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The use of biomaterials has been demonstrated as a viable strategy to promote cell survival and cardiac repair. 
However, limitations on combinational cell–biomaterial therapies exist, as cellular behavior is influenced by 
the microenvironment and physical characteristics of the material. Among the different scaffolds employed for 
cardiac tissue engineering, a myocardial matrix hydrogel has been shown to promote cardiogenesis in murine 
cardiac progenitor cells (mCPCs) in vitro. In this study, we investigated the influence of the hydrogel on Sca-1-like 
human fetal and adult CPCs (fCPCs and aCPCs) when encapsulated in three-dimensional (3D) material in 
vitro. fCPCs encapsulated in the myocardial matrix showed an increase in the gene expression level of cardiac 
markers GATA-4 and MLC2v and the vascular marker vascular endothelial growth factor receptor 2 (VEGFR2) 
after 4 days in culture, and a significant increase in GATA-4 up to 1 week. Increased gene expression levels of 
Nkx2.5, MEF2c, VEGFR2, and CD31 were also observed when aCPCs were cultured in the matrix compared 
to collagen. Cell survival was sustained in both hydrogels up to 1 week in culture with the myocardial matrix 
capable of enhancing the expression of the proliferation marker Ki-67 after 4 days in culture. When encapsu-
lated CPCs were treated with H2O2, an improved survival of the cells cultured in the myocardial matrix was 
observed. Finally, we evaluated the use of the myocardial matrix as hydrogel for in vivo cell transplantation 
and demonstrated that the gelation properties of the hydrogel are not influenced by the cells. In summary, we 
showed that the myocardial matrix hydrogel promotes human CPC cardiogenic potential, proliferation, and 
survival and is a favorable hydrogel for 3D in vitro culture. Furthermore, we demonstrated the in vivo applica-
bility of the matrix as a potential vehicle for cell transplantation.
Key words: Cardiac tissue engineering; Cardiac progenitor cells (CPCs); Cardiac extracellular matrix; 
Cardiac regeneration

INTRODUCTION

Cardiovascular disease is the leading cause of death 
in the US with coronary artery disease alone causing one 
of every seven deaths in 20111. Following a myocardial 
infarction (MI), cardiomyocyte death is followed by scar 
deposition and tissue remodeling, causing loss of con-
tractility and impaired cardiac function. At the moment, 
the only valid option to fully restore the damaged organ 
is heart transplantation, which is limited by a shortage of 
donors. For this reason, alternative strategies have been 
developed to try to regenerate the damaged tissue2.

Cellular therapy has emerged as an alternative approach 
to potentially restore cardiomyocyte loss and cardiac func-
tionality3. Different types of stem cells have already been 
tested in many clinical trials, showing encouraging results 

in terms of safety, but modest or only transient results in 
terms of improvement of cardiac function or efficacy4,5. 
Among the different cell types, cardiac progenitor cells 
(CPCs) represent a promising cell source for cardiac 
regeneration for their cardiogenic commitment and capa-
bility of differentiating into all of the cell types present in 
the heart such as cardiomyocytes, endothelial cells, and 
smooth muscle cells6–10. When transplanted in vivo, human 
CPCs (hCPCs) have been shown to induce functional 
regeneration in the infarcted myocardium in small7,9,10 
and large11–14 animal models. These encouraging results 
led to the development of three clinical trials using resi-
dent autologous CPCs, resulting in a proof of concept in 
terms of safety and showing encouraging results in terms 
of efficacy: CADUCEUS15,16, SCIPIO17,18, and ALCADIA 
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(ClinicalTrials.gov identifier NCT00981006), as well as 
one clinical trial with heterologous CPCs, ALLSTAR 
(NCT01458405). However, despite the speed at which 
stem cells have arrived in the clinic to treat patients with 
heart disease, the therapeutic mechanism by which they 
operate remains poorly understood. The idea of using 
stem cells to repopulate the damaged myocardium was 
based on the concept that stem cells could differentiate 
into new cardiomyocytes once the cells are in the car-
diac environment because of endogenous stimuli of the 
damaged cardiac tissue. However, numerous studies have 
now demonstrated that the extent of cell transdifferentia-
tion in vivo is very limited or absent, and therefore does 
not explain the observed functional improvements19,20. 
One proposed mechanism behind the observed therapeu-
tic benefits of stem cells is their paracrine effect, as it has 
been previously desmonstrated with Akt-modified mes-
enchymal stem cells (MSCs)21,22. Although committed to 
the cardiac lineage, CPCs also exert their beneficial ther-
apeutic effects mainly through paracrine signaling, and 
their contribution to the newly formed cardiomyocytes is 
only marginal23,24. A possible explanation is the very low 
cell engraftment25,26 and high cell death due to the hostile 
environment of the myocardium into which the cells are 
transplanted27.

