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Improving randomness 
characterization through Bayesian 
model selection
Rafael Díaz Hernández Rojas1, Aldo Solís2, Alí M. Angulo Martínez2, Alfred B. U’Ren2, Jorge G. 
Hirsch2, Matteo Marsili3 & Isaac Pérez Castillo1,4

Random number generation plays an essential role in technology with important applications in areas 
ranging from cryptography to Monte Carlo methods, and other probabilistic algorithms. All such 
applications require high-quality sources of random numbers, yet effective methods for assessing 
whether a source produce truly random sequences are still missing. Current methods either do not rely 
on a formal description of randomness (NIST test suite) on the one hand, or are inapplicable in principle 
(the characterization derived from the Algorithmic Theory of Information), on the other, for they require 
testing all the possible computer programs that could produce the sequence to be analysed. Here 
we present a rigorous method that overcomes these problems based on Bayesian model selection. 
We derive analytic expressions for a model’s likelihood which is then used to compute its posterior 
distribution. Our method proves to be more rigorous than NIST’s suite and Borel-Normality criterion 
and its implementation is straightforward. We applied our method to an experimental device based on 
the process of spontaneous parametric downconversion to confirm it behaves as a genuine quantum 
random number generator. As our approach relies on Bayesian inference our scheme transcends 
individual sequence analysis, leading to a characterization of the source itself.

Random numbers have acquired an essential role in our daily lives because of our close relationship with commu-
nication devices and technology. There are also numerous scientific techniques and applications that rely funda-
mentally on our ability for generating such numbers and typically pseudo-random number generators (pRNGs) 
suffice for those purposes. A new alternative has been proposed by exploiting the inherently probabilistic nature 
of quantum mechanical systems. These Quantum Random Number Generators (QRNGs) are in principle supe-
rior to their classical counterparts and recent experiments have shown ref. 1 that they can reach the same quality 
as commercial pRNGs. However, the natural question of how to assess whether a sequence is truly random is not 
yet fully established. Pragmatically, the NIST test suite2 has become the standard method for analysing sequences 
coming from a RNG. The suite is based on testing certain features of random sequences that are hard to reproduce 
algorithmically, such as its power spectrum, longest string of consecutive 1’s, and so on. Even though it constitutes 
an easily applicable procedure, recent findings show that its reliance on P-values is a drawback3, 4, while its lack of 
formality is a major disadvantage. On the other hand, although no definition of randomness is deemed absolute, 
a rigorous characterization is presented by the Algorithmic Theory of Information (ATI) but it is unfortunately 
inapplicable in real cases5. An alternative which overcomes both formal and applicability issues is the 
Borel-normality criterion6 (BN). Intuitively, this approach works by successively compressing a given dataset, e.g. 

= ŝ {0101010010101010101011010 } of M bits, by taking strings of β consecutive bits and computing the fre-
quency of occurrences γ β

i
( ) of each of those = … −βi 0, 1, , 2 1 possible strings. For example, β = 1 corresponds 

to looking for the frequencies of the strings {0, 1} in the dataset ŝ , while β = 2 corresponds to analysing the fre-
quencies of the strings {00, 01, 10, 11}, and so on. The whole sequence is said to be Borel-normal if the frequencies 
are bounded individually according to
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and with β an integer ranging from 1 to βmax = log2 log2 M. It is important to mention that BN criterion is a (nearly) 
necessary condition for a sequence to be considered random5. Note that this test is restricted to a-single-sequence 
classification, so it cannot determine the random character of the generating source.

In the present work, we show that randomness characterization can also be addressed using a Bayesian infer-
ence approach for model selection7, borrowing the compression scheme of BN. For simplicity, for a fixed β we 
denote each string with its decimal base representation ∈ … − ≡ Ξβ

βj {0, 1, , 2 1} . The first step consists in 
identifying the models which could have generated a compressed dataset ŝ . For instance if β = 1, we can describe 
it as M realizations of a Bernoulli process, leading to two possible models: with and without bias. Similarly, for 
β = 2, a model represents a way of constructing ŝ  with bias in some of the 22 possible strings. A simple combina-
torial counting reveals that all the possible bias assignations correspond to all partitions of the four strings of Ξ2.

