A Formal Framework for Coupling
Document Spanners with Ontologies

Domenico Lembo
Dip. di Ingegneria Informatica, Automatica e Gestionale
Sapienza Universita di Roma
Rome, Italy
lembo@diag.uniromal .it

Abstract—A significant portion of information that is nowa-
days collected in enterprises and organizations resides in text
documents, and thus is inherently unstructured. Turning it into
a structured form is the aim of information extraction (IE).
Depending on the approach followed, the output of an IE
process can fill forms or populate relational tables, or can be
presented through an ontology. This last approach is particularly
interesting, since ontologies may facilitate the integration with
other corporate and external data, and enable data management
and governance at an abstract, conceptual level, as in Ontology-
based Data Access (OBDA). To this aim, OBDA uses declarative
mappings that specify the relation between the ontology and
the database to be accessed. In OBDA, however, only mappings
towards relational databases have been so far considered, and
how to declaratively relate the ontology to unstructured sources
is still unexplored. By leveraging the study on document spanners
for IE, in this paper we propose a new framework that allows
to map text documents to ontologies, in the spirit of the
OBDA approach. We then investigate the problem of answering
conjunctive queries (CQs) in our framework, and show that,
if the ontology is specified in the lightweight Description Logic
DL-Liter, the problem can be solved by reformulating the user
query into a new spanner. Interestingly, both the spanners used
in the mapping and the one computed by the rewriting algorithm
have the same expressiveness, and CQ answering in this case is
polynomial in data complexity.

I. INTRODUCTION

Ontologies have established themselves over the years as
one of the best means to represent and share knowledge.
At the same time they proved to be an excellent tool for
accessing and governing data, when they are properly con-
nected to databases, as in the popular Ontology-based Data
Access (OBDA) framework [1], [2]. OBDA is based on a
three-level architecture, where the ontology is the highest
layer providing a conceptual representation of the business
domain, whereas the mapping is the intermediate layer, which
declarative specifies the relationship between the ontology and
the data sources, i.e., the lowest level of the architecture. The
users interact only with the ontology, e.g., by formulating their
queries, which are automatically processed by sophisticated
reasoning algorithms.

In OBDA, however, Ontologies have been essentially used
so far only on top of relational databases, with very few excep-
tions (as, e.g., [3]). In many contexts, however, a substantial
portion of relevant business information is nowadays collected

Federico Maria Scafoglieri
Dip. di Ingegneria Informatica, Automatica e Gestionale
Sapienza Universita di Roma
Rome, Italy
scafoglieri@diag.uniromal .it

in the form of unstructured data, and in particular in free-text
documents, such as reports, e-mails, legal acts, web pages,
PDFs, etc. These documents are obviously thought to be read
by humans, but their huge amount and dimension make often
their manual processing extremely difficult, as well as it is
almost impossible to integrate the information therein with
other corporate data.

Automatically extracting relevant pieces of information
from text and organizing them into a structured representation
to ease their understanding and enable further data processing
is the aim of information extraction (IE) [4]. IE is an active
field of research since the late ’80s [5]. The approaches
pursued in this area are basically of two types, i.e., statistical or
rule-based. Approaches of the first type usually adopt machine
learning techniques to learn the probabilistic models they are
based on (e.g., [6], [7]), whereas rule-based approaches encode
specific extraction tasks into rules, mostly corresponding to
finite-state transducers (e.g., [8], [9], [10])!.

Recently, Fagin et al. have carried out a foundational study
on rule-based IE, and introduced a formal framework based
on the notion of (document) spanner [13], [14]. In brief, a
spanner extracts from an input string D a relation over its
spans, which are pairs of indices referring to substrings to be
extracted from D. Fagin et al. study possible representations
of spanners and analyze how the use of some algebraic
operations on the relations extracted from strings influences
the spanner expressiveness. In particular, they study spanners
defined by regular expressions with capture variables (a.k.a.
“regex formulas”) and relational algebra.

In this paper we construct on their results and propose
a formal framework for coupling document spanners with
ontologies. Our basic idea is to adapt the OBDA framework
to enable ontologies to be mapped to documents. We thus
introduce the notion of Ontology-based document spanning
(OBDS) system, in which, an ontology (more precisely, its
intensional component) is linked to text documents through
what we call extraction assertions, which in OBDS act exactly
as mapping assertions in OBDA. Intuitively, an extraction
assertion associates a document spanner P to a query gq

!For additional references and a discussion on the literature on IE we refer
the reader to [11] and [12].

specified over the ontology, with the intended meaning that
the tuples of substrings corresponding to the spans returned
by P must be among the answers to ¢. In our framework we
establish queries over the ontology to be conjunctive queries
(CQs), whereas document spanners are defined as regex for-
mulas extended with the relational algebra operators union,
projection, join and string selection (the class of such spanners
is denoted with [RGX{Y™":¢7}]). We remark that CQs are
the most expressive queries for which query answering over
ontologies has been shown to be decidable, and spanners in
[RGX{Y™»:¢7}] are among the most expressive document
spanners considered in [13]. Notice also that extraction as-
sertions we define resemble Global-Local-As-View (GLAV)
mapping assertions used in data integration and in OBDA, and
that their semantics, we have sketched above, corresponds to
the classical sound interpretation for mappings [15], [16], [17].

