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Random plane wave is conjectured to be a universal model for high-energy eigenfunc-

tions of the Laplace operator on generic compact Riemannian manifolds. This is known

to be true on average. In the present paperwe discuss one of important geometric observ-

able: critical points.We first compute one-point function for the critical point process, in

particular we compute the expected number of critical points inside any open set. After

that we compute the short-range asymptotic behaviour of the two-point function. This

gives an unexpected result that the second factorial moment of the number of critical

points in a small disc scales as the fourth power of the radius.

1 Introduction and Main Results

1.1 Random Gaussian functions

Studying the Laplace eigenfunctions and their geometry is a classical subject going back

to at least XIX century. It is most important to understand the eigenfunctions behaviour

in the high energy limit. For a given domain, this is a difficult question, and we only

have limited information about it other than in the few cases where the eigenfunctions

is explicitly given.
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2 D. Beliaev et al.

For a generic chaotic domain (i.e., where the billiard dynamics is chaotic) it was

conjectured by Berry [3] that the high energy functions behave like a random super-

position of monochromatic plane waves propagating in different (random) directions,

usually referred to as the random plane wave, rigorously defined below. As the com-

parison between these two is lacking mathematical rigour, one may understand this

comparison in different ways.

Berry’s conjecture seems to be out of reach by modern analytic techniques; a

similar statement for a random linear combination of eigenfunctions with close eigen-

values could be proved though. Namely, for a compact Riemannian manifold M we

can consider an orthonormal basis of eigenfunctions φi satisfying �φi + t2i φi = 0 with

t0 ≤ t1 ≤ . . . , and define the band-limited functions

fT =
∑

T−√
T≤ti≤T

ciφi

where, ci are i.i.d. normal randomvariables. It is known [6, 9, 10, 15] that the local scaling

limit of fT is the random plane wave.

The above conjectures and results show that the random plane wave is a univer-

sal object, and motivate their further study; here we are interested in their geometry. As

usual, a Gaussian random field could be defined or constructed in two different ways.

On one hand we may define it as a concrete random series, an on the other hand we

may describe it as uniquely defined in terms of it covariance function via Kolmogorov’s

Theorem. As a concrete random series we define the random plane wave with energy

E = k2 to be

�(z) = �(r, θ) = Re
∞∑

n=−∞
anJ|n|(k r)einθ (1)

in polar coordinates, where Jn are Bessel functions and an are independent complex

Gaussian random variables with variance 2. Since the Bessel functions decay expo-

nentially fast as functions of the order n, the series (1) is almost surely convergent,

absolutely and uniformly on any compact set, and hence the sum is a real analytic

function.

By the definition (1), � is a centred Gaussian random field, therefore its law is

prescribed by the covariance function

ψ(z,w) := E[�(z) ·�(w)],
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Two Point Function for Critical Points 3

for z,w ∈ R
2. It is then easy to evaluate ψ explicitly as

ψ(z,w) = J0(k|z −w|),

where J0 is the Bessel J function of order 0. From this representation it follows that � is

stationary (i.e., its law is translation invariant), and isotropic, (i.e., its law is invariant

under rotations); by the standard abuse of notation we write ψ(z,w) = ψ(z −w).

It also follows directly from (1) that the function � is an a.s. solution of the

Helmholtz equation

(�+ k2)� = 0, (2)

that is � is an a.s. eigenfunction of −� with eigenvalue k2; we are interested in the

geometry of random (or “typical”) solutions � of (2). The geometric properties consid-

ered below are related to the nodal lines (i.e., �−1(0)), nodal domains (i.e., connected

components of the complement of the nodal set), as well as the level curves (�−1(c)), and

excursion sets (connected components of {z : �(z) > c}). The geometry of these sets is

closely related to that of the set of critical points of �. The critical points and values

and their applications appear a lot ([7, 8, 11–14] to mention a few) in the literature on

nodal domains of random plane waves and, more generally, smooth Gaussian fields.

1.2 Critical points

There are several intriguing questions on the critical points of random fields. From our

perspective, of the most important questions are the ones on the distribution of the

critical points number, and the corresponding critical values. This general question

could be made more concrete in different ways, most basically, evaluating the expected

number of critical points inside a given domain; the latter admits a precise answer

in a more general scenario. In an analogous case of random spherical harmonics (that

converges to � as a scaling limit), Cammarota, Marinucci and Wigman [4] evaluated the

expected number ofminima,maxima and saddleswhose value falls into a givenwindow,

and also determined the order ofmagnitude of the corresponding variance for a “generic”

window,which does not include the total number of critical points. In a subsequentwork

Cammarota andWigman [5] resolved this outstanding case by evaluating the variance of

the total number of critical points to be of lower order as compared to the generic case.

It is important to understand the finer aspects of the structure of critical points.

Upon looking at Figure 1 (left), it is evident that the structure of critical points is very

“rigid” or “regular”; however it is not entirely clear how to formulate or quantify this
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4 D. Beliaev et al.

Fig. 1. Left: critical points of a random plane wave. Center: The Poisson point process which has

the same density. Right: a bulk part of the Ginibre ensemble with the same density.

statement withmathematical rigour. One can compare this to two other very well known

translation invariant processes: in Figure 1 (centre) one may observe the Poisson point

process, and Figure 1 (right) shows the corresponding picture for Ginibre point process;

both are scaled to have the same intensity as the critical points in Figure 1 (left).

For all three point processes depicted in Figure 1 the number of points in a square

of side-length n is c · n2 where c = 1/2
√
3π . This value of c is the natural intensity of

critical points (see Proposition 1.1) of �, whereas the other two point processes are so

rescaled. The fluctuations of the total number of points in a square depend a lot on the

point process. Though formally stated for random spherical harmonics (which are only

equivalent to � in the limit, under a natural scaling), it is likely that one may deduce

from [5] that the variance for the critical points scales like n2 log(n), whereas for the

Poisson point process it is asymptotic to c · n2 (with the same c as above), and for the

Ginibre ensemble it is of order n.

On the local scale, the probability that there is at least one point in a small disc

or radius ρ is the same for all three processes due to the translation invariance and our

choice of normalization. The respective probabilities that there are exactly two points in

a small disc are very different though. For the Poisson point process it is the probability

that a Poisson random variable with intensity cπρ2 is equal to 2. By the definition it is

given by

P(2 points) =
(
cπρ2

)2
exp

(−cπρ2
)

2
≈ c2π2 · ρ4

2
= 1

233
· ρ4,

whereas for the Ginibre ensemble (which is a determinantal point process) this proba-

bility is of order ρ6. That means that the points corresponding to the Ginibre ensemble

repel each other, inducing on their visible regularity or rigidity.
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Two Point Function for Critical Points 5

Fig. 2. Central fragment of the critical points process from Figure 1. Herewe distinguish between

different types of critical points: diamonds are local maxima, squares are local minima, and discs

are saddles.