Thus, in general, given the set Ξβ, let Ξβ
  denote the family of its = ∑

β
=β

β { }B
K
2

K2 1
2  possible partitions8, with 

βB2  the Bell’s numbers and β{ }K
2  the Stirling numbers of the second kind, which counts the different ways of 

grouping 2β elements into K sets. Formally, α ω ω= … ∈ Ξβ  { }, ,K K( ) (1) ( )  would refer to the -th partition into 
K subsets, but for notational simplicity we will omit henceforth the index . To each partition α(K) there corre-
sponds a unique model α K( )  which assigns a probability pj to string ∈ Ξβj  according to the following rule:
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This means that all strings contained in a given subset ω(r) are deemed equiprobable within the specified model. 
Thus, keeping β fixed, the likelihood of observing the given dataset ŝ  in a model α K( )  is:
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where βkj
( ) is the frequency of string ∈ Ξβj  and we have defined = ∑ω ω

β
∈k kj j

( )
r r( ) ( )  as the aggregate frequencies 

of the strings in the subset ω(r). (For further use, we also introduce the relative aggregate frequencies 
γ =ω

β
ωk

M
r r( ) ( )). From this perspective, only the model that is symmetric under any reordering of the possible 

strings is identified with a complete random source, because any other model entails biases assignations accord-
ing to the strings’ grouping represented by the corresponding partition. This symmetry only exists when the 
partition is the set Ξβ itself, hence we denote =α sym(1)  .

Consider now that when characterising randomness the only essential feature is whether bias for or against 
some strings is present, but the degree of bias is irrelevant. We can eliminate the dependence on the bias parame-
ters by multiplying with a prior for θ ={ }r r

K
1 and derive the so called evidence for a given model9. Following10, we use 

the Jeffreys prior for it yields a model’s probability distribution invariant under reparametrization and provides a 
measure of a model’s complexity, thus giving a mathematical representation of Occam’s Razor principle10–12. After 
integrating in the parameter space, we arrive at (see Supplementary Information (SI), Sec. 2)
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Eq. (4) is our main result, for it will let us perform the model selection straightforwardly. For sym , its evidence 
is fairly intuitive:

| ≡ | = .α
−ˆ ˆP s P s( ) ( ) 2 (5)

M
sym (1) 

Finally, we want to infer the model that best describes our source, after a dataset ŝ  is given. Using Bayes’ theorem 
the posterior distribution α ˆP s( )K( )  reads:
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Henceforth we will consider a uniform prior over models (which is justified in SI), so the model’s posterior is 
simply proportional to its evidence.

Suppose now we want to assess whether a source can be considered truly random. This is performed in two 
steps. As the first step, we need a model ranking procedure based on the posterior distribution. The second step 
consists in quantifying the goodness of our choice of model.

As a decision rule for the ranking process we use the Bayes Factor13 perspective,
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Thus, we will choose α over 
′α  whenever BFα,α′ > 1. It has been shown that BFα,α′ provides a measure of 

goodness of fit and 
′

= ∞α α→∞lim BFM ,  if α  is the true model14.
To implement the second step, which is nothing more than a hypothesis testing problem, we have two alterna-

tives: either we check whether log10 BFα,α′ ≥ 2 which is considered decisive in favour of model α 13, or we com-
pute the ratio between the posterior and the prior of a given model to assess how certain the posterior has become 
under the information provided by the dataset.

From a computational point of view notice that the evaluation of the posterior requires to being able to com-
pute the normalization factor  ∑ |γ γ γˆP s P( ) ( )0  that appears in (6). When the number of models is very large 
we can choose either to work with a subspace of models or use the logarithm of the Bayes Factor, as in this case 
the normalisation factor cancels out.

It is clear that a full test of randomness requires different values of β to be used for the same dataset, while the 
strings should be short enough so that the M bits allow for each of the possible models to be sampled at least once. 
Thus, heuristically, ∼βB M2 max  whence we can reproduce the BN limit6, βmax ~ log2 log2 (M), after using an asymp-
totic expansion for the Bell number.

Note that by fixing β we have the set of parameters γ =
−β

M({ } , )j j 0
2 1 , whose space can be divided into regions 

identifying the likeliest model according to Eq. (4). As illustrative cases, in Fig. 1 we show a phase-type diagram 
for β = 1 and β = 2 (upper and lower panel, respectively), where the orange-filled area delimits the parameters 
values that renders sym  the likeliest model. The top panel includes the bounds according to the BN criterion 
(green curves) given by Eq. (1), and shows that for any sequence length, M, our method allows for considerably 
smaller variations of γ0. This is a significant improvement, since only necessary criteria exist for testing random-
ness. The lower panel depicts the analogous regions when β = 2, for which there are fifteen models (see a list in the 
SI) and we have fixed two frequencies: γ1 = 1/6 and γ2 = 1/4. The complete models distribution can be deduced 
from the structure of this graph, by distinguishing, a posteriori, the equiprobable strings for which the corre-
sponding model is the likeliest. Thus more information than complete randomness classification can be readily 
obtained from our method.

