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Spectroscopy is widely used to characterize pharmaceutical products or

processes, especially due to its desirable characteristics of being rapid, cheap,

non-invasive/non-destructive and applicable both off-line and in-/at-/on-line.

Spectroscopic techniques produce profiles containing a high amount of information,

which can profitably be exploited through the use of multivariate mathematic and statistic

(chemometric) techniques. The present paper aims at providing a brief overview of the

different chemometric approaches applicable in the context of spectroscopy-based

pharmaceutical analysis, discussing both the unsupervised exploration of the collected

data and the possibility of building predictive models for both quantitative (calibration)

and qualitative (classification) responses.

Keywords: spectroscopy, chemometrics and statistics, component analysis (PCA), partial least squares (PLS),

classification, partial least squares discriminant analysis (PLS-DA), soft independent modeling of class analogies

(SIMCA), pharmaceutical quality control

INTRODUCTION

Quality control on pharmaceutical products is undoubtedly an important and widely debated
topic. Hence, in literature, various methods have been proposed to check quality of medicines,
either qualitative (e.g., for the identification of an active pharmaceutical ingredient, API; Blanco
et al., 2000; Herkert et al., 2001; Alvarenga et al., 2008) or quantitative (quantification of the API;
Blanco et al., 2000; Yao et al., 2007; Cruz Sarraguça and Almeida Lopes, 2009); involving either
destructive or non-invasive online techniques. Recently, due to the benefits they bring, several
non-destructive methodologies based on spectroscopic techniques (mainly Near-Infrared NIR)
combined with chemometric tools have been proposed for pharmaceutical quality check (Chen
et al., 2018; Rodionova et al., 2018).

Despite the development of analytical methodologies and the commitments of national and
supranational entities to regulate pharmaceutical quality control, substandard and counterfeit
medicines are still a major problem all over the world.

Chemometrics as Tool for Fraud/Adulteration Detection
Poor-quality pharmaceuticals can be found on the market for two main reasons: low production
standards (mainly leading to substandard medicines) and fraud attempts. Counterfeited
drugs may present different frauds/adulterations; for instance, they could contain no active
pharmaceutical ingredient (API), a different API from the one declared, or a different (lower)
API strength. As mentioned above, several methodologies have been proposed in order to
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detect substandard/counterfeit pharmaceuticals; among these,
a major role is played by those based on the application
of spectroscopic techniques in combination with different
chemometric methods. The relevance of these methodologies is
due to the fact that spectroscopy (in particular, NIR) combined
with exploratory data analysis, classification and regression
method can lead to effective, high performing, fast, non-
destructive, and sometimes, online methods for checking the
quality of pharmaceuticals and their compliance to production
and/or pharmacopeia standards. Nevertheless, the available
chemometric tools applicable to handle spectroscopic (but, of
course not only those) data are numerous, and there is plenty
of room for their misapplication (Kjeldahl and Bro, 2010). As
a consequence, the aim of the present paper is to report and
critically discuss some of the chemometric methods typically
applied for pharmaceutical analysis, together with an essential
description of the figures of merit which allow evaluating the
quality of the corresponding models.

EXPLORATORY DATA ANALYSIS

In the large part of the studies for the characterization of
pharmaceutical samples for quality control, verification of
compliance and identification/detection of counterfeit, fraud or
adulterations, experimental signals (usually in the form of some
sorts of fingerprints) are collected on a series of specimens.
These constitute the data the chemometric models operate on.
These data are usually arranged in the form of a matrix X,
having as many rows as the number of samples and as many
columns as the number of measured variables. Accordingly,
assuming that samples are spectroscopically characterized by
collecting an absorption (or reflection/transmission) profile (e.g.,
in the infrared region), each row of the matrix corresponds
to the whole spectrum of a particular sample, whereas each
column represents the absorbance (or reflectance/transmittance)
of all the individuals at a particular wavenumber. This
equivalence between the experimental profiles and their matrix
representation is graphically reported in Figure 1.

Once the data have been collected, exploratory data analysis
represents the first step of any chemometric processing, as
it allows “to summarize the main characteristics of data
in an easy-to-understand form, often with visual graphs,
without using a statistical model or having formulated a
hypothesis” (Tukey, 1977). Exploratory data analysis provides
an overall view of the system under study, allowing to catch
possible similarities/dissimilarities among samples, to identify
the presence of clusters or, in general, systematic trends, to
discover which variables are relevant to describe the system and,
on the other hand, which could be in principle discarded, and
to detect possible outlying, anomalous or, at least, suspicious
samples (if present). As evident also from the definition
reported above, in the context of exploratory data analysis a
key role is played by the possibility of capturing the main
structure of the data in a series of representative plots, through
appropriate display techniques. Indeed, considering a general
data matrix X, of dimensions N×M, one could think of its

entries as the coordinates of N points (the samples) into a M-
dimensional space whose axes are the variables, which makes
this representation unfeasible for the cases when more than
three descriptors are collected on each individual. This is why
exploratory data analysis often relies on the use of projection
(bilinear) techniques to reduce the data dimensionality in a
“clever” way. Projection methods look for a low-dimensional
representation of the data, whose axes (normally deemed
components or latent variables) are as relevant as possible for the
specific task. In the case of exploratory data analysis, the most
commonly used technique is Principal Components Analysis
(PCA) (Pearson, 1901; Wold et al., 1987; Jolliffe, 2002).

