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Abstract
Controlled Query Evaluation (CQE) is a
confidentiality-preserving framework in which
private information is protected through a policy,
and a (optimal) censor guarantees that answers to
queries are maximized without violating the policy.
CQE has been recently studied in the context of
ontologies, where the focus has been mainly on the
problem of the existence of an optimal censor. In
this paper we instead study query answering over
all possible optimal censors. We establish data
complexity of this problem for ontologies specified
in the Description Logics DL-LiteR and EL⊥
and for variants of the censor language, which is
the language used by the censor to enforce the
policy. In our investigation we also analyze the
relationship between CQE and the problem of
Consistent Query Answering (CQA). Some of the
complexity results we provide are indeed proved
through mutual reduction between CQE and CQA.

1 Introduction
In Controlled Query Evaluation (CQE), a policy, i.e., a set of
logical assertions, regulates the access to a database or knowl-
edge base by specifying the information that must be kept
secret, and a censor alters answers to queries so that confi-
dential data cannot be inferred by the users on the basis of the
queries they ask. The notion of censor traces back to [Sicher-
man et al., 1983], and since then it has been investigated for
propositional closed databases [Biskup and Bonatti, 2004a;
Biskup and Bonatti, 2004b], incomplete databases [Biskup
and Weibert, 2008], and, more recently, Description Logic
(DL) ontologies [Bonatti and Sauro, 2013; Cuenca Grau et
al., 2013; Cuenca Grau et al., 2015]. In this latter context, op-
timal censors are defined as those censors that modify query
answers in a “minimal” way. Intuitively, such censors hide
data to preserve confidentiality according to the policy, with-
out restricting unnecessarily the ability of the system to return
answers to users’ queries.

In general, several optimal censors may exist for an in-
stance of the CQE problem, since several incomparable ways
of altering the answers may exist. For example, if the pol-
icy does not allow both facts hasName(01,John), has-

Salary(01,2000) to be disclosed, an optimal censor dis-
closes only the former, and another one only the latter (of
course, censors hiding both facts are not optimal).

Previous work on CQE in DLs has mainly focused on the
tasks of establishing the existence of an optimal censor and
characterizing the complexity of computing it. In practice,
however, considering only one such censor means making an
arbitrary selection among several optimal censors. To avoid
such a discretionary choice, in this paper we adopt a different
approach and study query answering over all optimal cen-
sors. Intuitively, given a query q, the answers to q are the
answers in the intersection of the answers computed by the
optimal censors. A similar idea has been also previously dis-
cussed in [Cuenca Grau et al., 2013].

Our approach has similarities with the work on Consistent
Query Answering (CQA), a declarative framework for incon-
sistency management based on the notion of repair [Bertossi,
2011; Bienvenu and Bourgaux, 2016]. Roughly speaking,
in DL, a repair of a possibly inconsistent ontology O is any
ABox forO (i.e., the extensional component of the ontology)
that is consistent with the TBox (i.e., the intensional com-
ponent of O), and that differs “minimally” from the original
ABox. Then, computing query answers in CQA amounts to
reasoning over all repairs and the TBox. The connection be-
tween CQE and CQA in DL is based on the intuition that the
assertions in the policy in CQE seem to act as the class of
assertions in T that may be violated by the data of the ABox.

Some connections between CQA and a declarative ap-
proach for privacy preservation had already been discussed
in [Bertossi and Li, 2013]. The framework in that paper is
similar to ours, with so-called secrecy views playing essen-
tially the role of the policy. However, the setting considered
there is relational and without intensional knowledge (TBox),
and secrecy views are enforced through suitable virtual mod-
ifications of database values with SQL NULLs, so that this
approach is incomparable with ours. Nonetheless, in this pa-
per we elaborate on the intuition of [Bertossi and Li, 2013]
and investigate in depth the relationship between our CQE
framework and CQA in DLs. We provide some general con-
ditions ensuring that the two problems are mutually reducible,
and we show cases of practical interest for which such con-
ditions are satisfied and cases for which they are not, which
allows us to highlight similarities and differences between the
two frameworks. We notice also that the connection between



CQA and CQE we explain in this paper was already discussed
in a preliminary form in our extended abstract [Lembo et al.,
2018], under a general abstract framework aiming at captur-
ing CQA, CQE and update of DL ontologies.

