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Figure 1: A few Localized Manifold Harmonics (LMH) on two different regions of the dog shape. By changing the region location on the
surface, our model provides an ordered set of localized harmonic functions (i.e., defined on the entire surface, but strongly concentrated
on the selected region). In this figure the localized harmonics are clearly visible across different frequencies. The LMH constitute a valid
alternative to the classical manifold harmonics and can be used in conjunction with those, or as a drop-in replacement in typical spectral
shape analysis tasks.

Abstract
The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications.
In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such
bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire
manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct
localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a
new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the
proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence.
We obtain significant improvement compared to classical Laplacian eigenbases as well as other alternatives for constructing
localized bases.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Shape Analysis, 3D Shape Matching, Geometric Modeling

1. Introduction

Spectral methods are ubiquitously used in 3D shape analysis and
geometry processing communities for a wide range of applications
ranging from constructing local shape descriptors [SOG09], shape
retrieval [JZ07,BBGO11] and correspondence between deformable
shapes [OBCS∗12, KBB∗13] to mesh filtering [VL08, Tau95],
remeshing [DBG∗06] and compression [KG00]. The centerpiece
of such methods is the construction of an orthogonal basis for

the space of functions defined on a manifold, allowing to gen-
eralize classical Fourier analysis to non-Euclidean domains. Typ-
ically, such bases are constructed by the diagonalization of the
Laplace-Beltrami operator [Lév06]. The choice of Laplacian eigen-
basis is convenient for several reasons. First, it is intrinsic and thus
invariant to manifold parametrization and its isometric deforma-
tions [LZ10]. Second, it allows to be agnostic to a specific shape
representation, as the Laplace-Beltrami operator can be discretized
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on meshes, point clouds, volumes, etc. Third, Laplacian eigenbasis
turns to be optimal for approximating functions with bounded vari-
ation [ABK15] and in many applications only the first few eigen-
functions are sufficient to achieve a good approximation. Finally,
in the discrete setting, the computation of the Laplacian eigenba-
sis has relatively low complexity due to the sparse structure of the
Laplacian matrix.

One of the key disadvantages of the Laplacian eigenbases is their
global support. Thus, representing local structures requires using
(potentially, infinitely) many basis functions. In many applications,
one wishes to have a local basis that allows to limit the analysis to
specific parts of the shape. The recently proposed compressed man-
ifold harmonics [OLCO13, NVT∗14, KGB16, BCKS16] attempt to
construct local orthogonal bases that approximately diagonalize the
Laplace-Beltrami operator. The main disadvantage of this frame-
work is the inability to explicitly control the localization of the ba-
sis functions. Moreover, the basis is computed by solving an op-
timization problem on the Stiefel manifold of orthogonal matrices
which does not guarantee a global solution.

Contribution. In this paper, we consider a new type of intrin-
sic operators whose spectral decomposition provides a local basis.
Similarly to related constructions like [CSBK17], the new basis is
smooth, local, and orthogonal; it is localized at specified regions
of the shape, explicitly controllable; and it is efficiently computed
by solving a standard eigendecomposition, thus coming with global
optimality guarantees. The key novelty of our approach comes from
its capability to integrate the global information obtained by the
Laplacian eigenfunctions with local details given by our new ba-
sis. To this end, the localized basis is constructed in an incremental
way, such that the new functions are orthogonal to some given set
of functions (e.g., standard Laplacian eigenfunctions). Due to the
aforementioned properties, we name our new basis Localized Man-
ifold Harmonics (LMH).

The rest of the paper is structured as follows. In Section 2 we
review related works. Section 3 discusses the classical notions of
spectral analysis on manifolds and the construction of manifold
harmonic bases. In Section 4, we introduce our construction of lo-
calized manifold harmonics and study their properties in Section 5.
In Section 6 we discuss the implementation details, and in Section 7
we show experimental results. We exemplify our construction in
several applications including shape approximation and matching,
where it shows superior performance compared to standard Lapla-
cian eigenbases, as well as other alternatives for constructing lo-
calized bases. Finally, Section 8 concludes the paper discussing the
advantages and limitations of our framework and possible future re-
search directions. Proofs of theorems appear as Appendices in the
supplementary materials.

2. Related work

The Laplace-Beltrami operator is so ubiquitous in computer graph-
ics and geometry processing that it has earned the title of the “Swiss
army knife” of geometry processing [SCV14]. The seminal work
of Taubin realized the similarity between the Laplacian spectral
decomposition and classical Fourier analysis [Tau95]. Karni and
Gotsman used Laplacians for spectral mesh compression [KG00].

An influential paper of Levy [Lév06] showed how a wide range of
applications can be addressed in the Laplacian spectral domain, ig-
niting the interest in spectral approaches in the computer graphics
field.

Many popular shape descriptors such as heat- [SOG09,
GBAL09] and wave- [ASC11] kernel signatures, global point sig-
natures [Rus07], and shape DNAs [RWP06] were constructed in
the spectral domain. Coifman et al. introduced the notion of diffu-
sion distances [CL06] on non-Euclidean domains, also constructed
considering the spectral decomposition of heat operators. More re-
cently, anisotropic versions of Laplacians and their heat kernels
were considered [ARAC14, BMRB16]. Hildebrandt et al. consid-
ered Hessians of surface energies as an alternative family of opera-
tors [HSvTP12] incorporating extrinsic curvature information.

Ovsjanikov et al. [OBCS∗12] introduced the functional maps
framework to find correspondences between functions rather than
points on the shapes, and used Laplacian eigenfunctions as natu-
ral choice for the basis to represent such maps (later, this choice
was theoretically justified by Aflalo et al. [ABK15], who showed
that Laplacian eigenbases are optimal for representing classes
of functions with bounded variation). Kovnatsky et al. proposed
the construction of compatible quasi-harmonic bases on collec-
tions of shapes using simultaneous diagonalization of Laplacians
[KBB∗13]. The approach was later extended by Litany et al.
[LRBB17] to shapes having missing parts, giving rise to ad-hoc
localized harmonic bases for correspondence problems.

A key drawback of Laplacian eigenbases is their global struc-
ture, which has adverse effects in numerous applications. In spec-
tral shape deformation, it is hard to concentrate the analysis on lo-
cal parts of the shape. In shape correspondence, the dependence on
the Laplacian eigenfunctions on the global structure of the shape
makes it hard to cope with topological noise and missing parts.
Recently, to introduce local analysis on non-Euclidean manifolds,
the Windowed Fourier Transform (WFT) has been proposed for
graphs [SRV16] and shapes [BMM∗15,MRCB16]. Although these
methods improved the encoding of local parts, the authors still pro-
posed Laplacian eigenfunctions as a basis to compute the spectral
components, and therefore it was still hard to perform well in the
challenging scenarios mentioned above.

As a possible remedy, Ozolin, š et al. [OLCO13] introduced com-
pressed modes, a construction of local orthogonal bases that ap-
proximately diagonalize the Laplacian. The key idea of this method
is the addition of a sparsity-promoting L1-norm to the Dirichlet
energy (the combined effect of smoothness and sparsity results
in localization of the basis functions). Rustamov [Rus11] previ-
ously used a similar regularization to construct local biharmonic
kernels for function interpolation. Neumann et al. [NVT∗14] ap-
plied the approach of [OLCO13] to problems in computer graph-
ics. Kovnatsky et al. [KGB16] showed an efficient way of comput-
ing compressed manifold modes, while Bronstein et al. [BCKS16]
proposed a more theoretically sound approach for the computation
of L1-norm on manifolds.