Principal Component Analysis
Principal component analysis (PCA) is a projection method,
which looks for directions in the multivariate space progressively
providing the best fit of the data distribution, i.e., which best
approximate the data in a least squares sense. This explains
why PCA is the technique of choice in the majority of cases
when exploratory data analysis is the task: indeed, by definition,
for any desired number of dimensions (components) F in the
final representation, the subspace identified by PCA constitutes
the most faithful F-dimensional approximation of the original
data. This allows compression of the data dimensionality at the
same time reducing to a minimum the loss of information.
In particular, starting from a data matrix X(N×M), Principal
Component Analysis is based on its bilinear decomposition,
which can be mathematically described by Equation (1):

X = TPT + E (1)

The loadings matrix P(M×F) identifies the F directions, i.e., the
principal components (PC), along which the data should be
projected and the results of such projection, i.e., the coordinates
of the samples onto this reduced subspace, are collected in the
scores matrix T(N×F). In order to achieve data compression,
usually F ≪ M so that the PCA representation provides an
approximation of the original data whose residuals are collected
in the matrix E(N×M).

Since the scores represent a new set of coordinates along
highly informative (relevant) directions, they may be used in
two- or three-dimensional scatterplots (scores plots). This offers
a straightforward visualization of the data, which can highlight
possible trends in data, presence of clusters or, in general, of an
underlying structure. A schematic representation of how PCA
works is displayed in Figure 2.

Figure 2 shows one of the simplest possible examples of
feature reduction, since it describes the case where samples
described by three measured variables can be approximated by
being projected on an appropriately chosen two-dimensional
sub-space. However, the concept may be easily generalized
to higher-dimensional problems, such as those involving
spectroscopic measurements. Figure 3 shows an example of
the application of PCA to mid infrared spectroscopic data. In
particular, the possibility of extracting as much information as
possible from the IR spectra recorded on 51 tablets containing

Frontiers in Chemistry | www.frontiersin.org 2 November 2018 | Volume 6 | Article 576

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Biancolillo and Marini Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis

FIGURE 1 | Graphical illustration of the equivalence between the collected experimental data (in this case, NIR spectra for 6 samples) and the data matrix X. Each

row of the data matrix corresponds to the spectrum of a sample, whereas each column contains the value of a specific variable over all the individuals.

either ketoprofen or ibuprofen in the region 2,000–680 cm−1

(661 variables) is represented.
A large portion of the data variability can be summarized

by projecting the samples onto the space spanned by the first
two principal components, which account for about 90% of
the original variance, and therefore can be considered as a
good approximation of the experimental matrix. Inspection of
the scores plot suggests that the main source of variability
is the difference between ibuprofen tablets (blue squares)
and ketoprofen ones (red circles), since the two clusters are
completely separated along the first principal component. To
interpret the observed cluster structure in terms of the measured
variables, it is then necessary to inspect the corresponding
loadings, which are also displayed in Figure 3 for PC1. Indeed,
for spectral data, the possibility of plotting the loadings for
the individual components in a profile-like fashion, rather than
producing scatterplot for pairs of latent variables (as exemplified
in Figure 2) is often preferred, due to its more straightforward
interpretability: spectral regions having positive loadings will
have higher intensity on samples which have positive scores
on the corresponding component, whereas bands associated to
negative loadings will present higher intensity on the individuals
falling at negative values of the PC. In the example reported
in Figure 3, one could infer, for instance, that the ketoprofen
samples (which fall at positive values of PC1) have a higher
absorbance at the wavenumbers where the loadings are positive,
whereas ibuprofen samples should present a higher signal in
correspondence to the bands showing negative loadings.

Based on what reported above, it is evident how the quality
of the compressed representation in the PC space depends on

the number of components F chosen to describe the data.
However, at the same time, it must be noted that when the
aim of calculating a PCA is “only” data display, as in most
of the applications in the context of exploratory analysis, the
choice of the optimal number of components is not critical:
it is normally enough to inspect the data distribution across
the first few dimensions and, in many cases, considering the
scores plot resulting from the first two or three components
could be sufficient. On the other hand, there may be cases
when the aim of the exploratory analysis is not limited to just
data visualization and, for instance, one is interested in the
identification of anomalous or outlying observations, or there
could be the need of the imputation of missing elements in
the data matrix; additionally, one could also need to obtain a
compressed representation of the data to be used for further
predictive modeling. In all such cases, the choice of the optimal
dimensionality of the PC representation is critical for the specific
purposes and, therefore, the number of PCs should be carefully
estimated. In this respect, different methods have been proposed
in the literature and a survey of the most commonly used can be
found in Jolliffe (2002).

Among the applications described above, the possibility
of using PCA for the identification/detection of potential
outliers deserves a few more words, as it could be of
interest for pharmaceutical quality control. Actually, although
outliers—or anomalous observations, in general—could be,
in principle, investigated by visually inspecting the scores
plot along the first components, this approach could be
subjective and anyway would not consider some possible data
discrepancies. Alternatively, when it is used as a model to
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FIGURE 2 | Graphical illustration of the basics of PCA. The samples, here represented in a three-dimensional space, are projected onto a low-dimensional subspace

(highlighted in light red in the leftmost panel) spanned by the first two principal components. Inspection of the data set can be carried out by looking at the distribution

of the samples onto the informative PC subspace (scores plot) and interpretation can be then carried out by examining the relative contribution of the experimental

variable to the definition of the principal components (loadings plot).

build a suitable approximation of the data, PCA provides a
powerful toolbox for outlier detection based on the definition
of more objective test statistics, which can be easily automatized
or, anyway, embedded in control strategies, also on-line. This
is accomplished by defining two distance measurements: (i) a
squared Mahalanobis distance in the scores space, which follows
the T2 statistics (Hotelling, 1931) and accounts for how extreme
the measurement is in the principal component subspace, and
(ii) a squared orthogonal Euclidean distance (the sum of squares
of the residuals after approximating the observation by its
projection), which is normally indicated as Q statistics (Jackson
and Muldholkar, 1979) and quantifies how well the model fits
that particular individual. Outlier detection is then carried out by
setting appropriate threshold values for the T2 and Q statistics
and verifying whether the samples fall below or above those
critical limits. Moreover, once an observation is identified as a
potential outlier, inspection of the contribution plot can help
in relating the detected anomaly to the behavior of specific
measured variables.