Our principal result (Theorem 1.2) is the evaluation of the 2nd factorial moment

of the number of critical points of � in a radius ρ disc, asymptotically for ρ → 0. This

suggests (Corollary 1.3 and Conjecture 1.4) that the probability of having precisely two

critical points in the disc is

1

263
√
3
ρ4 + o

(
ρ4
)
,

of the same order of magnitude (and leading constant smaller by the factor 8
√
3 ≈ 13.8)

as the probability of finding 2-points in the same disc for the Poisson point process.

This minor difference could not stand for the striking difference in the appearance of

the two processes, highly regular for the critical points of�. It is also worth noting, that

despite the fact that critical points are more “lattice like” than the Ginibre ensemble, for

the critical points clustering is significantly more likely (see Figure 2).

A possible explanation for this effect could come from the second part of Theo-

rem 1.2. Let us separate the critical point process into two parts, namely extrema and

saddles. Both processes are very “regular” and exhibit a strong repulsion. In both cases

the probability of having at least two points in a small disc of radius ρ decays at rate of at

least ρ7 log(1/ρ)) which is smaller than the corresponding decay for the Ginibre ensem-

ble almost by an order of magnitude. We believe that the apparent “rigid” structure that
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Fig. 3. The same central fragment as in Figure 2 according to their type. Left: extrema only, right:

saddles only.

is observed in Figure 1 (left) comes from the regularity of both these point processes.

Moreover, it seems that both processes have a very similar structure (see Figure 3).

All clustering comes from the probability that after overlapping, a point in one

process is close to a point in another process. “Rigidity” and similarity in the structure

suggest that the pairs of critical points that are close to each other are well separated

and do not affect the general impression of “rigidity” in Figure 1 (left).

To formulate our main results we introduce the following notation for the

number of critical points of a random plane wave � in a disc B(ρ) of radius ρ > 0:

N c
ρ = #{x ∈ B(ρ) : ∇�(x) = 0}.

The numbers N saddle
ρ , Nmin

ρ , Nmax
ρ , and N e

ρ of saddles, minima, maxima, and extrema

respectively may also be defined.

Since the function � is translation invariant, the above random variables are

independent of the center of the disc, so for simplicity, we may assume that it is cen-

tred at the origin. Another useful observation is that the random plane waves are scale

invariant (that is, the law of � with arbitrary k on B(1) is (up to homothety) equivalent

to the law of � with k = 1 on B(k)); hence, with no loss of generality, we may assume

that k = 1, as we will for the rest of this manuscript. The following principal results

of this manuscript evaluate the expectation and the second factorial moment of N c
ρ for
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small values of ρ. The first result, consistent to a similar statement from [4, Proposition

1.1], is for the expectations.

Proposition 1.1. For every ρ > 0 we have

E
[N c

ρ

] = 1

2
√
3
ρ2 (3)

and

4E
[Nmin

ρ

] = 4E
[Nmax

ρ

] = 2E
[N saddle

ρ

] = 2E
[N e

ρ

] = E
[N c

ρ

]
. �

Equation (3) is not an asymptotic result, but rather a precise identity. More gen-

erally, same proof works on any open domain 	, that is the expected number of critical

points lying in 	 is equal to Area(	)
2
√
3π

. Evaluating the second moment is more involved,

and we were unable to obtain a precise expression. Instead, we show how it behaves

asymptotically as the radius ρ → 0.

Theorem 1.2. As ρ → 0, we have the following expansion for the number of critical

points:

E
[N c

ρ

(N c
ρ − 1

)] = 1

25 3
√
3
ρ4 + O

(
ρ6
)
. (4)

For N saddle
ρ , Nmin

ρ , Nmax
ρ , and N e

ρ – numbers of saddles, local minima, local maxima, and

local extrema in a ball of radius ρ we have

E
[Nmax

ρ (Nmax
ρ − 1)

] = E
[Nmin

ρ (Nmin
ρ − 1)

] = O
(
ρ7 log(1/ρ)

)
, (5)

E
[N e

ρ

(N e
ρ − 1

)] = O
(
ρ7 log(1/ρ)

)
, (6)

E[N saddle
ρ (N saddle

ρ − 1)] = O(ρ7 log(1/ρ)), (7)

E[Nmax
ρ Nmin

ρ ] = O(ρ12), (8)

E[N e
ρN saddle

ρ ] = 1

26 3
√
3
ρ4 + O(ρ6). (9)

�

There is no evidence that the estimates (5)–(7), and (8) are sharp. In fact, it seems

quite likely, that they are not, for (8) particularly. Since the extremum-saddle covariance

(9) gives the main contribution to (4), the last formula (9) is an asymptotic and as such
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gives a sharp decay rate. For integer-valued random variables it is more natural to

consider factorial moments instead of the usual moments. The asymptotic behaviour

of the variance, dominated by the expectation (and hence less useful), can be easily

obtained by combining (3) and (4)

Var
[N c

ρ

] = 1

2
√
3
ρ2 − 8

√
3 − 1

253
√
3
ρ4 + . . . .

Since all our random variables Nρ are integer valued, the first and second factorial

moments yield the asymptotics for probabilities of the events Nρ = 1 and Nρ ≥ 2, as

follows.

Corollary 1.3. As ρ → 0 we have the following asymptotic formulas for probabilities

to have exactly one point:

P
(N c

ρ = 1
) = 1

2
√
3
ρ2 + O

(
ρ4
)
,

P
(Nmin

ρ = 1
) = P

(Nmax
ρ = 1

) = 1

8
√
3
ρ2 + O

(
ρ4
)
,

P
(N e

ρ = 1
) = 1

4
√
3
ρ2 + O

(
ρ4
)
,

P
(N saddle

ρ = 1
) = 1

4
√
3
ρ2 + O

(
ρ4
)
.

(10)

For probabilities to have at least two points we have

P
(N c

ρ ≥ 2
) = O

(
ρ4
)
,

P
(Nmin

ρ ≥ 2
) = P

(Nmax
ρ ≥ 2

) = O
(
ρ7 log(1/ρ)

)
,

P
(N saddle

ρ ≥ 2
) = O

(
ρ7 log(1/ρ)

)
,

P
(Nmin

ρ ≥ 1,Nmax
ρ ≥ 1

) = O
(
ρ12

)
(11)

Finally, for the probability to have three points we have

P
(N c

ρ ≥ 3
) = O

(
ρ7 log(1/ρ)

)
. (12)

�

Proof. The proof is straightforward. For the sake of notational convenience we write

N = N c
ρ . The expectation and the second factorial moment could be written as series

E [N ] = P(N = 1)+ 2P(N = 2)+ 3P(N = 3)+ . . .