Closely related to our method is the recent approach of
Choukroun et al. [CSBK17], who considered the spectral decom-
position of an elliptic operator realized as a diagonal update to the
standard Laplacian. Differently from [CSBK17], our solutions are

submitted to COMPUTER GRAPHICS Forum (11/2017).



S. Melzi, E. Rodolà, U. Castellani, M. Bronstein / Localized Manifold Harmonics for Spectral Shape Analysis 3

simultaneously localized and orthogonal to the globally-supported
Laplacian eigenbasis, leading to important practical consequences
in several applications.

The key idea of this paper is the construction of localized bases
by spectral decomposition of a modified Laplacian operator, crafted
especially to provide eigenfunctions with local support. Our new
operator inherits the important properties of the original Laplacian
such as isometry invariance. In particular, it has a clear Fourier-
like meaning that makes its use well interpretable. Differently from
[NVT∗14,KGB16,BCKS16,Rus11] which impose locality through
an L1 constraint, we allow an explicit indication of the local support
of each function. This improves the versatility in controlling the lo-
cal analysis, especially for semantically-guided interventions. An-
other important difference from other methods is that our new ba-
sis is computed by solving a standard eigendecomposition problem
avoiding the need for more complex optimization methods.

3. Background

Manifolds. We model shapes as smooth two-dimensional mani-
folds X (possibly with a boundary ∂X ) embedded into R3. Locally
around point x, the manifold is homeomorphic to the tangent space
(or plane) TxX . The disjoint union of all the tangent spaces is the
tangent bundle TX . We further equip the manifold with a Rieman-
nian metric, defined as an inner product 〈·, ·〉TxX : TxX ×TxX →R
on the tangent space depending smoothly on x. Properties expressed
solely in terms of the metric are called intrinsic. In particular, iso-
metric (metric-preserving) deformations of the embedded manifold
preserve all intrinsic structures.

Let f : X → R and F : X → TX denote real scalar and tan-
gent vector fields on the manifold, respectively. We can define inner
products

〈 f ,g〉L2(X ) =
∫
X

f (x)g(x)dx; (1)

〈F,G〉L2(TX ) =
∫
X
〈F(x),G(x)〉TxX dx; (2)

and denote them by L2(X ) = { f : X → R s.t. 〈 f , f 〉L2(X ) <∞}
and L2(TX ) = {F : X → TX s.t. 〈F,F〉L2(TX ) <∞} the respec-
tive Hilbert spaces of square-integrable functions (here, dx is the
area element induced by the metric).

Laplace-Beltrami operator. In classical calculus, the notion of
derivative describes how the value of a function f changes with an
infinitesimal change of its argument x. Due to the lack of vector
space structure on the manifold (meaning that we cannot add two
points, x+dx), we need to define the differential of f as an operator
d f : TX → R acting on tangent vector fields. At each point x, the
differential is a linear functional d f (x) = 〈∇ f (x), · 〉TxX acting on
tangent vectors F(x) ∈ TxX , which model a small displacement
around x. The change of the function value as the result of this
displacement is given by applying the differential to the tangent
vector, d f (x)F(x) = 〈∇X f (x),F(x)〉TxX , and can be thought of as
an extension of the notion of the classical directional derivative.
The operator ∇X f : L2(X )→ L2(TX ) in the above definition is
called the intrinsic gradient, and is similar to the classical notion
of the gradient defining the direction of the steepest change of the
function at a point.

The intrinsic divergence divX : L2(TX )→ L2(X ) is defined as
an operator adjoint to the intrinsic gradient, 〈F,∇X f 〉L2(TX ) =

〈−divX , f 〉L2(X ), where f ∈ L2(X ) and F ∈ L2(TX ) are some
scalar and vector fields, respectively. The positive semi-definite
Laplace-Beltrami operator (or manifold Laplacian) is defined as
∆X f =−divX (∇X f ), generalizing the corresponding notion from
Euclidean spaces to manifolds. The Laplacian is self-adjoint,

〈∇X f ,∇X g〉L2(TX ) = 〈∆X f ,g〉L2(X ) = 〈 f ,∆X g〉L2(X ). (3)

Geometrically, the Laplace-Beltrami operator can be interpreted as
the (normalized) difference between the average of a function on
an infinitesimal sphere around a point and the value of the function
at the point itself.

Spectral analysis on manifolds. Due to self-adjointness, on a
compact manifold X with boundary ∂X , the Laplace-Beltrami op-
erator admits an orthonormal eigendecomposition [Cha84]

∆X φi(x) = λiφi(x) x ∈ int(X ) (4)

〈∇X φi(x), n̂(x)〉= 0 x ∈ ∂X , (5)

with Neumann boundary conditions (5), where n̂ is the normal vec-
tor to the boundary. Here, 0 = λ1 ≤ λ2 ≤ . . . is a countable set of
non-negative real eigenvalues and φ1,φ2, . . . are the corresponding
orthonormal eigenfunctions satisfying 〈φi,φ j〉L2(X ) = δi j.

The Laplacian eigenfunctions form an orthonormal basis for
L2(X ) referred to as manifold harmonics (MH). A function f ∈
L2(X ) can therefore be expressed as the Fourier series

f (x) = ∑
i≥1
〈φi, f 〉L2(X )︸ ︷︷ ︸

f̂i

φi(x), (6)

where f̂i are the Fourier coefficients (or the forward Fourier trans-
form), and the the synthesis ∑i≥1 f̂iφi(x) is the inverse Fourier
transform. The eigenvalues λi can be interpreted as frequencies in
the classical harmonic analysis; thus, truncating the series (6) to
the first k terms will result in a band-limited (with bandwidth λk)
representation of f .

Given a scalar field f ∈ L2(X ), the Dirichlet energy

ES( f ) := 〈∇X f ,∇X f 〉L2(TX ) = 〈 f ,∆ f 〉L2(X ) (7)

measures how ‘smooth’ the field is. It is possible to show that the
Laplacian eigenbasis is the solution to the optimization problem

min
ψ1,...,ψk

k

∑
i=1
ES(ψi) s.t. 〈ψi,ψ j〉L2(X ) = δi j (8)

and thus can be considered as the smoothest possible orthonormal
eigenbasis. Furthermore, the eigenvalues can be obtained as the val-
ues of the Dirichlet energy, ES(φi) = λi.

4. Localized manifold harmonics

A notable drawback of classical spectral analysis on manifolds lies
in its inherently “global” nature. In fact, despite the Laplacian itself
being a local (differential) operator, its eigenfunctions and eigen-
values carry geometric and topological information about the en-
tire manifold [Cha84,RWP06,Rus07]. As a practical consequence,
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operations that should be local by design are often affected by such
global effects (see examples in Section 7).

In this paper, we introduce a new framework for spectral shape
analysis that is designed to be at the same time local and compatible
with the existing spectral constructions. In practice, our approach
boils down to the computation of the eigenfunctions of a new oper-
ator, which is realized as a simple update to the classical manifold
Laplacian – thus fully retaining the computational efficiency and
theoretical guarantees of the resulting optimization process.

Definition. Let us be given a manifold X , a region R⊆X thereof,
a set of orthonormal functions φ1, . . . ,φk′ (e.g. the first k′ Laplacian
eigenfunctions), and an integer k. We seek a new set ψ1, . . . ,ψk of
functions that are smooth, orthonormal, and localized on R, as the
solution to the following optimization problem:

min
ψ1,...,ψk

k

∑
j=1
ES(ψ j)+µRER(ψ j) (9)

s.t. 〈ψi,ψ j〉L2(X ) = δi j i, j = 1, . . . ,k (10)

〈ψi,φ j〉L2(X ) = 0 i = 1, . . . ,k; j = 1 . . . ,k′ (11)

where the constraints (11) demand the basis functions to be or-
thogonal to the subspace span{φ1, . . . ,φk′}. As we will see in what
follows, it allows constructing an incremental set of functions that
are orthogonal to a given set of standard Laplacian eigenfunctions.