Selected Examples
PCA is customarily used for the quality control of drugs
and pharmaceuticals; several examples of the application of
this technique to solve diverse issues have been reported in
the literature. One of the most obviously relevant ones is
fraud detection. For example, in Rodionova et al. (2005) PCA
was applied to both bulk NIR spectroscopy and hyperspectral
imaging (HSI) in the NIR range to spot counterfeit drugs.
In particular, bulk NIR was used to differentiate genuine
antispasmodic drugs from forgeries, whereas HSI on the
ground uncoated tablets was employed to identify counterfeited
antimicrobial drugs. In both cases, the spectroscopic data were
subjected to PCA, which allowed to clearly identify clusters in
the scores plot, corresponding to the two kinds of tablets, i.e.,
genuine and counterfeited. In the case of the imaging platform,
where the signal is stored as a data hypercube [i.e., a three-way
numerical array of dimension number of horizontal pixels Nx,
number of vertical pixels Ny and number of wavelengths Nλ, in
which each entry corresponds to the spectral intensity measured
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FIGURE 3 | Graphical illustration of the application of PCA on a spectral (mid-infrared) data. Fifty-one spectra recorded on samples containing either ibuprofen (blue)

or ketoprofen (red) are recorded in the region 680–2,000 cm−1 (A). When PCA is applied to such a dataset, one obtains a scores plot (B) showing that two cluster of

samples, corresponding to tablets containing ibuprofen (blue squares) or ketoprofen (red circles) are separated along the first component. Interpretation of the

observed differences in terms of the spectroscopic signal is made possible by the inspection of the loadings on PC, which are shown in a “spectral-like” fashion in (C).

at a certain wavelength and a specific spatial position (x-y
coordinates)], a preliminary unfolding step is needed. Unfolding
is the procedure allowing to reorganize a higher-order array into
a two-way matrix, which can be then processed with standard
chemometric techniques. In the case of hyperspectral data cubes,
this is carried out by stacking the spectra corresponding to the
different pixels one on top of each other, in a way to obtain a
matrix of dimensions (Nx × Ny and Nλ).

Another relevant application of exploratory analysis is related
to quality check. For instance, PCA can be applied to investigate
formulations not meeting predefined parameters. In Roggo et al.
(2005), PCAwas used to inquire a suspicious blue spot present on
tablets. Samples were analyzed by a multi-spectral (IR) imaging
microscope and PCA analysis was performed on the unfolded
data-cube, indicating that the localized coloration was not due
to contamination, but actually given by wet indigo carmine dye
and placebo (expected ingredients of the formulation).

PCA can also be used for routine quality checks at the end of
a production process. For example, in Myakalwar et al. (2011)

laser-induced breakdown spectroscopy (LIBS) and PCA were
combined with the aim of obtaining qualitative information
about the composition of different pharmaceuticals.

REGRESSION

As discussed in the previous section, exploratory analysis is
a first and fundamental step in chemometric data processing
and, in some cases, it could be the only approach needed to
characterize the samples under investigation. However, due to
its unsupervised nature, it provides only a (hopefully) unbiased
picture of the data distribution but it lacks any possibility of
formulating predictions on new observations, which on the other
hand may be a fundamental aspect to solve specific issues.
In practice, very often quality control and/or authentication
of pharmaceutical products rely on some forms of qualitative
or quantitative predictions. For instance, the quantification
of a specific compound (e.g., an active ingredient or an
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excipient) contained in a formulation is a routine operation
in pharmaceutical laboratories. This goal can be achieved by
combining instrumental (e.g. spectroscopic) measurements with
chemometric regression approaches (Martens and Naes, 1991;
Martens and Geladi, 2004). Indeed, given a response to be
predicted y and a vector of measured signals (e.g., a spectrum)
x, the aim of regression methods is to find the functional
relationship that best approximates the response on the basis of
the measurements (the predictors). Mathematically, this can be
stated as:

y = ŷ+ e = f (x) + e (2)

where ŷ is the predicted response (i.e., the response value
approximated by the model), f (x) indicates a general function
of and x and e is the residual, i.e., the difference between the
actual response and its predicted value. In many applications, the
functional relationship between the response and the predictors
f (x) can be assumed to be linear:

ŷ = f (x) = b1x1 + b2x2 + . . . + bMxM = xTb (3)

where x1, x2 . . . xM are the components of the vector of
measurements x and the transpose indicates that it is normally
expressed as a row vector, while the associated linear coefficients
b1, b2 . . . bM , which weight the contributions of each of theM X-
variables to y, are called regression coefficients and collected in
the vector b. Building a regression model means to find the
optimal value of the parameters b, i.e., the values which lead
to the lowest error in the prediction of the responses. As a
direct consequence of this consideration, it is obvious how it
is mandatory to have a set of samples (the so-called training
set) for which both the experimental data X and the responses
y are available, in order to build a predictive model. Indeed,
the information on the y is actively used to calculate the model
parameters. When data from more than a single sample are
available, the regression problem in Equations (2, 3) can be
reformulated as:

y = ŷ + e = Xb+ e (4)

where the vectors ŷ and e collect the predictions and residuals
for the different samples, respectively. Accordingly, the most
straightforward way of calculating the model parameters in
Equation (4) is by the ordinary least-squares approach, i.e., by
looking at those values of b, which minimize the sum of squares
of the residuals e:

min
b

eTe = min
b

∑N

i=1
e2i (5)

ei being the residual for the ith sample and N being the number
of training observations. The corresponding methods is called
multiple linear regression (MLR) and, under the conditions of
Equation (5), the regression coefficients are calculated as:

b = (XTX)−1XTy (6)

