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ABSTRACT The design of a K-band radial leaky-wave antenna is presented for polarization diversity
applications. The antenna structure is constituted by an annular, radially periodic, and metallic strip grating
printed on top of a single-layer grounded dielectric slab. The integrated feeding system is defined by a 2× 2
array of planar slot sources for cylindrical surface-wave excitation. By the addition of the grating, the surface
wave is perturbed and enables cylindrical leaky-wave radiation by means of a fast n = −1 space harmonic,
whose behavior is characterized through a full-wave dispersive analysis. By proper phasing and spacing of
the four independent TM feeds, positioned close to the center of the annular grating and on the ground plane,
we demonstrate the possibility of radiating directive broadside beams offering linear, left- or right-handed
circularly polarized radiation, and sum and delta patterns. Thus, we propose an original solution to flexibly
control the polarization of a high-gain beam by means of a simple and low-cost feeding system, made by the
minimum number of integrated array sources. To accurately assess the antenna features and performance,
the role of a zeroth- and first-order cylindrical leaky waves propagating along the antenna aperture is also
discussed. The proposed antenna design may be of interest for direction-of-arrival estimation by means of
monopulse radars, as well as for a wide class of applications where flexible control of the polarization is
desired, such as satellite and terrestrial point-to-point communication systems and earth observation.

INDEX TERMS Leaky-wave antenna, surface wave, circular polarization, dual polarization, antenna arrays,
monopulse radar, remote sensing.

I. INTRODUCTION AND BACKGROUND
Modern radar and communication systems call for the
design of low-cost and low-profile antenna designs with
polarization-reconfigurability of the far-field pattern. The
most common solution to achieve this functionality consists
in the design of two-dimensional (2-D) arrays of microstrip
patches, properly excited by means of integrated feeding
networks [1]. As is well known, this class of antenna
can present design challenges, especially in the microwave
and millimeter-wave frequency regions, where radiation

The associate editor coordinating the review of this manuscript and
approving it for publication was Mengmeng Li.

efficiencies may become low due to unwanted surface-
wave (SW) excitations on the antenna aperture.

To obtain circular polarized (CP) far-field beam patterns,
for example, arrays of linearly polarized (LP) elements can
be considered [2], [3]. This can be composed of microstrip
patches or horn antennas, and should be arranged in a 5×5
(or more) array of square elements to achieve high directivity.
However, at microwave and millimeter-wave frequencies,
these conventional solutions can become very challenging to
design, manufacture, and integrate, possibly requiring bulky
and corporate feed systemswhich can also reduce the realized
antenna gain. In addition, SWfields can become problematic.
In this frame, due to their low-profile and planar nature,
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Fabry-Perot cavity antennas (FPCAs) [4] have been proposed
as a very good alternative to generate LP or CP pencil beams
with medium or high realized gain values, and numerous
solutions have been reported in the last few decades (see,
e.g., [5]–[10] and references therein).

An alternative solution to synthesize CP or LP beam pat-
terns by means of printed and low-cost structures can be
one-dimensional (1-D) and two-dimensional (2-D) leaky-
wave antennas (LWAs) [11]. Different designs have been
proposed in the last few decades offering CP radiation
[12]–[17]. They typically make use of single feeding
points and of suitably-designed unit cells, which can also
be arranged in a clever double-layer configuration to
achieve dual-polarized operation [18]. Other polarization-
diverse or reconfigurable antennas may also be of inter-
est that can offer sum and difference patterns for radar
and direction-of-arrival estimation. For example, monopulse
antennas can be designed using parabolic or lens-based con-
figurations, which can become very complicated, expensive,
and heavy [1]. Several alternatives have been proposed based
on radial-line slotted arrays [19], [20], planar microstrip
arrays [21], substrate integrated waveguide technology
[22], [23], FPCAs [24], holographic LWAs [25], and gap
waveguide technology [26].

An attractive simple and low-cost solution to synthesize
high-gain LP and CP beams as well as monopulse pat-
terns, with the same antenna structure, can be made possi-
ble by array-fed 2-D LWAs. This is proposed here through
the excitation of a fast space harmonic [11], achieved by
periodically perturbing the fundamental surface wave (SW)
supported by a grounded dielectric slab (GDS), and feeding
the antenna by introducing a small number of fully-integrated
phased sources, while expanding on the originally studied
in [27], [28], and [29] which mainly investigated single-
frequency beam steering at broadside.

In general, by loading the top layer of the employed GDS
by means of any sort of perturbation mechanism, the trans-
formation of the guided SW into a fast wave is made possible
such that power is leaked along the air-dielectric interface for
radiation. This can be accomplished by considering an annu-
lar arrangement of microstrip lines; i.e., a radially periodic
bull-eye LWA, with azimuthal symmetry, defining a metal-
lic strip grating (MSG) configuration [30]–[33]. Depending
on the source and on the operational frequency, 2-D planar
LWAs can enable radiation with directive frequency-scanning
patterns as well as broadside pencil beams.