E [N(N − 1)] = 2P(N = 2)+ 6P(N = 3)+ 12P(N = 4)+ . . .
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Comparing the coefficients in front of P(N = k) we see that if the second moment is

o-small of the expectation, then the expectation is dominated by P(N = 1). In this case

P(N = 1) has the same leading term as the expectation and the error term is of the

same order as the second moment. This, combined with the results of Proposition 1.1,

proves formulas (10). The estimates (11) are obtained by applying Markov inequality to

the results of Theorem 1.2. Finally, to prove (12), we notice that the event N c ≥ 3 is

majorized by N e ≥ 2 or N saddle ≥ 2. �

The third factorial moment should be dominated by the event N = 3, which, by

(12), is O(ρ7 log(1/ρ)). This gives a strong evidence that

E [N(N − 1)(N − 2)] = o
(
ρ4
)
.

Assuming that, this is indeed true, we can repeat the argument above and compare the

coefficients in the second and third factorial moments and show that

P(N = 2) = ρ4/263
√
3 + o

(
ρ4
)
.

1.3 Outline of the proofs

The proofs of Proposition 1.1 and Theorem 1.2 are based on the Kac-Rice formula applied

to the gradient of �. The Kac-Rice formula is a standard tool for studying the expected

number of zeros of a random field (see e.g., [1, Theorem 11.2.1] or [2, Theorem 6.8]) and its

higher moments by expressing the n-th (factorial) moment in terms of an n-dimensional

integral. In general, under some non-degeneracy conditions on the given random field,

for every n ≥ 1 the factorial moments are given by:

E
[N c

ρ

(N c
ρ − 1

) · · · (N c
ρ − (n− 1)

)] =
∫

· · ·
∫

B(ρ)×···×B(ρ)
Kn(z) dz, (13)

where z = (z1, . . . zn) ∈ B(ρ)× · · · × B(ρ) ⊂ R
2n, and Kn is the n-point correlation function

defined as the conditional Gaussian expectation

Kn(z) = φ(∇�(z1),...,∇�(zn))(0, . . . , 0) · E

[
n∏
i=1

|detH�(zi)|
∣∣∇�(z1) = · · · = ∇�(zn) = 0

]
,

where φ(∇�(z1),...,∇�(zn))(0, . . . , 0) is the density function of the Gaussian vector

(∇�(z1), . . . ,∇�(zn))
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evaluated at (0, . . . , 0), and H�(zi) is the Hessian matrix of � at zi. The Kac-Rice formula

in (13) holds under the condition that the Gaussian vector (∇�(z1), . . . ,∇�(z1)) is non

degenerate.

Forn = 1 the computation ofK1 is straightforward; it is essentially the sameas in

[4]. We give it below since demonstrates the use of the Kac-Rice formula. The case n = 2

is more involved and the asymptotics of K2(z1, z2) as z2 → z1 (inducing on the second

factorial moment) was entirely unexpected. Based on the above computer simulations

one would expect for the critical points repel, that is as z2 → z1, K2(z1, z2) → 0. That

would have indicated that the second factorial moment is o(ρ4), with plausible true

order ρ5 of decay. To our surprise, a precise analysis of the relevant Gaussian integrals

have shown thatK2 does not vanish on the diagonal; it has a finite, non-zero limit. Hence

the second factorial moment for small ρ behaves like a constant times the square of the

area of B(ρ), that is a constant times ρ4.

It is theoretically possible to compute the behaviour of the higher correlation

functions Kn near the diagonal that is when zi → zj for i �= j, but seems extremely

technically demanding. On the other hand, it is easy to believe, that Kn should stay

bounded. Considering it as a given and using the same argument as in the proof of

Corollary 1.3, we obtain the following conjecture.

Conjecture 1.4. For n > 2 and ρ → 0 we have the following estimate of the factorial

moment

E
[N c

ρ

(N c
ρ − 1

) · · · (N c
ρ − (n− 1)

)] = O
(
ρ2n

)

and, correspondingly, on the probability to have exactly n points in a small ball

P
(N c

ρ = n
) = O

(
ρ2n

)
. �

Be believe that this estimate holds, but we know that it is not sharp since already

for n = 3 we have P(N c
ρ = 3) = O(ρ7 log(1/ρ)) = o(ρ6) (see (12)).

2 Expected Number of Critical Points

2.1 On the Kac-Rice formula for computing the expected number of critical points

In this section,we apply Kac-Rice formula to compute the expected value ofN c
ρ . Counting

the critical points of � in the ball B(ρ) is equivalent to counting the zeros of the map
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B(ρ) → R
2 given by z → ∇�(z). One defines the zero density K1 : B(ρ) → R of � as

K1(z) = φ∇�(z)(0, 0) · E[|detH�(z)|
∣∣∇�(z) = 0],

where φ∇�(z) is the Gaussian probability density of two-dimensional vector ∇�(x) ∈ R
2

evaluated at (0, 0), and H�(z) is the Hessian matrix of � at z. By the Kac-Rice formula,

if ∇�(z) is nonsingular for all z ∈ B(ρ), then

E[N c
ρ ] =

∫
B(ρ)

K1(z)dz. (14)

2.2 Proof of Proposition 1.1

We first observe that in our case the zero density K1 is independent of z because � is

isotropic; hence the Kac-Rice formula (14) states that,

E[N c
ρ ] = πρ2K1. (15)

Moreover, as we are dealing with a smooth Gaussian field, it is possible to write

an analytic expressions for K1 in terms of the covariance function ψ and its deriva-

tives; to derive such analytic expression we evaluate the covariance matrix 
 of the

5-dimensional centred jointly Gaussian vector

(∇�(z),∇2�(z))

where ∇2�(z) is the vectorized Hessian evaluated at z, that is a vector

(∂2z1,z1�(z), ∂
2
z1,z2

�(z), ∂2z2,z2�(z)).

The covariance matrix 
 of (∇�(z),∇2�(z)) is evaluated in Appendix B.1 and has the

form


 =
(

A B

Bt C

)
,

where,

A =
(

1
2 0

0 1
2

)
, B = 0, C =

⎛
⎜⎜⎝

3
8 0 1

8

0 1
8 0

1
8 0 3

8

⎞
⎟⎟⎠. (16)
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12 D. Beliaev et al.