The ultimate goal of this paper is to investigate data
complexity of answering conjunctive queries (CQs) in
CQE. In our analysis we consider ontologies specified in
DL-LiteR [Calvanese et al., 2007] and EL⊥ [Baader et al.,
2005], two popular lightweight ontology languages, which
are at the basis of two OWL tractable profiles1. We also con-
sider some variants of the censor language LC , which is the
language used by the censor to enforce the policy. Roughly
speaking, LC is the language in which the censor expresses
the sentences implied by the ontology that can be disclosed
to the users without violating the policy. We provide data
complexity results for the cases when: (i) LC is the ABox
of the ontology (i.e., the censor can enforce the policy only
by selecting facts in the ABox); (ii) LC coincides with the
set of facts expressed over the signature of the ontology; and
(iii) LC is the language of CQs expressed over the signature
of the ontology (for EL⊥ we in fact limit to the language of
CQs whose maximum length is k). Some of the complex-
ity results follow from the correspondence between CQA and
CQE; we devise novel techniques for the cases in which the
CQE problem does not have a CQA counterpart.

Confidentiality issues in DLs have been previously studied
in [Calvanese et al., 2012], under authorization views, an ap-
proach to some extent complementary to ours. Provable data
privacy on views has been considered in [Stouppa and Studer,
2009], for concept retrieval and subsumption queries over
ALC ontologies. Properties of censors for Boolean ALC on-
tologies have been investigated in [Studer and Werner, 2014],
for concept subsumption only. Secrecy preserving reason-
ing in the presence of several agents has been instead studied
in [Tao et al., 2014], for propositional Horn logics and the
DL AL. Privacy-preserving query answering as a reasoning
problem has been considered in [Cuenca Grau and Horrocks,
2008], whereas instance checking for EL has been studied
in [Tao et al., 2010], in both cases under frameworks dif-
ferent from CQE. Then, the problem of establishing whether
an ontology-based data integration system discloses a source
query has been recently studied in [Benedikt et al., 2018].

In the rest of the paper, after some preliminaries (Sec. 2),
we introduce our CQE framework (Sec. 3), and study the
relationship between CQE and CQA (Sec. 4). We then es-
tablish complexity of query answering (both instance check-
ing and entailment of CQs) for restricted censor languages
(Sec. 5), and for the full censor language considered in this
paper, namely CQs (Sec. 6). We conclude the paper in Sec. 7.

2 Preliminaries
We consider a signature Σ of predicates and constants, and
a countably infinite alphabet of variables V . To simplify the
presentation, we consider only languages containing FO sen-
tences, i.e., formulas without free variables (our results ap-
plies to open formulas as well, modulo standard encoding of
open formulas into closed ones). We use FO to indicate the

1https://www.w3.org/TR/owl2-profiles/

language of all function-free FO sentences over Σ and V . Ev-
ery language considered in this paper is a subset of FO.

Given a set K ⊆ FO, Mod(K) indicates the set of models
ofK, i.e., the FO interpretations I such that φI (i.e., the inter-
pretation of φ in I) evaluates to true, for each φ ∈ K. A setK
is consistent if it has at least one model, i.e., if Mod(K) 6= ∅,
inconsistent otherwise, and it entails a FO sentence φ, de-
noted K |= φ, if φI is true in every I ∈ Mod(K).

A Boolean conjunctive query (BCQ) q is a FO sentence of
the form ∃~x.conj(~x), where conj(~x) = α1(~x)∧. . .∧αn(~x), ~x
is a sequence of variables, and each αi(~x) is an atom (possi-
bly with constants) with predicate αi and variables in ~x. The
length of q is the number of its atoms, denoted by length(q).

In the following, CQ denotes the language of BCQs over
Σ and V , CQk the language of BCQs from CQ whose maxi-
mum length is k, and GA the language of single atom queries
with no variables, i.e., ground atoms or facts. Verifying
whether K |= α for K ⊆ FO and α ∈ GA is also called
instance checking.

Description Logics (DLs) are decidable FO languages us-
ing only unary and binary predicates, called concepts and
roles (for more details on DLs and their relationship with FO
we refer the reader to [Baader et al., 2007]). A DL ontology
O is a set T ∪A, where T is the TBox andA is the ABox, pro-
viding intensional and extensional knowledge, respectively.
We assume that an ABox is always a set of ground atoms.

In this paper, we consider DL ontologies expressed in
DL-LiteR [Calvanese et al., 2007] and EL⊥, which extends
EL [Baader et al., 2005] with the empty concept ⊥.

A DL-LiteR TBox is a finite set of assertions of the form
B1 v B2, B1 v ¬B2, R1 v R2, R1 v ¬R2, where: each
Ri, with i ∈ {1, 2}, is an atomic role Q ∈ Σ, or its inverse
Q−; eachBi, with i ∈ {1, 2}, is an atomic concept A ∈ Σ, or
a concept of the form ∃Q or ∃Q−, i.e., unqualified existential
restriction, which denotes the set of objects occurring as first
or second argument of Q, respectively.