Here it is worth to highlight that, if one wishes to use the same
experimental matrix X to predict more than one response, i.e., if,

for each sample, instead of a single scalar yi, there is a dependent
vector

yTi =
[

yi1yi2 · · · yiL
]

(7)

L being the number of responses, then each dependent variable
should be regressed on the independent block by means of a
set of regression coefficients. Assuming that the L responses
measured on the training samples are collected in a matrix Y ,
whose columns yl are the individual dependent variables,

Y =
[

y1 · · · yl · · · yL
]

(8)

the corresponding regression equations could be written as:

y1 = Xb1 + e1
...

yl = Xbl + el
...

yL = XbL + eL

(9)

which can be grouped into a single expression:

Y = XB+ E (10)

where the residuals, i.e., the differences between the measured
and predicted responses are collected in the matrix E, and the
regression coefficients vectors are gathered in a matrix B, which
can be estimated, analogously to Equation (6), as:

B = [b1 · · · bl · · · bL] = (XTX)−1XTY . (11)

Equations (9–11) indicate that, as far as MLR is concerned,
building a model to predict one response at a time or another
model to predict multiple responses altogether would lead to the
same results since, in the latter case, each dependent variable is
anyway modeled as if it were alone. In either case, the solutions
of the least-squares problem reported in Equations (6, 11) rely
on the possibility of inverting the matrix

(

XTX
)

, i.e., on the
characteristics of the predictors. Indeed, in order for that matrix
to be invertible, the number of samples should be higher than
that of variables and the variables themselves should be as
uncorrelated as possible. These conditions are rarely met by
the techniques which are used to characterize pharmaceutical
samples and, in particular, never met by spectroscopic methods.
Due to these limitations, alternative approaches have been
proposed in the literature to build regression models in cases
where standard multiple linear regression is not applicable. In
particular, since in order for the regression solution to exist, the
predictor matrix should be made of few, uncorrelated variables,
most of the alternative approaches proposed in the literature
involve the projection of the X matrix onto a reduced space
of orthogonal components and the use of the corresponding
scores as regressors to predict the response(s). In this regard,
one of the most widely used approaches is principal component
regression (PCR) (Hotelling, 1957; Kendall, 1957; Massy, 1965;
Jeffers, 1967; Jolliffe, 1982, 2002; Martens and Naes, 1991;
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Martens and Geladi, 2004) which, as the name suggests, involves
a two-stage process where at first principal component analysis is
used to compress the information in the X block onto a reduced
set of relevant scores, as already described in Equation (1):

T = XP (12)

and then these scores constitute the predictor block to build a
multiple linear regression:

Ŷ = TC (13)

C being the matrix of regression coefficients for this model. By
combining Equations (12, 13), it can be easily seen how PCR still
describes a linear relationship between the responses Y and the
original variables X:

Ŷ = TC = XPC = XBPCR (14)

mediated by a matrix of regression coefficients BPCR (=PC),
which is different from the one that would be estimated by
Equation (11), since it is calculated by taking into account only
the portion of the variability in the X block accounted for by the
selected principal components. The use of principal component
scores as predictors allows to solve the issues connected to the
matrix

(

XTX
)

being usually ill-conditioned when dealing with
spectroscopic techniques, but may be still suboptimal in terms
of predictive accuracy.

Indeed, as described in Equations (12, 13), calculating a
PCR model is a two-step procedure, which involves at first the
calculation of PC scores and then the use of these scores to build
a regression model to predict the response(s). However, these
two steps have different objective functions, i.e., the criterion
which is used to extract the scores from the X matrix is
not the same which guides the calculation of the regression
coefficients C in Equation (13). Stated in different words, the
directions of maximum explained variance (especially when
there are many uninformative sources of variability in the data)
may not be relevant for the prediction of the Y . To overcome
this drawback, an alternative approach to component-based
regression is represented by the Partial Least-Squares algorithm
(Wold et al., 1983; Geladi and Kowalski, 1986; Martens and Naes,
1991) which, due to its being probably the most widely used
calibration method in chemometrics, will be described in greater
detail in the following subparagraph.

Partial Least Squares (PLS) Regression
Partial Least Squares (PLS) regression (Wold et al., 1983; Geladi
and Kowalski, 1986; Martens and Naes, 1991) was proposed as
an alternative method to calculate reliable regression models in
the presence of ill-conditioned matrices. Analogously to PCR,
it is based on the extraction of a set of scores T by projecting
the X block on a subspace of latent variables, which are relevant
for the calibration problem. However, unlike PCR, the need
for the components not only to explain a significant portion
of the X variance but also to be predictive for the response Y

is explicitly taken into account for the definition of the scores.

Indeed, in PLS, the latent variables (i.e., the directions onto
which the data are projected) are defined in such a way to
maximize the covariance between the corresponding scores and
the response(s): maximizing the covariance allows to obtain
scores which at the same time describe a relevant portion of
the X variance and are correlated with the response(s). Due to
these characteristics, and differently than what already described
in the case of MLR (see Equation 11) and, by extension, PCR,
in PLS two distinct algorithms have been proposed depending
on whether only one or multiple responses should be predicted
(the corresponding approaches are named PLS1 and PLS2,
respectively). In the remainder of this section, both algorithms
will be briefly described and commented.