The first term ES is the Dirichlet functional (7) promoting the
smoothness of the new basis. The term

ER( f ) :=
∫
X
( f (x)(1−u(x)))2 dx , (12)

is a quadratic penalty promoting the localization of the basis func-
tions on the given region R⊆ X . Here u : X → [0,1] is a member-
ship function such that u(x) = 1 for x ∈ R and u(x) = 0 otherwise.
Note that we let function u assume a continuum of values in [0,1],
implementing the notion of “soft” membership (the choice between
binary and soft u is application-dependent).

We refer to the solutions of problem (9) as localized manifold
harmonics (LMH). Figure 2 provides an illustration of LMH in the
[0,1] interval, while Figures 1 and 3 depict a few examples of such
bases on 2D manifolds.
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Figure 2: Classical (top row) and localized (bottom row) harmon-
ics in 1D under Neumann boundary conditions. Note that the local-
ized harmonics are orthogonal to those in the first row. The selected
region R⊂ [0,1] is marked as a black segment.

R
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Figure 3: Localized manifold harmonics for the red region shown
on the left. We show the first k′ = 5 standard Laplacian eigenfunc-
tions (top row), the first k = 5 LMH with the orthogonality term
disabled (µ⊥ = 0, middle row), and the first k = 5 LMH obtained
by optimizing the full energy (14) (bottom row). Note that the latter
harmonics are orthogonal to the first k′ Laplacian eigenfunctions.
We also show the generalized eigenvalues associated with each of
the three cases.

Relaxed problem. For practical reasons, in what follows we will
consider a relaxed variant of (9), in which we replace the hard con-
straints (11) by a large penalty:

min
ψ1,...,ψk

k

∑
j=1
E(ψ j) s.t. 〈ψi,ψ j〉L2(X ) = δi j , (13)

where

E(ψ j) = ES(ψ j)+µRER(ψ j)+µ⊥E⊥(ψ j) , (14)

E⊥( f ) :=
k′

∑
i=1
|〈φi, f 〉L2(X )|

2 . (15)

Note that problems (13) and (9) are equivalent as µ⊥ →∞. An
empirical evaluation of the equivalence of the two formulations will
be provided in Section 6.

Discretization. In the discrete setting, the manifold X is sampled
at n points x1, . . . ,xn and is approximated by a triangular mesh
(V,E,F) constructed upon these points, where V = {1, . . . ,n},
E = Ei ∪Eb and F are the vertices, edges, and faces of the mesh,
respectively (Ei and Eb denote the interior and boundary edges,
respectively). The discretization of the Laplace-Beltrami operator
∆X takes the form of an n×n sparse matrix L =−A−1W accord-
ing to the standard lumped linear FEM [Mac49]. The mass matrix
A is a diagonal matrix of area elements ai =

1
3 ∑ jk:i jk∈F Ai jk, where

Ai jk denotes the area of triangle i jk. The stiffness matrix W contains
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the cotangent weights

wi j =


(cotαi j + cotβi j)/2 i j ∈ Ei;
(cotαi j)/2 i j ∈ Eb;
−∑k 6=i wik i = j;
0 else;

(16)

where αi j,βi j denote the angles ∠ik j,∠ jhi of the triangles shar-
ing the edge i j. Scalar fields f ∈ L2(X ) are represented as n-
dimensional vectors f = ( f (x1), . . . , f (xn))

>; the inner products
〈 f ,g〉L2(X ) are discretized by area-weighted dot products f>Ag.

We now turn to the discretization of problem (13). Let ΨΨΨ∈Rn×k

be a matrix containing our discretized basis functions ψ1, . . . ,ψk as
its columns, and same way, let ΦΦΦ∈Rn×k′ be a matrix of the first k′

Laplacian eigenfunctions φ1, . . . ,φk′ . The total energy is discretized
as ∑

k
j=1 E(ψ j) = E(ΨΨΨ), comprising purely quadratic terms

ES(ΨΨΨ) = tr(ΨΨΨ>WΨΨΨ) (17)

ER(ΨΨΨ) = tr(ΨΨΨ>Adiag(v)ΨΨΨ) (18)

E⊥(ΨΨΨ) = tr(ΨΨΨ>AΦΦΦΦΦΦ
>A︸ ︷︷ ︸

Pk′

ΨΨΨ) (19)

where v denotes the discrete version of v(x)≡ (1−u(x))2. In other
words, the locality penalty (12) is implemented as a diagonal up-
date to the standard Laplacian; while the term promoting orthogo-
nality to ΦΦΦ (15) is realized as a rank-k′ projector Pk′ .

Due to the linearity of the trace, the discrete version of problem
(13) can be expressed as

min
ΨΨΨ∈Rn×k

tr(ΨΨΨ>Qv,k′ΨΨΨ) s.t. ΨΨΨ
>AΨΨΨ = I , (20)

where the matrix

Qv,k′ = W+µRAdiag(v)+µ⊥APk′ (21)

is symmetric and positive semi-definite (we make the dependency
on v,k′ explicit as a subscript). Problem (20) is equivalent to the
generalized eigenvalue problem

Qv,k′ΨΨΨ = AΨΨΨΛΛΛ, (22)

(see Theorem 1.2 of [SW82]). We stress that the new operator Qv,k′

is intrinsic, and so are its eigenfunctions.

As shown later in Section 6, a global optimum of this problem
can be found by classical Arnoldi-like methods. Note that global
solutions to the original constrained problem (9) can also be eas-
ily computed (see Appendix A), however throughout this paper we
favor the relaxed formulation for computational efficiency reasons.
We refer to Section 6 for comparisons.

5. Properties of LMH

In this section, we discuss the main theoretical properties and com-
putational aspects of our framework.

Basis functions. As mentioned before, our localized basis func-
tions are orthonormal eigenfunctions of a matrix (22) obtained by
modification of the Laplacian. Indeed, by setting µR = µ⊥ = 0,
the solution of (20) is attained by the first k standard Laplacian

MH

LMH

Pose Subject Topology Partiality Gaussian

Figure 4: Laplacian eigenfunction φ12 (top) and localized mani-
fold harmonic ψ12 (bottom) under different shape transformations.
From left to right: near-isometry (different pose), non-isometric de-
formation (different subject), topological noise (glued hands), miss-
ing part, and geometric noise. LMH is more stable under such de-
formations compared to the standard MH.

eigenfunctions. Similarly, by setting µR = 0 (no locality) and for
µ⊥→∞, problem (20) can be equivalently rewritten as

min
ΨΨΨ∈Rn×k

tr(ΨΨΨ>WΨΨΨ) s.t. (ΨΨΨΦΦΦ)>A(ΨΨΨΦΦΦ) = I , (23)

whose minimizers are the standard Laplacian eigenfunctions ψψψ1 =
φφφk′+1, . . . ,ψψψk = φφφk′+k.

For µR > 0 and µ⊥ > 0, we obtain a new set of k functions
ψψψ1, . . . ,ψψψk localized to a given region R ⊆ X . These functions
effectively extend the Laplacian eigenbasis, in the sense that the
new set φφφ1, . . . ,φφφk′ ,ψψψ1, . . . ,ψψψk forms an orthonormal basis for a
k+ k′-dimensional subspace of L2(X ). Importantly, the new basis
is still isometry-invariant, and is designed to effectively represent
functions with support restricted to the given region (see Figure 4).
Compared to only using the ‘global’ Laplacian eigenbasis, the new
representation provides a more parsimonious model: fewer local-
ized harmonics are needed to capture the high-frequency content
within R, than the number of harmonics that would be needed in
the global basis. The localized nature of this construction allows
to mitigate considerably the non-local effects associated with the
adoption of the global basis (influence of topological noise, etc).

