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ON THE DISTORTION OF LOCALITY SENSITIVE HASHING\ast 
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Abstract. Given a notion of pairwise similarity between objects, locality sensitive hashing
(LSH) aims to construct a hash function family over the universe of objects such that the probability
two objects hash to the same value is their similarity. LSH is a powerful algorithmic tool for large
scale applications and much work has been done to understand LSHable similarities, i.e., similarities
that admit an LSH. In this paper we focus on similarities that are provably non-LSHable and propose
a notion of distortion to capture the approximation of such a similarity by an LSHable similarity.
We consider several well-known non-LSHable similarities and show tight upper and lower bounds on
their distortion.
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1. Introduction. The notion of similarity finds use in a large variety of fields
beyond computer science. Often, the notion is tailored to the actual domain and
application for which it is intended. Locality sensitive hashing (henceforth LSH) is a
powerful algorithmic paradigm for computing similarities between data objects in an
efficient way. Informally, an LSH scheme for a similarity is a probability distribution
over a family of hash functions such that the probability the hash values of two objects
agree is precisely the similarity between them. In many applications, computing sim-
ilar objects (i.e., finding nearest neighbors) can be computationally very demanding
and LSH offers an elegant and cost-effective alternative.

Intuitively, large objects can be represented compactly and yet accurately from the
point of view of similarity, thanks to LSH. Thus, the similarity between two objects
can be quickly estimated by picking a few random hash functions from the family
and estimating the fraction of times the hash functions agree on the two objects.
This paradigm has been very successful in a variety of applications dealing with large
volumes of data, from near-duplicate estimation in text corpora to a nearest-neighbor
search in a multitude of domains.

Given its success and importance,1 researchers have looked for LSH schemes for
more and more similarities. Thus a natural question arises: which similarities admit
an LSH scheme? In [13] Charikar introduced two necessary criteria (the former weaker
than the latter) for a similarity S to admit an LSH:
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(T1) 1 - S must be a metric;
(T2) 1 - S must be isometrically embeddable in \ell 1.
These two tests can be used to rule out the existence of LSH schemes for various

similarities, for instance, the S{\e}rensen--Dice and Sokal--Sneath similarities (see Table 1
or [16] for definitions).

Table 1
A list of similarities and of their lower and upper distortion bounds. The value n refers to the

cardinality of the ground set or to the number of dimensions.

Name

S(X,Y )

X \not = Y Distortion LB Distortion UB

Jaccard
| X\cap Y | 

| X\cap Y | +| X\bigtriangleup Y | 1
1

(Shingles [9])

Hamming
| X\cap Y | +| X\cup Y | 

| X\cap Y | +| X\cup Y | +| X\bigtriangleup Y | 1
1

(folklore)

Anderberg
| X\cap Y | 

| X\cap Y | +2| X\bigtriangleup Y | 1
1

(RSS [14])

Rogers--Tanimoto
| X\cap Y | +| X\cup Y | 

| X\cap Y | +| X\cup Y | +2| X\bigtriangleup Y | 1
1

(RSS [14])

Cosine X\cdot Y
\ell 2(X)\cdot \ell 2(Y )

\surd 
n

(Theorem 4.3)

6
\surd 
n

(Theorem 4.4)

Simpson
| X\cap Y | 

min\{ | X| ,| Y | \} 

n
(Theorem 4.2)

n
(Shingles [9])

Braun--Blanquet
| X\cap Y | 

max\{ | X| ,| Y | \} 

2
(Theorem 5.8)

2
(Shingles [9])

S{\e}rensen--Dice
| X\cap Y | 

| X\cap Y | +1/2| X\bigtriangleup Y | 

2
(Theorem 4.2)

2
(Shingles [9])

Sokal--Sneath 1
| X\cap Y | +| X\cup Y | 

| X\cap Y | +| X\cup Y | +1/2| X\bigtriangleup Y | 

4/3

(Theorem 4.6)
2

(RSS [14])

Forbes
n | X\cap Y | 
| X| | Y | 

n
(Theorem 7.1)

n
(Theorem 7.1)

sorensen\gamma 
| X\cap Y | 

| X\cap Y | +\gamma | X\bigtriangleup Y | 

max(1, 1/\gamma )

(Theorem 4.2)

max(1, 1/\gamma )

(Shingles [9], RSS [14])

sokal-sneath\gamma 
| X\cap Y | +| X\cup Y | 

| X\cap Y | +| X\cup Y | +\gamma | X\bigtriangleup Y | 

max(1, 2/(1 + \gamma ))

(Theorem 4.6)

max(1, 1/\gamma )

(RSS [14])

This brings us to a very natural question, the one we address in this paper: if a
similarity S does not admit an LSH scheme, then how well can it be approximated by
another similarity S\prime that admits an LSH?

Locality sensitive distortion. The two criteria (T1) and (T2) are one of the
many points of contact between LSH schemes and the theory of embeddability in
metric spaces, where the natural notion of ``closeness"" is distortion. We say that a
similarity S has a distortion not larger than \delta if there is a similarity S\prime defined by the
same universe that admits an LSH and such that

S

\delta 
\leq S\prime \leq S.

The distortion is 1 if and only if S admits an LSH.
In this paper we begin a systematic investigation of the notion of distortion

for LSH schemes and prove optimal distortion bounds for several well-known and
widely used similarities such as cosine, Simpson, Braun--Blanquet (also known as
``all-confidence""), S{\e}rensen--Dice, and several others (see Table 1). We obtain our
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352 CHIERICHETTI, KUMAR, PANCONESI, AND TEROLLI

lower bounds by introducing two new combinatorial tools dubbed the center method
and the k-sets method. In nearly all cases, we also exhibit matching distortion upper
bounds by explicitly constructing an LSH. As concrete examples, we show that the dis-
tortion of the cosine similarity grows as the square root of the number of dimensions
of the vectors, and that the distortion of the Braun--Blanquet, and S{\e}rensen--Dice,
similarities is 2 (the full picture is given in Table 1).

Each of the two methods leverages on the following basic idea. It is usually the
case that, given a similarity S defined on pairs of objects coming from a universe \scrU ,
there exists a set \scrZ \subseteq 

\bigl( \scrU 
2

\bigr) 
of pairs of elements of \scrU such that S evaluates to zero

on each of the pairs of \scrZ . For instance, the Jaccard similarity evaluates to zero on
pairs of disjoint sets, and the cosine similarity evaluates to zero on pairs of orthogonal
vectors. Suppose now that, for such a similarity, we can find a set of pairs \scrA \subseteq 

\bigl( \scrU 
2

\bigr) 
such that

\bullet the minimum value of S over the pairs in \scrA is at least \tau , i.e.,

min
\{ a,b\} \in \scrA 

S(a, b) \geq \tau ,

\bullet and, for each LSHable similarity S\prime such that S\prime (a, b) = 0 for each \{ a, b\} \in \scrZ ,
the average of S\prime over pairs in \scrA is at most \tau /\delta , for some \delta > 1, i.e.,

avg
\{ a,b\} \in \scrA 

S\prime (a, b) \leq \tau 

\delta 
.

Then, it must be the case that the distortion of S is at least \delta , since all the LSHable
S\prime that distort S by a finite amount have to evaluate to exactly zero on pairs in \scrZ .
Although this is not apparent from this high level description, for many similarities,
a judicious choice of \scrA and \scrZ allows us to pick large \delta 's and hence show large enough
distortions. The center and the k-sets methods implement this plan in two different
ways (that is, with two different pairs of \scrA and \scrZ ). The methods appear to be
quite versatile for they give precise distortion bounds for many known similarities of
interest. (We note in passing that one could obtain the same lower bound of \delta on
the distortion of S by weakening the first assumption to avg\{ a,b\} \in \scrA S(a, b) \geq \tau . As it
turns out, however, all our applications of the methods go through using the simpler
uniform lower bound mentioned above.)

Our framework also expands the outreach of the tests (T1) and (T2) along two
different dimensions. First, not only does it allow one to determine whether a given
similarity is not LSHable, but it provides a quantitative framework to determine how
far it is from being so. Second, it allows one to establish that similarities do not admit
LSH schemes even when both tests (T1) and (T2) are passed. Indeed, we show that
the Braun--Blanquet similarity has a distortion of exactly two, and therefore that it
does not admit an LSH scheme. This similarity is particularly noteworthy because
it passes both test (T1) and test (T2). To show this we prove that it is embeddable
isometrically in \ell 1, a result that may be of independent interest. Besides the two
general methods discussed, which apply to many notable cases of interest, we also
provide ad hoc distortion bounds for the Forbes similarity.