An EL⊥ TBox is a finite set of assertions of the form
C1 v C2, where each Ci, with i ∈ {1, 2}, is: an atomic con-
cept A; a concept of the form ∃Q.C, i.e., qualified existential
restriction, which denotes the set of objects that the atomic
role Q relates to some instance of C; a concept C u C ′, i.e.,
a conjunction of two concepts; or ⊥, i.e., the empty concept.

Besides DL-LiteR and EL⊥ assertions, we also consider
denial assertions (or simply denials) over concepts and roles,
i.e., sentences of the form ∀~x.conj(~x) → ⊥, where conj(~x)
is such that ∃~x.conj(~x) is a BCQ whose atoms use only unary
and binary predicates. The length of the denial is the length
of such query. A denial is satisfied by an ontology O if
O 6|= ∃~x.conj(~x). We will use denials to specify the policy
in CQE. We will also refer to the DL DL-LiteR,den, which is
an extension of DL-LiteR with denials [Lembo et al., 2015].

Given an ontology O and a language L ⊆ FO, we denote
by L(O) the subset of formulas of L over the predicates and
constants occurring in O and the variables in V .

All the complexity results given in this paper are concerned
with data complexity, that in our framework is the complexity
computed only with respect to the size of the ABox.

https://www.w3.org/TR/owl2-profiles/ 


3 CQE Framework
Our framework for CQE is adapted from the one presented
in [Cuenca Grau et al., 2015].

An L CQE instance E is a triple 〈T ,A,P〉, where T is a
TBox in the DL L, A is an ABox such that T ∪ A is consis-
tent, andP is the policy, i.e., a set of denial assertions over the
signature of T ∪A, such that T ∪P is consistent. Intuitively,
T is the schema a user interacts with to pose her queries; A
is the dataset underlying the schema; P specifies the knowl-
edge that cannot be disclosed for confidentiality reasons, in
the sense that the user will never get, through query answers,
sufficient knowledge to violate the denials in P2.

We then define a censor for a CQE instance.

Definition 1 Given a CQE instance E = 〈T ,A,P〉 and a
language Lc ⊆ FO(T ∪A), a censor for E in Lc is a function
censLc that returns a set censLc(E) ⊆ Lc (called the theory of
the censor) such that: (i) T ∪A |= φ, for each φ ∈ censLc(E),
and (ii) T ∪ P ∪ censLc

(E) is consistent.

Intuitively, the censor establishes which are the sentences
in Lc (called the censor language) implied by T ∪A that can
be divulged to the user while preserving the policy. A censor
censLc

for E in Lc is optimal if there does not exist a censor
cens′Lc

for E in Lc such that censLc
(E) ⊂ cens′Lc

(E). The
set of theories of all the optimal censors in Lc for a CQE
instance E is denoted with Thoc

Lc
(E).

Hereinafter, to simplify the notation, we will sometimes
omit to specify that a censor language is limited to the signa-
ture of T ∪A (e.g., we will use CQ instead of CQ(T ∪A)).

Example 1 To regulate access to information about cus-
tomers and the medicines they buy, a CQE instance
E = (T ,A,P) is used in a pharmacy, where T
is an empty TBox, i.e., without assertions, A =
{Buy(c1,mA),Buy(c1,mB),Buy(c2,mA)}, and P =
{∀x.Buy(x,mA) ∧ Buy(x,mB) → ⊥}. The policy spec-
ifies as confidential the fact that a customer buys both
medicine A and medicine B (this may reveal an embar-
rassing disease). The optimal censors for E in CQ are
only cens1CQ and cens2CQ, where cens1CQ(E) contains the
queries ∃x.Buy(x,mB), Buy(c1,mA), Buy(c2,mA), and all
the queries in CQ inferred by them, and cens2CQ(E) con-
tains the queries Buy(c1,mB) and Buy(c2,mA), and all the
queries in CQ inferred by them.

Below we provide the definition of entailment in CQE.
More precisely, we give a definition for each type of censor
language considered in this paper.

Definition 2 Given a CQE instance E = 〈T ,A,P〉 and a FO
sentence φ, we define the following three decision problems:
(CQ-Cens-Entailment): decide whether Th |= φ for every
Th ∈ Thoc

CQ(E). If this is the case, we write E |=cqe
CQ φ.

(GA-Cens-Entailment): decide whether Th |= φ for every
Th ∈ Thoc

GA(E). If this is the case, we write E |=cqe
GA φ.

(ABox-Cens-Entailment): decide whether Th |= φ for every
Th ∈ Thoc

A (E). If this is the case, we write E |=cqe
ABox φ.

2Our notion of policy generalizes the one given in [Cuenca Grau
et al., 2015], where P is a single CQ.