From A we immediately obtain the probability density of the two-dimensional vector

∇�(z) evaluated at (0, 0):

φ∇�(z)(0, 0) = 1

2π
√
1/4

= 1

π
, (17)

in addition, since the first and the second order derivatives of � are independent at

every fixed point z ∈ R
2, we have that

E[|detH�(z)|
∣∣∇�(z) = 0] = E[|detH�(z)|].

From the covariance matrix C of ∇2�(z) in (16) we immediately see that

E[|detH�(z)|] = 1

8
E
[|Y1Y3 − Y2

2 |], (18)

where Y = (Y1,Y2,Y3) is a centred jointly Gaussian random vector with covariance

matrix

C1 =

⎛
⎜⎜⎝

3 0 1

0 1 0

1 0 3

⎞
⎟⎟⎠.

To evaluate (18) we introduce the transformation W1 = Y1, W2 = Y2, W3 = Y1 + Y3, and

we write E[|Y1Y3 − Y2
2 |] in terms of a conditional expectation as follows

E
[|Y1Y3 − Y2

2 |] = EW3

[
E
[|W1W3 −W2

1 −W2
2 |∣∣W3 = t

] ]
; (19)

to evaluate the conditional expectation in (19) we follow the argument in the proof of [4,

Proposition 1.1], that is we note that

E[|W1W3 −W2
1 −W2

2 |∣∣W3 = t] = E
[ ∣∣W1 t −W2

1 −W2
2

∣∣∣∣W3 = t
]

= E
[∣∣(Z1 + t/2) t − (Z1 + t/2)2 − Z2

2

∣∣]
= E

[∣∣−Z2
1 − Z2

2 + t2/4
∣∣] = E

[∣∣∣∣−X + t2

4

∣∣∣∣
]
,

where Z1,Z2 are independent standard Gaussian and X is a χ-squared random variable

with density

fX (x) = 1

2
e− x

2 , x > 0.
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Two Point Function for Critical Points 13

It follows that

E

[∣∣∣∣ t24 − X

∣∣∣∣
]

= −2 + 4e− t2
8 + t2

4
,

and

E[|Y1Y3 − Y2
2 |] = 1

4
√
π

∫
R

e− t2
16

(
−2 + 4e− t2

8 + t2

4

)
dt = 22

√
3
. (20)

The statement follows combining (15), (17), (20), and observing that

E[N c
ρ (�)] = πρ2 · 1

π
· 1
8

22

√
3

= 1

2
√
3

· ρ2.

3 Second Factorial Moment

3.1 On the Kac-Rice formula for computing the second factorial moment of the number of

critical points

Wewill find an explicit expression for the 2-point correlation functionK2 : B(ρ)×B(ρ) →
R, defined as the conditional Gaussian expectation

K2(z,w) = φ(∇�(z),∇�(w))(0, 0) · E
[|detH�(z)| · |detH�(w)|

∣∣∇�(z) = ∇�(w) = 0
]
,

in terms of the covariance function ψ and its derivatives. Finding such an expression

involves studying the centred Gaussian vector

(∇�(z),∇�(w),∇2�(z),∇2�(w)
)

(21)

with covariance matrix 
(z,w), z,w ∈ B(ρ). It is known [2, Theorem 6.9] that, if for

all z �= w the Gaussian distribution of (∇�(z),∇�(w)) is non-degenerate, the second

factorial moment of the number of critical points in B(ρ) can be expressed as

E
[N c

ρ

(N c
ρ − 1

)] =
∫∫

B(ρ)×B(ρ)
K2(z,w) dz dw. (22)

We note that K2 is everywhere nonnegative.

3.2 Proof of Theorem 1.2

In order to study the asymptotic behaviour of the second factorialmoment of the number

of critical points in B(ρ), as the radius ρ of the disk goes to zero, we need to study the
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14 D. Beliaev et al.

centred Gaussian random vector (21). Its covariance matrix 
 = 
(z,w) is of the form


 =
(

A B

Bt C

)
,

where A = A(z,w) is the covariance matrix of the gradients (∇�(z),∇�(w)), C = C(z,w)

is the covariance matrix of the second order derivatives (∇2�(z),∇2�(w)) and B =
B(z,w) is the covariance matrix of the first and second order derivatives.

The function � is isotropic, hence, the critical point process is also invariant

w.r.t. translations and rotations. This means that its 2-point function K2(z,w) depends

on |z − w| only (this is not true for covariance matrix 
); by the standard abuse of

notation we write

K2(z,w) = K2(|z −w|). (23)

We will compute K2(z,w) for z = (0, 0) and w = (0, r), which, thanks to the by-product

(23) of the isotropic property of �, this will give us K2(r).

In Appendix B.2 we evaluate the entries of 
(z,w) with z and w as above, and

in Appendix B.3 we evaluate the covariance matrix � = �(z,w) of (∇2�(z),∇2�(w))

conditioned on ∇�(z) = ∇�(w) = 0, that is

� = C − BtA−1B.

From now on we will work only with 
(r) and �(r) which we define as 
(z,w) and

�(z,w) with z = (0, 0) and w = (0, r).

As we discussed above, the two-point function is given by

K2(r) = 1

(2π)2
√
det(A(r))

×
∫

R6

∣∣ζ1ζ3 − ζ 22

∣∣ · ∣∣ζ4ζ6 − ζ 25

∣∣ 1

(2π)3
1√

det(�(r))
exp

{
−1

2
ζ t�−1(r)ζ

}
dζ ,

(24)

where ζ = (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) is a vector inR
6. Indeed, the density of (∇�(0, 0),∇�(0, r)) at

zero is given by (2π)−2(det(A(r)))−1/2, and the integral gives the expectation of |detH�(z)|·
|detH�(w)| with respect to the Gaussian measure of (∇2�(z),∇2�2(w)) conditioned on

∇�(z) = ∇�(w) = 0, that is, having covariance �(r).

Our aim is to study the asymptotic behaviour of the 2-point correlation function

K2 in the vicinity of r = 0.
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Two Point Function for Critical Points 15

For every strictly positive r,�(r) is symmetric, hence wemay diagonalize it with

an orthogonal P(r):

�(r) = P−1(r)�(r)P(r) = Pt(r)�(r)P(r), (25)

where the matrix �(r) is diagonal, with eigenvalues λi(r), i = 1, . . . , 6, and P(r) is the

orthogonal matrix with row vectors the normalized eigenvectors of �(r). The analytic

expressions of the eigenvalues and eigenvectors of �(r), r > 0, are computed in Lemma

A.1 and Lemma A.3 respectively. In Lemma A.2 and Lemma A.4 we compute their Taylor

expansion around r = 0. We prove these lemmas with the aid of Mathematica since the

calculations are technically demanding. We stress that all the computations performed

with Mathematica are symbolic.