Of the two methods introduced in our work, the center method is easier to estab-
lish than the k-sets method. The former is applicable to many instances of similarity
but the latter is necessary in the following sense. The Braun--Blanquet similarity not
only passes (T1) and (T2) as noted earlier, but also the test provided by the center
method. Thanks to the more powerful k-sets method, however, one can show a tight
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lower bound of two on its distortion, and hence its non LSHability. Other similarities
to which the k-sets method applies are S{\e}rensen--Dice and the family sorensen\gamma .

Upper bounds: Worst-case versus practice. The main motivation behind
our work is to extend the range of applicability of LSH as far as possible, and our
concept of distortion should be understood in these terms. For instance, even if a
similarity is shown not to admit an LSH scheme it might be possible to approximate
it efficiently by means of LSH schemes of other similarities that are close to it. Our
results show that some cases, such as cosine, are a forlorn hope (since the distortion is
not a constant), but in other instances, such as S{\e}rensen--Dice and Braun--Blanquet,
our bounds give reason to be optimistic. As a first ``proof of concept"" of the notion
of distortion we performed a series of experiments with real-world text corpora. The
results are encouraging, for they show that the distortion of real data sets is smaller
than the worst case. In our tests the average distortion turned out to be approximately
1.4 as opposed to the worst-case bound of two.

In the same vein we also investigate experimentally for the first time the effec-
tiveness of two recent LSH schemes for Anderberg and Rogers--Tanimoto similarities.
Until the work in [14] it was not known whether these similarities admitted LSH
schemes. That paper shows that they do, in a somewhat peculiar way; strictly speak-
ing they might need exponentially many bits (albeit with low probability)! In this
paper we report on experiments with real text corpora that show that in practice
these schemes are quite efficient.

2. Related work. LSH was formally developed over a series of papers [9, 10, 27,
28]. Broder et al. [9, 10] showed that min-wise independent permutations form an LSH
for the Jaccard similarity. Indyk and Motwani [27] introduced sampling hash as an
LSH scheme for the Hamming similarity. Pursuing the work of characterizing similar-
ities that admit an LSH, Charikar [13] introduced (T1) and (T2) as necessary criteria.
Chierichetti and Kumar [14] proposed the concept of LSH-preserving functions---that
is, functions that preserve the LSH property of a similarity---showing that they all are
the only the (possibly scaled-down) probability generating functions. From the point
of view of applications, LSH has been widely used for solving the approximate or exact
near-neighbor search [2] and similarity search [24, 32, 42] in high dimensional spaces.
For a detailed bibliography on LSH, including pointers to implementations, see Alex
Andoni's LSH page (www.mit.edu/\sim andoni/LSH/) and the surveys of Andoni and
Indyk [3] and Wang et al. [47]. Our paper deals with upper and lower bounds on the
minimum distortion that one has to apply to a similarity in order to obtain an LSH
for it. This goal is somewhat orthogonal to a number of well-known results on LSH
(e.g., [4, 35, 36]) that deal with lower bounds of an entirely different nature such as
the minimum query time, and the minimum space, required by nearest-neighbor data
structures based on Indyk--Motwani LSH schemes, and on more general approaches
such as sketching algorithms.

Similarities are extensively used in various areas of computer science. The Ham-
ming similarity, for instance, is widely used in information theory [6, 7, 20]. Areas
like data mining and data management have seen the usage of Anderberg similar-
ity [1], cosine similarity [11, 41], and Sokal--Sneath [45] similarity. Cosine similarity is
also used in information retrieval [23, 34, 40, 50] and bioinformatics [12] and Sokal--
Sneath is used in image processing [5]. We should note here that similarity algo-
rithms/functions are also used outside computer science. For instance, S{\e}rensen--Dice
is commonly used in ecology [18, 30, 31], phytosociology [29, 46], plant taxonomy [48],
biology [43], and even in lexicography [39]. Biology has also seen the usage of Sokal--
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Sneath [44, 49], mentioned above. Other interesting examples are Simpson similarity
used in microscopy [33] and biology [19], Braun--Blanquet in phytosociology [8] and
ecology [37], and Rogers--Tanimoto in taxonomy [38].

The notion of distortion is studied in various areas of computer science and math-
ematics, especially in metric embedding problems. Here, we are given a source metric
space (X, d) and a target metric space (X \prime , d\prime ), and we wish to find a map f : X \rightarrow X \prime 

from points in X to points in X \prime that minimizes the distortion,

max
\{ a,b\} \in (X2 )

max

\biggl( 
d(a, b)

d\prime (f(a), f(b))
,
d\prime (f(a), f(b))

d(a, b)

\biggr) 
.

Problems of this form have been studied for many source and target metric spaces
(cf. [26]). Examples include embeddings into the Euclidean (\ell 2) metric, into the
\ell 1 metric, or into tree metrics, from either shortest-path metrics on graphs or from
normed spaces of large dimensionality. Even though the LSH distortion problem seems
to resemble distorted metric embedding problems, an important difference is that we
want to guarantee a multiplicative approximation to the ``similarity"" (as opposed to
the ``dissimilarity"" or distance).

3. Preliminaries. We use the notation 2A to represent the set of all subsets of
a set A. Also, for any set A,

\bigl( 
A
2

\bigr) 
is the set of all pairs \{ a, b\} such that a \not = b and

a, b \in A. For a positive integer n, let [n] = \{ 1, 2, . . . , n\} .
Let \scrU be a (finite) universe of objects. A symmetric function S : \scrU \times \scrU \rightarrow [0, 1]

such that S(X,X) = 1 for all X \in \scrU is called a similarity. See [16] for a rather
complete illustration of the different types of similarities that are used in a practical
context.

We first define what it means for a similarity to admit an LSH.

Definition 3.1 (LSH [13]). An LSH for a similarity function S : \scrU \times \scrU \rightarrow [0, 1]
is a probability distribution over a set \scrH of (hash) functions defined on \scrU such that,
for each X,Y \in \scrU , we have

Pr
h\in \scrH 

[h(X) = h(Y )] = S(X,Y ).

(See [27] for a somewhat different definition of LSH in the same spirit.) A sim-
ilarity is LSHable if there exists an LSH for it. The central notion we introduce in
this paper is defined next.

Definition 3.2 (LSH distortion). The LSH distortion, or distortion, of a sim-
ilarity S : \scrU \times \scrU \rightarrow [0, 1] is the minimum2 \delta \geq 1 such that there exists an LSHable
similarity S\prime : \scrU \times \scrU \rightarrow [0, 1] for which

1

\delta 
\cdot S(X,Y ) \leq S\prime (X,Y ) \leq S(X,Y ) \forall X,Y \in \scrU .

We denote \sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (S) = \delta .

At first blush a more general definition seems possible. One could define the
distortion of S as the minimum \delta such that there exist an LSHable similarity S\prime and
\alpha , \beta \geq 1, with \alpha \beta = \delta , such that, for all X,Y \in \scrU ,

1

\alpha 
\cdot S(X,Y ) \leq S\prime (X,Y ) \leq \beta \cdot S(X,Y ).

2A minimum \delta exists because it is equal to the solution of a linear program (see, e.g., [15]) of
size exponential in | \scrU | .
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The next lemma, however, implies that Definition 3.2 can be adopted without loss of
generality.

Lemma 3.3. Let S : \scrU \times \scrU \rightarrow [0, 1] be an LSHable similarity. Then, for each
\gamma \in [0, 1], the similarity

S\prime (X,Y ) =

\biggl\{ 
\gamma \cdot S(X,Y ), X \not = Y,

1, X = Y

is also LSHable.

Proof. Let \scrH be the hash function family for S given by Definition 3.1. We will
build a family \scrH \prime for S\prime by bijectively obtaining an h\prime for each h \in \scrH . To define
h\prime , consider the following procedure: with probability \gamma , let h\prime (X) = h(X) for each
X \in \scrU , while with probability 1 - \gamma , let h\prime (X) = X for each X \in \scrU . Then, for each
X \not = Y , Pr[h\prime (X) = h\prime (Y )] = \gamma \cdot S(X,Y ).

Now, suppose that for a given similarity S, we have an LSHable similarity S\prime 

satisfying 1
\alpha \cdot S(X,Y ) \leq S\prime (X,Y ) \leq \beta \cdot S(X,Y ) with \alpha \beta = \delta . By applying Lemma 3.3

to S\prime we obtain an LSH for the similarity S\prime \prime (X,Y ) = 1
\beta \cdot S\prime (X,Y ) (when X \not = Y )

that satisfies

1

\alpha \beta 
\cdot S(X,Y ) \leq 1

\beta 
\cdot S\prime (X,Y ) = S\prime \prime (X,Y ) \leq S(X,Y ).