When φ is a ground atom, the above entailment problems
are called CQ-Cens-Instance-Checking, GA-Cens-Instance-
Checking and ABox-Cens-Instance-Checking, respectively.

Example 2 Let E be the CQE instance of Example 1. We
have, for instance, that E |=cqe

CQ ∃x.Buy(c1, x) and E |=cqe
CQ

∃x.Buy(x,mB), but E 6|=cqe
CQ Buy(c1,mB). If we restrict the

censor language to A (i.e., censor theories can only contain
facts of the ABox), we still have only two optimal censors for
which we have: cens1A(E) = {Buy(c1,mA),Buy(c2,mA)}
and cens2A(E) = {Buy(c1,mB),Buy(c2,mA)}. So, we
have that E |=cqe

ABox ∃x.Buy(c1, x), but E ′ 6|=cqe
ABox

∃x.Buy(x,mB).

4 Relationship between CQE and CQA
In this section we discuss the relationship between the CQE
framework we have just defined and CQA. To this aim, we
first provide a general definition for CQA.

An L CQA instance J is a pair 〈T ,A〉 where T is a con-
sistent TBox in the DL L, andA is a DL ABox, where T ∪A
is a possibly inconsistent ontology. We then give the notion
of the consistent entailment set in a language L for a FO the-
ory Ψ and an ABox A, denoted by CESL(Ψ,A), which is
the set {φ | φ ∈ L and there exists a A′ ⊆ A such that Ψ ∪
A′ is consistent and Ψ ∪ A′ |= φ}.

A repair for a CQA instance is defined as follows.

Definition 3 A repair for a CQA instance J = 〈T ,A〉 in
a language Lr ⊆ FO(T ∪ A) (called repair language) is a
subsetR of Lr such that: (i)R ⊆ CESLr

(T ,A); (ii) T ∪R
is consistent; (iii) there does not exist anyR′ ⊆ Lr such that
R ⊂ R′ ⊆ CESLr (T ,A) and T ∪ R′ is consistent. We
denote by RepSetLr

(J ) the set of repairs of J .

Definition 3 captures some definitions of repair proposed
in the literature, such as the repair at the basis of the pro-
totypical AR-semantics or the repair adopted by the CAR-
semantics [Lembo et al., 2015; Rosati, 2011].

Indeed, given an ontology O = T ∪ A, repairs in the AR-
semantics aim to preserve as many facts as possible of those
belonging toA. This means that, in a CQA instance adopting
the AR-semantics, the language Lr has to be set to A. Differ-
ently, the CAR-semantics aims to preserve as many facts as
possible of those implied by T and each subset of A consis-
tent with T . Therefore, to encode such semantics Lr has to
coincide with the set of ground atoms GA(O).

We now provide some conditions on CQE and CQA in-
stances that allow to establish correspondences between (the-
ories of) censors and repairs. We first analyze CQE instances.

Definition 4 A CQE instance E = 〈T ,A,P〉 is CQA-
reducible w.r.t. a language Lc ⊆ FO(T ∪ A) if:
(i) for every φ ∈ Lc such that T ∪A |= φ and {φ}∪T ∪P

is consistent, there exists A′ ⊆ A such that T ∪ A′ ∪ P
is consistent and T ∪ A′ |= φ;

(ii) for every φ ∈ Lc and everyA′ ⊆ A such that T ∪A′∪P
is consistent, if T ∪ A′ ∪ P |= φ then T ∪ A′ |= φ.

If Lc is CQ (or GA, or A) we say that the instance E is CQ-
CQA-Reducible (resp. GA-CQA-Reducible, or ABox-CQA-
Reducible).



In words, condition (i) imposes that every logical conse-
quence of T ∪ A that is consistent with the policy and the
TBox belongs to CESLc

(T ∪ P,A), i.e., the consistent en-
tailment set inLc for an ontology obtained by putting together
the TBox, the ABox and the policy (which indeed might re-
sult inconsistent). Condition (ii) instead says that in a CQE
insance that is CQA-reducible w.r.t Lc the sentences in the
policy act as constraints on top of T ∪ A, since they never
contribute to infer new formulas from Lc if added to T ∪ A
(notice however that T ∪ A can contradict denials in P , and
thus in Definition 4 we consider subsets of A that are consis-
tent with T ∪ P).

Example 3 The instance E = 〈T ,A,P〉 with T = {A v
B}, A = {A(d)}, P = {∀x.A(x) → ⊥} is not GA-
CQA-Reducible, since it does not respect condition (i), even
though it satisfies condition (ii) (in a trivial way). Instead,
E ′ = 〈T ,A′,P ′〉 withA′ = {A(d), B(d)}, P = {∀x.A(x)∧
B(x)→ ⊥} and T as before, is GA-CQA-Reducible.