Equation (25) implies that we can write

1√
det(�(r))

exp
{

− 1

2
ζ t�−1(r)ζ

}

= 1√∏6
i=1 λi(r)

exp
{

− 1

2
ζ tP−1(r)�−1(r)P(r)ζ

}

= 1√∏6
i=1 λi(r)

exp
{

− 1

2
(�−1/2(r)P(r)ζ )t(�−1/2(r)P(r)ζ )

}
.

(26)

This suggests to introduce a new variable ξ = �−1/2(r)P(r)ζ . Clearly, we can

express ζ in terms of ξ as

ζ = P−1(r)�1/2(r)ξ = Pt(r)�1/2(r)ξ (27)

With this change of variables

1√
det(�(r))

exp
{

− 1

2
ζ t�−1(r)ζ

}
dζ = e−|ξ |2/2dξ .

Using (27), we can write components ζi as

ζi =
6∑
j=1

(Q(r))ij
√
λj(r) ξj =

6∑
j=1

qij(r)
√
λj(r) ξj,

where the qij(r) are the elements of Q(r) = P−1(r) = Pt(r). The columns of Q form an

orthonormal basis of the eigenvectors of �(r). With this change of variables we can
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16 D. Beliaev et al.

rewrite the two quadratic forms ζ1ζ3 − ζ 22 and ζ4ζ6 − ζ 25 in (24) as

ζ1ζ3 − ζ 22 =
⎛
⎝ 6∑

j=1

q1j(r)
√
λj(r) ξj

⎞
⎠
⎛
⎝ 6∑

j=1

q3j(r)
√
λj(r) ξj

⎞
⎠ −

⎛
⎝ 6∑

j=1

q2j(r)
√
λj(r) ξj

⎞
⎠

2

,

ζ4ζ6 − ζ 25 =
⎛
⎝ 6∑

j=1

q4j(r)
√
λj(r) ξj

⎞
⎠
⎛
⎝ 6∑

j=1

q6j(r)
√
λj(r) ξj

⎞
⎠ −

⎛
⎝ 6∑

j=1

q5j(r)
√
λj(r) ξj

⎞
⎠

2

.

Summing it all up, the 2-point correlation function K2 in (24) in ξ coordinates becomes

K2(r) = 1

(2π)5
√
det(A(r))

∫
R6

|ζ1ζ3 − ζ 22 | · |ζ4ζ6 − ζ 25 | exp
{

− 1

2

6∑
i=1

ξ 2i

}
dξ (28)

where ζ1ζ3 − ζ 22 and ζ4ζ6 − ζ 25 are functions of ξi as described above.

To obtain the asymptotic behaviour around r = 0 of the integral in (28), we

Taylor expand around the origin the entries qij of the matrix Q and eigenvalues λj.

Such Taylor expansions up to O(r4) are given by equations (A3) and (A4). Combining

these expansions and noting that the first two factors in the integrand are homogeneous

polynomials of degree 2 in terms of ξ we obtain the following expansion:

[∑
j

q1j(r)
√
λj(r) ξj

∑
j

q3j(r)
√
λj(r) ξj −

(∑
j

q2j(r)
√
λj(r) ξj

)2]

×
[∑

j

q4j(r)
√
λj(r) ξj

∑
j

q6j(r)
√
λj(r) ξj −

(∑
j

q5j(r)
√
λj(r) ξj

)2]

= − 1

273
ξ 24 ξ

2
6 r

2 + (1 + ||ξ ||4) O(r4),

and then

K2(r) = 1

(2π)5
√
det(A(r))

[
r2

273

∫
R6
ξ 24 ξ

2
6 × exp

{
−1

2

6∑
i=1

ξ 2i

}
dξ + O(r4)

]
. (29)

In the Gaussian integral variables separate and it is a product of standard one-

dimensional integrals. Each of them is equal to
√
2π and the entire integral is (2π)3.

Matrix A has a simple block structure and it is easy to compute its determinant. Explicit

computation in Appendix B.2 (see equation (B4)) gives

det(A) = 3r4

28
+ O(r6).
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Two Point Function for Critical Points 17

Combining this asymptotic with (29), we finally obtain that, as r → 0,

K2(r) = 1

253
√
3π2

+ O(r2),

and, in view of (22), as ρ → 0,

E[N c
ρ (N c

ρ − 1)] = 1

253
√
3π2

π2ρ4 + O(ρ6) = 1

253
√
3
ρ4 + O(ρ6).

To prove the second part of Theorem 1.2 we need to evaluate the two-point

correlation function K2 modified for the respective types of critical points. The modified

function K2 has the same expression (24) with the integration over a proper subset of

R
6, that is the ζ with the corresponding critical points of the prescribed types.

To be more precise, let us define two Hessians at points z and w (already

conditioned to be critical points). In terms of ζi these Hessians are given by

H1 =
(
ζ1 ζ2

ζ2 ζ3

)
, and H2 =

(
ζ4 ζ5

ζ5 ζ6

)

The characteristic polynomials for these matrices are

x2 + b1x + c1 = x2 − (ζ1 + ζ3)x + ζ1ζ3 − ζ 22

and

x2 + b2x + c2 = x2 − (ζ4 + ζ6)x + ζ4ζ6 − ζ 25 .

The particular type of a critical point depends on the eigenvalues of its Hessian: they are

both negative for the local maxima, positive for the local minima, and of different signs

for the saddles. We may reformulate these dependencies in terms of the coefficients

bi = −TrHi and ci = det(Hi): a critical point with Hessian Hi is a minimum if ci > 0 and

bi < 0, a maximum if ci > 0 and bi > 0, and a saddle if ci < 0 (we may ignore the special

probability 0 cases when one of the eigenvalues vanishes).

As before, we rewrite ζi in terms of ξi. This gives the coefficients of the

polynomials as functions of ξi and r. Expanding in powers of r we get

b1 = − ξ6√
3

+
(

ξ6

144
√
3

− ξ5

96
√
2

)
r2 + O

(
r3
) = b1,0 + b1,2r

2 + O
(
r3
)

c1 = − ξ4ξ6

8
√
6
r + −9ξ 21 − 9ξ 24 + 2

√
6ξ6ξ5 + 4ξ 26

2732
r2 + O

(
r3
) = c1,1r + c1,2r

2 + O
(
r3
)
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18 D. Beliaev et al.

b2 = − ξ6√
3

+
(

ξ6

144
√
3

− ξ5

96
√
2

)
r2 + O(r3) = b2,0 + b2,2r

2 + O
(
r3
)

c2 = ξ4ξ6

8
√
6
r + −9ξ 21 − 9ξ 24 + 2

√
6ξ6ξ5 + 4ξ 26

2732
r2 + O

(
r3
) = c2,1r + c2,2r

2 + O
(
r3
)
. (30)

We observe the following: all of the coefficients bi,j are linear functions of ξ , and

all of the coefficients ci,j are quadratic forms. We also notice that

b1,0 = b2,0, b1,2 = b2,2, c1,1 = −c2,1, c1,2 = c2,2.