To overcome these limitations, the use of biomate-
rials as a carrier has been proposed28–30. Different types of 
scaffold-based approaches have been shown to increase 
cell engraftment and survival, either in the form of a 
hydrogel31–36 or a cardiac patch36–38. However, increasing 
cell engraftment does not always lead to improved regen-
eration or an increase of newly formed cardiomyocytes 
by the transplanted cells39. The ideal biomaterial should 
improve cell engraftment, but it should also promote a 
proper microenvironment for cell differentiation and pro-
tect the transplanted cells from the hostile environment 
within the infarcted tissue. This should not be surprising, 
as it is known that stem cell phenotype is influenced by the 
microenvironment40 and biomaterial characteristics such 
as stiffness41, biological properties42,43, and architecture42.

A myocardial matrix hydrogel derived from decellu-
larized porcine myocardium has recently been developed 
as an alternative naturally derived biomaterial to treat 
MI44. The main advantage of this material is the pres-
ence of tissue-specific extracellular matrix (ECM) com-
ponents, including proteins and polysaccharides such as 
glycosaminoglycans45. When the myocardial matrix was 
injected into preclinical MI models, the hydrogel signifi-
cantly improved global and regional cardiac function45,46, 
and the success of these studies led to the development 
of a phase I clinical trial, which is currently ongoing 
(NCT02305602). Porcine myocardial matrix can also be 
used as coating material for cell culture47, and French et al. 

showed that the material enhanced cardiogenic commit-
ment of c-Kit+ rat CPCs when compared to collagen-
coated dishes48. Similar results were also observed when 
human Sca-1+ CPCs were cultured on coatings of porcine- 
as well as human-derived myocardial matrices49. However, 
the effects of the myocardial matrix on clinically relevant 
hCPCs cultured in three-dimensional (3D) material still 
needs to be addressed, as well as the potential of the hydro-
gel to promote cell survival.

In this study, we investigated the effects of the myo-
cardial matrix on human fetal and adult Sca-1+ CPCs8 
when encapsulated in 3D material in vitro. We also evalu-
ated the ability of the hydrogel to gel with cells in vivo.

MATERIAL AND METHODS

CPC Isolation

Human heart auricle biopsies were obtained under an 
institutionally approved protocol at the University Medical 
Center (UMC) Utrecht and the University of California, 
San Diego Human Research Protections Program.

Human Sca-1+ cells were isolated from human fetal 
hearts (fCPCs) or from human heart auricle biopsies derived 
from adult patients (aCPCs), as previously described8. The 
cardiac tissue was cut into small pieces and enzymati-
cally digested in 1 mg/ml collagenase A (Roche, Basel, 
Switzerland) for 2 h at 37°C, and Sca-1+ cells were iso-
lated by magnetic cell sorting. Cells were cultured in 0.1% 
gelatin-coated wells in growth medium consisting of 25% 
endothelial cell growth medium (EGM-2; EGM-2 single 
quotes; Lonza, Walkersville, MD, USA) in endothelial 
growth basal medium (EBM-2; Lonza) and 75% M199 
(Lonza), 10% fetal bovine serum (FBS; Hyclone, Logan, 
UT, USA), 1× non-essential amino acids (NEAA; Lonza), 
and 1× penicillin/streptomycin (Sigma-Aldrich, St. Louis, 
MO, USA).