For CQA-reducible instances the following result holds.

Theorem 1 Let E = 〈T ,A,P〉 be a CQE instance and let
Lc ⊆ FO(T ∪ A), such that E is CQA-reducible w.r.t. Lc.
Then ThocLc

(E) = RepSetLc
(〈T ∪ P,A〉).

Below we consider reducibility of CQA instances into
CQE ones, and provide a notion analogous to Definition 4.

Definition 5 A CQA instance J = 〈T ,A〉 is CQE-reducible
w.r.t. a language Lr if there exists a partition TP ∪ TN of T
such that TP ∪ A is consistent, TN is equivalent to a set of
denials, and:
(i) for every φ ∈ Lr, such that TP ∪ A |= φ and {φ} ∪ T

is consistent, there exists A′ ⊆ A such that T ∪ A′ is
consistent and T ∪ A′ |= φ;

(ii) for every φ ∈ Lr and every A′ ⊆ A such that T ∪ A′ is
consistent, if T ∪ A′ |= φ then TP ∪ A′ |= φ.

If Lr is CQ (or GA, orA) we say that the instance J is CQ-
CQE-Reducible (resp. GA-CQE-Reducible, or ABox-CQE-
Reducible).

Intuitively, the above definition says that in a CQE-
reducible instance we can identify a portion TN of T such
that its assertions act as constraints on the ontology TP ∪ A
(cond. (ii)), thus TN behaves as a policy in a CQE instance.
At the same time, each logical consequence in Lr of TP ∪ A
consistent with T must belong to CESLr

(T ,A) (cond. (i)).
CQE-reducible instances have the following property.

Theorem 2 Let J = 〈T ,A〉 be a CQA instance, such that
J is CQE-reducible w.r.t Lr and T = TP ∪ TN . Then
RepSetLr

(〈TP ∪ TN ,A〉) = ThocLr
(〈TP ,A, TN 〉).

We now rephrase entailment in CQA [Lembo et al., 2015].
As done for CQE, we define three entailment problems. That
is, given a CQA instance J = 〈T ,A〉 and a FO sentence
φ, we define: (CQ-Rep-Entailment), i.e., decide whether T ∪
R |= φ for everyR ∈ RepSetCQ(J ), denoted byJ |=cqa

CQ φ;
(GA-Rep-Entailment), i.e., decide whether T ∪ R |= φ for
every R ∈ RepSetGA(J ), denoted by J |=cqa

GA φ; (ABox-
Rep-Entailment), i.e., decide whether T ∪ R |= φ for every
R ∈ RepSetA(J ), denoted by J |=cqa

ABox φ. Notice that the

last two types of entailment coincide with entailment under
CAR- and AR-semantics, respectively.

The following result follows immediately from Defini-
tion 2, the definition of entailment in CQA, and Theorem 1.

Corollary 1 Let C denote either CQ, GA, or ABox, and let
E = 〈T ,A,P〉 be a CQE instance, such that E is C-CQA-
reducible, and φ a FO sentence. Then, E |=cqe

C φ iff J |=cqa
C

φ, where J = 〈T ∪ P,A〉.

Analogously, the following result follows from the defini-
tion of entailment in CQE and CQA, and from Theorem 2.

Corollary 2 Let C denote either CQ, GA, or ABox, and
let J = 〈T ,A〉 be a CQA instance with T = TP ∪ TN ,
such that J is C-CQE-reducible, and φ a FO sentence. Then,
J |=cqa

C φ iff E |=cqe
C φ, where E = 〈TP ,A, TN 〉 .

5 CQE under Restricted Censor Languages
In this section we establish data complexity of CQE instance
checking and entailment of BCQs for both DL-LiteR and
EL⊥ CQE instances when the censor language is either the
ABox of the instance or GA. For the former case, we estab-
lish our complexity results by exploiting a mutual reduction
between entailment in CQE and CQA. For the latter case,
the two frameworks behave in a slightly different way, and
thus we also need to use techniques tailored to the CQE set-
ting. The results showed in this section allow us to clarify the
computational properties of query answering in CQE when
we adopt a restricted censor language, i.e., which can be less
expressive than the query language, as in the case of GA-
Cens-Entailment and ABox-Cens-Entailment of BCQs.

We start by setting the censor language to the assertions in
the ABox.

Theorem 3 Each DL-LiteR or EL⊥ CQE instance is ABox-
CQA-Reducible, and each DL-LiteR or EL⊥ CQA instance is
ABox-CQE-Reducible.

Then, we establish an upper bound for entailment of BCQs.