Finally, disabling the orthogonal penalty (µR > 0, µ⊥ = 0) would
lead to the set of (now possibly linearly dependent) k + k′ func-
tions spanning a k′′ ≤ k+ k′-dimensional subspace of L2(X ). This
may result in a redundant representation of functions supported on
R⊆X , e.g., whenever a standard Laplacian eigenfunction has also
support in R. We refer to the experimental section for a deeper anal-
ysis of the effect of orthogonality on the representation quality.

Spectrum. By the interpretation of (20) as a generalized eigen-
value problem (22), we obtain a natural notion of spectrum as-
sociated with the LMH, namely given by λ j(Q) = ψψψ

>
j Qψψψ j, j =
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Figure 5: Left: LMH spectra grow linearly with rate inversely pro-
portional to the area of the region, and are bounded from above by
the standard Laplacian eigenvalues of submanifold R ⊆ X . Top-
right: Enlargement of the left plot around the index k′ = 20. We
illustrate the spectral gap (dotted) between λk′(W) and λ1(Qv,k′);
note that the gap is different among the two regions.

1, . . . ,k. Indeed, since at the optimum ER(ψψψ j)≈E⊥(ψψψ j)≈ 0 for all

j, we have ψψψ
>
j Qψψψ j ≈ ψψψ

>
j Wψψψ j, i.e., the Dirichlet energy of ψψψ j as

in the classical setting (7). This provides us with a natural ordering
of the basis functions; it remains to see in what measure do the lo-
calized harmonics bring additional (higher frequency) information
to the global basis formed by the first k′ Laplacian eigenfunctions
φφφ1, . . . ,φφφk′ . A first answer is provided by the following

Theorem 1 (spectral gap). Let (φi,λi(W))n
i=1 be the eigenpairs of

the standard Laplacian, and let Qv,k′ be defined as in (21). Then, for
large enough µ⊥, any non-negative v and any choice of k′ ≤ n−1,
we have λk′(W)≤ λ1(Qv,k′), with equality holding iff φφφk′+1(x)= 0
whenever v(x) 6= 0.

Proof. See supplementary material.

This theorem ensures the existence of a non-negative gap be-
tween the two spectra, i.e., the new basis functions do not introduce
any redundancy, and the gap is the smallest possible by the global
optimality of (20). In other words, the localized basis “picks up”
where the global basis “left off” (see Figure 5 for examples). Note
that the last condition on v in Theorem 1 is almost never realized in
practice: equality is obtained only when the Laplacian eigenfunc-
tion φφφk′+1 is localized to the same region indicated by v.

Interestingly, for a special class of functions v the spectrum
λ1(Qv,k′)≤ λ2(Qv,k′)≤ . . . follows a well-defined behavior, as re-
marked below.

Observation. Let v be a binary indicator function supported on
some (possibly disconnected) region R ⊆ X . Then, λi(Qv,k′)−
λ1(Qv,k′)∝ i/

√
Area(R) as i→∞.

The observation above can be thought of as a generalization of
Weyl’s asymptotic law [Cha84] to sub-regions of X (see Figure 5).

Comparison to standard Laplacian on parts. Perhaps the most
direct way to achieve locality is to consider the given region R⊆X
as a separate manifold with boundary ∂R and Laplacian ∆R, and

µR = 350 50 25 15 5 0

φR
i ψ j1 ψ j2 ψ j3 ψ j4 ψ j5 φk

Figure 6: Our model allows to smoothly transition from a local-
ized solution equivalent to a standard Laplacian eigenfunction φ

R
i

on a partial shape with Neumann boundary conditions (first col-
umn), to a globally supported solution equivalent to a standard
Laplacian eigenfunction φk on the full shape (last column). Each
ψ is obtained by solving a different problem with a different µR and
µ⊥ = 0. Note that the resulting “interpolating” harmonics ψ j1,...,5
do not necessarily correspond to the same eigenvalue.

then compute the eigen-decomposition WR
ΨΨΨ

R = AR
ΨΨΨ

R
ΛΛΛ

R of ∆R
(note that WR,AR can be obtained as submatrices of W,A followed
by normalization and by fixing the weights along ∂R). The eigen-
functions ψ

R
i can then be extended to the entire X by means of

zero-padding,

ψ̃
R
i (x) =

{
ψ

R
i (x) x ∈ R
0 else

A first difference between this and our approach lies in the fact
that 〈ψ̃R

i ,φ j〉L2(X ) 6= δi j in general, i.e., the extended partial eigen-
functions do not “complete” the global basis and there is no sepa-
ration of spectra (guaranteed in our case by Theorem 1), leading in
turn to a redundant representation.

Secondly, our approach is more general in that we allow “soft”
regions represented by allowing v to obtain values in the interval
[0,1], which is obviously not achievable by extracting sub-regions.
This latter property is especially important in applications where a
sharp (binary) selection would lead to undesirable boundary effects
around the region of interest (see Section 7 for examples).

Finally, we stress that the standard Laplacian ∆R⊆X may have
an eigenspace in common with our operator with µ⊥ = 0, a binary
v on R, and large enough µR. In turn, the full Laplacian ∆X is al-
ways obtained for µR = 0. A remarkable manifestation of this fact
is given by the “interpolation effect” shown in Figure 6. Note that
the observation above is not true in general, since we do not im-
pose any boundary conditions w.r.t. R in our problem (indeed, we
allow R to be soft), while all eigenfunctions of ∆R always satisfy
specific boundary conditions such as (5). Despite the loose connec-
tion, this observation allows us to complement the lower bound of
Theorem 1 by the following

Theorem 2 (upper bound). Let WR be the stiffness matrix as-
sociated with the submanifold R ⊆ X and define v as the binary
indicator function of X \R. Then, λi(Qv,k′) ≤ λi+k′(WR) for any
k ≤ n.

Proof. See supplementary material.

See Figure 5 for an example.

Comparison to compressed manifold modes. Ozolin, š et
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al. [OLCO13] proposed computing compressed manifold modes
(CMM) as solutions to

min
ΨΨΨ∈Rn×k

tr(ΨΨΨ>WΨΨΨ)+µ‖ΨΨΨ‖1 s.t. ΨΨΨ
>AΨΨΨ = I . (24)

Problem (24) makes use of a sparsity-inducing L1 prior which, to-
gether with the smoothness promoted by the Dirichlet term, leads
to the resulting functions having compact support controlled by pa-
rameter µ. It is important to note that this model does not allow
to explicitly control the modes location. As shown in [NVT∗14],
these functions tend to concentrate around areas like shape protru-
sions and ridges. While different in its nature, the CMM model (24)
admits a computational procedure which shares some similarities
with ours. Assume that the solution of (24) for a given µ is a set of
k functions supported on regions R1, . . . ,Rk (obtained a posteriori),
represented by the soft indicators 1−v1, . . . ,1−vk, and let µ⊥ = 0.
Then, the application of our framework using the matrices Qvi,0
corresponds to one iteration of the iterative reweighting scheme
proposed for the efficient computation of CMMs in [BCKS16].

Comparison to elliptic operator. Concurrently with our work,
Choukroun et al. [CSBK17] considered a family of elliptic opera-
tors of the form H = W+V, where the potential V is a diagonal
operator akin to our localization term (18). The same approach was
recently followed in [LJC17] to obtain localized basis functions
around points of interest on the surface.