Myocardial Matrix Hydrogel Fabrication

Decellularized porcine ventricular ECM was obtained 
and processed as previously described50. Ventricular tissue 
was isolated from porcine hearts, cut into small pieces, and 
rinsed in sterile H2O for 2 h. The tissue was then decellu-
larized in 1% sodium dodecyl sulfate (SDS; Thermo Fisher 
Scientific, San Diego, CA, USA) for 4 days with daily 
solution changes, rinsed in sterile H2O for an additional 
day, and frozen at −80°C. Tissue was then lyophilized and 
milled into a fine powder, which was digested with pepsin 
(Sigma-Aldrich) at 1 mg/ml in 0.1 M HCl for 48 h at a 
final concentration of 10 mg/ml. The digested ECM was 
neutralized to physiological pH, frozen, lyophilized, and 
stored at −80°C for long-term storage. To reconstitute the 
matrix, sterile H2O was added to the lyophilized digested 
matrix at the desired concentration.
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Cell Encapsulation

For 3D culture experiments, cells were resuspended in 
8 mg/ml myocardial matrix or in 2.5 mg/ml collagen type I 
(Gibco, Foster City, CA, USA). fCPCs (2 × 105) or aCPCs 
(1.5 × 105) were encapsulated in 25 µl of myocardial matrix 
or collagen and incubated at 37°C for 30–45 min to promote 
hydrogel formation before adding supplemented medium. 
fCPCs isolated from six different donors and aCPCs from 
two different donors were respectively pooled together for 
each experiment. Cells at passages 8 to 12 (after isolation) 
were used.

Cell Viability Assay

Encapsulated cells were stained with calcein AM via-
bility dye (25 nm; eBioscience, San Diego, CA, USA) for 
30 min at 37°C. After incubation, the gels were quickly 
washed twice in phosphate-buffered saline (PBS; Gibco) 
and imaged immediately under a Zeiss fluorescence 
microscope (Carl Zeiss, Dublin, CA, USA) after 1, 4, and 
7 days in culture (n = 3).

RNA Isolation and Quantitative Real-Time PCR

Four and 7 days after cell encapsulation, RNA was iso-
lated by NucleoSpin RNAII column (Macherey-Nagel, 
Mountain View, CA, USA) according to the manufactur-
er’s protocol. DNAse treatment (Macherey-Nagel) was 
performed on RNA isolation columns to remove DNA 
contamination. RNA quantification and purity were deter-
mined by absorbance readings at 260 and 280 nm using a 
NanoDrop 2000c spectrophotometer (Thermo Scientific, 
Wilmington, DE, USA). cDNA was synthesized by using 
an iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, 
USA), and quantitative real-time polymerase chain reac-
tion (RTq-PCR) amplification was detected in a CFX96 
Touch Real-Time PCR Detection System (Bio-Rad) 
using SYBR Select Master Mix (Applied Biosystems, 
Carlsbad, CA, USA). Four gels at each condition and 
timepoint were combined and used for RNA isolation. 
Primers used included the following: GATA binding pro-
tein 4 (GATA-4; forward, GTTTTTTCCCCTTTGATTTT 
TGATC; reverse, AACGACGGCAACAACGATAAT); 
hNkx2.5 (forward, CCCCTGGATTTTGCATTCAC; rev-
erse, CGTGCGCAAGAACAAACG); myocyte enhancer  
factor 2c (MEF2c; forward, TCGGGTCTTCCTTCA 
TCAG; reverse, GTTCATCCATAATCCTCGTAATC); 
myosin light chain 2v (MLC2v; forward, ACCATTCTC 
AACGCATTC; reverse, CCTAGTCCTTCTCTTCTCC); 
MLC2a (forward, AACTTCACCGTCTTCCTCAC; rev-
erse, CGAACATCTGCTCCACCTC); a cardiac actin 1 
(ACTC1; forward, GTCGGGACCTCACTGACTAC; 
reverse, CAATTTCACGTTCAGCAGTG); CD31 (for- 
ward, GCAGTGGTTATCATCGGAGTG; reverse, TCG 
TTGTTGGAGTTCAGAAGTG); vascular endothelial  

growth factor receptor 2 (VEGFR2; forward, AAAG 
GGTGGAGGTGACTGAG; reverse, CGGTAGAAGCA 
CTTGTAGGC); von Willebrand factor (vWF; forward,  
AGTGCTGTGATGAGTATGAGTG; reverse, GATGG 
TGCTTCGGTGGAC); vascular endothelial cadherin 
(VE-cadherin; forward, GCCAACATCACAGTCAAG; 
reverse, GCCATATCCTCGCAGAAG); and the house-
keeping gene glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH; forward, CTCTGACTTCAACAGCGACA; 
reverse, TCTCTCTCTTCCTCTTGTGC).