Hence Definition 3.2 is robust.
Known LSH for set similarities. Set similarities are a kind of similarity whose

universe \scrU satisfies \scrU = 2U for some finite ground set U . To give upper bounds on
the distortions of various similarities we employ a number of LSH schemes for set
similarities proposed in the literature. First and foremost, we employ shingles (also
known as MinHash) [9, 10], which is an LSH scheme for the Jaccard similarity over
sets (jaccard(X,Y ) = | X \cap Y | /| X \cup Y | ) with universe \scrU = 2U . To sample a hash
function h \in \scrH from this scheme, one picks a permutation \pi of the ground set U
uniformly at random. Then, h(X), for a set X \not = \varnothing , is equal to the element in X with
smallest rank in \pi ; here, h(\varnothing ) is identically equal to \bot . A simple calculation shows

that Prh\in \scrH [h(X) = h(Y )] = | X\cap Y | 
| X\cup Y | if X \cup Y \not = \varnothing , and Prh\in \scrH [h(\varnothing ) = h(\varnothing )] = 1.

We also use a generalization of shingles given in [13] for the weighted Jaccard
similarity. Finally, we use some of the LSH schemes given in [14] for the various
rational set similarities. We will use these results as black-boxes and hence we will
not describe them.

4. The center method. In this section we introduce our first lower bound tool
for LSH distortion. It will be used to get tight bounds for the distortion of Simpson,
and two infinite families of similarities, namely, sorensen\gamma and the \ell p-norm dot
product, that contain well-known similarities such as S{\e}rensen--Dice and cosine as
special cases. The main workhorse is given by the next theorem. Roughly, it says
that if we can find a set of points in our universe that are mutually far apart, then
its ``center"" is far apart from some point in the set. Later in this section, we will also
present matching distortion upper bounds for these similarities.

Theorem 4.1. Suppose that S : \scrU \times \scrU \rightarrow [0, 1] is a similarity admitting an LSH
such that there exists \varnothing \not = \scrX \subseteq \scrU , with S(X,X \prime ) = 0 for each \{ X,X \prime \} \in 

\bigl( \scrX 
2

\bigr) 
. Then,

for each Y \in \scrU ,
avgX\in \scrX S (X,Y ) \leq 1

| \scrX | 
;
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thus, there exists at least one X \star \in \scrX such that S (X \star , Y ) \leq 1/| \scrX | .
Proof. Observe that if h is sampled from the LSH for S, then h(X) \not = h(X \prime ) for

every \{ X,X \prime \} \in 
\bigl( \scrX 
2

\bigr) 
. Therefore, given any Y \in \scrU , and given any h having nonzero

probability in the LSH for S, there can be at most one X \in \scrX such that h(X) = h(Y ).
Therefore, \sum 

X\in \scrX 
S(X,Y ) =

\sum 
X\in \scrX 

Pr [h(X) = h(Y )] \leq 1.

By dividing the left- and the right-hand sides by | \scrX | we get the first claim. The
second follows trivially.

We will use this characterization in the following way. For a given similarity, we
will find a set \scrX \subseteq \scrU of objects that are entirely dissimilar from one another (i.e.,
all their pairwise similarities are zero) and an additional object Y \in \scrU \setminus \scrX (i.e., the
center) that is more similar than 1/| \scrX | to each of the elements in \scrX . If we can prove
a lower bound of \alpha /| \scrX | , \alpha > 1, on the similarities S\prime (Y,X) for each X \in \scrX , then we
can conclude that the similarity S\prime has to be distorted by at least \alpha to admit an LSH.
In the remainder of this section we apply Theorem 4.1 to a few notable examples.

4.1. Simpson and generalized S{\e}rensen--Dice. Let us begin by recalling the
definition of the similarities to be discussed in this section. The Simpson similarity,
operating on the subsets of the ground set [n], is defined as

simpson(X,Y ) =
| X \cap Y | 

min (| X| , | Y | )

if | X| , | Y | \geq 1, as simpson(X,\varnothing ) = 0 if | X| \geq 1, and as simpson(\varnothing ,\varnothing ) = 1. The
infinite family sorensen\gamma , for \gamma > 0, operating on the subsets of [n], is defined as

sorensen\gamma (X,Y ) =
| X \cap Y | 

| X \cap Y | + \gamma | X\bigtriangleup Y | 

if | X| + | Y | \geq 1, and sorensen\gamma (\varnothing ,\varnothing ) = 1. The sorensen\gamma family subsumes as
special cases several well-known similarities, for instance, S{\e}rensen--Dice (\gamma = 1

2 ),
Jaccard (\gamma = 1), and Anderberg (\gamma = 2).

Theorem 4.2. For a ground set of n elements,

\sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (simpson) = n

and

\sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (sorensen\gamma ) = max(1/\gamma , 1) - O(1/n),

for each constant \gamma > 0.

Proof. First, we show the lower bound by exhibiting an instance on a ground set
of n elements. Let U = [n], Y = U , and \scrX = \{ X1, . . . , Xn\} , where Xi = \{ i\} for
i \in [n]. Observe that, for each \{ Xi, Xj\} \in 

\bigl( \scrX 
2

\bigr) 
, we have that simpson(Xi, Xj) =

sorensen\gamma (Xi, Xj) = 0, while, for each Xi \in \scrX , we have simpson(Xi, Y ) = 1 and
sorensen\gamma (Xi, Y ) = 1

\gamma n+(1 - \gamma ) .

By Theorem 4.1 we know that for every similarity S with an LSH that finitely
distorts simpson or sorensen\gamma , there must exist at least oneXi such that S(Xi, Y ) \leq 
1

| \scrX | =
1
n . The lower bounds follow.
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Next, we show matching upper bounds for the distortion. Recall the definition of
the Jaccard similarity:

jaccard(X,Y ) =
| X \cap Y | 
| X \cup Y | 

.

Broder's shingles [9] and min-wise independent permutations [10] are a well-known
LSH scheme for Jaccard similarity (see section 2). We use this to prove matching
upper bounds for Theorem 4.2.

Min-wise independent permutations form an LSH scheme with distortion n for
Simpson similarity since

min(| X| , | Y | ) \leq | X \cup Y | \leq n \cdot min(| X| , | Y | ),

as long as | X| , | Y | \geq 1. They also provide a distortion of 1/\gamma for sorensen\gamma , for every
\gamma \in (0, 1] since

\gamma | X \cup Y | \leq | X \cap Y | + \gamma | X\bigtriangleup Y | \leq | X \cup Y | .
Finally, recall that a result in [14] proves that sorensen\gamma admits an LSH scheme as
long as \gamma \geq 1.

Figure 1 plots the minimum distortion of sorensen\gamma as \gamma varies.

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

S{\e}rensen-Dice

Jaccard Anderberg

D
is
to
rt
io
n

\gamma 

\sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (sorensen\gamma )

Fig. 1. The minimum distortion of sorensen\gamma .

4.2. Cosine and unit \ell \bfitp -norm dot product. Recall that given any p \geq 1, the

\ell p norm of a vector x \in Rn is \ell p(x) = (
\sum n

i=1 | x(i)| 
p
)
1/p

, and that the cosine similarity
of two nonnegative vectors x, y \in Rn

+ having unit \ell 2 norm is
\sum n

i=1 x(i) \cdot y(i).
Furthermore, given p \geq 1, let

Bp,n :=

\Biggl\{ 
x \in Rn

+ | 
n\sum 

i=1

x(i)p \leq 1

\Biggr\} 
and Sp,n :=

\Biggl\{ 
x \in Rn

+ | 
n\sum 

i=1

x(i)p = 1

\Biggr\} 
be, respectively, the set of points contained in the p-ball of p-radius 1 with nonnegative
coordinates, and the set of points lying on the p-sphere of p-radius 1 with nonnegative
coordinates.
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The universe of the dot product similarity (that we define next) is Bp,n, which is
uncountably infinite. To avoid technical issues in giving a minimally distorted LSH for
this similarity, we restrict the universe Bp,n to any finite subset Fp,n of Bp,n. Given
any such subset, the similarity dotp,n : Fp,n \times Fp,n \rightarrow [0,\infty ) is

dotp,n(x, y) =

n\sum 
i=1

x(i) \cdot y(i).

Notice that dot2,n is the well-known cosine similarity (defined on the points of S2,n).
(Note that we have relaxed the notion of similarity to possibly have range outside
[0, 1]; the distortion bounds will take care of this issue. For p = 2---that is, for
the cosine similarity---the range is exactly [0, 1].) We first show an upper bound on
distortion and follow that with a matching lower bound.

Theorem 4.3. For p \geq 2, \sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (dotp,n) \leq 6n1 - 1
p .