After defining our framework, we investigate the problem
of query answering, i.e., how to compute the answers to user
queries posed over the ontology. We focus on CQs and analyze
the case of DL-Liter OBDS systems, i.e., when the ontology
is specified in the Description Logic (DL) DL-Liter [18],
a popular lightweight ontology language that is at the basis
of OWL 2 QL, one of the tractable profiles of OWL 2 [19].
Interestingly, in OBDA, when the ontology is in DL-Liter and
mappings are GLAV, CQ answering is first-order rewritable,
i.e., it can be reduced to the evaluation of a first-order (i.e.,
an SQL) query over the underlying database [20]. We recall
that an OBDA mapping associates a query over the database
to a query over the ontology, and the above result holds even
when the queries over the database in the mapping are arbitrary
first-order queries. Interestingly, also the rewriting can be
specified in first-order, i.e., it has the same expressiveness of
database queries used in the mappings (this has a practical
fallout, since its evaluation can be delegated to the underlying
database engine). A natural question is now whether a similar
behaviour shows up also in DL-Literp OBDS systems, i.e.,
whether we can reduce query answering to the execution of
a document spanner of the same kind of the spanners used in
the mapping. We positively answer this question, by providing
an algorithm that rewrites every CQ issued over a DL-Liter
OBDS system (i.e., over its ontology) into a spanner belonging
to [RGX{U™*:¢7}] and thus with the same expressiveness of
spanners used in the mapping. Since evaluating such spanners
is polynomial in the size of the input document, we can also
conclude that CQ answering in this setting is polynomial in
data complexity.

We finally observe that the use of ontologies in IE has
been already widely considered in the literature (see [21] for a
survey on the topic). However, none of the previous works on
this matter has proposed a formal declarative framework, nor
did they study the problem of query answering as we do in the
present paper. Also, we believe that our framework paves the
way for an in-depth investigation of the role of ontologies in
IE, and in particular for the understanding of how reasoning
over the ontology can help IE.

The rest of the paper is organized as follows: In Section II

we give some preliminaries; in Section III we introduce our
OBDS framework, in Section IV we provide our query rewrit-
ing algorithms for OBDSs systems equipped with DL-Liter
ontologies; we conclude the paper in Section V.

II. PRELIMINARIES
A. Ontologies, Description Logics, and Queries

In the context of computer and information sciences, an
ontology defines a set of representational primitives with which
to model a domain of knowledge or discourse. Ontologies are
defined in some formal language, which usually has its root in
some kind of logic. Description Logics (DLs) are fragments of
first-order logic that can be used to represent the knowledge
of a domain of interest in a structured and formally well-
understood way in order to reason upon it. DLs are thus
well-suited to specify ontologies. DLs model the domain of
interest in terms of objects, i.e., individuals, concepts, that are
abstractions for sets of objects, and roles, that denote binary
relations between objects [22]. DL ontologies are widely used
in the context of the Semantic Web, and indeed are at the basis
of OWL 2, the W3C standard for specifying ontologies on the
web [23].

In this work we consider ontologies specified in DL-Liter,
which is a member of the class DL-Lite of tractable DLs, and
is the logical basis of the profile OWL 2 QL [19]. DL-Liter
expressions are given by the following syntax:

e Concept Expressions:

B = A | 3Q

C == B | -B
e Role Expressions:

Q == P | P~

R = Q| -Q

where A denotes an atomic concept (i.e., a named concept
from the ontology signature), B a basic concept (i.e, an atomic
role A or an existential restriction on a role 3@Q)), C' a general
concept (i.e., a basic concept B or its negation —5), P an
atomic role (i.e., a named role from the ontology signature),
@ a basic role (i.e., an atomic role P or its inverse P~), and
R a general role (i.e., a basic role () or its negation —=(Q)).

A DL ontology O is a pair (7 ,.A) where:

e 7T, called TBox, is the terminological component of
O, which contains statements representing intensional
knowledge, and

e A, called ABox, is the assertional component of O,
which represents extensional knowledge.

A TBox in DL-Liteg is a finite set of assertions in form:
BCC
QCR

(concept inclusion assertion)
(role inclusion assertion)

An Abox in DL-Litep is a finite set of membership asser-
tions (i.e., facts) of the form:

A(a)
P(a,b)

(concept membership assertion)

(role mebership assertion)

where a and b are constants (i.e., individual names). The
formal semantic of DL language is given in terms of first-
order (FOL) interpretations Z. An interpretation Z = (AZ,.Z)
consists of a nonempty interpretation domain AZ and an
interpretation function - that assigns to each concept C' a
subset CZ of AZ, and to each role R a binary relation R
over AT, and to each individual name a and object 0 € AZ.
Expressions and assertions in DL-Liter are interpreted Z as
showed in the following table:

Construct Syntax Semantics
Atomic Concept A AT C AT
Atomic Role P PIC AT x AL
Concept Negation -B AT\ B
Inverse Role P~ {(0,0)|(0,0") € PT}
Existential Rest. 3Q {o]30'.(0,0") € QT}
Role Negation -Q (AT x AT)\ Q7
Concept inclusion | C; C Cs ctcc?

