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Protein–RNA interactions are at the heart of cell regulation. From transcription, processing,
storage, and translation, all the stages in the life cycle of an RNA depend on interactions with
proteins. Although technologies are making remarkable progress in unraveling the landscape of
protein–RNA interactions, many key issues are unclear.We still have to identify howmany proteins
have RNA-binding ability, what are their targets and functional pathways.Moreover, while we know
the number of protein-coding genes in the human genome, functional non-coding RNAs are still
poorly defined. What is the function of the non-coding part of the eukaryotic transcriptome? A
clear understanding of the biological functions of coding and non-coding transcripts would provide
novel insights in molecular biology. What are the protein components binding to an RNA while
it is being produced? Our lack of understanding of how ribonucleoprotein complexes assemble
is a major rate-limiting factor to future progress in the field. We need to generate an in-depth
characterization of protein–RNA complexes that form in cells during development and in response
to external stimuli.

HOW DID LIFE BEGIN AND WHAT ROLE DID RNA AND PROTEIN
MOLECULES PLAY?

Life on earth might descend from an RNA world (Higgs and Lehman, 2015) although RNA and
proteins could have emerged together. As protein-based molecules are essential to make nucleic
acid polymers and nucleotide-based molecules are needed to synthesize proteins, protein, and RNA
might have co-evolved from the very beginning of life (Chao et al., 2008): RNA would contain the
instructions for life while peptides accelerate key chemical reactions to carry out the instructions. In
support of this hypothesis, it has been reported that network of reactions beginning with hydrogen
cyanide and hydrogen sulfide in streams of water irradiated by UV light could produce the chemical
components of proteins and lipids, alongside those of RNA (Patel et al., 2015).

DIFFERENT TYPES OF PROTEIN-RNA ASSEMBLIES

From birth to degradation, most cellular RNAs are never naked but they form complexes with
partner proteins in ribonucleoprotein (RNP) particles. The assembly of functional RNPs and
delivery to their destinations often involves progression through a series of intermediate complexes
and subcellular compartments. For instance, Cajal bodies are sites of non-coding RNAmaturation,
concentrating assembly factors to accelerate complicated biochemical reactions (Gall, 2000).
Similarly, messenger RNA bind to protein complexes that undergo constant remodeling as they
travel from the site of transcription to the cytoplasm (Matera and Wang, 2014). What are the
protein components binding to coding and non-coding RNAs while they move in the cell?
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Many protein–RNA assemblies are observed in the
nucleoplasm and cytoplasm of all cells and play fundamental
roles in growth, development, and homeostasis. For instance,
using an electron microscope, George Emil Palade observed
dense particles or granules in the endoplamic reticulum, which
were later called ribosomes (Palade, 1955). Before their export
to the cytoplasm, ribosome components are subject to a number
of reactions in the nucleoli. Processing of the ribosomal RNAs
initiates in the dense fibrillar part of the nucleolus and continues
in the granular component, where the RNAs self-assemble with
ribosomal proteins to form nearly completed subunits. Other
examples of protein–RNA assemblies found in the nucleoplasm
include speckles and promyelocytic leukemia bodies, among
others (Spector and Lamond, 2011). Changes in the protein or
RNA composition of these structures are associated with diseases
such as Huntington’s and spinal muscular dystrophy (Irimia
et al., 2014).

Studies on the composition, structure, and behavior of
speckles provide precious information to understand how
protein and RNA components assemble and re-organize in
RNP particles such as the spliceosome (Papasaikas et al.,
2015). Although highly dynamic, ribosomal, and spliceosomal
components form distinct RNPs that involve hundreds of
proteins and RNAs (Figure 1): How variable are protein–
RNA assemblies in composition? How large, dynamic and
structurally heterogeneous is the spectrum or ribonucleoprotein
assemblies?

WHAT IS THE COMPOSITION OF
PROTEIN-RNA GRANULES INSIDE THE
CELL?

As shown by Tony Hyman and coworkers, RNP self-assemble
from soluble proteins and RNAs to form structures that grow,
collapse, and fuse continuously (Brangwynne et al., 2009).
These and other findings have challenged the concept of
cell organization in compartments and how we study protein
accumulations (Li et al., 2012). For instance, it has been shown
that membrane-less granules form upon environmental insults to
prevent translation and when the stress is resolved, the assembly
dissolve and protein production is resumed (Buchan and Parker,
2009). Intriguingly, if the stress persists, RNA within the granules
can be transferred to other RNP assemblies, called P-bodies, to be
degraded (Parker and Sheth, 2007). Recent evidence suggests that
ribonucleoprotein granules are also associated with the onset of
neurodegenerative diseases (Wolozin, 2012).