Theorem 4 ABox-Cens-Entailment of BCQs is in coNP in
data complexity for both DL-LiteR and EL⊥ CQE instances.

Proof (sketch). From Theorem 3 (direction from CQE to
CQA) and Corollary 1, it follows that ABox-Cens-Entailment
in DL-LiteR is equivalent to ABox-Rep-Entailment in
DL-LiteR,den, i.e., entailment under the AR-semantics, and
ABox-Cens-Entailment in EL⊥ is equivalent to ABox-Rep-
Entailment in EL⊥ plus denials. The thesis then fol-
lows from the fact that entailment of BCQs is in coNP in
data complexity in CQA under the AR-semantics, for both
DL-LiteR,den [Lembo et al., 2015], and EL⊥ plus denials.
This last result is a consequence of an analogous complexity
result shown in [Rosati, 2011] for EL⊥.

The following theorem provides matching lower bounds
for the results of Theorem 4.

Theorem 5 ABox-Cens-Instance-Checking is coNP-hard in
data complexity for both DL-LiteR and EL⊥ CQE instances.



Proof (sketch). The results follow from Theorem 3 (direction
from CQA to CQE), Corollary 2, and from coNP-hardness of
instance checking of CQA under the AR-semantics for both
DL-LiteR [Lembo et al., 2015] and EL⊥ [Rosati, 2011].

Theorem 4 and Theorem 5 actually imply that both
ABox-Cens-Instance-Checking and ABox-Cens-Entailment
of BCQs are coNP-complete in data complexity for both
DL-LiteR and EL⊥ CQE instances.

We now consider the case in which the censor language
coincides with GA. In this case, DL-LiteR and EL⊥ CQE
instances are not always CQA-reducible, as shown in Exam-
ple 3, where the non-reducible instance is both DL-LiteR and
EL⊥. Reducibility in the other way round is also not always
possible. However, for DL-LiteR we can show some weaker,
but useful, properties.
Proposition 1 Each DL-LiteR CQE instance 〈T ,A,P〉,
such that T ∪ P ∪ {α} is consistent for each α ∈ A, is GA-
CQA-Reducible. Also, each DL-LiteR CQA instance 〈T ,A〉,
such that T ∪ {α} is consistent for each α ∈ A, is GA-CQE-
Reducible.

Proposition 1 is used to prove the following theorem,
which in fact is stated for general DL-LiteR CQE instances.
Theorem 6 GA-Cens-Instance-Checking and GA-Cens-
Entailment of BCQs are respectively in AC0 and coNP-
complete in data complexity for DL-LiteR CQE instances.
Proof (sketch). For CQE instances satisfying the condition
in Proposition 1 (direction from CQE to CQA), the member-
ship results follow from that proposition, Corollary 1, and
from the fact that GA-Rep-Entailment, i.e., entailment un-
der CAR-semantics, of ground atoms and of BCQs over
DL-LiteR,den CQA instances are respectively in AC0 (which
follows from the results in [Lembo et al., 2015; Lembo et
al., 2011]) and in coNP (which follows from the results in
[Lembo et al., 2010]). The case of general DL-LiteR in-
stances can be proved by adapting the techniques used to
prove the mentioned AC0 and coNP membership for CQA.
coNP-hardness for GA-Cens-Entailment of BCQs follows
from Proposition 1 (direction from CQA to CQE), Corol-
lary 2, and from coNP-hardness of GA-Rep-Entailment of
BCQs in DL-LiteR [Lembo et al., 2010].

Let us now turn to EL⊥. While to establish GA-Rep-
Entailment of BCQs one needs to check that the conse-
quences follow from subsets of the ABox that are consistent
with the denials [Rosati, 2011], this is not needed to establish
GA-Cens-Entailment, leading to a lower upper bound, i.e.,
coNP. coNP-hardness then follows from the coNP-hardness
of ABox-Rep-Entailment of BCQs shown in [Bienvenu and
Bourgaux, 2016, Theorem 17], which carries over also to
CAR-semantics and CQE (the semantic difference between
CQE and CQA in this case does not show up).
Theorem 7 GA-Cens-Entailment of BCQs is coNP-complete
in data complexity for EL⊥ CQE instances.

6 CQE under Full Censor Language
In this section we study entailment of BCQs under our CQE
framework for both DL-LiteR and EL⊥ CQE instances and
more expressive censor languages.

We first concentrate on DL-LiteR and study CQ-Cens-
Entailment of BCQs. We start by providing the following
crucial property, which says that to solve this problem it is
possible to resort to CQk-Cens-Entailment, i.e., CQE entail-
ment defined over theories of censors using CQk as censor
language, denoted |=cqe

CQk
.