Role Inclusion QCR QT C R?
Membership Ass. A(a) af € AT
Membership Ass. | P(a,b) (aT,b) € P

An interpretation 7 is a model of an ontology O if it satisfies
all assertions in 7 and .A. We denote with Mod(O) the set of
all models of an ontology. We also say that O infers a sentence
1 if T evaluates to true in every Z € Mod(O).

A query is an open formula of function free first-order logic
(FOL), i.e., a formula of the form:

{7 [35.¢(Z,9)} (D

where 3y.¢(Z,) is a FOL formula with free variables Z and
existentially quantified variables i/, possibly containing con-
stants. The number of variables in & is the arity of the query.
Among FOL queries, we in particular consider conjunctive
queries (CQs), i.e., FOL queries in which 37.¢(Z, %) is a
conjunction of the form 3¢.p1 (Z1, 41)A. . . Apn(Zn, n), Where
each p;(Z;,¥;) is an atom, ¥ = UP_,Z; and § = Ul 7.
When queries are specified over an ontology, each predicate
p; in every atom is either an atomic concept or an atomic
role from the ontology signature. An extension of CQs are
unions of conjunctive queries. A union of conjunctive queries
(UCQ) is a FOL query of the form {Z | 3y1.61(Z,51) V-V
34, -0n(Z, ¥)}, such that each {Z | 37;.¢:(Z, 7;)} is a CQ.
To simplify notation, throughout the paper we can write UCQ
as sets of CQs. Query answering over an ontology amount to
computing the so-called certain answers, i.e., those answers
that hold in all models of the ontology. Formally, given a query
q of the form (1) over an ontology O = (T, A), a tuple ¢ of
constants is a certain answer to ¢ if O = 37.¢(C, 7). In the
following, we can write ¢(Z) to denote a query of the form (1)
with free variables &. Also, given a tuple of constants ¢, we

—

can write ¢(¢) to denote 3y.¢(C,)

B. Document Spanners

We recall below the framework of document spanners
studied by Fagin et al. in [13], [14].

1) Strings and spans: We fix a finite alphabet X of symbols,
which we assume totally ordered. In particular, in the follow-
ing examples X is composed by the lower and capital letters
of English alphabet, the full stop (“.”), and the underscore
(“_"), which stands for the whitespace.

We denote by ©° the set of all finite strings over ¥, and
by X* the set of all finite strings of length at least one over
Y. A language over ¥ is a subset of ¥*. A document D is
simply a finite string over ¥, i.e., D =0;...0, withn >0
and 0; € X for ¢ € {1,...,n}. In other terms, D € ¥* The
length n of D is denoted by |D|. If n = 0, then |D| =0

A span identifies a substring of D by specifying its bound-
ing indices. Formally a span of D has the form [i, j), where
1 <i<j<n+1.1f [i,j) is a span of D, then Dy; ;) denotes
the substring o ...0;_1. Note that Dy, ;y is the empty string,
and that Dy 41 is D. Two spans [4, j) and [i', j') are equal
if and only if ¢ =4’ and j = j'.

We denote by Spans(D) the set of all the spans of D.

Example 1. Consider the document D¢ given in Figure 1,
and the span [11,19). It identifies the substring Einstein, i.e.,
D[11719> = Einstein. |:|

We fix an infinite set SVars of (span) variables; spans may
be assigned to these variables. The sets X* and SVars are
disjoint. For a finite set V' C SVars of variables and document
D e ¥, a (V,D)-tuple is a mapping p : V — Spans(D) that
assigns a span of D to each variable in V. A (V, D)-relation is
a set of (V,D)-tuples. A document spanner (or just spanner
for short) is a function P over a finite set V C SVars of
variables, that maps a document D to a (V, D)-relation.

In the following, we use SVars(P) to refer to the set of
variables of a spanner P. We may also use P(vy,...,v,)
to denote a spanner P over variables V' = {vy,...,v,}.
Furthermore, given a document D, we write eval(P, D) to
denote the (V, D)-relation that maps SVars(P) to D.

Example 2. In Figure 2 we provide an example of
(V,D)-relation, for the spanner [y:r], such that
SVars([vior]) = {z}. (V,D)-tuples listed in this figure
correspond to the words of the document Deyx in Figure 1. O

C. Spanner Representation

By a spanner representation system we refer collectively to
any manner of specifying spanners through finite objects. In
the next subsections we recall the regex formula (a primitive
spanner representation) and the spanner algebra (an extension
of regex formula with relational algebra operators).

1) Regex Formulas: As defined in [13], a variable regex is
an extension of a regular expression with capture variables.
Its grammar is defined as follows:

yi=01lela|(yVY) | ()7 | z{r})

P r of e s s or _ E i n s t e i n _ t a u g h t _ p h 'y S i c S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
T h e _ P r o f e S S o T _ W o _ a _ mn o b e 1

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 1. Document Dex

eval([Veor], Dex)

xr
H1 [17 10>
L2 11,19)
U3 20, 26>
Ha 27, 34>
s | [35,38)
116 39, 48)
a7 | [49,52)
U8 53, 54>
11 55, 60)

Figure 2. Spanner [y:ox] applied to the document in Figure 1

The symbol @ defines the empty set, € is the empty string,
and 0 € X. The Vv, -, and * symbols denote disjunction, con-
catenation, and the Kleene-star operators, respectively. z{~}
instead indicates that the match obtained through the variable
regex ~ is mapped (in the form of a span) to the variable
x € SVars. Parenthesis may be used in a variable regex in
the usual way to specify precedence between operators. We
denote by SVars(v) the set of variables that occur in 7. We
use v+ as abbreviations -, and [0; — ;] as a shortcut for
the disjunction of all characters o € X such that o; < 0 < 0j.
In this paper we consider only variable regex expressions that
functional, i.e., such that in a matching over a document each
variable is associated with one span. A functional variable
regex is also called regex formula. We denote by RGX the
class of regex formulas. For more detail on the interpretation
of regex formulas, and the notion functionality, we refer the
reader to [13].