Proof. We first define two hash schemes and combine them to obtain an LSH for
the \ell p-norm dot product. Informally speaking, given two generic vectors x and y, the
first hash scheme will take care of the coordinates where at least one of x and y have
a ``small"" value, while the second one will take care of the coordinates where both x
and y have ``large"" values.

The first scheme is as follows. First, pick an index i \in [n] uniformly at random.
Then, independently for each x \in Fp,n, select h\prime (x) as follows: (i) h\prime (x) = i with
probability min

\bigl( 
1, x(i) \cdot n1/p

\bigr) 
, and (ii) h\prime (x) = x with the remaining probability.

For notational convenience, let \alpha i
x := min

\bigl( 
1, x(i) \cdot n1/p

\bigr) 
. Observe that if x \not = y,

then

Pr[h\prime (x) = h\prime (y)] =

\sum n
i=1 \alpha 

i
x \cdot \alpha i

y

n
.

Then,

Pr[h\prime (x) = h\prime (y)] \leq n - 1
n\sum 

i=1

x(i)n
1
p \cdot y(i)n

1
p = n

2
p - 1

n\sum 
i=1

x(i) \cdot y(i) \leq 
n\sum 

i=1

x(i) \cdot y(i).

Now, let

C = Cx,y =
\Bigl\{ 
i | x(i) \leq n - 1

p or y(i) \leq n - 1
p

\Bigr\} 
.

Then,

Pr[h\prime (x) = h\prime (y)] \geq n - 1
\sum 
i\in C

\Bigl( 
x(i) \cdot y(i) \cdot n

1
p

\Bigr) 
= n

1
p - 1

\sum 
i\in C

x(i) \cdot y(i).

Let us now define the second type of hash function, denoted by h\prime \prime . Given x \in Fp,n,
we define the vector fx as follows:

(i) For each coordinate i \in [n], if the value of the ith coordinate of x is larger
than n - 1/p, we let the value of the ith coordinate of fx be equal to the value of the
ith coordinate of x; otherwise, we set the value of the ith coordinate of fx to 0.

(ii) Moreover, we add to the vector fx one coordinate for each element of Fp,n;
the value of fx in its new coordinate associated to x will be equal to

n1 - 1
p  - 

\sum 
i

x(i)>n - 1/p

x(i).D
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The value of fx in any other new coordinate will be set to 0. Observe that the
value of the new coordinate of fx associated to x will be nonnegative. Indeed,\sum 

i:x(i)>n - 1/p x(i) \leq \ell 1(x), and by the Cauchy--Schwarz inequality we get

\ell 1(x) \leq n1 - 1
p \ell p(x) \leq n1 - 1

p .

Thus, by definition, \ell 1(fx) = n1 - 1
p . We now apply the LSH scheme of [13] for weighted

Jaccard to the set \{ fx | x \in Fp,n\} . For x \not = y, let C = [n]\setminus C be the set of coordinates

where both x and y have value greater than n - 1
p . Observe that in any coordinate in

C at least one of fx and fy has a value of 0. Then, we have

Pr[h\prime \prime (fx) = h\prime \prime (fy)] =

\sum 
i min(fx(i), fy(i))\sum 
i max(fx(i), fy(i))

=

\sum 
i\in C min(x(i), y(i))\sum 
i max(fx(i), fy(i))

\leq 
\sum 

i\in C min(x(i), y(i))

\ell 1(fx)
.

Now, recall that for each i \in C, each of x(i) and y(i) is larger than n - 1
p . Therefore,

when p \geq 2, we have that

max(x(i), y(i)) \geq n - 1
p \geq n

1
p - 1 =

1

\ell 1(fx)
.

Thus,

Pr[h\prime \prime (fx) = h\prime \prime (fy)] \leq 
\sum 

i\in C min(x(i), y(i))

\ell 1(fx)
\leq 
\sum 
i\in C

(min(x(i), y(i)) \cdot max(x(i), y(i)))

=
\sum 
i\in C

(x(i) \cdot y(i)) \leq 
n\sum 

i=1

(x(i) \cdot y(i)) .

Moreover,

Pr[h\prime \prime (fx) = h\prime \prime (fy)] \geq 
\sum 

i\in C min(x(i), y(i))

\ell 1(fx) + \ell 1(fy)
\geq 
\sum 

i\in C (x(i)y(i))

2n1 - 1
p

.

Therefore, if a hash function h is chosen from the mixture 1
3h

\prime + 2
3h

\prime \prime , we obtain

1

6n1 - 1
p

\cdot 
n\sum 

i=1

x(i) \cdot y(i) \leq Pr[h(x) = h(y)] \leq 
n\sum 

i=1

x(i) \cdot y(i).

Thus, there exists an LSH for a similarity that is within distortion 6n1 - 1
p of the dot

product similarity on nonnegative vectors having \ell p norm at most 1.

Now we show that the distortion of Theorem 4.3 is close to optimal by using, once
again, the center method.

Theorem 4.4. For p \geq 1, even for some finite Fp,n \subseteq Sp,n, it holds that

\sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (dotp,n) \geq n1 - 1
p .
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Proof. Consider the n vectors ui defined as ui(i) = 1, and ui(j) = 0 for each

i \in [n] and for each j \in [n] \setminus \{ i\} . Also, let u \star be the vector such that u \star (i) = n - 1
p ,

for each i \in [n], and let X = \{ u1, . . . , un\} . Observe that for each x \in X, we have
\ell p(x) = 1 and \ell p(u \star ) = 1---that is, u \star \in Sp,n and X \subseteq Sp,n.

Suppose that S is an LSHable similarity that distorts dotp,n by the minimum
possible amount. Since S(ui, uj) = 0 for every i \not = j, by Theorem 4.1 we know

that there exists ui \in X such that S(ui, u \star ) \leq 1
n . Since dotp,n(ui, u \star ) = n - 1

p , the

distortion is at least n1 - 1
p .

As a simple corollary, we observe that the distortion for the cosine similarity is
\Theta (

\surd 
n) and that the distortion bound is tight for p \geq 2.3 We conjecture that it is

generally tight for all p \geq 1, i.e., that Theorem 4.3 could be strengthened to all p \geq 1.

Conjecture 4.5. For each p \geq 1, \sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (dotp,n) = \Theta (n1 - 1
p ).

4.3. Sokal--Sneath similarities. Finally, we look at the Sokal--Sneath similar-
ities. For \gamma > 0, let

sokal-sneath\gamma (X,Y ) =
| X \cap Y | +

\bigm| \bigm| X \cup Y
\bigm| \bigm| 

| X \cap Y | +
\bigm| \bigm| X \cup Y

\bigm| \bigm| + \gamma | X\bigtriangleup Y | 
.

Observe that sokal-sneath1 is the Hamming similarity, sokal-sneath1/2 is the
Sokal--Sneath 1 similarity, and sokal-sneath2 is the Rogers--Tanimoto similarity.

In [14] it is proved that sokal-sneath\gamma has an LSH iff \gamma \geq 1. Thus, the Hamming
similarity and the Rogers--Tanimoto similarity admit an LSH, while the Sokal--Sneath
1 similarity does not admit an LSH.

We use the center method to prove a lower bound on the LSH-distortion of
sokal-sneath\gamma .

Theorem 4.6. For any 0 < \gamma < 1,

2

1 + \gamma 
\leq \sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (sokal-sneath\gamma ) \leq 

1

\gamma 
.

Proof. We begin with the lower bound. Given any ground set [n] of even cardi-
nality, consider the three sets X = [n/2], X \prime = [n] \setminus [n/2], and Y = [n]. We have
sokal-sneath\gamma (X,X \prime ) = 0, sokal-sneath\gamma (X,Y ) = sokal-sneath\gamma (X

\prime , Y ), and

sokal-sneath\gamma (X,Y ) =
1/2

1/2 + \gamma /2
=

1

1 + \gamma 
.

Consider any set similarity S on the ground set [n] that admits an LSH, and that
guarantees that S(X,X \prime ) = 0. By Theorem 4.1, there must exist X \star \in \{ X,X \prime \} such

that S(X \star , Y ) \leq 1/2. It follows that the distortion is at least
1

1+\gamma 
1
2

= 2
1+\gamma .

As for the upper bound, observe that for 0 < \gamma < 1, we can approximate
sokal-sneath\gamma with sokal-sneath1 by introducing a distortion of 1/\gamma . Since
sokal-sneath1 admits an LSH [14], it follows that \sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (sokal-sneath\gamma ) \leq 
1/\gamma .

3While, as we prove in this paper, the cosine similarity does not admit a bounded-distortion
LSH, the so-called SimHash scheme [13] provides an LSH scheme for a related similarity, namely
1 - \theta (u,v)/\pi , where \theta (u, v) is the angle between the two nonzero vectors u and v.
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5. The \bfitk -sets method. In this section we introduce our second tool for lower
bounding the distortion of LSH. This method is geared towards set similarities. The
main ingredient is the following theorem. Let \scrU n,k denote

\bigl( 
[n]
k

\bigr) 
.