Differently from these approaches, we seek for localized ba-
sis functions that simultaneously lie in a subspace orthogonal to
span{φ1, . . . ,φk′}, where φi are the first k′ standard Laplacian
eigenfunctions. In other words, we seek to “augment” the global
basis by introducing a local refinement, while the aforementioned
works attempt to construct a complete basis in agreement with the
input potential. This is a crucial difference that has noticeable ef-
fects in practice, as we will demonstrate in Section 7.

6. Implementation

Optimization. As shown in Section 4, computing our localized ba-
sis functions boils down to solving a generalized eigenvalue prob-
lem QΨΨΨ = AΨΨΨΛΛΛ, with Q = W+ µR Adiag(v)+ µ⊥AΦΦΦΦΦΦ

>A. We
note that computing Q explicitly involves the construction of a
dense n× n matrix AΦΦΦΦΦΦ

>A, which may become prohibitive for
large meshes. However, we avoid this computation altogether by
noticing that the µ⊥-term has very low rank k′ � n. This condi-
tion allows the application of exact update formulas throughout the
optimization of problem (20), which can be solved efficiently and
globally as detailed in Appendix B.

Timing. In Table 1 we report the runtime (in seconds) required by
our method as executed on an Intel 3.6 GHz Core i7 cpu with 16GB
ram. We compare the execution time for the exact problem with
hard orthogonality constraints (9) and the relaxed problem (13).
Note that while the latter relaxation is significantly more efficient,
the two formulations yielded numerically close solutions in all our
experiments (see Figure 7).

Choice of parameters. Parameters µR and k′ control the locality
and the number of global harmonics to use, respectively, and are
application-dependent (see Section 7). Parameter µ⊥ enforces or-
thogonality w.r.t. the standard Laplacian eigenfunctions, and should

k = 100 k = 200 k = 300
hard soft hard soft hard soft

∼ 120K - 112.3s - 200.5s - 304.9s
∼ 12K 40.8s 7.6s 66.7s 16.4s 79.3s 25.0s
∼ 1.2K 1.1s 0.7s 2.2s 1.0s 4.6s 1.4s

Table 1: Runtime comparison for global optimization of our prob-
lem under hard (9) and soft constraints (13) across different mesh
resolutions (number of faces) and basis size k. Tests denoted by ‘-’
could not run due to memory limitations (see Appendix A).

be chosen large enough so that the orthogonality constraints are
satisfied. In our experiments we used µR ≈ 102 and µ⊥ ≈ 105; see
Figure 7 for a quantitative evaluation on the choice of µ⊥.

1 k′ kΦΦΦ ΨΨΨ

+1

0

−1

103 105 107
0

50

100

µ⊥

E
rr

or

Figure 7: Left: Matrix of inner products (〈bi,b j〉L2(X )), where
bi,b j ∈ {φ1, . . . ,φk′ ,ψ1, . . . ,ψk}. Here ψi are the optimal local-
ized basis functions computed with µ⊥ = 10−1 (first column) and
µ⊥ = 105 (second column). Right: We plot the discrepancy between
solutions to the exact (9) and relaxed (13) problems as a function
of µ⊥, measured as the L2 distance between the resulting spectra.

7. Applications

Localized manifold harmonics are a general tool that can be em-
ployed as a drop-in replacement for, or in conjunction with the clas-
sical manifold harmonics ubiquitous in spectral shape analysis. In
this Section we showcase their application in two broad tasks in
graphics: spectral shape processing and shape correspondence.

Spectral shape processing. In this context, the surface X is repre-
sented as a vector-valued function x :X →R3, encoding the spatial
coordinates of its embedding in R3; transformations to the surface
geometry are then phrased as filtering operations applied to the co-
ordinate functions. Vallet and Lévy [VL08] proposed to perform
such filtering in the Fourier domain, where the coordinates x are
expressed as linear combinations of Laplacian eigenfunctions,

x = ∑
i≥1
〈φi,x〉L2(X )φi , (25)

where, with some abuse of notation, 〈φi,x〉L2(X ) =
(〈φi,x1〉L2(X ), . . . ,〈φi,x3〉L2(X )). By truncating the summa-
tion to the first k′ terms, one obtains a band-limited representation
of the surface. The representation is coarse for small k′, while finer
details are captured for large values of k′; see Figure 8 (top row)
for an example. The expression in (25) provides an effective way
for representing and manipulating simple shapes with smoothly
varying coordinate functions, which can be compactly represented
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k′ = 50 k′+10 k′+20 k′+30 k′+40 k′+50

MH

PMH

LMH

· · ·

regions Ri

Figure 8: First row: Surface reconstruction via (25) using the first
k′ to k′ + 50 Laplacian eigenfunctions. Second row: Each finger
Ri ⊂ X is treated as a separate sub-manifold, and the eigenfunc-
tions of the “partial” Laplacians ∆Ri are used to update the initial
reconstruction by adding 10 harmonics per finger. Third row: Re-
construction via (26) with 10 localized harmonics per finger. Note
the significantly higher accuracy of LMH despite using the same
number of harmonics as MH and PMH. The heatmap encodes re-
construction error, growing from white to dark red.

in the first few harmonics. Conversely, this representation is much
less efficient for surfaces having details at smaller scales.

Assume a given set of regions, identifying areas of the shape with
geometric detail. By computing localized harmonics {ψ j} j on the
given regions, we obtain a representation of the surface geometry:

x≈
k′

∑
i=1
〈φi,x〉L2(X )φi +

k

∑
j=1
〈ψ j,x〉L2(X )ψ j , (26)

where φ1, . . . ,φk′ are the standard Laplacian eigenfunctions and
〈φi,ψ j〉L2(X ) ≈ 0 for all i = 1, . . . ,k′ and j = 1, . . . ,k. For a fixed
number of terms in the series, the expression (26) yields a more
accurate approximation of the original surface than (25), since the
localized basis functions capture the high-frequency content more
quickly (as also manifested in the rapid growth of the spectrum,
see Figure 5). We refer to Figure 8 for a detailed illustration of
this behavior. In Figure 9, we demonstrate the effect of the lack of
orthogonality (µ⊥ = 0) on the reconstruction quality, and in Fig-
ure 11 provide a quantitative evaluation on pre-segmented meshes
from the Princeton segmentation benchmark [CGF09].

In these tests, we compare with standard manifold harmonics
(MH) and “partial” manifold harmonics (PMH). The latter ap-
proach consists in reconstructing the surface indicated by each re-
gion Ri ⊂ X separately by using the eigenfunctions of the Lapla-
cian ∆Ri ; the reconstructed part is then “glued” back to the full
shape. We measure the point-wise reconstruction error by the Eu-

30+40 LMH30+40 LMH
µ⊥ = 0

70 MH30 MHregion

Figure 9: Comparison between manifold harmonics (MH) and lo-
calized manifold harmonics (LMH) without and with the orthogo-
nality term (15) using k′ = 30 and k = 40.

CMM
0.2574

LMH
0.1123

LMH (vEO)
0.1147

EO
0.1205

MH
0.1217

Figure 10: Comparison between different pipelines using a fixed
number of basis functions (equal to 100 for all methods – LMH
uses 50 global and 50 localized harmonics in both experiments).
We report the reconstruction error below each method.

clidean distance between each reconstructed vertex and its corre-
sponding point in the original surface.

Comparison to other pipelines. Differently from our method,
both CMM [NVT∗14] and elliptic operator (EO) [CSBK17] do
not allow to build upon and enrich a given set of basis functions.
In particular, CMM relies on the assumption that the set of local-
ized basis functions covers the entire surface, while EO employs a
soft potential with global support. In Figure 10 we compare the re-
construction error of standard MH, EO using the potential defined
in [CSBK17], our method using the latter potential as a soft region
vEO, our method using the binary regions of Figure 8, and CMM
using a covering set of compressed modes.