Example 3. Consider the following (simplified) regex formu-
las system:

o Viok = (eV(X*) x{la—zA—Z]T}- (.V_) i.e., aregex
formula assigning to x the words in a document (that
is, every non-empty sequence of alphabetic characters
preceded by either a white space or an empty string, and
followed by either a fullstop or a white space);

o Yeap = (€V (57) a{[A— 2] £} (V).

i.e., a regex formula assigning to x the words in a
document that begin with a capital letter;

® Yaft_prof = (Professor-_)- z{Xt} (L Vv _),
ie., a regex formula assigning to x the words in a
document that follow the word Professor (plus a white
space). (]

A regex formula ~ is naturally viewed as representing a
spanner, and by [y] we denote the spanner that is represented

by 7.

2) Algebra Over Spanner: The class [RGX{Y™>¢71
denotes the class RGX of primitive spanners extended with
the three basic operators of positive relational algebra: union
(U), projection (m), and join (x) plus the string selection
operator ((~). When we apply these symbols on one or more
spanners, the results will be a new spanner. More precisely,
let P, P, and P» be three spanners, such operators are defined
as follows [13]:

e Union. The union P, UP; is defined when P, and P, are
union compatible, that is, SVars(P;) = SVars(Fz). In
that case, SVars(P; U Py) = SVars(P;) and eval(P; U
P,,D) = eval(Py,D) Ueval(P2,D)

e Projection. if § C SVars, then my(P) is the spanner
such that SVars(mp(P)) = 60 and eval(my(P,D)) is
obtained from eval(P,D) by restricting the domain of
each (V,D)-tuple to 6

e Join. The join between spanners is defined as P; X Ps. It
holds that SVars(P; x P;) = SVars(P;) U SVars(P,),
and eval(P; X P, D) consists of all (V, D)-tuples u that
agree with some 1 € eval(Py, D) and uy € eval(Ps, D).
p exists if and only if pi(z) = po(x) for all z €
SVars(Py) N SVars(P,).

e String selection. Let R be a k-ary string relation. The
string-selection operator ¢ is parametrized by k vari-
ables x1, ...,z in SVars(P), and may then be written
as 51 ’’’’’ o I P s fl _____ z, P> then the span relation
eval(P’/,D) is the restriction of eval(P,D) to those
(V,D)-tuples p such that (D), ..., Dy,) € R.

Let p be a regex formula, [p] the spanner represented by
p, and ¥ = x1...x, the sequence of n distinct variables in
SVars([p]). Let ¥ = y1...yn be a sequence of n distinct
variables. The unary operator rename applied to [p] returns
a new spanner [p'], written also as [p[Z/¢]], obtained by
replacing every occurrence of x; in [p], with y;.

Example 4. Using the regex formula defined in the previous
section we can define, using the spanner algebra, the following
more expressive and complex [[RGX{U”T"’“C }]]—spanner.

o [ppror]l = [Veap]l X [Yast_pros]s i-e., the spanner rep-
resented by a regex formula that assigns to the variable
x each word that both begins with a capital letter and
follows the string Professor_ . The result of applying
[pprof] to the document Dy in Figure 1 is shown in
Figure 3. The extracted span is [11, 19) corresponding to
the substring Einstein. a

eval ([[pprof]]) Dex)
X

H1 [1179>

Figure 3. Result of spanner [p,.,r] applied to the document in Figure 1

III. FRAMEWORK

In this section we introduce our formal framework. An
OBDS System & is a pair (T, R), where

e 7 is a DL TBox.
e R is a set of extraction assertions of the form

Pviy...,vp) ~ Yoy, ... 0p) 3)

where

- P(vi,...,v,) (the left-hand side of the assertion) is
a [RGXIY™ ¢ spanner.

- U(vy,...,v,) (the right-hand side of the assertion)
is a CQ with free variables vq,...,v,. Atoms of
this CQ are built as usual over vi,...,v,, and
possibly over other existentially quantified variables
and/or constants, but may also use terms of the form
f(v1,...,vm), where f is a function symbol. The use
of terms of this form allows us to denote individuals
“constructed” from the spans in eval(P, D).

An instance of OBDS system is given in Example 5. By
focusing on the mapping, we note the presence of terms of
the form f(vy,...,v,,) (as prof(z1)). Such terms are useful
in all those cases in which the identifiers of individuals that
are instances of the ontology do not appear in the underlying
documents, but have to be constructed starting from the strings
extracted from them. Note that a similar mechanism is adopted
in OBDA, and in the W3C standard R2RML for mapping
relational tables to RDF datasets, which adopts templates to
construct TRIs denoting individuals’.