Histological Analysis

For histological analysis, three gels under each con-
dition and timepoint were washed in PBS, embedded in 
O.C.T. Compound (Sakura Finetek, Torrance, CA, USA), 
and cut into 7-µm cryosections. Frozen sections were rehy-
drated in PBS (10 min), fixed in 4% paraformaldehyde 
(PFA; Thermo Fisher Scientific) (10 min), and washed 
in PBS (3 × 10 min). Tissue sections were stained with 
hematoxylin and eosin (H&E; Thermo Fisher Scientific) 
to evaluate cell distribution and nuclear density within 
the scaffolds.

For immunofluorescence staining, fixed sections were 
permeabilized with 0.1% Triton X-100 (Sigma-Aldrich), 
dissolved in 1% bovine serum albumin (BSA; Gemini 
Bio Products, West Sacramento, CA, USA) in PBS for 
10 min, and blocked with 10% goat serum (Gibco) in 
PBS for 60 min. The slides were incubated overnight 
with primary antibody diluted in 0.1% BSA in PBS at 
4°C. Secondary antibody incubation was performed at 
room temperature for 1 h, followed by 5-min Hoechst 
33342 (1:5,000) incubation and mounting with fluo-
romont (Sigma-Aldrich). The following antibodies and 
dilutions were used: Ki-67 (1:100; Abcam, Cambridge, 
MA, USA), human b-integrin (1:50; Santa Cruz Bio-
technology, Dallas, TX, USA), Nkx2.5 (1:200; Santa 
Cruz Biotechnology), Alexa Fluor 488 goat anti-mouse 
(1:200; Invitrogen, Carlsbad, CA, USA), and Alexa Fluor 
568 goat anti-rabbit (1:200; Invitrogen). Control slides 
were incubated with secondary antibody only.

Hydrogen Peroxide Assay

Twenty-four hours after cell encapsulation, gels were 
treated with growth medium supplemented with 500 µM 
H2O2 (fCPCs) or 750 µM H2O2 (aCPCs) and incubated for 
16 h. After the treatment, the medium was removed, and the 
gels were incubated in alamarBlue (1:10 in medium; Invi-
trogen) for a total volume of 250 µl in each well. After 4 h 
of incubation, 100 µl was collected per sample and analyzed 
at 550/585 nm with a Synergy 4 Multi-Mode Microplate 
Reader (BioTek, Winooski, VT, USA) as an index of viable 
cells. Untreated H2O2 control samples were used to evalu-
ate the percentage of surviving cells in each condition.
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In Vivo Application

All animal experiments were carried out in accordance 
with the guidelines established by the Institutional Animal 
Care and Use Committee (IACUC) at the University 
of California in San Diego and the Association for the 
Assessment and Accreditation of Laboratory Animal 
Care and the experimental protocol was approved by the 
UCSD IACUC.

Female Sprague–Dawley rats were used to assess and 
evaluate the use of the myocardial matrix as a vehicle for 
cell delivery into the myocardium. Animals were anes-
thetized using 5% isoflurane (Vet One, Boise, ID, USA), 
which was lowered to 1–1.5% during surgery. The hearts 
were exposed via a thoracotomy between the third and 
fourth ribs, and 3 × 106 fCPCs were resuspended in 75 µl 
of myocardial matrix (8 mg/ml) and injected into the left 
ventricular wall. After 30 min, the animals were eutha-
nized, and the hearts were frozen in O.C.T. compound for 
histological analysis (n = 3).

Statistical Analysis

All data are expressed as the mean ± standard error of 
the mean (SEM). A paired Student’s t-test was used to 
compare two groups. A value of p < 0.05 was considered 
significant. Statistical analyses were carried out using 
GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, 
CA, USA).

RESULTS

Cell Viability

To assess cell viability and morphology in both myo-
cardial matrix and collagen hydrogels, encapsulated cells 
were stained with calcein AM vital dye. No major differ-
ences were observed between collagen and myocardial 
matrices or between adult and fetal CPCs. At 1 day, viable 
cells were homogeneously dispersed within the hydrogel 
(Fig. 1A), with the majority of them showing a spindle-
shaped/elongated phenotype indicative of a good adhe-
sion to the myocardial matrix hydrogel (Fig. 1A). Few 
cells with round morphology were also present (Fig. 1A). 
After 4 days in culture, the cells colonized the entire scaf-
fold, indicating proliferation and successful cell migration 
into the matrix (Fig. 1B). After 7 days in culture, the cells 
continued to proliferate, showed a very high confluency 
(Fig. 1C), and also displayed a more elongated phenotype 
and cell-to-cell contact throughout the gel (Fig. 1D–F).