Also in Fig. 1, the red curves of the β = 1 case are bounds obtained by comparing the likelihood of sym  with 
models involving partitions into K = 2 subsets. Agreement with the regions boundary is excellent. Our choice of 
K = 2 is justified as we would expect that models corresponding to partitions into two subsets to be the closest 

Figure 1.  Phase diagram of Randomness Characterisation. Division of the parameter space into regions 
according to the likeliest model. The top figure corresponds to β = 1 in terms of the frequency γ0 of the string 
0 and the sample size M. The green curves corresponds to Borel’s normality criterion, while the red curves 
are Borel-type bounds obtained by an approximation obtained from Eq. (4) (see Sec. 3 of SI). The bottom plot 
corresponds to β = 2 where each coloured area identifies the likeliest model in that region. Here we fixed the 
frequencies γ1 = 1/6 and γ2 = 1/4 and varied the frequency γ0 of the string 00 and the sample size M.
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ones to the model sym. An explicit expression for these bounds is derived in SI, Sec. 3, and Extended Data Figs 2 
and 3 depict that they also bound considerably well the region in which sym is the likeliest for β = 2.

For further benchmarking, we have compared our method against the NIST test suite2. The result is depicted 
in Fig. 2, as a function of the sequence length M and bias b employed to generate a 0. The upper panel on Fig. 2 
shows the averaged number of tests passed when employing the NIST suite, while the lower one shows the fre-
quency of sym being the likeliest, for β = 1, 2 and 3. We believe that our technique can contribute to test the 
quality of RNG in a more stringent form, since by applying a single test thrice (once for each value of β), we deter-
mined more precisely the random character of the sample of sequences.

As an application, we have tested our method in a bit sequence obtained experimentally from the differences 
in time detection in the process of spontaneous parametric down conversion (SPDC). Sequences generated via a 
SPDC photon-pair source have been shown to fulfil with ease the BN criterion, and to pass comfortably the 
NIST’s suite1. In the SPDC process a laser pump beam illuminates a crystal with a χ(2) nonlinearity, leading to the 
annihilation of pump photons and the emission of photon pairs, typically referred to as signal and idler15. Our 
experimental setup is shown in Extended Fig. 1 and we explain how to construct a 0 or 1 symbol from the detec-
tion signals in Section 1 of SI. We generated a 4 × 109 bits sequence, so βmax ~ 4. When 1 ≤ β ≤ 3, we used all the 
possible models in the comparison, while, for computational ease, when β = 4, we restricted the model space to 
the 32, 768 models corresponding to K = 1 and K = 2 subsets (consider that =B 102

10
4 ). Our inference showed 

that sym  was the likeliest model for every value of β.
As explained above, to achieve a full characterization of our QRNG as a random source, we need to go further 

from the model ranking based on the Bayes Factor and measure our certainty that sym is the true model gov-

Figure 2.  Comparison with NIST Suite test. Comparison of the bias allowed on a given sequence for it 
to be considered random using the NIST suite (upper panel) and our Bayesian method for randomness 
characterisation (lower panel).

http://3
http://2
http://3
http://1
http://1


www.nature.com/scientificreports/

5Scientific Reports | 7: 3096  | DOI:10.1038/s41598-017-03185-y

erning the source. This (un)certainty quantification is the hallmark of Bayesian statistics, since  | ˆP s( )sym  repre-
sents the probability that modelling our QRNG as a random source is correct. Computing this posterior 
distribution directly from Bayes’ Theorem, Eq. 6, we arrive at the values shown in Table 1 for each β. The first 
three values are at least 0.95, but the corresponding to β = 4 is about 0.32, considerably smaller. However, this 
represents an improvement of order 104 when compared with the initial value for the prior, 

= ≈ . × −P ( ) 1/32, 768 3 1 100 sym
5 . Alternatively, we computed log10 BFsym,α′ for each value of β. The values 

reported in Table 1 correspond to the comparison of sym  and the second likeliest model, hence the inequality 
for β > 2. These two criteria combined lead us to conclude that there is decisive evidence for our hypothesis that 

sym  is the underlying model driving our source, thus verifying that the photonic RNG is strictly random in the 
sense described in the article.

From a more general perspective, we propose that α ˆP s( )K( )  quantifies our certainty on the hypothesis that 
a sequence ŝ  was generated using the biases on strings associated with α(K). Because Bayesian methods entails a 
model’s generalizability9, 10, the likeliest model provides a characterization of the source of ŝ . All partitions can be 
identified with standard computational packages, although it can be computationally demanding for sequences 
of ~1010 bits. In any case, once a partition is given, its model’s likelihood is easily found using Eq. (4). A simplified 
analysis can be performed with the BN-type bounds given in Section 3 of the SI, which also leads to more strin-
gent criteria than other approaches.
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β |ˆP s( )sym log10 BFsym,α′

1 0.99993 4.15

2 0.99927 ≥3.55

3 0.95374 ≥1.84

4 0.31862 ≥3.16

Table 1.  Posterior  | ˆP s( )sym  calculated for a dataset of 4 × 109 bits.
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