Theorem 5.1. Let k = o (
\surd 
n), and let S : \scrU n,k \times \scrU n,k \rightarrow [0, 1] be a similarity

such that S(X,Y ) = 0 if X \cap Y = \varnothing . If S admits an LSH, then

f(S) := avg
\{ X,Y \} \in (\scrU n,k

2 )
| X\cap Y | =1

S(X,Y ) \leq \alpha k +O

\biggl( 
k

n

\biggr) 
, where \alpha k :=

1

2k  - 1
.

This will be used in the following way. Suppose that we have a similarity S\prime defined
on sets such that S\prime (X,Y ) = 0 whenever X and Y are disjoint (not all, but many set
similarities satisfy this property), and suppose also that S\prime (X,Y ) \geq d \cdot \alpha k whenever
X and Y are such that | X| = | Y | = k and | X \cap Y | = 1. If S is LSHable, how small
can its distortion be with respect to S\prime ? By Theorem 5.1, there must exist a pair
of sets such that S(X,Y ) \leq \alpha k + O(k/n), which implies that the distortion of any
LSHable S with respect to S\prime is at least d - O(k2/n).

In what follows, we begin with some technical Lemmas (section 5.1) to prove
Theorem 5.1 (section 5.2) and then apply it (section 5.3) to Braun--Blanquet similarity,
establishing optimal distortion bounds for it. We conclude with a discussion on the
error term in Theorem 5.1 (section 5.4). We remark that this ``k-sets method"" applies
to other similarities such as S{\e}rensen--Dice and sorensen\gamma , for which the simpler
center method has already been shown to give optimal results (section 4). By contrast,
we show (section 6) that neither the center method nor (T1) nor (T2) (see section 1)
can be used to lower bound the distortion of Braun--Blanquet.

5.1. Extremal partitions. A partition of a set is a collection of pairwise disjoint
subsets of that set whose union equals that set. Observe that a hash function h on \scrU 
naturally induces a partition of \scrU in the following sense: two objects X,Y \in \scrU belong
to the same side of the partition iff h(X) = h(Y ). This view is particularly useful
for our purposes, and from now on we will identify a hash function with the partition
that it induces.

Definition 5.2 (acceptable partition). A partition \scrP of \scrU n,k induces a pair \{ X,Y \} 
(with X \not = Y ) if X,Y belong to the same part of \scrP . A partition is acceptable if it
induces no pair \{ X,Y \} such that X and Y are disjoint. The value of a partition is
the number of pairs induced by it.

Our first goal is to prove that no acceptable partition of \scrU n,k has value greater
than \bigl( 

1 +O
\bigl( 
k2
/n
\bigr) \bigr) 

\cdot n2k - 1

2(2k  - 1)((k  - 1)!)2
.

Definition 5.3 (nice partition). An acceptable partition \scrP = \{ P1, . . . , Pt\} of
\scrU n,k is nice if there exists a partition I1, . . . , It of [n] such that for each i \in [t],

Pi =
\bigl\{ 
X \in \scrU n,k | Ii \subseteq X and X \cap 

\bigl( 
\cup i - 1
j=1Ij

\bigr) 
= \varnothing 

\bigr\} 
.

We first show that nice partitions satisfy a slightly stronger version of the above
bound; we will then reduce any partition to a nice one.

Lemma 5.4. The value of a nice partition of \scrU n,k is at most

n2k - 1

2(2k  - 1) ((k  - 1)!)
2 .

D
ow

nl
oa

de
d 

05
/2

1/
19

 to
 1

51
.1

00
.2

6.
14

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

362 CHIERICHETTI, KUMAR, PANCONESI, AND TEROLLI

Proof. The value v of a nice partition of \scrU n,k is equal to the sum of the numbers
of pairs of sets in each part of the partition. Let I1, . . . , It be the partition of [n]

induced by the given nice partition. Let ai = | Ii| \geq 1 and bi =
\sum i - 1

j=1 | Ij | . Then, we
have

v \leq 
t\sum 

i=1

\biggl( \bigl( n - ai - bi
k - ai

\bigr) 
2

\biggr) 
\leq 

t\sum 
i=1

\bigl( 
n - ai - bi
k - ai

\bigr) 2
2

\leq 
t\sum 

i=1

\bigl( 
n - 1 - bi
k - 1

\bigr) 2
2

,

where the last step follows from
\bigl( 
s
t

\bigr) 
\leq 
\bigl( 
s+1
t+1

\bigr) 
. Using this,

v \leq 
t\sum 

i=1

\bigl( 
n - 1 - bi
k - 1

\bigr) 2
2

\leq 
n - 1\sum 
i=1

\bigl( 
n - i
k - 1

\bigr) 2
2

\leq 
n - 1\sum 
i=1

(n - i)2k - 2

2 ((k  - 1)!)
2 \leq 1

2 ((k  - 1)!)
2

n - 1\sum 
i=0

i2k - 2

\leq 1

2 ((k  - 1)!)
2

\int n

x=1

x2k - 2dx =
1

2 ((k  - 1)!)
2

\biggl[ 
x2k - 1

2k  - 1

\biggr] n
1

\leq n2k - 1

2(2k  - 1) ((k  - 1)!)
2 .

We will make use of the following result of Hilton and Milner [25] (see [22] for
a short proof), which bounds the maximum cardinality of an Erd\"os--Ko--Rado [21]
family that is not a star.

Theorem 5.5 (Hilton--Milner [25]). Let \scrF \subseteq \scrU n,k be a family of sets with pair-
wise nonempty intersection with n \geq 2k. If

\bigcap 
F\in \scrF F = \varnothing , then | \scrF | \leq 

\bigl( 
n - 1
k - 1

\bigr) 
 - \bigl( 

n - k - 1
k - 1

\bigr) 
+ 1.

We will also need this simple bound for the difference of two binomial coefficients.

Fact 5.6.
\bigl( 
n - 1
k - 1

\bigr) 
 - 
\bigl( 
n - k - 1
k - 1

\bigr) 
+ 1 \leq O

\Bigl( 
k \cdot nk - 2

(k - 2)!

\Bigr) 
.

Now, we can finally bound the value of an acceptable partition.

Lemma 5.7. The value of an acceptable partition of \scrU n,k is at most\biggl( 
1 +O

\biggl( 
k2

n

\biggr) \biggr) 
\cdot n2k - 1

2(2k  - 1) ((k  - 1)!)
2 .

Proof. Let \scrP be an acceptable partition, and let P1, . . . , Pt be its parts. Let pi =
| Pi| , and let mi =

\bigl( 
pi

2

\bigr) 
be the number of pairs that belong to Pi. Let m =

\sum t
i=1 mi

be the total number of pairs of \scrP , i.e., let m be the value of \scrP .
Let \^\scrP = \{ Pi | Pi \in \scrP \wedge 

\bigcap 
X\in Pi

X = \varnothing \} , i.e., let \^\scrP be the set of parts of \scrP whose
sets have an empty intersection. Moreover, let \^p =

\sum 
Pi\in \^\scrP pi and \^m =

\sum 
Pi\in \^\scrP mi. If

Pi \in \^\scrP , then Theorem 5.5 entails that pi = O
\bigl( 
k nk - 2

(k - 2)!

\bigr) 
. Therefore, mi = O

\bigl( 
p2i
\bigr) 
=

O
\bigl( 
pik

nk - 2

(k - 2)!

\bigr) 
and

\^m =
\sum 
Pi\in \^\scrP 

mi =
\sum 
Pi\in \^\scrP 

O

\biggl( 
pik

nk - 2

(k  - 2)!

\biggr) 
= O

\biggl( 
\^pk

nk - 2

(k  - 2)!

\biggr) 
.

Define M to be M \triangleq n2k - 2

(k - 1)!\cdot (k - 2)! . Then, by definition, \^p \leq 
\sum t

i=1 pi =
\bigl( 
n
k

\bigr) 
= O

\Bigl( 
nk

k!

\Bigr) 
.

Thus, \^m = O(M). Now, let us consider the partition \scrP \prime obtained by splitting into
singletons all the sets Pi \in \^\scrP . If m\prime is the total number of pairs in \scrP \prime , we have that
m \leq m\prime +M . Without loss of generality, let \scrP \prime = \{ P \prime 

1, . . . , P
\prime 
t\prime \} and | P \prime 

1| \geq \cdot \cdot \cdot \geq | P \prime 
t\prime | .