RT-PCR Analysis

To evaluate the effects of the myocardial matrix hydro-
gel on the CPC gene expression profile, quantitative PCR 
analysis was performed at days 4 and 7 postencapsulation 
and compared to the collagen hydrogel group.

Fetal CPCs. At day 4, fCPCs showed a significant inc-
rease in the early transcription factor GATA-4 (4.4 ± 0.86), 

Figure 1. Representative fluorescent images of calcein AM-labeled human fetal cardiac progenitor cells (CPCs) cultured in myocar-
dial matrix for 1 (A), 4 (B), and 7 (C) days. (D–F) High magnification of (C). Scale bars: 100 µm (A–C), 50 µm (D–F).
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the sarcomeric marker MLC2v (6.1 ± 1.6), and the vascular 
marker VEGFR2 (3.1 ± 1.01) (Fig. 2). Although not sig-
nificant, increases in the cardiac markers Nkx2.5 (1.9 ± 0.4), 
MEF2c (2.0 ± 0.52), actin (ACTC1; 4.8 ± 1.69), and MLC2a 
(2.3 ± 0.73) were observed, while no differences were present 
in the vascular markers CD31 (1.3 ± 0.13), vWF (1.0 ±0.15), 
and VE-cadherin expression (VE-CAD; 1.1 ± 0.1) (Fig. 2). 
Expression of GATA-4 remained significantly increased 
after 1 week in culture (5.2 ± 1.78), while nonsignificant 
increases were observed for the other cardiac and vascular 
markers analyzed: Nkx2.5 (2.1 ± 0.85), MEF2c (2.3 ± 0.99), 
actin C1 (3.9 ± 1.62), MLC2a (4.3 ± 2.03), MLC2v (2.5 ±  
1.44), VEGFR2 (3.2 ± 1.30), CD31 (3.0 ± 1.34), vWF (3.4 ±  
1.63), and VE-CAD (1.4 ± 0.1) (Fig. 2).

Adult CPCs. Similar to fCPCs, aCPCs also showed 
an increase in cardiogenic commitment when cultured 
in the myocardial matrix hydrogel compared to collagen. 
After 4 days in culture, a significant increase in the early 
cardiac markers Nkx2.5 (2.4 ± 0.4), MEF2c (1.9 ± 0.33), 
and the vascular markers VEGFR2 (2.0 ± 0.2) and 
CD31 (1.9 ± 0.15) was observed (Fig. 3). A nonsignifi-
cant increase in GATA-4 was also observed (3.2 ± 0.96), 

while very low or no expression of sarcomeric markers 
was detected with no differences among the two groups. 
After 1 week in culture, no differences were detected 
among the two groups for the analyzed markers: Nkx2.5 
(1.2 ± 0.30), GATA-4 (1.1 ± 0.21), MEF2c (1.1 ± 0.11), 
VEGFR2 (1.3 ± 0.25), and CD31 (1.9 ± 0.44) (Fig. 3).

Histological Analysis

Histological analysis was performed to evaluate cell 
phenotype and the proliferation of the cultured cells. H&E 
staining was performed after 7 days in culture and showed 
a very high nuclear density for all the groups, confirm-
ing that the cells were able to proliferate and colonize the 
scaffolds (Fig. 4A and B), as previously observed with 
the cell viability assay (Fig. 1). Expression of Nkx2.5 
was also evaluated by immunofluorescence staining. The 
majority of positive cells were found closer to the gel 
boarders with few differences among the groups (Fig. 4C 
and D). We then evaluated the proliferation rate of the 
cultured cells by Ki-67 immuno fluorescence after 4 days 
in culture. A significantly higher expression of the prolif-
eration marker Ki-67 was observed both in fetal and adult 