For completeness, we also test the performance of EO when fed
with a sequence of binary potentials (the finger regions in Figure 8).
We emphasize that EO is not designed to operate in conjunction
with an existing basis, hence there is no natural way to implement
an incremental update as the one shown in Figure 8: the harmon-
ics computed on each binary region would not have an underlying
global structure to attach to. For this reason, we provide an extra
region (the palm) where 50 EO basis functions are computed, and
this basis is incrementally updated with 10 EO basis functions per
finger. The result is shown in Figure 12.

Shape correspondence. Ovsjanikov et al. [OBCS∗12] proposed
to represent correspondences between shapes by a linear operator
(called functional map) T : L2(X )→ L2(Y) mapping functions on
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Figure 11: Comparisons among MH, PMH and LMH in surface representation. For each class we report the average reconstruction error at
increasing number of basis functions (x-axis). Here, ξ denotes the error obtained by MH with k′ = 50. The heatmaps encode reconstruction
error, growing from white to dark red.

100908070k = 60

Figure 12: Incremental hand reconstruction using EO basis func-
tions [CSBK17] and the binary regions of Figure 8.

X to functions on Y (one can see that point-to-point mappings con-
stitute a special case in which delta-functions are mapped to delta-
functions). As a linear operator, the functional map T admits a ma-
trix representation C = (ci j) w.r.t. bases {φXi } and {φYj } on L2(X )
and L2(Y) respectively,

T f = ∑
i j≥1
〈φXi , f 〉L2(X ) 〈T φ

X
i ,φYj 〉L2(Y)︸ ︷︷ ︸

c ji

φ
Y
j , (27)

for an arbitrary f ∈ L2(X ). By choosing the Laplacian eigenfunc-
tions onX andY as the bases {φXi } and {φYj }, one can truncate the

series (27) to the first k′ terms – hence obtaining a compact repre-
sentation which can be interpreted as a band-limited approximation
of the full map. Correspondence problems can then be phrased as
searching for a k′×k′ matrix C minimizing simple data fidelity cri-
teria [OBCS∗12,NO17] or exhibiting a particular structure depend-
ing on the correspondence setting [PBB∗13, KBBV15, RCB∗17].

Similar to the previous experiments, the standard Laplacian
eigenbasis may not be the best choice in the presence of fine de-
tails: the low-pass nature of the spectral representation of the map,
embodied in matrix C, negatively affects the quality of the repre-
sentation at a point-wise level. Indeed, recovering a point-to-point
map from a functional map is considered a difficult problem in it-
self [RMC15, VLR∗17], and is at the heart of several applications
dealing with maps.

LMH can be directly employed for representing functional cor-
respondence in conjunction with the Laplacian eigenbasis:

T f =
k+k′

∑
`,m=1

〈ωX` , f 〉L2(X )〈T ω
X
` ,ωYm 〉L2(Y)ω

Y
m , (28)

where ω ∈ Ω and Ω = {φi}k′
i=1 ∪ {ψ j}k

j=1 is the union of the
standard and localized manifold harmonics. Note that the formula
above allows for ‘cross-talk’ between the MH and LMH bases, and
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−1

0

+1

k′ k kk′+2k

Figure 13: Functional map matrices w.r.t. the standard Laplacian
eigenbasis (left) and w.r.t a “mixed” basis composed of k′ Lapla-
cian eigenfunctions and k + k localized harmonics (middle). The
maps encode the ground-truth correspondence between the two
shapes shown on the right; the regions used for the computation
of LMH are highlighted in red and blue. Note the block-diagonal
structure of the second matrix, a manifestation of the capability of
LMH to encode local information compactly.
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Figure 14: Mean geodesic error vs. number of basis functions used
in the functional map representation. Note that LMH lead to an in-
crease in accuracy, resulting in turn in a more compact representa-
tion of the correspondence. Here ξ is defined as the mean geodesic
error of MH at k′ = 50.

it can be seen as a localized refinement to some initial correspon-
dence represented in the (global) Laplacian eigenbasis. An example
of the resulting correspondence matrix C is shown in Figure 13.

In Figure 14 we show a quantitative comparison between the
two representations (27) and (28). For this experiment we use
near-isometric shapes from the TOSCA dataset [BBK08]. For each
pair of shapes, we use their ground-truth point-to-point corre-
spondence to construct functional maps of increasing size in the
Laplacian eigenbasis and in the LMH basis. For the latter, we use
Eq. (28) with k′ = 50 and k increasing from 1 to 50. The harmon-
ics {ψX` ,ψYm}k

`,m=1 are localized to the regions having large recon-
struction error, computed as in the previous experiments. Note that
even though these regions can be arbitrarily disconnected and irreg-
ular (see, e.g., Figure 15), our framework can be applied without
modifications. A point-to-point map is recovered from each func-
tional map using the nearest neighbor approach [OBCS∗12]. We
measure the correspondence quality via its geodesic error. Assume
a point-to-point match (x,y) ∈ X ×Y is recovered, whereas the

1 25 50 75 100
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Figure 15: Accuracy improvement in the functional map represen-
tation, obtained by introducing LMH after k′= 50 Laplacian eigen-
functions. On the right we show the regions used for LMH and the
geodesic error (encoded as hot colors, growing from white to dark
red) obtained for different configurations. Note the higher accuracy
attained by LMH for the same amount of basis functions.

ground-truth correspondence is (x,y∗); we compute the quantity

ε(x) =
dY (y,y

∗)√
Area(Y)

, (29)

where dY is the geodesic distance on Y .

For the second set of experiments we consider a challenging
setting of shape correspondence known as deformable object-in-
clutter [CRM∗16]. In this scenario, the task is to match a given
model to a scene where the model appears in a different pose, and
in the simultaneous presence of clutter (extra objects) and miss-
ing parts. The problem was recently tackled in [CRM∗16] using
the functional map representation; to our knowledge, this method
represents the current state of the art for this class of problems.

As data for these tests we use the entire dataset adopted for the
comparisons in [CRM∗16]. The dataset consists of 3 TOSCA mod-
els (cat, centaur, dog) and 150 synthetic scenes in which the models
appear. Sparse point-to-point matches (around 10) between models
and scenes, obtained using the approach of [RBA∗12], are also pro-
vided. Given m input matches, we construct a mixture of m Gaus-
sians with equal variance (set to 1% of the shape diameter) to define
a soft region u on both model and scene (see Figure 16). We then
construct a functional map C upon the input sparse correspondence,
and represent it w.r.t. k = 15 localized manifold harmonics com-
puted on the soft regions (note that here we do not use any global
eigenfunction, i.e., we set k′ = 0 in (28)). Finally, we recover from

u : X → [0,1] ψ4 ψ5 ψ9 ψ10

Figure 16: Localized manifold harmonics on a soft region encoded
by function u. No thresholding is required in order to obtain a valid
set of functions minimizing the energy (14).
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Figure 17: Comparisons with the state of the art in deformable
object-in-clutter. All methods use the same input data.

C a dense point-to-point map localized on u using the intrinsic ICP
approach of [OBCS∗12].

The results of this experiment are reported in Figure 17 quantita-
tively and in Figure 19 qualitatively. Despite the simple approach,
our method gains a significant improvement in accuracy, of up to
25% upon the state of the art on this benchmark, highlighting the
inherent robustness of LMH to missing parts and topological arti-
facts. Finally, in Figure 18 we compare (on a single pair of shapes)
our pipeline with the counterparts obtained by replacing LMH with
MH and PMH.