The semantic of an OBDS system & = (7, R) is defined
with respect to a document D. Given one such document, an
interpretation Z is a model for € with respect to D if:

e 7 is a model for T, and

e U(D,u,)--->Dyu,)) evaluates to true in Z for each

mapping p € eval(P, D).

We use Mod(E,D) to denote the set of models of £ with

respect to D. The notion of logical implication naturally

extends to OBDS systems, i.e., given a sentence ¢ we write
that (£, D) = ¢ if ¢T for every Z € Mod(&, D).

Example 5. Let £ = (7, R) be a OBDS system where 7T is
constituted by the following intensional axioms :

t1 : Course C —Person
ty . Professor T Person
ts : dteaches™ C Course

Such a TBox states that a course is not a person (%),
every professor is a person (¢2) and that only course can be

Zhttps://www.w3.org/TR/r2rml/

taught (¢3). Let D¢ be the document in Figure 1, and let
loproslz1/x]] and [Vieaches] be two spanner programs. The
former is represented by a regex formula that is obtained by a
simple renaming of a regex formula given in Example 4 (the
renaming will be useful for the examples of next section),
whereas the regex formula representing the latter is given
below:
® Yieaches = _° xQ{EJr}' (—' taUght' —)' yQ{EJr} (\ —)’
i.e., a regex assigning to zo the words before the word
taught, and to y, the words after taught.

R is as follows:

M : [pprof](x1) ~ Professor(prof(zy))
My : [Vteaches] (T2, y2) ~ teaches(prof(zz), course(yz))

Notice that both prof and course are function symbols of
arity 1 used to construct individuals from the string returned
by the spanners. For instance, if the spanner in M; applied
to a document returns the string Einstein, the assertions M;
constructs the individual prof(Einstein) as an instance of
Professor. O

In an OBDS system £ = (7, R), computing the certain
answers to a query g with respect to a document D, denoted
by cert(q, &, D), amounts to finding the query answers to ¢
that hold in all models for £ with respect to D. More formally,
given a query q of the form (1), a tuple € is a certain answer
to ¢ with respect to D if (£,D) = 37.6(¢, 9).

IV. QUERY REWRITING IN DL-Liter OBDS SYSTEMS

In this section we consider DL-Liter OBDS systems, i.e.,
systems in which the ontology is expressed in DL-Liter, and
devise an algorithm to compute the certain answers to a CQ
over one such system with respect to a given document D.

To this aim we resort to rewriting techniques used in the
context of OBDA, which we slightly adapt to our setting. First
of all, we recall the formal definition of OBDA. An OBDA
system 7 is a triple (T, M,S), where 7 is a DL TBox, S
is the relational schema of the source database, and M is
a mapping between 7 and S. The mapping M is a set of
assertions of the form

D(zq,...,xn) ~ U(21,...,2p)

where U(z1,...,x,) (the right-hand side of the assertion) is
exactly as for an extraction assertion in an OBDS system (cf.
assertion (3)), whereas ®(x1,...,x,) (the left-hand side of
the assertion) is a FOL query expressed over the schema S.
The semantics of OBDA systems is similar to the semantics
of OBDS systems, but is defined with respect to a database
instance for S. More precisely, given one such database DB, a
model for J is any interpretation Z that satisfies 7 and such
that for every tuple (cy, ..., ¢,) in the evaluation of the query
®(x1,...,2,) over DB, ¥(cy,...,c,) evaluates to true in Z.
It is well-known that CQ answering over an OBDA system in
which the TBox is expressed in DL-Liter is FOL-rewritable,
i.e., it can be reduced to the evaluation of a FOL query over
the source database [18], [20]. That is, it can be reduced to

the evaluation of a query written in the same language of the
query used in the left-hand side of mapping assertions, which
are the queries that the DBMS managing the source database
is able to process.

In the following, by exploiting the similarities between the
OBDA and OBDS frameworks, we show that CQ answering in
DL-Liter OBDS systems J is reducible to the evaluation of a
[[RGX{U’“’N’CZ}]]-spanner over a document D, i.e., a spanner
of the same expressiveness of those allowed in the left-hand
side of the extraction assertions in 7.

To maintain the treatment simple, from now on we con-
sider extraction assertions that do not use terms of the form
f(z1,...,2,). Intuitively, this corresponds to the assump-
tion that the identifiers of objects that are instances of the
ontologies are extracted directly from the documents over
which spanners are executed. Our algorithms however can be
adapted to manage the presence of terms of this form by using
the same techniques showed in [16]. Thus our results apply
straightforwardly to general OBDS extraction assertions.

Below we first consider the case in which extraction as-
sertions do not allow for existential variables in their right-
hand side, i.e., they resemble so-called Global-As-View (GAV)
mappings adopted in data integration. Then we consider the
general case, in which extraction assertions are in fact a form
of Global-Local-As-View (GLAV) mapping assertions [15]. In
the following, we adopt this standard terminology also for
extraction assertions.

