currently, Pyntacle works with unweighted and undirected graphs, which meet the 

following criteria: 

 A graph must contain at least two nodes and one edge; 

 A unique identifier must be set for each node as a node name attribute. This 

attribute is added by default by the Pyntacle import methods; 

 Two nodes must be linked by one edge only, as multigraphs are not supported; 

 Any instance g of the igraph.Graph object must have a name attribute that must 

be set with a list of strings (e.g., g[“name”] = [”Graph1”]). When importing 

a graph from file, the name attribute will be filled with the name of the file. 

 The name attribute will be used by some Pyntacle utilities, like the set operations 

between networks, to keep track of the original graphs which this graph is 

resulting from 

Pyntacle exchanges information with a graph through attributes. Some attributes are 

reserved but their values can be edited manually.  Others (the ones in bold) can only be 

read. Table 10 lists all the reserved attributes and specifies the graph’s elements (e.g., the 

graph itself, nodes or edges) which they can be applied to, the data types that they can 

hold and a general description of the attributes.  
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Attribute name Attribute Level Stored Data Description 

name graph list of strings 

If obtained by a set operation, a graph can  

have multiple names, one for each 

originating graph. 

__sif_interaction_name graph string 

The name of the interaction, as specified 

in the header  

of the imported SIF file, None if the 

graph was not imported from a SIF file. 

__implementation graph string 

Allowed values: cpu, gpu, igraph. 

These are automatically  

set by Pyntacle according to topological 

properties and to 

 the complexity of the graph. They drive 

Pyntacle to compute complex chunks of 

code in parallel on multi-core processors 

or on GPU, if available, through Numba, 

or on  

single core relying on the iGraph Python 

library. 

name node string 
Unique node name 

__parent node list of strings 

Useful when performing set operations 

between two graphs to  

keep track the source network of each 

node. Initialized to None by default. 

__module_number node string 

Used when searching 

for communities within a graph. It 

indicates  

the community which a node was 

assigned to.  

Communities are identified with integer 

numbers. 

__sif_interaction edge list of strings 

The value stored in 

the interaction column of a SIF file  

for a given link between two nodes. 
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None if the graph was not imported from 

a SIF file. 

adjacent_nodes edge tuple of strings 
A tuple containing the attribute name of 

two adjacent nodes by this edge. 

weights edge float or int 

Weight assigned to an edge by algorithms 

that work  

with or make weighted graphs, such as 

the pagerank algorithm. 

Table 10: Pyntacle reserved attribute for the igraph.Graph object, at each level. Attribute Names 

in bold are read-only and cannot be overwritten.  
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