Figure 2. Quantitative polymerase chain reaction (PCR) analysis of fCPCs encapsulated in collagen (COL) or myocardial matrix 
(Matrix) scaffold. Results are expressed as a fold change for Matrix group over COL; n = 6; *p < 0.05. ACTC1, a cardiac actin 1; 
MLC2a, myosin light chain 2a; MLC2v, myosin light chain 2v; VEGFR2, vascular endothelial growth factor receptor 2; vWF, von 
Willebrand factor; VE-CAD, VE-cadherin.
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Figure 4. Histological analysis of encapsulated fetal CPCs. Hematoxylin and eosin staining of fCPCs (A and B)  cultured in myocar-
dial matrix (A) or collagen (B) for 1 week. Immunofluorescence analysis of fCPCs expression of Nkx2.5 (red) and human b1-integrin 
(green) 4 days after encapsulation in myocardial matrix (C) or collagen (D). Scale bars: 100 µm (A and B) and  50 µm (C and D).

Figure 3. Quantitative PCR analysis of aCPCs encapsulated in collagen (COL) or myocardial matrix (Matrix) scaffold. Results are 
expressed as a fold change for Matrix group over COL; n = 5; *p < 0.05.
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CPCs when cultured in the myocardial matrix hydrogel. 
Specifically, 27 ± 3.4% of cells were Ki-67+ when fCPCs 
were cultured in the matrix, while only 9 ± 1.3% of cells 
were Ki-67+ when encapsulated in collagen (Fig. 5). A 
similar trend was also observed with aCPCs, which had 
18 ± 3.3% Ki-67+ cells in the matrix compared to 7 ± 0.6% 
Ki-67+ cells when cultured in collagen (Fig. 5). 

Hydrogen Peroxide Assay

To evaluate whether the myocardial matrix hydrogel 
has the ability to preserve cell viability compared to 
collagen, an H2O2 assay was performed. An alamarBlue 
metabolic assay was used to assess cell survival. A sig-
nificantly higher metabolic activity was observed when 
fCPCs (49 ± 5.0 vs. 30.0 ± 1.9%) and aCPCs (75 ± 4.2 vs. 
64 ± 2.8%) were encapsulated in the myocardial matrix 
hydrogel compared to the collagen group (Fig. 6).

In Vivo Transplantation

We also evaluated the ability of the myocardial matrix 
hydrogel to form a scaffold in vivo when delivering cells 
into the heart. Histological analysis of cells injected in 
matrix into the ventricular wall of healthy rats showed 
that the myocardial matrix hydrogel was still able to form 
a gel in vivo and was not affected by the presence of the 
cells. fCPCs were mostly localized in the porcine matrix, 
and only a few single cells were visible outside of the 
formed gel (Fig. 7).

DISCUSSION

Adult stem cell therapy has emerged in the last 15 years 
as a promising therapeutic approach to repair damaged 
myocardium. Since the first stem cell transplantation into 
the infarcted myocardium51, many different cell types 
have been tested both in small and large animal models, 
as well as in many clinical trials4,5,52. Among the different 
cell types used, CPCs are very promising cells given their 

natural commitment to the cardiac lineages and their abil-
ity to differentiate in vivo and ex vivo into all of the main 
cell types present in the heart6,7,9,10. Despite the encourag-
ing results in animal models or clinical trials, limitations 
such as cell engraftment, survival, and differentiation 
after transplantation remain a major issue29. A cellular 
therapy that incorporates the proper biomaterial may 
have the potential to regenerate the damaged tissue, either 
alone or in combination with bioactive molecules28,53,54. 
It is now well established that cell transplantation with 
biomaterials results in an increase in cell engraftment31–38. 
However, an increase in cell number does not necessar-
ily lead to an increase in regeneration, and many studies 
have shown that the administration of cells or biomateri-
als alone has almost the same beneficial effect when the 
two are administered together29. The ideal biomaterial 
should not only increase cell engraftment but also provide 
the proper environment for the transplanted stem cells in 
order to increase their paracrine activity. Most impor-
tantly, the biomaterial should also support differentiation 
of the transplanted cells into newly formed cardiomyo-
cytes, a goal that remains one of the major limitations 
of current cell therapy applications. Our previous stud-
ies demonstrated that CPCs can be cultured in 3D scaf-
folds and that the properties of the ECM can influence the 
proliferation rate, metabolic activity, and differentiation 
potential of the cultured cells37,55,56.