A. GAV extraction assertions

As previously said, in a GAV extraction assertion there are
no existentially quantified variables in its right-hand side, i.e.,
it is of the form

P(0) ~ p1(01) Ao A pr(0F)

where each p; is either an atomic concept or an atomic role
in the ontology (notice that in the former case v; is a single
variable, in the latter contains two variables), and Ulev} -
¥. It is easy to see that the previous extraction assertion is
equivalent to the set of assertions®

P@) ~ pi(di)
P@) ~ pr(k)
We thus assume in the following that GAV extraction asser-
tions are specified in the previous “splitted” form.
Given a GAV DL-Litep OBDS system & = (7,R) and
a query g over £, we rewrite ¢ in two steps, which we call
ontology-based rewriting and extraction rules-based rewriting.
The first step is aimed at compiling the TBox into the query.
The second is aimed at rewriting the query obtained in the
first step (which is still a query expressed over the ontology)
according to the assertions in R, so that the final result is a
document spanner. For the first step we adopt the algorithm

3With a little abuse of notation, the variables in the left-hand side contain,
but are not necessarily equal to, the variables in the right-hand side of each
extraction assertions.

PerfectRef presented [18]. According to this algorithm, the
positive inclusion assertions in the TBox are used as rewriting
rules, from right to left, to repeatedly rewrite atoms in the
query. When an atom is rewritten a new CQ is added to the
result, as long as a fix point is reached. The final rewriting is
indeed a Union of CQs. For example, given a TBox assertion
B C A, and a query {z | A(z)} the atom A(x) is rewritten
into B(z) and the query {« | B(z)} is added to the result.
Notice however that for an atom to be rewritten according
to an inclusion assertion in 7 its terms must respect some
syntactic conditions [18]. Moreover, when atoms in the query
unify, PerfectRef performs such unification, which may then
trigger some further atom rewriting. An example of execution
of PerfectRef is given in Example 6.

The second step is through an unfolding method, which,
roughly, substitutes, in all possible ways, each atom a in the
query returned by PerfectRef with the spanners occurring in
the left-hand side of extraction assertions referring to a. To this
aim, we use the procedure Unfolding, which takes as input a
UCQ @ and a set of extraction rules R. This procedure, for
each CQ ¢ € @, each atom p; (t_;) in ¢ (where %; is a tuple of
terms, i.e., variables and/or constants), and each extraction rule
P(7) ~ p;(¥;), computes a unification (if it exists) between
pi(t;) and p;(7;), and substitutes p;(Z;) with P(%), modulo
the application of the unifier. Notice that only queries having
all atoms that unify with at least one extraction assertions
are completely unfolded and returned by Unfolding. Finally,
Unfolding expresses projections, selections and joins in the
queries according to the [RGX{"™*:¢"}] syntax. An example
of unfolding is given in Example 6.

The rewriting algorithm for the GAV case is given below.

Algorithm OBDS_Rewriting_GAV(E, q)
Input: OBDS &£ = (T, R), such that T is a DL-Litep TBox
and R is a set of GAV extraction assertions,
CQq -
Output: P € [RGX{Um2¢71]
begin
Q = PerfectRef (T, q)
P = Unfolding(Q,R)
return P
end

We can compute the certain answers to CQs over
GAV DL-Liter OBDS systems by means of the algorithm
OBDS_Rewriting_GAV, as established by the following theo-
rem.

Theorem 1. Let £ = (T,R) be an OBDS system such that
T is a DL-Liter TBox and R is GAV, let D be a document,
let ¢ be a CQ of arity n over &, and let P(vy,...,v,) be
the spanner returned by OBDS_Rewriting_GAV(E, q). Then,
a tuple of constants (t1,...,t,) € cert(q,E,D) if and only
if there exists p € eval(P,D) such that t; = D, for each
i€l,...,n. Furthermore P € [RGX{Y™>:¢7H],

Proof (sketch). The result follows from the following facts:
(i) PerfectRef(q,T) returns the perfect rewriting of a CQ ¢

with respect to a DL-Liter T, i.e., given an ABox A the
certain answers to ¢ over (7, .A) coincide with the evaluation
of ¢ over A, seen as a database [18]; (i7) the correctness of
the unfolding procedure to rewrite queries over the sources in
GAV systems [16], and (iii) the fact that [RGX{™>¢7}] is
closed under union, projection, join and string selection [13].
d

Example 6. Consider the setting of Example 5, and the
following query ¢ that asks for the persons who teach a course:

q = {z | Jy. Person(x) A teaches(x,y) A Course(y)} (4)

the result of PerfectRef (T, ¢q) is the UCQ Q' containing the
following CQs:

¢ : {z | Jy.Person(x) A teaches(x,y) A Course(y)}

¢, : {z | Jy.Professor(x) A teaches(z,y) A Course(y)}
¢, : {z | Person(z) A teaches(z,_)}

qy : {z | Professor(x) A teaches(x,_)}

The query ¢4 is generated from ¢j by the rewriting of
Person(x) in Professor(xz) according to the inclusion as-
sertion (t3). The query ¢4 is obtained from ¢j after rewrit-
ing Course(y) into Jz.teaches(z,y) (according to inclusion
(t3)) and after a unifying teaches(z,y) and teaches(z,y).
Similarly for ¢, which is derived from g5.