Since all the expressions we deal with are homogeneous functions of various

degrees, it is natural to work in spherical coordinates. We introduce si = ξi/|ξ | and
rescale bi by |ξ | and ci by |ξ |2. Abusing notation we denote the rescaled coefficients bi,

bi,j, ci, and ci,j that are now functions of si instead of ξi by the same letters; there is

no confusion since from now on all expressions will be in terms of |ξ | ∈ (0,∞) and

s = (s1, . . . , s6) ∈ S5. With this notation, the formula (28) for K2 becomes

K2(r) = 1

(2π)5
√
det(A(r))

∫
R6

|ξ |4|c1c2|e−|ξ |2/2dξ

= 1

(2π)5
√
det(A(r))

∫ ∞

0
|ξ |9e−|ξ |2/2d|ξ |

∫
S5

|c1(s)c2(s)|ds

= 12

π5
√
det(A(r))

∫
S5

|c1(s)c2(s)|ds,

(31)

where ds is the spherical volume element on the unit sphere S5, and we evaluated the

standard Gaussian integral

∫ ∞

0
|ξ |9e−|ξ |2/2d|ξ | = 27 · 3.

Minimum–minimum two point function.

The two-point correlation functionKmin,min
2 (r) corresponding to the local minima

is given by (31) except that we replace the domain of the integration S5, by

Smin,min = {s ∈ S5 : c1 > 0, c2 > 0,b1 < 0,b2 < 0},

the set of s such that both Hessians correspond to local minima. If |s4s6| > Cr for suffi-

ciently large C, then c1 and c2 are of opposite signs (for the rest of this section we use C
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Two Point Function for Critical Points 19

to denote all absolute constants). This implies that Smin,min is a subset of {s : |s4s6| < Cr}
for some C sufficiently big. It is easy to see that on this set |ci| = O(r2), thus

∫
Smin,min

|c1(s)c2(s)|ds ≤
∫

{s:|s4s6|<Cr}
|c1(s)c2(s)|ds ≤ O(r4)

∫
{s:|s4s6|<Cr}

ds = O(r5 log(1/r)).

That yields Kmin,min
2 (r) = O(r3 log(1/r)) via (31), where r2 cancelled out with√

det(A). Integrating this estimate over B(ρ)× B(ρ) we obtain an estimate of the second

factorial moment:

E
[Nmin

ρ (Nmin
ρ − 1)

] = O(ρ7 log(1/ρ)).

The other estimate of (5) follows from symmetry considerations.

Minimum–maximum two point function.

In the similar way, we have to estimate the integral over Smin,max , the set where

one point is a minimum and the other is a maximum. This set is given by conditions

that both ci are positive and b1 and b2 are of different signs. First, the same argument

as above forces |s4s6| < Cr for some large constant C. If |s6| > Cr2 for a large constant

C, then the leading terms in the formulas (30) for bi dominate and b1 and b2 are of the

same sign, contradicting our assumption. Hence this implies that |s6| < Cr2, and under

this assumption both bi are of the form

− s6√
3

− s5r2

96
√
2

+ O(r3).

Again, since bi should be of different signs, it forces the term corresponding to O(r3) to

dominate, that is

L(s5, s5) =
∣∣∣∣− s6√

3
− s5r2

96
√
2

∣∣∣∣ ≤ Cr3,

for some big constant C. Notice that this condition is stronger than the previous

condition that |s6| < Cr2.

Substituting the estimate |s6| < Cr2 into the formulas (30) for c1 and c2 we see

that they both are equal to

− 9

2732
(s21 + s24)r

2 + O(r3).
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20 D. Beliaev et al.

It then follows that (s21 + s24) is bounded by Cr (for large C), as otherwise both c1 and c2

are negative; also under this condition both ci are O(r3). Combining all of this we get the

estimate

∫
Smin,max

|c1(s)c2(s)|ds ≤
∫

(s21+s24)<Cr
L(s5,s5)<Cr

3

|c1(s)c2(s)|ds = O(r6)
∫

(s21+s24)<Cr
L(s5,s5)<Cr

3

ds = O(r6)O(r4) = O
(
r10

)
,

and substituting this into (31) and integrating K2 the Kac-Rice formula yields

E
[Nmin

ρ Nmax
ρ

] = O
(
ρ12

)
.

Saddle–saddle and extremum–extremum two point functions.

For two extrema or two saddle points both ci are forced to be of the same sign.

The same argument as for the minimum–minimum case yields

E
[N saddle

ρ (N saddle
ρ − 1)

] = O(ρ7 log(1/ρ)),

and

E
[N e

ρ (N e
ρ − 1)

] = O(ρ7 log(1/ρ)).

Extremum–saddle two point function.

Finally we notice that N = N e + N saddle, and

N (N − 1) = N e(N e − 1)+ N saddle(N saddle − 1)+ 2N eN saddle.

Combining this formula with previous estimates we obtain

E
[N e

ρN saddle
ρ

] = 1

2
E
[Nρ(Nρ − 1)

] + O(ρ7 log(1/ρ)) = 1

26 3
√
3
ρ4 + O

(
ρ6
)
.

This completes the proof of Theorem 1.2.
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Appendix A: Eigenvalue and eigenvectors of �(r), r > 0

We introduce the notation

�(r) =
(
�1(r) �2(r)

�2(r) �1(r)

)

where �1 and �2 are 3 × 3 symmetric matrices, and define ai, i = 1, . . .8 so that

�1(r) =

⎛
⎜⎜⎝

1
3 + a1(r) 0 a4(r)

0 a2(r) 0

a4(r) 0 a3(r)

⎞
⎟⎟⎠ , �2(r) =

⎛
⎜⎜⎝

1
3 + a5(r) 0 a8(r)

0 a6(r) 0

a8(r) 0 a7(r)

⎞
⎟⎟⎠. (A1)

We compute now the eigenvalues and eigenvectors of the matrix �(r), r > 0. We

introduce the following notation:

A+
1 (r) = a1(r)+ a5(r)+ 2

3
, A−

1 (r) = a1(r)− a5(r),

A±
2 (r) = a2(r)± a6(r),

A±
3 (r) = a3(r)± a7(r),

A±
4 (r) = a4(r)± a8(r);

with ai(r) defined above.