In this study, we evaluated the effects of myocardial 
matrix-encapsulated hCPCs and showed the ability of this 
cardiac-derived material to enhance the cardiogenic com-
mitment of both fetal and adult CPCs. fCPCs had increased 
expression of the early transcription factor GATA-4, the sar-
comeric protein MLC2v, and the vascular marker VEGFR2, 
and although not significant, a general increase of other car-
diac markers such as Nkx2.5, MEF2c, actinC1, and MLC2a 
was observed over the culture period. Similarly, the myo-
cardial matrix also induced a significant increase of Nkx2.5, 
MEF2c, actin (ACTC1), VEGFR2, and CD31 after 4 days 

Figure 5. Ki-67 quantification of encapsulated CPCs in collagen (COL) or myocardial matrix (Matrix) 4 days after encapsulation. 
(A) fCPCs encapsulated in COL or myocardial matrix scaffold; n = 6. (B) aCPCs encapsulated in COL or myocardial matrix scaffold; 
n = 4; *p £ 0.05.



1660 GAETANI ET AL.

in culture. This effect was more pronounced at this early 
timepoint after encapsulation. A possible reason is the very 
high confluency that the cells reach after 1 week in culture 
together with a possible lack of nutrients that usually limits 
long-term 3D culture. Another potential explanation is based 
on the fact that CPCs can remodel their microenvironment. 
This has been shown in 2D48 and 3D37,57, and therefore in 
these experiments, the myocardial matrix may only be pro-
viding early cues to promote car diac differentiation.

Besides the observed cardiogenic commitment, another 
important aspect of the beneficial effects of the myocardial 
matrix on CPCs is the increase in proliferation of the cul-
tured cells. We showed that increased numbers of fCPCs 
and aCPCs were still proliferative in matrices, as shown 
by the expression of Ki-67, compared to cells in collagen. 
Promoting proliferation could be an advantage due to the 
limited number of engrafted cells after transplantation. In 

addition to an increase in cell retention by injectable scaf-
folds, an increased proliferative capability of the trans-
planted cells may also result in an improvement in cardiac 
regeneration either through an increase in new cardiomyo-
cyte generation or through prolonged paracrine activity.

Cell preservation and survival postinjection are other 
important aspects, considering the hostile environment of 
the infarcted myocardium. We showed that the myocar-
dial matrix improved cell survival of encapsulated cells 
in the presence of H2O2. We observed an approximately 
10% increase in cell survival when aCPCs were encap-
sulated in matrix compared to collagen, and even more 
when fCPCs were tested. This in vitro result, along with 
the observed increase in proliferation, shows potential 
for improved cell survival and proliferation also in vivo. 
However, further studies are needed to evaluate whether 
this also occurs in vivo.

Figure 6. H2O2 assay of hCPCs encapsulated in collagen (COL) or myocardial matrix (Matrix) scaffold. (A) Fetal CPCs treated with 
500 µM H2O2 for 16 h (n = 12). (B) Adult CPCs treated with 750 µM H2O2 for 16 h (n = 10). Survival was calculated by alamarBlue 
metabolic activity assay and calculated as percentage versus untreated control samples. *p £ 0.05.

Figure 7. H&E staining of transplanted fCPCs in myocardial matrix 30 min after transplantation into the myocardium. Myocardial 
matrix is outlined by dashed line. Scale bars: 1 mm (A), 100 µm (B); n = 3.
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One advantage of the myocardial matrix hydrogel 
is its ability to be delivered through a cardiac injection 
catheter45,46, therefore allowing a minimally invasive 
delivery route. Although we did not evaluate this catheter 
delivery method, we showed that the myocardial matrix 
can still be injected with cells using a 27-gauge needle 
and gel in vivo. Our current work demonstrated that in 
vivo gelation properties of the myocardial matrix were 
not affected by the presence of the cells. Thirty minutes 
after injection, cells were visible in the ventricular wall 
and were located mostly within the formed gel, with few 
single cells dispersed in the ventricular tissue.

In conclusion, we showed that a naturally derived, 
cardiac-specific hydrogel enhanced the cardiogenic 
commi tment, proliferation, and survival of 3D-cultured 
hCPCs when compared to a collagen gel. To our knowl-
edge, this is the first study that evaluated the interaction 
between tissue-specific ECM and CPCs in 3D. These 
results provide proof of concept for using a myocardial 
matrix hydrogel to deliver CPCs in vivo and warrant 
further investigation in preclinical MI models.
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