When a single response has to be predicted, its values on the
training samples are collected in a vector y; accordingly, the PLS1
algorithm extracts scores from the X block having maximum
covariance with the response. In particular, the first score t1 is the
projection of the data matrix X along the direction of maximum
covariance r1:

max
r1

[Cov(t1, y)] = max
r1

(tT1 y) (15)

While the successive scores t2 · · · tF , which are all orthogonal,
account in turn for the maximum residual covariance. Therefore,
PLS1 calculates a set of orthogonal scores having maximum
covariance with y, according to:

T = XR (16)

R being the weights defining the subspace onto which the matrix
should be projected, and then uses these scores as regressors for
the response:

ŷ = Tq (17)

q being the coefficients for the regression. Similarly to what
already shown in the case of PCR, Equations (16, 17) can be then
combined in a single one to express the regression model as a
function of the original variables, through the introduction of the
regression vector bPLS1 (=Rq):

ŷ = Tq = XRq = XbPLS1. (18)

In contrast, in the multi-response case (PLS2), it is assumed that
also the matrix Y , which collects the values of the dependent
variables on the training samples, has a latent structure, i.e., it
can be approximated by a component model:

Ŷ = UQT (19)

U and Q being the Y scores and loadings, respectively. In
particular, in order for the calibration model to be efficient, it
is assumed that the X and the Y matrices share the same latent
structure. This is accomplished by imposing that the component
be relevant to describe the variance of the independent block
and predictive for the responses. In mathematical terms, pairs of
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scores are simultaneously extracted from the X and the Y blocks
so to have maximum covariance:

max
ri ,qi

[Cov(ti, ui)] = max
ri ,qi

(tTi ui) (20)

Where ti and ui are the X and the Y scores on the ith latent
variable, respectively, qi is the ith column of the Y loading matrix
Q while ri is the ith column of the X weight matrix R, which has
the same meaning as specified in Equation (16). Additionally,
these scores are made to be collinear, through what is normally
defined as the inner relation:

ui = tici ∀i (21)

ci being a proportionality constant (inner regression coefficient).
When considering all the pairs of components, Equation (21) can
be rewritten in a matrix form as:

U = TC (22)

where:

C =







c1 · · · 0
...

. . .
...

0 · · · cF






. (23)

Also in this case, by combining all the equations defining the
model, it is possible to express the predicted responses as a linear
function of the original variables:

Ŷ = UQT = TCQT = XRCQT = XBPLS2 (24)

where the matrix of regression coefficients BPLS2 is defined as
RCQT .

Based on the above description, it is clear that, when more
than one response has to be modeled, it is essential to decide
whether it could be better to build an individual model for each
dependent variable, or a single model to predict all the responses,
as the results would not be the same. In particular, it is advisable
to use the PLS2 approach only when one could reasonably assume
that there are systematic relationships between the dependent
variables.

On the other hand, independently on what model one decides
to use, once the values of the regression coefficients (here
generally indicated as B) have been estimated based on the
training samples, they can be used to predict the responses for
any new set of measurements (Xnew):

Ŷnew = XnewB. (25)

Here, it should be stressed that, in order for the calibrations built
by PLS (but the same concept holds for PCR) to be accurate
and reliable, a key parameter is the choice of an appropriate
number of latent variables to describe the data. Indeed, while
selecting a low number of components one can incur in the risk of
not explaining all the relevant variance (underfitting), including
too many of them (so that not only the systematic information

is captured, but also the noise), can lead to overfitting, i.e., to
a model which is very good in predicting the samples it has
been calculated on, but performs poorly on new observations. To
reduce this risk, a proper validation strategy is needed (see section
Validation) and, in particular, the optimal number of latent
variables is selected as the one leading to the minimum error
during one of the validation stages (usually, cross-validation).

Selected Application of Regression
Methods to Pharmaceutical Problems
Regression methods in general, and especially PLS, are often
combined with spectroscopy in order to develop rapid
and (sometimes) non-destructive methodologies for the
quantification of active ingredients in formulations. For
instance, Bautista et al. (1996) quantified three analytes of
interest (caffeine, acetylsalicylic acid and acetaminophen) in
their synthetic ternary mixtures and different formulations
by UV-Vis spectroscopy assisted by a PLS calibration model.
Mazurek et al. proposed two approaches based on coupling
FT-Raman spectroscopy with PLS and PCR calibration for
estimation of captopril and prednisolone in tablets (Mazurek
and Szostak, 2006a) and diclofenac sodium and aminophylline in
injection solutions (Mazurek and Szostak, 2006b). The authors
compared results obtained from calibration models built by
using unnormalised spectra with the values found when an
internal standard was added to each sample and the spectra
were normalized by its selected band intensity at maximum or
integrated. Another study on injection samples was proposed
by Xie et al. (2010), using NIR spectroscopy combined with
PLS and PCR to quantify pefloxacin mesylate (an antibacterial
agent) in liquid formulations. PLS regression was also coupled
to MIR (Marini et al., 2009) and NIR spectroscopy (Rigoni et al.,
2014) to quantify the enantiometric excess of different APIs
in the solid phase, also in the presence of excipients, based on
the consideration that, in the solid phase, the spectrum of the
racemic mixture could be different from that of either pure
enantiomer. Specifically, it was possible to accurately quantify
the enantiomeric excess of S-(+)-mandelic acid and S-(+)-
ketoprofen by MIR spectroscopy coupled by PLS on the whole
spectrum and after variable selection by sequential application
of backward interval PLS and genetic algorithms (biPLS-GA)
(Marini et al., 2009), while NIR was used to quantify the
enantiomeric excess of R-(–)-epinephrine and S-(+)-ibuprofen
(Rigoni et al., 2014). In the latter case, it was also shown that,
when using the validated model to quantify the enantiomeric
excess of API in the finished products, the influence of excipients
and dosage forms (intact tablets or powders) has a relevant
impact on the final predictive accuracy.