Theorem 8 Let E = 〈T ,A,P〉 be a DL-LiteR CQE instance,
let q be a BCQ, and let k = max(h, length(q)), where h is the
maximum length of a denial assertion in P . Then, E |=cqe

CQ q

iff E |=cqe
CQk

q.

Proof (sketch). We prove the if direction (the other one is
trivial). The hypothesis implies that q belongs to every theory
of optimal censor for E in CQk, i.e., q ∈ Ψ for every Ψ ∈
ThocCQk

(E). Now, suppose E 6|=cqe
CQ q. Then, there exists Ψ ∈

ThocCQ(E) such that q 6∈ Ψ. Consequently, Ψ ∪ {q} ∪ T ∪ P
is inconsistent.

Now, the following property can be shown: Ψ∪{q}∪T ∪P
is inconsistent iff there exists φ ∈ P such that Ψ∪{q}∪{φ} is
inconsistent. This property follows from the fact that, when T
is a DL-LiteR TBox, the inconsistency of T ∪ P with respect
to a set of BCQs Ψ′ implies the existence of a denial assertion
that is entailed by T ∪ P and is violated by Ψ′, and from the
fact that Ψ is a deductively closed set of BCQs with respect
to T . Moreover, since the length of a denial assertion φ is not
greater than k, it is immediate to verify that if Ψ∪ {q} ∪ {φ}
is inconsistent then (Ψ ∩CQk) ∪ {q} ∪ {φ} is inconsistent.

On the other hand, since (Ψ∩CQk)∪T ∪P is consistent,
there exists Ψ′ ∈ ThocCQk

(E) such that Ψ ∩ CQk ⊆ Ψ′, but
since, by hypothesis, E |=cqe

CQk
q, it follows that q ∈ Ψ′,

which implies that (Ψ ∩ CQk) ∪ {q} ∪ {φ} is consistent.
This leads to a contradiction, and thus the thesis follows.

Hereinafter, without loss of generality, we assume that,
all formulas of the language CQk (as well as the query
q of the entailment problem) use the set of 2k variables
{x1, . . . , x2k}.

Below we define the CQ-Ent-DL-LiteR algorithm for de-
ciding CQ-Cens-Entailment of BCQs for the DL-LiteR case.

Algorithm CQ-Ent-DL-LiteR(E , q)
Input: DL-LiteR CQE instance E = 〈T ,A,P〉, BCQ q
Output: true if E |=cqe

CQ q, false otherwise
let h be the maximum length of a denial in P;
let k = max(h, length(q));
Φ = CQEntailedSubset(T ,A, k);
for i = 1 to k do

remove from Φ every subset Φ′ such that |Φ′| = i
and T ∪ P ∪ Φ′ is inconsistent;

if q ∈ Φ then return true else return false

In the algorithm, CQEntailedSubset(T ,A, k) is the func-
tion returning the set of BCQs from CQk that are entailed
by T ∪ A. It is immediate to verify that this function can be
computed in polynomial time w.r.t. the size of A.

Informally, the algorithm first computes an integer k, based
on the length of the query q and of the denials in P; then, it
computes the set Φ that represents the intersection of the the-
ories of the optimal censors for the CQE instance E in CQk:
this is done by removing from Φ all formulas that belong to



minimal subsets of Φ that are inconsistent with T ∪P; finally,
it checks whether q belongs to Φ.
Theorem 9 Let E be a DL-LiteR CQE instance, and q a
BCQ. Then, E |=cqe

CQ q iff CQ-Ent-DL-LiteR(E , q) returns
true.
Proof (sketch). It can easily be shown that the set Φ com-
puted by CQ-Ent-DL-LiteR(E , q) is the set

⋂
Ψ∈ThocCQk

(E) Ψ.

This property is based on the fact that, in the case of
DL-LiteR TBoxes, every minimal subset of the set returned
by CQEntailedSubset(T ,A, k) that is inconsistent with T ∪P
contains at most k formulas. Then, it follows that E |=cqe

CQk
q

iff q ∈
⋂

Ψ∈ThocCQk
(E) Ψ. Consequently, E |=cqe

CQk
q iff q ∈ Φ.

Therefore, from Theorem 8 it follows that E |=cqe
CQ q.

We are now ready to state a complexity result for the CQ-
Cens-Entailment problem in the case of DL-LiteR TBoxes.
Theorem 10 CQ-Cens-Entailment of BCQs is in PTIME in
data complexity for DL-LiteR CQE instances.
Proof. We prove that the CQ-Ent-DL-LiteR algorithm pro-
vides a polynomial-time upper bound in data complexity.