We need to generate an in-depth characterization of protein–
RNA granules that form in cells during development and in
response external stimuli. These RNA structures assemblies
play key roles in numerous aspects of cell biology and
a better understanding of how and why they form will
provide significant innovation (Figure 1). We do not have
a full biochemical composition for many of these particles:
What is the full range and relevance of RNA structures
forming granules? Are non-coding RNA participating in RNP
assemblies?

WHAT IS THE FUNCTION OF THE LONG
NON-CODING PART OF THE
TRANSCRIPTOME?

The human genome project was completed in the early 2000s
(Lander et al., 2001). Recently, impacts of next-generation
sequencing technologies have been massive. Plans to sequence
1000 different human genomes have been pursued and
completed. Thousands of different bacteria species have been
sequenced, and now over a hundred different plant species
have been sequenced. Thanks to Roderic Guigo’ and other
contributors of the ENCODE project, we now know that a
large portion of the genome is transcribed into RNA, but not
translated into proteins, resulting in more than half a million
of non-coding RNA in eukaryotes (Djebali et al., 2012). Are
these non-coding RNA species some kind of transcriptional noise
or do they have a biological function? On the one hand, since
no gene promoter can be considered silent at all times, ultra-
deep sequencing could just reveal single copy RNA transcripts
with little functional significance. On the other hand, non-coding
RNA could be regulating a number of coding-genes contributing
to the complexity of higher eukaryotes. A clear understanding of
the biological functions of non-coding transcripts will provide
novel insights into our understanding of the molecular biology
(Figure 1). What protein networks assist the long non-coding
RNAs and what is their specificity?

HOW MANY PROTEINS HAVE
RNA-BINDING ABILITY?

Deep-sequencing approaches based on pull-downs of proteins
(e.g., PAR-CLIP and iCLIP) and RNAs (e.g., CHART and CHIRP)
as well as in vitro evolution methods (e.g., SELEX) have started
to unveil the targets of a number of RNA-binding proteins in
the cell at defined conditions (König et al., 2010; Bechara et al.,
2013; Chu et al., 2015; Darmostuk et al., 2015). Despite the
growing amount of data collected, many questions remain to
be answered. As shown by the groups of Mattias Hentze and
Markus Landthaler, a previously unknown number of proteins
have RNA-binding ability, although they do not harbor canonical
RNA-binding domains (Baltz et al., 2012; Castello et al., 2012).
Intriguingly, a large fraction of these proteins, such as for
instance iron responsive protein IRP-1 (Philpott et al., 1994, 1;
Cirillo et al., 2013), have a parallel, or moonlighting, activity
as metabolic enzymes (Beckmann et al., 2015) (Figure 1). How
do transcriptomic and metabolomic pathways interact with each
other in the cell? What are the targets of the newly discovered
RNA-binding proteins?

LET THE GRAND CHALLENGE BEGIN!

The field of protein–RNA interactions is moving fast and a
number of fascinating hypotheses have been recently formulated
on ribonucleoprotein complexes. A PubMed search using the
terms “protein” and “RNA” shows that the number of indexed
publications increased progressively in the last decades: 736
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FIGURE 1 | The grand challenge. In addition to messenger RNAs, many non-coding transcripts have been found in eukaryotic cells. What is their function and

which proteins regulate them? A previously unknown number of proteins bind to RNA even if they do not harbor canonical RNA-binding domains. How do metabolism

and transcriptome interact with each other? In addition to canonical ribonucleoprotein complexes, granular assemblies have been found in the cytoplasm and

nucleus. What is their biological function and are they also associated with disease?

(period 1985–1995), 1377 (1995–2005), and 1768 (2005–2016)
manuscripts. The overall increase of about 250% indicates the
strong interest in the field and that in the future we might witness
a revolution in the study of protein–RNA networks!

Indeed, we do not have yet a complete understanding of
how protein–RNA binding specificity is achieved and how
the regulatory function of individual proteins is influenced by
synergy and competition with other molecules. Novel approaches
based on biochemical and functional studies, such as for instance
SHAPE (Wan et al., 2011) and CRISPR (Hsu et al., 2014)
paired with bioinformatics will lead to a better understanding
of the principles underlying protein–RNA networks. In
particular, advances based on high-resolution (STochastic
Optical Reconstruction Microscopy, STORM) and biophysical
(Nuclear Magnetic Resonance NMR) characterization will be key
to derive mechanistic models for the interactions. Computational
models will be an important source of information to identify
new trends, understand the principles of molecular recognition
and design experiments. Improvements in the theoretical models
and validation of their predictions will be crucial to achieve a
better description of the role of coding and non-coding RNAs in
protein networks (Cirillo et al., 2014).
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