CLASSIFICATION

As already introduced in the previous section, in chemometric
applications, in general, and in the context of pharmaceutical
analysis, in particular, one is often interested in using the
experimentally collected data (e.g., spectroscopic profiles) to
predict qualitative or quantitative properties of the samples.
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While the regression methods for the prediction of quantitative
responses have been already presented and discussed in section
Regression, the main chemometric approaches for the prediction
of qualitative properties of the individuals under investigation
are outlined herein. These approaches are generally referred
to as classification methods, since any discrete level that the
qualitative variable can assume may also be defined as a class
(or category) (Bevilacqua et al., 2013). For instance, if one
were interested in the possibility of recognizing which of three
specific sites a raw material was supplied from, it is clear that
the response to be predicted could only take three possible
values, namely “Site A,” “Site B,” and “Site C”; each of these
three values would correspond to a particular class. A class
can be then considered as an ensemble of individuals (samples)
sharing similar characteristics. In this example, samples from
the first class would all be characterized by having been
manufactured from a raw material produced in Site A, and
similar considerations could be made for the specimens in
the second and third classes, corresponding to Site B and
Site C, respectively. As it could already be clear from the
example, there are many ambits of application for classification
methods in pharmaceutical and biomedical analysis, some of
which will be further illustrated in section Selected Applications
of Classification Approaches for Pharmaceutical Analysis, after
a brief theoretical introduction to the topic as well as the
chemometric methods most frequently used in this context
(especially, in combination with spectroscopic techniques).

As anticipated above, classification approaches aim at relating
the experimental data collected on a sample to a discrete value
of a property one wishes to predict. This same problem can be
also expressed in geometrical terms by considering that each
experimental profile (e.g., spectrum) can be seen as point in
the multivariate space described by the measured variables.
Accordingly, a classification problem can be formulated as the
identification of regions in this multivariate space, which can be
associated to a particular category, so that if a point falls in one of
these regions, it is predicted as being part of the corresponding
class. In this respect, classification approaches can be divided
into two main sub-groups: discriminant and class-modeling
methods. In this framework, a fundamental distinction can be
made between discriminant and class-modeling tools, which
constitute the two main approaches to perform classification
in chemometrics (Albano et al., 1978). In detail, discriminant
classification methods focus on identifying boundaries in the
multivariate space, which separate the region(s) corresponding
to a particular category from those corresponding to another
one. This means they need representative samples from all the
categories of interest in order to build the classification model,
which will be then able to predict any new sample as belonging
only to one of the classes spanned by the training set. In a
problem involving three classes, a discriminant classification
method will look for those boundaries in the multivariate space
identifying the regions associated to the three categories in
such a way as to minimize the classification error (i.e., the
percentage of samples wrongly assigned). An example is reported
in Figure 4A. On the other hand, class-modeling techniques
look at the similarities among individuals belonging to the same

category, and aim at defining a (usually bound) subspace where
samples from the class under investigation can be found with
a certain probability; in this sense, they resemble outlier tests,
and indeed they borrow most of the machinery from the latter.
Operationally, each category is modeled independently on the
others and the outcome is the definition of a class boundary
which should enclose the category sub-space:, i.e., individuals
falling within that space are likely to belong to the class (are
“accepted” by the class model), whereas samples falling outside
are deemed as outliers and rejected. It is then evident that one
of the main advantages of class modeling approaches is that they
allow building a classification model also in the asymmetric case,
where there is only a category of interest and the alternative
one is represented by all the other individuals not falling under
the definition of that particular class. In this case, since the
alternative category is ill-defined, heterogeneous, and very likely
to be underrepresented in the training set, any discriminant
model would result suboptimal, as its predictions would strongly
depend on the (usually not enough) samples available for that
class. On the other hand,modeling techniques define the category
space only on the basis of data collected for the class of interest,
so those problems can be overcome.

When the specific problem requires to investigate more than
one class, each category is modeled independently on the others
and, accordingly, the corresponding sub-spaces may overlap
(see Figure 4B). As a consequence, classification outcomes are
more versatile than with discriminant methods: a sample can be
accepted by a single category model (and therefore be assigned to
that class), by more than one (falling in the area where different
class spaces overlap and, hence, resulting “confused”) or it could
fall outside any class-region and therefore be rejected by all the
categories involved in the model.

Discriminant Methods
As mentioned above, predictions made by the application of
discriminant methods are univocal; namely, each sample is
uniquely assigned to one and only one of the classes represented
in the training set. This is accomplished by defining decision
surfaces, which delimit the boundaries among the regions of
space associated to the different categories. Depending on the
model complexity, such boundaries can be linear (hyperplanes)
or assume more complex (non-linear) shapes. When possible,
linear discriminant models are preferred as they have less
parameters to tune, require a lower number of training samples
and are in general more robust against overfitting. Based on
these considerations, the first-ever and still one of the most
commonly used discriminant techniques is Linear Discriminant
Analysis (LDA), originally proposed by Fisher (1936). It
relies on the assumption that the samples of each class are
normally distributed around their respective centroids with the
same variance/covariance matrix (i.e., the same within-category
scatter). Under these assumptions, it is possible to calculate
the probability that each sample belongs to a particular class g
p
(

g
∣

∣ x
)

, as:

p
(

g
∣

∣ x
)

=
πg

C
e−

1
2 (x−xg)

T
S−1(x−xg) (26)
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FIGURE 4 | Illustration of the difference between discriminant (A) and modeling (B) classification techniques. Discriminant classification techniques (A) divide the

available hyperspace into as many regions as the number of the investigated categories (three, in the present example), so that whenever a sample falls in a particular

region of space, it is always assigned to the associated class. Modeling techniques (B) build a separate model for each one of the categories of interest, so that there

can be regions of spaces where more than a class is mapped and others where there is no class at all.

where xg is the centroid of class g, S the overall within-class
variance/covariance matrix, πg the prior probability (i.e., the
probability of observing a sample from that category before
carrying out any measurement), C is a normalization constant

and the argument of the exponential
(

x−xg
)T

S−1
(

x−xg
)

is
defined as the squared Mahalanobis distance of the individual to
the center of the category. Classification is then accomplished by
assigning the sample to the category, to which it has the highest
probability of belonging.