After the execution of PerfectRef, Unfolding(Q’,R) un-
folds the queries in Q' wusing extraction assertions in
R. Note that in our example only ¢; can be com-
pletely unfolded, whereas other queries in @’ do not
contribute to the final rewriting since some their atoms
cannot be unfolded. For ¢), atom Professor(x) unifies
with the atom Professor(prof(x)) in the extraction as-
sertion M and atom teaches(x,y) unifies with the atom
teaches(prof(z;), course(ys2)) in the extraction assertion
Ms. The unfolding will thus produce the following spanner
(modulo the application of the function symbol prof):

[[punf]] = [[ﬂ-z([[pprof [Z/JC]]] ol [h/teaches [Z/IQ]]])]] ®)

eval([puny], Dex), Where Dey is the document in Figure I,
is the span [11,19). Then, cert(q,&,D) are the tuples
prof(eval([puns], D)), that in our case is prof(Einstein). [J

B. General extraction assertions

We now consider the case in which we do not pose any
restriction on the extraction assertions, i.e., they are GLAV. We
start by noting that an extraction assertion P(v;,...,v,) ~
U(vq,...,v,) can be always transformed into a pair of asser-
tions of the following form

P(UZ‘, ..
Rauz(vlv ..

~ Rauz (01, ..., 0n) (5)
~ (v, .., vp) (6)

where R,,, is an auxiliary predicate symbol that explicitly
denotes the relation returned by the execution of P over a
document D, i.e., Ry, denotes the set of tuples of strings
(Duvy)s - -+ s Dyyu,y) for each i € eval(P, D). It is easy to see
that the second assertion above is an OBDA GLAV mapping

~7Un)
<3 Un)

assertion (in fact a LAV assertion [15]), whereas we can treat
the first assertion above as a GAV extraction assertion (even
though its right-hand side contains an n-ary predicate). Our
rewriting algorithm thus proceeds as follows:

(i) we first rewrite the user query according to the ontology
(ontology-based rewriting); this steps can be done through
PerfectRef and returns a UCQs over the ontology;

(7i) Each CQ in the rewriting returned by PerfectRef is
rewritten according to the LAV mapping assertions using
predicate R,,;; to this aim we can use any of the well-
known algorithm to rewrite a CQ with respect to a set of
LAV mappings in the relational framework [24]; Specifically,
we use the MiniCon algorithm proposed in [25], which, in our
framework, returns a UCQ over the predicate R4 ;

(#i1) at this point it remains to simply unfold the query
returned by the MiniCon algorithm; to this aim we can use
the Unfolding procedure we have seen before.

The overal rewriting algorithm is given below. In the algo-
rithm we denote with R’ extraction assertions of the form (5)
and with £ LAV mapping assertions of the form (6).

Algorithm OBDS_Rewriting(€, q)
Input: OBDS £ = (T, R), such that 7 is a DL-Litegr TBox
CQq

Output: P € [RGX{Um>¢71]
begin

Q7 = PerfectRef (T, q)

Qe =10

foreach g € O

Qr = Qr U{MiniCon(L,Q1)}

P = Unfolding(Q., R’)

return P
end

The following theorem can be proved in a way similar to
Theorem 1, considered also that MiniCon returns a perfect
rewriting for a CQ over a relational schema with respect to a
LAV mapping [25].

Theorem 2. Let £ = (T,R) be an OBDS system such that
T is a DL-Liter , let D be a document, let q be a CQ
of arity n over &, and let P(vy,...,v,) be the spanner
returned by OBDS_Rewriting(€, q). Then, a tuple of con-
stants (t1,...,t,) € cert(q,E,D) if and only if there exists
p € eval(P,D) such that t; = D, for each i € 1,...,n.
Furthermore P € [RGX{Vm»:¢7},

Since executing a spanner in [RGX{Y™"¢7} is poly-
nomial in the size of the underlying document [13] (i.e.,
the length of the string corresponding to the document), the
following result follows straightforwardly from Theorem 2.

Corollary 1. Let £ = (T, R) be an OBDS system such that
T is a DL-Liter TBox, let D be a document and let ¢ be a
CQ over £. Then computing cert(q,&,D) is polynomial in
the size of D.

V. CONCLUSIONS

The research in the OBDS framework can be continued in
many directions. From the theoretical perspective, it would
be interesting to investigate query answering in OBDS sys-
tems with more expressive languages for the ontology. First
candidates are other tractable logics of the DL-Lite family,
like DL-Lite 4, which extends DL-Lite g with functionalities on
roles (in a controlled way). It is known that, differently from
DL-Liter, query answering for DL-Lite 4 TBoxes and GLAV
mappings in OBDA is not FOL-rewritable. This is caused
by the interaction of existential variables in right-hand side
of mapping assertions and functionalities in the TBox. How
this interaction affects query answering in OBDS systems, and
whether it is possible to solve query answering by rewriting
in spanners of the [RGX{Y™"¢7}] class is left for future
study. We also plan to investigate query answering in OBDS
systems in which the TBox is specified in other DLs for which
standard query answering over ontologies is polynomial in data
complexity, e.g, EL [26], or horn DLs [27], [28].

More in general, we believe that our framework paves the
way for a comprehensive study on the use of ontologies in
IE, and it can help understanding how reasoning services
over the ontology may improve IE. For example, we believe
that in our framework it is possible to exploit reasoning to
identify anomalies in the specification of extraction rules (e.g.,
inconsistencies), in the spirit of the work on mapping analysis
in OBDA [29]. Finally, an obvious future line of research is
to develop software tools for OBDS, in order to verify the
realizability of our approach in the practice.

REFERENCES

[1] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“Ontology-based data access and integration,” in Encyclopedia of
Database Systems, Second Edition, 2018.