Lemma A.1. For every r > 0, the eigenvalues of the matrix �(r) have the following

explicit expressions:

λ1(r) = A−
2 (r),

λ2(r) = A+
2 (r),

λ3(r) = 1

2

[
A−

1 (r)+ A−
3 (r)−

√
(A−

1 (r)− A−
3 (r))2 + 4A−

4 (r)2
]
,

λ4(r) = 1

2

[
A−

1 (r)+ A−
3 (r)+

√
(A−

1 (r)− A−
3 (r))2 + 4A−

4 (r)2
]
,
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λ5(r) = 1

2

[
A+

1 (r)+ A+
3 (r)−

√
(A+

1 (r)− A+
3 (r))2 + 4A+

4 (r)2
]
,

λ6(r) = 1

2

[
A+

1 (r)+ A+
3 (r)+

√
(A+

1 (r)− A+
3 (r))2 + 4A+

4 (r)2
]
. (A2)

�

Proof. We can compute explicitly the roots of

det(�(r)− λI) = det

(
�1(r)− λI �2(r)

�2(r) �1(r)− λI

)
,

by observing that since �i are square matrices, we have the following identity for the

determinant of a block matrix

det

(
�1(r)− λI �2(r)

�2(r) �1(r)− λI

)
= det(�1(r)− λI −�2(r))det(�1(r)− λI +�2(r)).

The matrices �1(r)− λI ±�2(r) could be written in terms of A±
i as

�1(r)− λI ±�2(r) =

⎛
⎜⎜⎝

A±
1 (r)− λ 0 A±

4 (r)

0 A±
2 (r)− λ 0

A±
4 (r) 0 A±

3 (r)− λ

⎞
⎟⎟⎠.

Since these matrices have many elements equal to zero, their determinants are particu-

larly simple and could be factorized as

det(�1(r)− λI ±�2(r)) = (A±
2 (r)− λ)[λ2 − λ(A±

1 (r)+ A±
3 (r))+ A±

1 (r)A
±
3 (r)− A±

4 (r)
2].

The last factor is quadratic in terms of λ and the roots could be found explicitly. They

are equal to λ5 and λ6 in the “+” case and λ3 and λ4 in the “−” case. �

This lemma expresses the eigenvalues of � in terms of A±
i which, in their term,

are expressed in terms of ai. In (B5) we will compute the asymptotic behaviour of ai.

Substituting these expansions into explicit formulas (using Mathematica)(A2) we get

expansions for λi and
√
λi.
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Lemma A.2. The following Taylor expansions hold around the origin

λ1(r) = r2

26
− 7

214325
r6 + O(r8),

√
λ1(r) = r

4
√
2

+ O(r5)

λ2(r) = r4

21032
− r6

213335
+ O(r8),

√
λ2(r) = r2

253
+ O(r4)

λ3(r) = O(r8),
√
λ3(r) = O(r4)

λ4(r) = r2

25
+ 37

213325
r6 + O(r8),

√
λ4(r) = r

4
√
2

+ O(r5)

λ5(r) = r4

21032
+ 7

214335
r6 + O(r8),

√
λ5(r) = r2

253
+ O(r4)

λ6(r) = 2

3
− 5

2333
r2 + 191

21035
r4 − 11 · 241

214375
r6 + O(r8)

√
λ6(r) =

√
2√
3

− 5r2

2432
√
6

+ O(r4). �
(A3)

After obtaining the explicit formulas for eigenvalues we, again, use computer

algebra to find explicit formulas for eigenvectors of �.

Lemma A.3. For every r > 0, the following vectors vi(r) are the eigenvectors of the

matrix �(r) corresponding to λi(r)

v1(r) = (0,−1, 0, 0, 1, 0),

v2(r) = (0, 1, 0, 0, 1, 0),

v3(r) = (v31(r), 0,−1,−v31(r), 0, 1),

v4(r) = (v41(r), 0,−1,−v41(r), 0, 1),

v5(r) = (−v51(r), 0, 1,−v51(r), 0, 1),

v6(r) = (−v61(r), 0, 1,−v61(r), 0, 1).

where

v31(r) = A−
3 (r)− A−

1 (r)+ √[A−
3 (r)− A−

1 (r)]2 + 4A−
4 (r)2

2A−
4 (r)

,

v41(r) = A−
3 (r)− A−

1 (r)− √[A−
3 (r)− A−

1 (r)]2 + 4A−
4 (r)2

2A−
4 (r)

,

v51(r) = A+
3 (r)− A+

1 (r)+ √[A+
3 (r)− A+

1 (r)]2 + 4A+
4 (r)2

2A+
4 (r)

,

v61(r) = A+
3 (r)− A+

1 (r)− √[A+
3 (r)− A+

1 (r)]2 + 4A+
4 (r)2

2A+
4 (r)

. �
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The elements of vi are explicit algebraic expressions in terms of ai that are

defined by (A1). Normalizing the vectors and using expansions of ai (B5) we obtain the

following expansion for the matrix Q

Lemma A.4. The orthogonal matrix Q(r) of normalized eigenvectors of �(r) is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1

2

1

2
0

1√
2

− 1√
2

1√
2

0 0 0 0

0 0 −1

2
−1

2

1√
2

0

0 0
1

2
−1

2
0

1√
2

1√
2

1√
2

0 0 0 0

0 0
1

2

1

2

1√
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+r2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1

48
− 1

48
− 1

253
√
2

0

0 0 0 0 0 0

0 0
1

48
− 1

48
0

1

253
√
2

0 0
1

48

1

48
− 1

253
√
2

0

0 0 0 0 0 0

0 0 − 1

48

1

48
0

1

253
√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O(r4)

(A4)

�

Appendix B: Expansions of covariance matrices

B.1: Covariance matrix of (∇�(z),∇2�(z))

In this section we compute the covariance matrix
 of the 5-dimensional centred Gauss-

ian vector which combines the gradient and the elements of the Hessian evaluated at z.

By the translation invariance of�,
 does not depend on the point z ∈ R
2. It is convenient

to write the covariance matrix in blocks


 =
(

A B

Bt C

)
,
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where

A = E[∇�(z)t · ∇�(z)], B = E[∇�(z)t · ∇2�(z)], C = E[∇2�(z)t · ∇2�(z)].

It is a standard fact that covariances of the derivative are given by derivatives of the

covariance kernel.

The computations ofA, B and C are quite lengthy, but they do not require sophis-

ticated arguments other than iterative differentiation of Bessel functions. For example,

to compute A we first have to compute expressions

E[∂zi�(z) ∂wj
�(w)] = ∂2

∂zi∂wj

ψ(z −w) = ∂2

∂zi∂wj

J0(|z −w|)

where z = (z1, z2) andw = (w1,w2) are two points in R
2. The elements of A are obtained

by passing to the limit w → z.