LDA is a well-established technique, which works well also
on data for which the normality assumption is not fulfilled but,
unfortunately, it can rarely be used on spectroscopic data for the
same reasons MLR cannot be utilized for regression (see section
Regression): calculation of matrix S−1 requires the experimental
data matrix to be well-conditioned, which is not the case, when
dealing with a high number of correlated variables measured on a
limited number of samples. To overcome these limitations, LDA
can be applied on the scores of bilinear models used to compress
the data (e.g., on principal components), but the most commonly
used approach involves a suitable modification of the PLS
algorithm which makes it able to deal with classification issues;

the resulting method is called partial least squares discriminant
analysis (PLS-DA) (Sjöström et al., 1986; Ståle and Wold, 1987;
Barker and Rayens, 2003), and it will be briefly described in the
following paragraph.

Partial Least Squares Discriminant Analysis (PLS-DA)
In order for the PLS algorithm to deal with discriminant
classification problems, the information about class belonging
has to be encoded in a response variable Y , which can be
then regressed onto the experimental matrix X to provide the
predictive model (Sjöström et al., 1986). This is accomplished
by defining Y as a “dummy” binary matrix, having as many
rows as the number of samples (N) and as many columns as the
number of classes (G). Each row in Y is a vector encoding the
information about class belonging of the corresponding sample,
whereas each column is associated to a particular class (the first
column to class 1, the second to class 2 and so on up to the Gth).
As such, the row vector corresponding to a particular sample will
contain all zeros except for the column associated to the class it
belongs to, where there will be a one. For instance, in the case
of a problem involving three categories, a sample belonging to
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Class 2 will be represented by the vector yi = [0 1 0]. A PLS
regression model is then calculated between the experimental
data matrix X and the dummy Y [as described in section Partial
Least Squares (PLS) Regression], and the matrix of regression
coefficients obtained is used to predict the value of the responses
on new samples, Ŷnew. Since the dependent variable is associated
to the categorical information, classification of the samples is
based on the predicted responses Ŷnew which, however, are not
binary but real-valued. As a consequence, different approaches
have been proposed in the literature to define how to classify
samples in PLS-DA based on the values of Ŷnew. The naivest
approach (see e.g., Alsberg et al., 1998) is to assign each sample to
the category corresponding to the highest value of the predicted
response vector. For instance, if the following predictions were
obtained for a particular sample: ŷnew,k= [0.1 − 0.4 0.8], it would
be assigned to Class 3. On the other hand, other strategies have
been also suggested, like the application of LDA on Ŷnew or on
the PLS scores (Nocairi et al., 2004; Indahl et al., 2007), or the use
of thresholds based on probability theory (Pérez et al., 2009).

Class-Modeling Methods
As already stated, class-modeling methods aim at identifying
a closed (bound) sub-space, where it is likely to find samples
from a particular category, irrespective of whether other classes
should also be considered or not. They try to capture the
features, which make individuals from the same category similar
to one another. Operationally, they define the class space by
identifying the “normal” variability which can be expected
among samples belonging to that category and, accordingly,
introducing a “distance-to-the-model” criterion which accounts
for the degree of outlyingness of any new sample. Among the
different class-modeling techniques proposed in the literature,
soft independent modeling of class analogies (SIMCA) is by far
the most commonly used, especially for spectroscopic data, due
to its ability of dealing with ill-conditioned experimental data
matrices and, therefore, it will be briefly described below (for
more details, the reader is referred to Wold, 1976; Wold and
Sjöström, 1977, 1987).

Soft Independent Modeling of Class Analogies

(SIMCA)
The main idea behind SIMCA is that the systematic variability
characterizing the samples for a particular category can be
captured and accurately accounted for by a PCA model of
appropriate dimensionality. This model is built by using only the
samples from the investigated category:

Xg = TgP
T
g + Eg (27)

where the symbols have the same meaning as in Equation (2),
and the subscript indicates that the model is calculated by using
only the training data from class g. The use of PCA to define
the similarities among the samples belonging to the category
of interest provides also the machinery to assess whether any
new sample is likely to come from that class or not through the
definition of two statistics normally used for outlier detection,
namely T2 and Q. As already introduced in section Principal

Component Analysis, the former is the squared Mahalanobis
distance of a sample to the center of the scores space, indicating
how far the individual is from the distribution of the “normal”
samples in the space spanned by the significant PCs (Hotelling,
1931), while the latter is the (Euclidean) distance of the sample
to its projection onto the PC space, describing how well that
individual is fitted by the PCA model (Jackson and Muldholkar,
1979). In the context of SIMCA, once the PCA model of the gth

category is calculated according to Equation (27), any specimen
to be predicted is projected onto that model and its values of
T2 and Q are used to calculate an overall distance to the model
di,g (Yue and Qin, 2001), which constitutes the basis for class
acceptance or rejection:

di,g =

√

(

T2
i,g

)2
+

(

Qi,g

)2
(28)

where the subscript indicates that the ith sample is tested against
the model of the gth category. Accordingly, the boundary of
the class space is identified by setting a proper threshold to the
distance, so that if a sample has a distance to the model lower
than the threshold it is accepted by the category and, otherwise,
it is rejected.