[2] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati,
and M. Zakharyaschev, “Ontology-based data access: A survey,” in
Proceedings of the Twentyseventh International Joint Conference on
Artificial Intelligence (IJCAI 2018), 2018, pp. 5511-5519.

[3] E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, and G. Xiao, “OBDA
beyond relational DBs: A study for MongoDB,” in Proceedings of the
Twentynineth International Workshop on Description Logic (DL 2016),
2016.

[4] D. Jurafsky and J. H. Martin, Speech and language processing: an
introduction to natural language processing, computational linguistics,
and speech recognition, 2nd Edition, ser. Prentice Hall series in artificial
intelligence. Prentice Hall, Pearson Education International, 2009.

[5] R. Grishman and B. Sundheim, “Message understanding conference- 6:
A brief history,” in Proceedings of the Sixteenth International Confer-
ence on Computational Linguistics (COLING’96), 1996, pp. 466—471.

[6] R. Hoffmann, C. Zhang, X. Ling, L. S. Zettlemoyer, and D. S. Weld,
“Knowledge-based weak supervision for information extraction of over-
lapping relations,” in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics, (ACL 2011), 2011, pp. 541—
550.

[7]1 D. Freitag, “Machine learning for information extraction in informal
domains,” Machine Learning, vol. 39, no. 2/3, pp. 169-202, 2000.

[8] H. Cunningham, “GATE, a general architecture for text engineering,”
Computers and the Humanities, vol. 36, no. 2, pp. 223—-254, 2002.

[9] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and
S. Vaithyanathan, “SystemT: An algebraic approach to declarative in-
formation extraction,” in Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, (ACL 2010), 2010, pp.
128-137.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan, “Declarative
information extraction using datalog with embedded extraction predi-
cates,” in Proceedings of the Thirtythird International Conference on
Very Large Data Bases (VLDB 2007), 2007, pp. 1033-1044.

S. Sarawagi, “Information extraction,” Foundations and Trends in
Databases, vol. 1, no. 3, pp. 261-377, 2008.

B. Kimelfeld, “Database principles in information extraction,” in Pro-
ceedings of the Thirtythird ACM SIGACT SIGMOD SIGART Symposium
on Principles of Database Systems (PODS 2014), 2014, pp. 156-163.
R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren, “Document
spanners: A formal approach to information extraction,” Journal of the
ACM, vol. 62, no. 2, p. 12, 2015.

, “Declarative cleaning of inconsistencies in information extrac-
tion,” ACM Transactions on Database Systems, vol. 41, no. 1, pp. 6:1-
6:44, 2016.

M. Lenzerini, “Data integration: A theoretical perspective.” in Proceed-
ings of the Twentyfirst ACM SIGACT SIGMOD SIGART Symposium on
Principles of Database Systems (PODS 2002), 2002, pp. 233-246.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati, “Linking data to ontologies,” Journal on Data Semantics,
vol. X, pp. 133-173, 2008.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data exchange:
Semantics and query answering,” Theoretical Computer Science, vol.
336, no. 1, pp. 89-124, 2005.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“Tractable reasoning and efficient query answering in description logics:
The DL-Lite family,” Journal of Automated Reasoning, vol. 39, no. 3,
pp. 385-429, 2007.

B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, and B. Cuenca Grau,
“OWL Web Ontology Language profiles,” World Wide Web Consortium,
W3C Recommendation, Oct. 2009, available at http://www.w3.org/TR/
owl-profiles/.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati,
and M. Ruzzi, “Using OWL in data integration,” in Semantic Web
Information Management - A Model-Based Perspective, 2009, pp. 397—
424.

D. C. Wimalasuriya and D. Dou, “Ontology-based information extrac-
tion: An introduction and a survey of current approaches,” Information
Sciences, vol. 36, no. 3, pp. 306-323, 2010.

F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and
D. Nardi, The description logic handbook: Theory, implementation and
applications. Cambridge university press, 2003.

B. C. Grau, 1. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and
U. Sattler, “Owl 2: The next step for owl,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 6, no. 4, pp. 309-322,
2008.

A. Doan, A. Y. Halevy, and Z. G. Ives, Principles of Data Integration.
Morgan Kaufmann, 2012.

R. Pottinger and A. Y. Halevy, “MiniCon: A scalable algorithm for
answering queries using views,” Very Large Database Journal, vol. 10,
no. 2-3, pp. 182-198, 2001.

E. Baader, S. Brandt, and C. Lutz, “Pushing the ££ envelope,” in Pro-
ceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI 2005), 2005, pp. 364-369.

U. Hustadt, B. Motik, and U. Sattler, “Data complexity of reasoning
in very expressive description logics,” in Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI 2005),
2005, pp. 466—471.

M. Ortiz, S. Rudolph, and M. Simkus, “Query answering in the
Horn fragments of the description logics SHOZQ and SROZQ.”
in Proceedings of the Twentysecond International Joint Conference on
Artificial Intelligence (IJCAI 2011). 1JCAI/AAAI 2011, pp. 1039—
1044.

D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen, “Mapping
analysis in ontology-based data access: Algorithms and complexity,” in
Proceedings of the fourteenth International Semantic Web Conference
(ISWC 2015), 2015, pp. 217-234.