Observe that for each P \prime 
i we have

\bigcap 
X\in P \prime 

i
X \not = \varnothing .
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Algorithm 1. Require: (\scrP \prime 
i) \{ A partition \scrP \prime 

i, such that \forall P \in \scrP \prime 
i it holds that\bigcap 

X\in P X \not = \varnothing \} 
A greedy selection rule.
Let \scrP \prime 

i = \{ Q1, . . . , Qt\prime \} with | Q1| \geq \cdot \cdot \cdot \geq | Qt\prime | 
for i = 1, . . . , t\prime  - 1 do

if there exists a set T \in 
\bigcup t\prime 

j=i+1 Qj such that T \cap 
\bigcap 

P\in Qi
P \not = \varnothing then

remove T from its part and add it to Qi

let the resulting partition be \scrP \prime 
i+1

return \scrP \prime 
i+1

end if
end for
return \scrP \prime 

i

Let \scrP \prime 
0 = \scrP \prime and m\prime 

0 = m\prime . Algorithm 1 is a greedy selection rule that can be
used to produce a sequence \scrP \prime 

1, . . . ,\scrP \prime 
\ell of acceptable partitions, where \scrP \prime 

0 is defined
as above and \scrP \prime 

i+1 = Greedy(\scrP \prime 
i). The sequence stops at the smallest \ell such that

\scrP \prime 
\ell = Greedy(\scrP \prime 

\ell ), and it satisfies the following properties: (i) \scrP \prime 
\ell is (by definition)

a nice partition, and if we let m\prime 
i be the value of partition \scrP \prime 

i, it holds that (ii)
m\prime 

0 \leq m\prime 
1 \leq \cdot \cdot \cdot \leq m\prime 

\ell . Observe that in each iteration where the partition is modified,
i.e., where the algorithm moves a set from Qj to Qi with j > i, the number of pairs
in the partition (i.e., its value) gets reduced by | Qj |  - 1, but it gets increased by | Qi| .
By j < i we have | Qi| \geq | Qj | , and therefore the total number of pairs increases by at
least one unit; therefore m\prime 

i+1 > m\prime 
i, and property (ii) has been proved.

Returning to our main goal, we have that m \leq m\prime +O(M) \leq m\prime 
\ell +O(M), where

m\prime 
\ell is the value of a nice partition. By Lemma 5.4, we have m\prime 

\ell \leq n2k - 1

2\cdot (2k - 1)\cdot ((k - 1)!)2
.

Thus,

m \leq n2k - 1

2(2k  - 1) ((k  - 1)!)
2 +O

\biggl( 
n2k - 2

(k  - 1)! \cdot (k  - 2)!

\biggr) 

=

\biggl( 
1 +O

\biggl( 
k2

n

\biggr) \biggr) 
\cdot n2k - 1

2(2k  - 1) ((k  - 1)!)
2 .

5.2. Proof of Theorem 5.1. Let

\alpha = avg
\{ X,Y \} \in (\scrU n,k

2 )
| X\cap Y | =1

S(X,Y )

be the average similarity between pairs of sets of cardinality k having an intersection
of cardinality 1. Let \sigma be the total amount of similarity between unordered pairs of
sets of cardinality k having intersection 1. To count the number of ordered pairs,
observe that we can select the intersection in n possible ways, so we can then select
the other elements of the first set in

\bigl( 
n - 1
k - 1

\bigr) 
ways, and the other elements of the second

set in
\bigl( 
n - k
k - 1

\bigr) 
ways. Moreover, each such unordered pair can be ordered in exactly

two ways, so that the number of these unordered pairs is equal to n
2 \cdot 
\bigl( 
n - 1
k - 1

\bigr) 
\cdot 
\bigl( 
n - k
k - 1

\bigr) 
.

Therefore,

\sigma =
n
\bigl( 
n - 1
k - 1

\bigr) \bigl( 
n - k
k - 1

\bigr) 
2

\alpha .
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Recall that, if 1 \leq c < n
\ell 2 , we have\biggl( 

n - (c - 1)\ell 

\ell 

\biggr) 
\geq (n - c \cdot \ell )\ell 

\ell !
=

n\ell 
\bigl( 
1 - c\ell 

n

\bigr) \ell 
\ell !

\geq n\ell 

\ell !

\biggl( 
1 - c \cdot \ell 2

n

\biggr) 
.

Substituting k  - 1 for \ell , we obtain

\sigma \geq 
\biggl( 
1 - O

\biggl( 
k2

n

\biggr) \biggr) 
n2k - 1

2((k  - 1)!)2
\cdot \alpha ,

where the O (\cdot ) term tends to 0, since k = o (
\surd 
n). Since S(X,Y ) = 0 whenever

| X \cap Y | = 0, we cannot give positive probability to a hash function placing two such
sets X and Y in the same part; otherwise we would have infinite distortion. Hence, we
can only use acceptable partitions. Suppose that S has an LSH and assume without
loss of generality that this LSH gives positive probabilities p1, . . . , ph > 0 to partitions
\scrP 1, . . . ,\scrP h, and that it gives probability 0 to other partitions. Let v1, . . . , vh be the
values of partitions \scrP 1, . . . ,\scrP h, and observe that

\sum h
i=1 pi = 1. Then, we have

\sigma =
\sum 

\{ X,Y \} \in (\scrU n,k
2 )

| X\cap Y | =1

S(X,Y ) \leq 
h\sum 

i=1

(pivi) ,

i.e., the total amount of similarity mass that an acceptable partition brings to our
similarity's values is no larger than the probability that the LSH assigns to the par-
tition times the number of the partition's pairs or, equivalently, to its own value. By
Lemma 5.7, the value of an acceptable partition is at most

\tau =

\biggl( 
1 +O

\biggl( 
k2

n

\biggr) \biggr) 
n2k - 1

2(2k  - 1) ((k  - 1)!)
2 .

Therefore, \sigma \leq 
\sum h

i=1 (\tau ph) = \tau , that is, if S admits an LSH, then \tau \geq \sigma . Thus,
we must have

1 \geq \sigma 

\tau 
\geq 
\biggl( 
1 - O

\biggl( 
k2

n

\biggr) \biggr) n2k - 1

2((k - 1)!)2 \cdot \alpha 
n2k - 1

2(2k - 1)((k - 1)!)2

=

\biggl( 
1 - O

\biggl( 
k2

n

\biggr) \biggr) 
\cdot \alpha \cdot (2k  - 1),

which implies

\alpha \leq 
\biggl( 
1 +O

\biggl( 
k2

n

\biggr) \biggr) 
1

2k  - 1
=

1

2k  - 1
+O

\biggl( 
k

n

\biggr) 
.

5.3. The distortion of Braun--Blanquet. Recall the definition of Braun--
Blanquet, which operates on the subsets of the ground set [n]:

braun-blanquet(X,Y ) =
| X \cap Y | 

max (| X| , | Y | )

if | X| + | Y | \geq 1, and braun-blanquet(X,Y ) = 1 if X = Y = \varnothing .
Observe that for sets X,Y \subseteq [n] such that | X| = | Y | = k \geq 1, both Braun--

Blanquet and S{\e}rensen--Dice evaluate to 1/k if | X \cap Y | = 1, and that they evaluate to
0 when | X\cap Y | = 0. Therefore, Theorem 5.1 implies that they have to be distorted by

D
ow

nl
oa

de
d 

05
/2

1/
19

 to
 1

51
.1

00
.2

6.
14

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE DISTORTION OF LOCALITY SENSITIVE HASHING 365

at least (1 - on(1)) \cdot (2 - 1/k) when applied on such pairs of k-sets. By letting k grow
to infinity, we obtain an asymptotically tight lower bound of 2 on their distortions.
More precisely, let k = \Theta 

\bigl( 
n1/3

\bigr) 
, and let n grow to infinity. We will prove that the

distortions of the two similarities can be lower bounded by 2 - \Theta 
\bigl( 
n - 1/3

\bigr) 
. Indeed, if

we denote with S any of the two similarities, with S\prime any LSHable similarity with the
same domain, and with X,Y any two sets (with | X| = | Y | = k and | X \cap Y | = 1) that
minimize S\prime (X,Y ), we obtain,

S(X,Y )

S\prime (X,Y )
\geq 

1
k

1
2k - 1 +O( kn )

=
2 - 1

k

1 +O(k
2

n )
= 2 - O(n - 1/3).

We finally observe that min-wise independent permutations [9, 10] achieve a dis-
tortion of 2 - \Theta 

\bigl( 
n - 1

\bigr) 
for Braun--Blanquet. Thus, we have the following theorem.

Theorem 5.8. \sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (braun-blanquet) = 2 - o(1).

5.4. Tightness of Theorem 5.1. We do not know whether the error term of
Theorem 5.1 is tight. Here, we give a lower bound on that error term.