Selected Applications of Classification
Approaches for Pharmaceutical Analysis
As mentioned before, classification approaches are widely
applied in quality controls of pharmaceuticals, in particular
to detect counterfeit drugs, as, for instance, it is reported in
da Silva Fernandes et al. (2012), where NIR and fluorescence
spectroscopy were combined with different classification
methods to distinguish among pure and adulterated tablets.
In Storme-Paris et al. (2010), a non-destructive approach is
proposed to distinguish genuine tablets from counterfeit or
recalled (from the market) medicines. In order to achieve this,
NIR spectra (directly collected on the tables) are analyzed by
SIMCA. Results obtained suggest the validity of this approach; in
fact, it allowed highlighting small differences among drugs (e.g.,
different coating), and it provided an excellent differentiation
among genuine and counterfeits products. For the same purpose,
namely counterfeit drug detection, NIR spectra were also widely
combined with PLS-DA. Only to mention one, de Peinder
et al. (2008) demonstrated the validity of this approach to spot
counterfeits of a specific cholesterol-lowering medicine. Despite
the fact that the authors highlighted the storage conditions
sensibly affecting NIR spectra (because of humidity), the PLS-
DA model still proved to be robust and provided excellent
predictions.

VALIDATION

Chemometrics relies mainly on the use of empirical models
which, given the experimental measurements, should summarize
the information of the data, reasonably approximate the system
under study, and allow predictions of one or more properties of
interest. Bearing this in mind, given the “soft” (i.e., empirical)
nature of the models employed, there are manymodels one could
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in principle calculate on the same data and their performances
could be influenced by different factors (number of samples
and their representativeness, the method itself, the algorithm,
and so on) (Brereton et al., 2018). Thus, selecting which model
is the most appropriate for the data under investigation and
verifying how reliable it is, is of fundamental importance and the
chemometric strategies for doing so are collectively referred to
as validation (Harshman, 1984; Westad and Marini, 2015). To
evaluate the quality of the investigated models, the validation
process requires the definition of suitable diagnostics, which
could be based on model parameters but more often rely on the
calculation of some sort of residuals (i.e., error criteria). In this
context, in order to avoid overoptimism or, in general, to obtain
estimates which are as unbiased as possible, it is fundamental that
the residuals which are used for validation are not generated by
the application of the model to the data it has been built on, since
in almost all cases, they cannot be considered as representative of
the outcomes one would obtain on completely new data. For such
reason, a correct validation strategy should involve the estimation
of the model error on a dataset different than the one used for
calculating the model parameters. This is normally accomplished
through the use of an external test set or cross-validation.

The use of a second, completely independent, set of data for
evaluating the performances and, consequently, calculating the
residuals (test set validation) is the strategy which best mimics
how the model will be routinely used, and it is therefore the one
to be preferred, whenever possible. On the other hand, cross-
validation is based on the repeated resampling of the dataset,
into a training and a test sub-sets, so that at each iteration
only a part of the original samples is used for model building
while the remaining individuals are left out for validation.
This procedure is normally repeated up to the moment when
each sample has been left out at least once or, anyway, for a
prespecified number of iterations. Cross-validation is particularly
suited when the number of available samples is small and
there is no possibility of building an external test set, but the
resulting estimates can be still biased as the calibration and
validation sets are never completely independent on one another.
In general, it is rather used for model selection (e.g., estimating
the optimal number of components) than for the final validation
stage.

OTHER SELECTED APPLICATIONS

In addition to some specific applications described above, in
this paragraph additional examples will be presented to further

emphasize the usefulness of chemometrics-based spectroscopy
for pharmaceutical analysis.

Morris and Forbes (2001) coupled NIR spectroscopy with
multivariate calibration for quantifying narasin chloroform-
extracted from granulated samples. In another study, Forbes et al.
(2001) proposed a transmission NIR spectroscopy method using
multivariate regression for the quantification of potency and
lipids in monensin fermentation broth.

Ghasemi and Niazi (2007) developed a spectrophotometric
method for the direct quantitative determination of captopril
in pharmaceutical preparation and biological fluids (human
plasma and urine) samples. Since the spectra were recorded at
various pHs (from 2.0 to 12.8), different models were tested,
including the possibility of a preliminary spectral deconvolution
using multi-way approaches. In particular, the use of PLS on
the spectra at pH 2.0 allowed to build a calibration curve
which resulted in a very good accuracy. Li et al. (2014) used
Raman spectroscopy to identify anisodamine counterfeit tablets
with 100% predictive accuracy and, at the same time, NIR
spectroscopy to discriminate genuine anisodamine tablets from
5 different manufacturing plants. In the latter case, PLS-DA
models were found to have 100% recognition and rejection rates.
Willett and Rodriguez (2018) implemented a rapid Raman assay
for on-site analysis of stockpiled drugs in aqueous solution,
which was tested on Tamiflu (oseltamivir phosphate) by using
three different portable and handheld Raman instruments. PLS
regression models yielded an average error with respect to the
reference HPLC values, which was lower than 0.3%. Other
examples of application can be found in Forina et al. (1998),
Komsta (2012), Hoang et al. (2013), and Lohumi et al. (2017).

CONCLUSIONS

Chemometrics provide a wealth of techniques for both the
exploratory analysis of multivariate data as well as building
reliable calibration and classification strategies to predict
quantitative and qualitative responses based on the experimental
profiles collected on the samples. Coupled to spectroscopic
characterization, it represents an indispensable and highly
versatile tool for pharmaceutical analysis at all levels.
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