To give an example of such computation we give details of the computation of

(A)1,1. For this we first use the chain rule to obtain

∂2

∂z1∂w1

J0(|z −w|) = J ′′
0 (|z −w|)

(
∂

∂z1
|z −w|

) (
∂

∂w1

|z −w|
)

+ J ′
0(|z −w|) ∂2

∂z1∂w1

|z −w|.

The zeroth Bessel function could be defined by power series

J0(x) =
∞∑
n=0

(−1)n

(n!)2
(x
2

)2n

.

From this expansion we can immediately get the expansions for J ′
0 and J

′′
0 and show that

lim
w→z

∂2

∂z1∂w1

J0(|z −w|) = 1

2
.

In the same way we compute the other entries of A and obtain

A =
(

1
2 0

0 1
2

)
. (B1)

Since the first and second order derivatives of any stationary field are independent at

every fixed point z ∈ R
2, we immediately have B = 0. With analogous calculations, but

using higher order derivatives of J0 we compute the entries of C and find that

C =

⎛
⎜⎜⎝

3
8 0 1

8

0 1
8 0

1
8 0 3

8

⎞
⎟⎟⎠. (B2)
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B.2: Covariance matrix of (∇�(z),∇�(w),∇2�(z),∇2�(w))

We compute the covariance matrix 
(z,w) for the 10-dimensional Gaussian random

vector which combines the gradient and the elements of the Hessian evaluated at z,w:

(∇�(z),∇�(w),∇2�(z),∇2�(w)),

only for the case z = (0, 0) and w = (0, r). As explained in Section 3.2 this is sufficient

in order to evaluate K2(r) for all relevant r, thanks to the isotropic property of �. It is

convenient to write the matrix 
(z,w) in block form, that is


(z,w) = 
(r) =
(

A(z,w) B(z,w)

Bt(z,w) C(z,w)

)
.

The matrix A also has a natural block structure

A(z,w)|z=(0,0),w=(0,r) = A(r) =
(

A A(r)

A(r) A

)
,

where A is the same as in (B1), and A(r) turns out to be a diagonal matrix, we denote its

diagonal elements by αi(r)

A(r) =
(
α1(r) 0

0 α2(r)

)

The diagonal elements αi are found by differentiating the covariance kernel of �:

α1(r) = ∂2

∂z1∂w1

J0(|z −w|)
∣∣∣∣
z=(0,0),w=(0,r)

= −J ′
0(r)

1

r
,

α2(r) = ∂2

∂z2∂w2

J0(|z −w|)
∣∣∣∣
z=(0,0),w=(0,r)

= −J ′′
0 (r).

(B3)

Again, using the block structure of A we can write its determinant as

det(A(r)) =
(
α2
1(r)− 1

4

)(
α2
2(r)− 1

4

)
.

From the Taylor series for J0 one immediately gets

α1(r) = −J ′
0(r)

1

r
= 1

2
− 1

24
r2 + O(r4),

α2(r) = −J ′′
0 (r) = 1

2
− 3

24
r2 + O(r4)
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so that

det(A(r)) = 3r4

28
+ O(r6). (B4)

With analogous calculations we derive also the entries of the matrices B and C: we have

B(z,w)|z=(0,0),w=(0,r) = B(r) =
(

0 B(r)

−B(r) 0

)
,

where

B(r) =
(

0 β1(r) 0

β1(r) 0 β2(r)

)

and, in the sameway as before, we obtain explicit formulas in terms of J0 and expansions

at r = 0

β1(r) = −J ′′
0 (r)

1

r
+ J ′

0(r)
1

r2
= − r

8
+ r3

96
+ O(r5)

β2(r) = −J ′′′
0 (r) = −3r

8
+ 5r3

96
+ O(r5).

In the same way

C(z,w)|z=(0,0),w=(0,r) =
(

C C(r)

C(r) C

)
,

where C defined in (B2) and

C(r) =

⎛
⎜⎜⎝
γ1(r) 0 γ2(r)

0 γ2(r) 0

γ2(r) 0 γ3(r)

⎞
⎟⎟⎠,

with

γ1(r) = J ′′
0 (r)

3

r2
− J ′

0(r)
3

r3
= 3

8
− r2

32
+ O(r4),

γ2(r) = J ′′′
0 (r)

r
− J ′′

0 (r)
2

r2
+ J ′

0(r)
2

r3
= 1

8
− r2

32
+ O(r4),

γ3(r) = J ′′′′
0 (r) = 3

8
− 5r2

32
+ O(r4).
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B.3: Conditional covariance matrix

As explained before, the covariance matrix of the conditional vector

(∇2�(z),∇2�(w)|∇�(z) = ∇�(w) = 0)

is given by

�(r) = C(r)− B(r)tA(r)−1B(r) =
(
�1(r) �2(r)

�2(r) �1(r)

)

where �i are defined in (A1).

Since we already have explicit formulas for elements ofA, B, and Cwe can obtain

the following explicit formulas and expansions for ai that define �:

a1(r) = − 2β2
1 (r)

1 − 4α2
2(r)

+ 1

233
= − 13

2733
r2 − 151

21135
r4 − 1531

21537
r6 + O(r8),

a2(r) = − 2β2
1 (r)

1 − 4α2
1(r)

+ 1

23
= 1

27
r2 + 1

21132
r4 − 23

215335
r6 + O(r8),

a3(r) = − 2β2
2 (r)

1 − 4α2
2(r)

+ 3

23
= 1

27
r2 + 41

21133
r4 + 2617

215355
r6 + O(r8),

a4(r) = −2β1(r)β2(r)

1 − 4α2
2(r)

+ 1

23
= − 5

2732
r2 − 23

21134
r4 + 521

215365
r6 + O(r8),

a5(r) = γ1(r)− 4α2(r)β2
1 (r)

1 − 4α2
2(r)

− 1

3
= − 67

2733
r2 + 7 · 71

21135
r4 + 13 · 271

215375
r6 + O(r8),

a6(r) = γ2(r)− 4α1(r)β2
1 (r)

1 − 4α2
1(r)

= − 1

27
r2 + 1

21132
r4 + 19

215335
r6 + O(r8),

a7(r) = γ3(r)− 4α2(r)β2
2 (r)

1 − 4α2
2(r)

= − 1

27
r2 − 31

21133
r4 − 2621

215355
r6 + O(r8),

a8(r) = γ2(r)− 4α2(r)β1(r)β2(r)

1 − 4α2
2(r)

= 13

2732
r2 − 23

21134
r4 + 7

21536
r6 + O(r8).

(B5)
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