8. Discussion and conclusions

We introduced a new framework for spectral shape analysis and
processing, allowing to perform operations which are localized to a
given (possibly soft or disconnected) region of interest on the sur-
face. Our framework is flexible, in that it can naturally enrich or
fully replace the standard manifold harmonics in several tasks in
graphics. We demonstrated its applicability in applications of ge-
ometry processing and shape correspondence, demonstrating a sig-
nificant advantage if compared with the standard ‘global’ construc-
tions based on the eigendecomposition of the Laplace operator.

Limitations. Perhaps the biggest limitation of our approach lies in
the availability of regions (or soft counterparts thereof) upon which
to carry out the localized spectral analysis. Such information may
not be available in certain unsupervised applications, where it is
often difficult to define a meaningful segmentation – indeed, an in-
herently task-specific notion suggesting the use of data-driven ap-
proaches. Further, similarly to the classical setting, it is not obvious
how to choose the number of harmonics to employ for a given task.

Future directions. Despite the theoretical and empirical results
provided within this paper, we feel that our study is still just
‘scratching the surface’ of a much broader area of research,
with potentially extensive applications in geometry processing and
graphics. Even though quite elusive at this stage, we foresee con-
nections with results in localization theory (see, e.g., [FMP12]),
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〈ψi,T ψ j〉L2(X )
1

10
〈φi,T φ j〉L2(X )

1

10
1 10

Figure 18: Left: Correspondence accuracy in the object-in-clutter
setting. Each curve corresponds to a functional map expressed in a
different basis, using the same input data. We show the performance
when using k = 10 (solid curves) and k = 50 (dashed curves) basis
functions. In this example, MH could not reach the quality of LMH
for any choice of k. Right: Functional map matrices in the LMH
basis {ψ} (top) and in the MH basis {φ} (bottom).

leading to a promising direction of research which we believe de-
serves a deeper exploration.

Acknowledgments. The authors wish to thank Dorian Nogneng, Zorah
Lähner, Haggai Maron and Nadav Dym for the technical support, and Klaus
Glashoff, Or Litany, Christopher Brandt and Maks Ovsjanikov for useful
discussions. Research was partially completed while ER was visiting the
Institute for Mathematical Sciences, National University of Singapore in
2017. ER and MB are supported by ERC StG grant no. 307048 (COMET).

Appendix A. We show how to compute a global solution to prob-
lem (9). We start by observing that the hard constraints (11) require
the desired basis functions ΨΨΨ to lie in the null space of the linear
map Pk′ := ΦΦΦΦΦΦ

>A (i.e., the projector onto Im(ΦΦΦ)), or equivalently
to lie in the range of I−Pk′ (i.e. the projector onto the orthogonal
subspace). This is easily achieved by letting ΨΨΨ = (I−Pk′)Y, and
solving the generalized eigenvalue problem:

Q̃Y = ÃYΛΛΛ, (30)

where Q̃ = (I− Pk′)
>(W+ µRAdiag(v))(I− Pk′) and Ã = (I−

Pk′)
>A(I−Pk′) = A(I−Pk′). A similar trick was recently used

in [DML17] for computing maximum magnitude eigenvalues of a
large matrix. Note that solving problem (30) involves the explicit
construction of a dense n× n matrix Pk′ , becoming prohibitive for
large meshes.

Appendix B. We show how to efficiently compute a global solution
to the generalized eigenvalue problem:

QΨΨΨ = AΨΨΨΛΛΛ , (31)

with Q = W+µRAdiag(v)+µ⊥(AΦΦΦ)(AΦΦΦ)>.

Since the operator Q is real and symmetric w.r.t. the positive
semi-definite mass matrix A, we employ the (globally optimal) im-
plicitly restarted Arnoldi method (IRAM) [LS96] (as implemented
in the ARPACK suite [LSY97]) for computing its first k eigenpairs.
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LMH FOiC LMH FOiC

Figure 19: Qualitative comparisons between our LMH-based approach for deformable shape correspondence in clutter and the state of the
art [CRM∗16]. For each experiment we show the dense correspondence (corresponding points have same color) and the geodesic error (hot
colors growing from white to dark red).

The application of IRAM involves iteratively solving linear sys-
tems of the form:

Qx(t) = Ab(t) (32)

for some given b(t) ∈ Rn. Expressing Q in terms of the matrices
Z = W+µRAdiag(v) and B = AΦΦΦ ∈ Rn×k′ , we come to:

(Z+µ⊥BB>)x(t) = Ab(t) . (33)

Note that matrix BB> can be interpreted as a rank-k′ update to
Z (with k′ � n), allowing us to apply the Sherman-Morrison-
Woodbury identity [Woo50]:

(Z+µ⊥BB>)−1 =Z−1−µ⊥Z−1B(I+µ⊥B>Z−1B)︸ ︷︷ ︸
Y

−1B>Z−1 .

It is important to notice that the rhs does not involve the computa-
tion of BB>, and only involves efficient operations with a sparse
n× n matrix Z and a dense k′× k′ matrix Y. The application of
this formula for the solution of problem (33), and in turn (31) via
IRAM, is illustrated for clarity in Algorithm 1. A similar procedure
was followed in [BCKS16] for the computation of CMM.

Algorithm 1 Efficient solution of problem (33).

Solve sparse linear system Zξξξ = Ab(t) for ξξξ ∈ Rn;
Solve sparse linear system ZΓΓΓ = µ⊥B for ΓΓΓ ∈ Rn×k′ ;
Solve dense linear system (Ik′ +B>ΓΓΓ)ηηη = B>ξξξ for ηηη ∈ Rk′ ;
Compute final solution x(t) = ξξξ−ΓΓΓηηη.
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Supplementary Material

These pages contain proofs for Theorems 1 and 2.

Proof of Theorem 1. Let W, µ⊥APk′ and µRAdiag(v) be real
symmetric positive semidefinite matrices of dimension n× n, and
define Qv,k′ = W + µ⊥APk′ + µRAdiag(v). Let 0 = λ1(W) ≤
. . . ≤ λn(W) be the eigenvalues for the generalized eigenvalue
problem of W and λ1(W + µ⊥APk′) ≤ . . . ≤ λn(W + µ⊥APk′)
and λ1(Qv,k′) ≤ . . . ≤ λn(Qv,k′) be the generalized eigenvalues of
W+µ⊥APk′ and Qv,k′ respectively. We aim to prove that

λk′(W)≤ λ1(Qv,k′) , (34)

for some µ⊥,µR ∈ R and for every k′ ∈ {0, . . . ,n−1}.

We start by observing that

λk′(W)≤ λk′+1(W) = λ1(W+µ⊥APk′) , (35)

where the first inequality is given by the non-decreasing order-
ing of the eigenvalues, and the equality on the right follows from
the fact that for some choice of µ⊥ > λk′+1(W), φφφk′+1 is the
minimizer of x>(W + µ⊥APk′)x under the orthogonality condi-
tions 〈x,x〉L2(X ) = 1 and 〈φφφl ,x〉L2(X ) = 0, ∀l ∈

{
1, . . . ,k′

}
, i.e.,

(µ⊥APk′)x = 0.

Invoking a special case of Corollary 4.3.4b in [HJ12] and using
the fact that µRAdiag(v) only has non-negative eigenvalues (being a
diagonal matrix with non-negative entries), we obtain the following
inequality:

λ1(W+µ⊥APk′)≤ λ1(W+µ⊥APk′)+µRAdiag(v)) = λ1(Qv,k′) .
(36)

Furthermore, this inequality is an equality if and only if ∃x ∈ Rn

s.t. x 6= 0 and the following three conditions are satisfied:

1. (W+µ⊥APk′)x = λ1(W+µ⊥APk′)x;
2. (Qv,k′)x = λ1(Qv,k′)x;
3. (µRAdiag(v))x = 0.