First, as already mentioned, CQEntailedSubset(T ,A, k)
can be computed in time polynomial w.r.t. the size of A.
Then, it is also easy to verify that checking the consistency of
an ontology consisting of a DL-LiteR TBox, a policy and a set
of BCQs can be done in polynomial time as well: indeed, to
check consistency, the BCQs can be encoded into a standard
ABox with fresh constant symbols to represent the existential
variables of the BCQs, while the policy corresponds to a set
of denial assertions in the DL DL-LiteR,den, that is, T ∪ P is
a DL-LiteR,den TBox. We can then check the consistency
of the resulting DL-LiteR,den ontology in polynomial time
[Lembo et al., 2015]. This implies that the for-loop of the
algorithm can be executed in polynomial time with respect
to the size of A, since it corresponds to the execution of a
polynomial number of inconsistency checks of polynomially-
sized DL-LiteR,den ontologies of the above form.

We now consider the case of EL⊥ CQE instances. In
this case we restrict our analysis to CQk-Cens-Entailment of
BCQs, for which we provide the following nondeterministic
algorithm CQk-Ent-EL⊥.
Algorithm CQk-Ent-EL⊥(E , q)
Input: EL⊥ CQE instance E = 〈T ,A,P〉, BCQ q
Output: true if E |=cqe

CQk
q, false otherwise

let h be the maximum length of a denial assertion in P;
let k = max(h, length(q));
let Φ = CQEntailedSubset(T ,A, k);
if there exists Φ′ ⊆ Φ such that

Φ′ is a maximal subset of Φ consistent with T ∪ P
and q 6∈ Φ′

then return false else return true
While Algorithm CQ-Ent-DL-LiteR constructs a finite

fragment of the intersection of all the theories of the optimal
censors for E in CQ, the algorithm CQk-Ent-EL⊥ looks for
the existence of a theory of an optimal censor for E in CQk
that does not contain the query q.

The following theorem easily follows from Definition 2.

Theorem 11 Let E be a EL⊥ CQE instance, and q a BCQ.
Then, E |=cqe

CQk
q iff CQk-Ent-EL⊥(E , q) returns true.

CQk-Ent-EL⊥ allows us to establish a coNP upper bound
of the data complexity of CQk-Cens-Entailment of BCQs for
EL⊥ CQE instances (note that CQEntailedSubset(T ,A, k)
can be computed in polynomial time in the size of A also
when T is an EL⊥ TBox). It is in fact not difficult to show
that the above bound is tight.

Theorem 12 CQk-Cens-Entailment of BCQs is coNP-
complete in data complexity for EL⊥ CQE instances.

7 Discussion and Conclusions

The complexity results for DL-LiteR TBoxes given in this pa-
per show a surprising aspect. In fact, the complexity of entail-
ment of BCQs when the censor language is restricted either
to the ABox or to the set of ground atoms is harder than when
the censor language is CQ. The explanation of this lies in
the fact that, in the latter case, it is possible to establish the
entailment by computing the intersection of (a finite and poly-
nomial representation of) all the theories of optimal censors
(see Theorem 9), which, as shown in the previous section, can
be done in polynomial time in data complexity. This property
does not hold for the more restricted censor languages, which
require to consider separately all the theories (actually, an ex-
ponential number of finite approximations of such theories).

The above property also holds for CQk-Cens-Entailment of
BCQs for EL⊥ TBoxes. However, in this case it is not possi-
ble to compute (a finite representation of) the intersection of
all the theories of the optimal censors in PTIME: indeed, dif-
ferently from DL-LiteR, for EL⊥ the size of the minimal sub-
sets of the set returned by CQEntailedSubset(T ,A, k) that
are inconsistent with T ∪ P is not independent of the size of
A. This explains the coNP-hardness in this case.

The present work can be extended in several direc-
tions. For EL⊥ CQE instances we left open the com-
plexity lower bounds of GA-Cens-Instance-Checking and
ABox-Cens-Instance-Checking, as well as the complexity
of CQ-Cens-Entailment of BCQs. Also, the PTIME up-
per bound for CQ-Cens-Entailment of BCQs over DL-LiteR
CQE instances should be refined. We believe that an AC0

bound can be shown in this case: in particular, the first-
order rewritability of CQE could be proved by adapting and
extending query rewriting techniques for CQA in the DL
DL-LiteR,den [Lembo et al., 2015]. Then, the complexity
analysis of CQE could be extended to other DLs, as well as to
other policy and censor languages. Also, based on the com-
plexity analysis of CQE presented in this paper, it would be
very important to look for practical techniques allowing for
the implementation of CQE extensions of current DL reason-
ers and Ontology-based Data Access systems [Calvanese et
al., 2017; De Giacomo et al., 2012].
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