Lemma 5.9. Fix any k \geq 2 and let n \geq 2k  - 1. Then, there exists an LSHable
similarity S : \scrU n,k \times \scrU n,k \rightarrow [0, 1] such that S(X,Y ) = 0 if X \cap Y = \varnothing and

avg\{ X,Y \} \in (\scrU n,k
2 )

| X\cap Y | =1

S(X,Y ) \geq 1

2k  - 1
+ \Omega 

\Biggl( \biggl( 
n

2k  - 1

\biggr)  - 1
\Biggr) 
.

Proof. We use a variant of min-wise independent permutations. Pick a permuta-
tion \pi : [n] \rightarrow [n] uniformly at random. For a set X \in \scrU n,k, let m(X) = m\pi (X) be
the minimum i such that \pi (i) \in X. Then, the hash function will map X to m(X) if
m(X) \leq n - 2k + 1, and to  \star otherwise.

Now, for any two sets X,Y \in \scrU n,k, (i) if | X \cap Y | = 1, then the probability that X

and Y will be hashed together is at least 1
2k - 1 +\Omega 

\bigl( \bigl( 
n

2k - 1

\bigr)  - 1\bigr) 
, and (ii) if | X \cap Y | = 0,

the probability that X and Y will be hashed together is 0. The claim follows.

6. Is the \bfitk -sets method necessary? In this section we prove that Braun--
Blanquet satisfies the following:

(i) 1 - braun-blanquet is a metric that can be embedded isometrically into \ell 1,
i.e., it passes the tests (T1) and (T2), and

(ii) the center method of section 4 is useless in determining the distortion of
Braun--Blanquet.

On the other hand, we know from Theorem 5.8 that its distortion is 2  - o(1).
Thus, the k-sets method is the only method known to prove that Braun--Blanquet
does not admit an LSH scheme (and, also, to give a tight bound on the distortion of
Braun--Blanquet).

6.1. \ell \bfone -embeddability.

Lemma 6.1. 1 - braun-blanquet can be isometrically embedded into \ell 1.

Proof. Recall that a distance d : \scrU \times \scrU \rightarrow [0,\infty ) can be embedded into \ell 1 iff it
can be expressed as a nonnegative linear combination of cut metrics [17], i.e., iff there
exists a nonnegative weighting w : 2\scrU \rightarrow [0,\infty ) of the subsets of \scrU such that, for all
\{ x, x\prime \} \in 

\bigl( \scrU 
2

\bigr) 
, it holds that \sum 

\varnothing \subset Y\subset \scrU 
| \{ x,x\prime \} \cap Y | =1

w(Y ) = d(x, x\prime ).D
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We first exhibit such a weighting, and then prove that it satisfies the required
equations. Recall that for Braun--Blanquet \scrU = 2[n]. For i \in [n] and c \in [n], let
Yi,c \subseteq \scrU be defined as

Yi,c = \{ X \in \scrU | X \ni i and | X| \leq c\} .

Define w as follows:
(i) w (\{ \varnothing \} ) = 1

2 ;
(ii) w (Yi,c) =

1
2c2+2c for each i \in [n] and c \in [n - 1];

(iii) w (Yi,n) =
1
2n for each i \in [n]; and

(iv) every other set has weight equal to 0.
(To simplify notation, for n = 1 we have given positive weight both to a set and

to its complement.)
We now prove that w satisfies the required equations. First, note that for integers

1 \leq a \leq b, we have

b - 1\sum 
j=a

1

2j2 + 2j
=

1

2
\cdot 
b - 1\sum 
j=a

\biggl( 
1

j
 - 1

j + 1

\biggr) 
=

1

2
\cdot 
\biggl( 
1

a
 - 1

b

\biggr) 
.

Consider two distinct nonempty sets X,X \prime \in \scrU . We have that

\ell 1(X,X \prime ) =
\sum 

\varnothing \subset Y\subset \scrU 
| \{ X,X\prime \} \cap Y | =1

w(Y )

=
\sum 

i\in X\setminus X\prime 

\left(  n - 1\sum 
c=| X| 

\biggl( 
1

2c2 + 2c

\biggr) 
+

1

2n

\right)  
+

\sum 
i\in X\prime \setminus X

\left(  n - 1\sum 
c=| X\prime | 

\biggl( 
1

2c2 + 2c

\biggr) 
+

1

2n

\right)  
+

\sum 
i\in X\cap X\prime 

\left(  max(| X| ,| X\prime | ) - 1\sum 
c=min(| X| ,| X\prime | )

\biggl( 
1

2c2 + 2c

\biggr) \right)  
= | X \setminus X \prime | 

\biggl( 
1

2| X| 
 - 1

2n
+

1

2n

\biggr) 
+ | X \prime \setminus X| 

\biggl( 
1

2| X \prime | 
 - 1

2n
+

1

2n

\biggr) 
+ | X \cap X \prime | 

\biggl( 
1

2min(| X| , | X \prime | )
 - 1

2max(| X| , | X \prime | )

\biggr) 
.

Let us assume without loss of generality that | X| \leq | X \prime | . Then,

\ell 1(X,X \prime ) =
\sum 

\varnothing \subset Y\subset \scrU 
| \{ X,X\prime \} \cap Y | =1

w(Y )

=
| X \setminus X \prime | 
2| X| 

+
| X \prime \setminus X| 
2| X \prime | 

+
| X \cap X \prime | 
2| X| 

 - | X \cap X \prime | 
2| X \prime | 

=
| X| 
2| X| 

+
| X \prime |  - 2| X \cap X \prime | 

2| X \prime | 

= 1 - | X \cap X \prime | 
| X \prime | 

= 1 - braun-blanquet(X,X \prime ).
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It remains only to consider the case where exactly one of the two sets is empty. Let
\varnothing \subset X \subseteq [n]. Then

\ell 1(X,\varnothing ) =
\sum 

\varnothing \subset Y\subset \scrU 
| \{ X,\varnothing \} \cap Y | =1

w(Y )

= w (\{ \varnothing \} ) +
\sum 
i\in X

\left(  n - 1\sum 
c=| X| 

\biggl( 
1

2c2 + 2c

\biggr) 
+

1

2n

\right)  
=

1

2
+ | X| \cdot 

\biggl( 
1

2| X| 
 - 1

2n
+

1

2n

\biggr) 
= 1 = 1 - braun-blanquet(X,\varnothing ).

The proof is concluded.

6.2. Inapplicability of the center method. We next show that Theorem 4.1
is inapplicable to the case of the Braun--Blanquet similarity.

Lemma 6.2. For each Y \subseteq [n], and for each \scrX \subseteq 2[n] such that braun-blanquet

(X,X \prime ) = 0 for all \{ X,X \prime \} \in 
\bigl( \scrX 
2

\bigr) 
, it holds that

avgX\in \scrX braun-blanquet(X,Y ) \leq 1

| \scrX | 
.

Thus, there exists X \in \scrX such that

braun-blanquet(X,Y ) \leq 1

| \scrX | 
.

Proof. Observe that for \scrX to satisfy the premise, one has to have that \{ X,X \prime \} \in \bigl( \scrX 
2

\bigr) 
implies X \cap X \prime = \varnothing , i.e., the sets in \scrX have to be pairwise disjoint.
Now, take any \varnothing \subsetneq Y \subseteq [n]. We must have\sum 

X\in \scrX 
braun-blanquet(X,Y ) =

\sum 
X\in \scrX 

| X \cap Y | 
max(| X| , | Y | )

\leq 
\sum 
X\in \scrX 

| X \cap Y | 
| Y | 

\leq 1,

where the last step follows from the pairwise disjointness of the sets in \scrX . If instead
Y = \varnothing , we have \sum 

X\in \scrX 
braun-blanquet(X,\varnothing )

\leq 
\sum 
X\in \scrX 
X \not =\varnothing 

0

max(| X| , | Y | )
+ braun-blanquet(\varnothing ,\varnothing )

= 1.

Thus, in general,
\sum 

X\in \scrX braun-blanquet(X,Y ) \leq 1. It follows that

avgX\in \scrX braun-blanquet(X,Y ) \leq | \scrX |  - 1,

and the proof is complete.

7. Ad hoc approaches. In this section we discuss another similarity, whose
distortion bound we prove through a simple ad hoc approach.
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7.1. Forbes similarity. The Forbes similarity is defined as forbes(X,Y ) =

n \cdot | X\cap Y | 
| X| | Y | if | X| , | Y | \geq 1, forbes(X,\varnothing ) = 0 if | X| \geq 1, and forbes(\varnothing ,\varnothing ) = 1. Since

F (\{ 1\} , \{ 1\} ) = n, we have the following simple observation.