Putting together (35) and (36) we can conclude that:

λk′(W)≤ λk′+1(W)≤ λ1(W+µ⊥APk′)≤ λ1(Qv,k′) . (37)

Note that the existence of a gap is given either by the violation
of any of the three conditions above, or in the presence of simple
spectra, i.e., whenever λk′(W) 6= λk′+1(W).

Choice of µ⊥. We aim to prove that for every µ⊥ > γ for some
γ ∈ R+ we have:

λ1(W+µ⊥APk′)≥ λk′+1(W) . (38)

We can rewrite the two terms of this inequality as:

λ1(W+µ⊥APk′) = min
〈x,x〉L2(X )=1

x>(W+µ⊥APk′)x (39)

λk′+1(W) = min
〈x,x〉L2(X )=1

〈φφφi ,x〉L2(X )
=0, ∀i=1,...,k′

x>Wx . (40)

The objective in (39) can be rewritten as:

x>(W+µ⊥APk′)x = x>Wx+x>(µ⊥APk′)x . (41)

We now express our vectors as the Fourier series x = ∑
n
i=1 αiφφφi,

where αi = 〈φφφi,x〉L2(X ). Noting that 〈x,x〉L2(X ) = 1 implies

∑
n
i=1 α

2
i = 1, we can write:

x>Wx = (
n

∑
i=1

αiφφφi)
>W(

n

∑
i=1

αiφφφi) (42)

= (
n

∑
i=1

αiφφφi)
>(

n

∑
i=1

λi(W)αiAφφφi) (43)

=
n

∑
i=1

λi(W)α2
i . (44)

Similarly, we can rewrite the second summand in (41) as:

x>(µ⊥APk′)x = (
n

∑
i=1

αiφφφi)
>(µ⊥APk′)(

n

∑
i=1

αiφφφi) (45)

= µ⊥(
n

∑
i=1

αiφφφi)
>(AΦΦΦΦΦΦ

>A)(
n

∑
i=1

αiφφφi) (46)

= µ⊥
(
(

n

∑
i=1

αiφφφi)
>AΦΦΦ

)(
ΦΦΦ
>A(

n

∑
i=1

αiφφφi)
)

(47)

= µ⊥ [α1, . . . ,αk′ ] [α1, . . . ,αk′ ]
> (48)

= µ⊥
k′

∑
i=1

α
2
i . (49)

From (44) and (49) we can conclude:

x>(W+µ⊥APk′)x = x>Wx+x>(µ⊥APk′)x (50)

=
n

∑
i=1

λi(W)α2
i +µ⊥

k′

∑
i=1

α
2
i . (51)

At this point we split the proof in three different cases:

1. 〈φφφi,x〉L2(X ) = 0, ∀i = 1, . . . ,k′, that is equivalent to ask that
Pk′x = 0. In this case we have:

λ1(W+µ⊥APk′) = min
〈x,x〉L2(X )=1

x>(W+µ⊥APk′)x (52)

= min
〈x,x〉L2(X )=1

〈φφφi ,x〉L2(X )
=0, ∀i=1,...,k′

(x>(W+µ⊥APk′)x) (53)

= min
〈x,x〉L2(X )=1

〈φφφi ,x〉L2(X )
=0, ∀i=1,...,k′

x>Wx = λk′+1(W) . (54)

2. x ∈ span(φφφ1, . . . ,φφφk′), implying that αi = 0 ∀i > k′ and hence
x = ∑

k′
i=1 αiφφφi. We get:

x>(W+µ⊥APk′)x =
k′

∑
i=1

λi(W)α2
i +µ⊥

k′

∑
i=1

α
2
i . (55)

Since we take the minimum over the x s.t. 〈x,x〉L2(X ) = 1 we

have ∑
k′
i=1 α

2
i = 1 and:

x>(W+µ⊥APk′)x =
k′

∑
i=1

λi(W)α2
i +µ⊥ ≥ µ⊥ , (56)

where the equality is realized for x = φφφ1 since λ1(W) = 0, and
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all other cases yield µ⊥ plus some non-negative quantity. We get
to:

λ1(W+µ⊥APk′) = min
〈x,x〉L2(X )=1

x>(W+µ⊥APk′)x = µ⊥ .

(57)
3. For the last case we have 〈φφφi,x〉L2(X ) 6= 0 for at least one i =

1, . . . ,k′ and for at least one i > k′ at the same time.

x>(W+µ⊥APk′)x =
n

∑
i=1

λi(W)α2
i +µ⊥

k′

∑
i=1

α
2
i (58)

=
k′

∑
i=1

λi(W)α2
i +

n

∑
i=k′+1

λi(W)α2
i +µ⊥

k′

∑
i=1

α
2
i (59)

=
k′

∑
i=1

(λi(W)+µ⊥)α
2
i +

n

∑
i=k′+1

λi(W)α2
i . (60)

Since λi(W)≥ λk′+1(W), ∀i≥ k′+1 we can write:

x>(W+µ⊥APk′)x (61)

=
k′

∑
i=1

(λi(W)+µ⊥)α
2
i +

n

∑
i=k′+1

λi(W)α2
i (62)

≥
k′

∑
i=1

(λi(W)+µ⊥)α
2
i +λk′+1(W)

n

∑
i=k′+1

α
2
i (63)

≥
k′

∑
i=1

µ⊥α
2
i +λk′+1(W)

n

∑
i=k′+1

α
2
i . (64)

If we take µ⊥ > λk′+1(W) in order to satisfy the condition im-
posed by case 2, we get:

x>(W+µ⊥APk′)x≥
k′

∑
i=1

µ⊥α
2
i +λk′+1(W)

n

∑
i=k′+1

α
2
i (65)

> λk′+1(W)
k′

∑
i=1

α
2
i +λk′+1(W)

n

∑
i=k′+1

α
2
i (66)

= λk′+1(W)
n

∑
i=1

α
2
i (67)

= λk′+1(W) . (68)

We can therefore conclude that

λ1(W+µ⊥APk′) = min
〈x,x〉L2(X )=1

x>(W+µ⊥APk′)x (69)

> λk′+1(W) if µ⊥ > λk′+1(W) . (70)

In Figure 20 we show an empirical evaluation across several
choices of µ⊥.

Proof of Theorem 2. We want to show that ∀k ∈ {1,2, . . . ,n} we
have the following upper bound:

λi(Qv,k′)≤ λi+k′(W
R) .

Similarly to Theorem 1, the proof follows directly from Corollary
4.3.4b in [HJ12], which specialized to our case reads:

λi(WR +µ⊥APk′)≤ λi+π(WR) , (71)

0 λk′+1(W) 2λk′+1(W)
0

100

200

µ⊥

λ
1(

W
+

µ ⊥
P k
′ )

Figure 20: Plot of λ1(W+ µ⊥APk′) at increasing µ⊥. Note how
for every µ⊥ ≤ λk′+1(W) the frequency (y-axis) increases, con-
verging at µ⊥ > λk′+1(W). At convergence, the orthogonality con-
straint (encoded in the penalty term E⊥(ψ) in the LMH formula-
tion) is satisfied.

where π is the number of positive eigenvalues of µ⊥APk′ . Since
Qv,k′ = WR +µ⊥APk′ and using the fact that µ⊥APk′ is a positive
semidefinite matrix with rank k′, we have π = k′, leading to:

λi(Qv,k′) = λi(WR +µ⊥APk′)≤ λi+π(WR) = λi+k′(W
R) . (72)
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