Theorem 7.1. \sansd \sansi \sanss \sanst \sanso \sansr \sanst \sansi \sanso \sansn (forbes) = n.

Proof. The lower bound is trivial since forbes(\{ 1\} , \{ 1\} ) = n, and no LSH can
assign a value larger than 1 to a pair of sets.

We give an LSH for the similarity forbes/n, thus proving an upper bound of
n on its distortion. The hash function h will be chosen as follows: h(\varnothing ) = \bot and,
for each X \not = \varnothing independently, h(X) will be chosen uniformly at random from the

elements of X. Then, if X \not = Y , we have Pr [h(X) = h(Y )] = | X\cap Y | 
| X| \cdot | Y | .

8. Experiments. In this section we report on the outcome of two types of ex-
periments. As we have seen in the previous sections the distortion of Braun--Blanquet
and of S{\e}rensen--Dice is 2 - o(1), and this bound can be matched by Jaccard, which is
LSHable. Distortion being a worst-case notion, it is conceivable that the typical be-
havior of Jaccard with real-world datasets could be somewhat better. This is exactly
what our experiments with three real world data sets show. We stress that our results
are preliminary, but they give reason for hope and might justify a more comprehen-
sive experimental assessment. The average distortion turns out to be as low as 1.3 for
some of our data sets and always less than two. The second set of experiments is a
feasibility study of the LSH scheme for Anderberg and Rogers--Tanimoto similarities
that until recently were not known to be LSHable. As shown in [14] they are, but in
a somewhat peculiar way, because the LSH schemes might need exponentially many
bits (with low probability). The goal of our tests is to see whether such schemes are
practical. Our study shows that they are, and that in fact they can be very effective
with very few bits. We begin by describing our data sets.

8.1. Datasets. We use three publicly available datasets: (i) a collection of more
than 110K scientific papers downloaded from CiteSeerX, (ii) 29K scientific articles
downloaded from ArXiv, and (iii) 104K Wikipedia articles. The collection of XML
metadata of CiteSeerX and ArXiv was accessed using the OAI protocol for metadata
harvesting, which is supported by both digital libraries. The Wikipedia collection
was obtained from en.wikipedia.org/wiki/Wikipedia:Database download. The words
in each paper were transformed into lowercase, and each document became a bag of
words (no repetitions).

For the experiments of section 8.3 the documents underwent the following ``clean-
ing"" procedure: (i) all words not included in the top 1000 most frequent words of
the whole dataset were removed, and (ii) every word was hashed to a unique integer.
As a result, the papers are represented as vectors containing integers in the range
[1000] = \{ 1, 2, . . . , 1000\} .

8.2. Distortion on real data. From each corpus, we selected 50 million random
pairs of documents and computed the distortion, i.e., the ratio between the Jaccard
value (computed exactly) and the two similarities Braun--Blanquet and S{\e}rensen--
Dice. Figure 2(a) shows the distortion w.r.t. Braun--Blanquet for our three datasets:
ArXiv, CiteSeer, and Wikipedia. For each value of the distortion on the x-axis, the
plot gives, on the y-axis, the fraction of pairs with that distortion. Similarly, Figure
2(b) shows the distortion w.r.t. S{\e}rensen--Dice. Table 2 displays the average distortion
and the standard deviation of these experiments.

Overall, these tests show that in real-world scenarios the average distortion of
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(b) S{\e}rensen--Dice similarity

Fig. 2. The fractions of document pairs with a given distortion on three datasets. The distortion
values have been bucketed in the intervals [1.0, 1.1], (1.1, 1.2], . . . , (1.9, 2.0].

Table 2
Experimental results.

Braun--Blanquet S{\e}rensen--Dice
\mu \sigma \mu \sigma 

ArXiv 1.45 0.2 1.78 0.09
CiteSeerX 1.4 0.16 1.7 0.05
Wikipedia 1.29 0.21 1.81 1.14

Braun--Blanquet and S{\e}rensen--Dice can be significantly smaller than the worst case
bound.

8.3. LSH schemes for rational set similarities. Let us start by recalling the
definitions of the similarities we deal with in this section. The Anderberg similarity
is defined as follows. Given two nonempty sets X,Y of n elements,

anderberg(X,Y ) =
| X \cap Y | 

| X \cap Y | + 2| X\bigtriangleup Y | 
,

where \bigtriangleup is the symmetric difference. (Note that S2 is the Anderberg similarity.) The
value is zero if exactly one of the two sets is empty, and it is 1 wheneverX = Y . In [14]
it is proven that the following is an LSH scheme for the Anderberg similarity. Pick a
positive integer r at random with probability 2 - r. Let h1, . . . , hr be r shingles picked
independently. Then, h(X) := (h1(X), . . . , hr(X)) is an LSH scheme for Anderberg,
i.e., anderberg(X,Y ) = Pr[h(X) = h(Y )].

The Rogers--Tanimoto similarity is defined as

rogers-tanimoto(X,Y ) =
| X \cap Y | +

\bigm| \bigm| X \cup Y
\bigm| \bigm| 

| X \cap Y | +
\bigm| \bigm| X \cup Y

\bigm| \bigm| + 2| X\bigtriangleup Y | 
.

(Note that sokal-sneath2 is the Rogers--Tanimoto similarity.) The following is the
LSH scheme for Rogers--Tanimoto proposed in [14]. Pick r as before, and then pick r
i.i.d.elements e1, . . . , er uniformly at random. The random hash function h is defined
as follows. For a set X, we let h(X) := (e1 \in X, . . . , er \in X), where ei \in X is a
Boolean value. Given two sets X and Y , h(X) = h(Y ) iff the two vectors coincide on
each coordinate (for each element e = e1, . . . , er, either both sets have it or neither
do).
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Recall that in this experiment our corpora consists of bag of words in which only
the one thousand most popular words are retained. So each document can be thought
of as a binary vector of one thousand coordinates, where coordinate i is one iff the
ith most popular word is in the document.

The experiment is as follows. Let h denote a generic hash function of the LSH
scheme that we are testing. From each corpus, we picked one hundred thousand
random pairs of documents. Then, for every k \in [100], we selected k hash functions
h1, . . . , hk and estimated the similarity of the random pair in the usual fashion, i.e.,
as the fraction of times that hi(X) = hi(Y ), for i \in [k].

1 5 10 20 30 40 50 60 70 80 90 100
Number of hash functions used for approximation

0.00

0.05

0.10

0.15

0.20

0.25

M
AE

ArXiv [0.04  0.1]
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CiteSeerX [0.04  0.1]
CiteSeerX [0.1  0.2]
Wikipedia [0.04  0.1]
Wikipedia [0.1  0.2]

(a) Anderberg similarity
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0.08

0.10

0.12

M
AE

Wikipedia [0.7 - 1.0]
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(b) Rogers--Tanimoto similarity

Fig. 3. The Mean Average Error (MAE) produced by the LSH schemes for Anderberg and
Rogers--Tanimoto similarities. The similarity is computed in the natural way as the fraction of
collisions over the number of hash functions used. The latter is reported on the x-axis, while on
the y-axis the corresponding MAE is shown. The pairs from the three datasets were partitioned into
buckets, according to their actual similarity value. For instance, the bottom curve in Figure 3(a)
shows the MAE obtained for all pairs of documents from CiteSeerX whose Anderberg similarity lies
in the range [0.04, 0.1]. Not all buckets appear in the figure, but the data shown exemplify the general
trend.

Figure 3(a) shows, for each value of k on the x-axis, the mean absolute error
(MAE) w.r.t. the real value of Anderberg. Note that already for k = 20 the MAE
is below 0.05. Since the expected number of shingles used in each h is two (with
very small variance) this shows the LSH scheme is inexpensive both timewise and
spacewise. Similar conclusions apply to Rogers--Tanimoto, as Figure 3(b) shows.

The experimental results show that the MAE decreases as the number of hashing
functions applied increase for each of the databases and similarities tested, reinforcing
the theoretical aspects of LSH applied to specific group of similarities that admit such
an LSH.

9. Conclusions. In this paper we studied the notion of distorted LSH schemes
for a number of widely-used similarities that do not admit exact LSH schemes. For
most of them, we have obtained tight bounds on the minimum distortion required for
obtaining an LSH. In doing so, we developed two lower bounding tools that could be
useful for bounding the distortion of other similarities that are not LSHable.

To complement our theoretical bounds, we also studied the behavior of our pro-
posed distorted LSH schemes on real datasets. Our main observation is that in prac-
tice, the average distortion is milder than what is produced by the worst-case bounds.

It will be interesting to consider other non-LSHable similarities and study their
distortion. The encyclopedia [16] is a rich source of such similarities.
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