On this basis, simple and efficient antenna feeding can be
made possible using an arrangement of slots in the ground
plane of the employed GDS for SW excitation. This is in
contrast to more conventional planar phased array design
approaches, which, instead, aim to suppress such slow,
guided-waves. When considering relatively high-dielectric
constant values, efficient TM SW excitation has been
shown by means of planar surface-wave launchers (SWLs)
[34], [35]. In particular, this SW source can act as a
printed magnetic dipole element and both directive and

non-directive SWLs have been proposed for the realization
of unidirectional and bi-directional TM SW field distribu-
tions [31], [36], [37], with an original 2 × 2 SWL array
reported in [27].

To generate a highly directional beam using an array
of such SW sources, the 2-D LWA has to be properly
designed to support a weakly-attenuated cylindrical leaky
wave (CLW) [38]; i.e., a traveling-wave having either no
azimuthal variation on the aperture (m = 0 modes) or with
some azimuthal φ dependence varying as sinφ or cosφ
(m = 1 modes). In both cases, the contribution to the aperture
field should be made dominant with respect to other guided
modes and to the space wave (see, e.g., [1, Ch. 7]). Depending
on the geometric symmetry enforced by the feeder, CLWs can
generate pencil or conical patterns in the far field [38]. For
instance, if an LP or CP broadside pencil beam is desired,
a single CLW of order m = 1 or two in-quadrature CLWs
of order m = 1 with a mutual azimuthal shift of π/2
are required, the latter resulting in a single CLW with an
azimuthal dependence of the kind e±jφ .

To achieve such a polarization reconfigurability of the
far-field beam pattern, we propose the design of an annular
bull-eye LWA fed by non-directive SWLs whilst consider-
ing 50-� coplanar waveguide transmission-line connectiv-
ity [31], [37]. More specifically, we report the complete
findings of an original 2 × 2 square arrangement of non-
directive SWLs [27] positioned at the origin of the ground
plane (see Fig. 1) with LW radiation by the printed MSG on
the top air-dielectric interface of the employed GDS.

FIGURE 1. Cross-sectional view of the proposed LWA. Broadside radiation
is possible at about fc as well as a two-sided conical-sector beam pattern
below and above fc [1, Ch. 7]. The 2× 2 antenna source arrangement in
the ground plane (see inset) can act as the planar feed for TM
cylindrical-wave excitation offering both LP and CP as well as sum and
difference patterns.

When the SWL elements for this feeding array are prop-
erly separated and phased, a polarization-reconfigurable 2-D
LWA can be realized offering LP, left- or right-handed circu-
larly polarized (LHCP or RHCP) radiation, as well as sum
and difference LP monopulse far-field patterns. Moreover,
when generally considering the frequency scanning charac-
teristics of the proposed 2-D LWA and the particular SWL
source implementation, as well as the defined magnitude
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and relative phase difference between SW elements, conical
beam patterns in the far-field that scan with frequency are
possible [33], [39] as well as two-sided conical-sector beam
patterns. To the best of the authors′ knowledge no similar
antenna structure, offering flexible control of the polarization
through a 2 × 2 arrangement of non-directional SWLs, has
been theoretically analyzed and experimentally verified.

These antenna characteristics are particularly suitable for
radar applications such as automotive and monopulse, as well
as next-generation indoor wireless communication systems,
which require the engineer to accommodate for multipath
environments and to remove the need for any transmitter and
receiver alignment. It is also of interest for applications ori-
ented to the Global Navigation Satellite System (GNSS), and
other satellite systems where polarization-dependent effects
(such as rain clutter and Faraday rotation) have to be corrected
and it can represent an attractive solution for earth observation
based on compact polarimetry [40].

This paper is organized as follows. In Sect. II the modal
analyses of the relevant SWs and LWs supported by the
structure are discussed considering a linearized version of the
radial aperture. Results are compared to ameasured prototype
considering a single SWL source. In Sects. III an IV, full-
wave simulations and experimental validations of a measured
planar LWA prototype are studied with the aforementioned
2 × 2 SWL square array where LP, CP and sum/difference
patterns are reported. Conclusions follow in Sect. V.

II. DISPERSION ANALYSIS AND ANTENNA
CHARACTERIZATION
Practical implementation of the polarization-diverse LWA
with an integrated array-feed system can be challenging at
microwave and millimeter-wave frequencies, especially a
design which ensures efficient SW excitation. As presented
here, a 2× 2 array of SW sources can represent a simple and
effective means to achieve higher-order cylindrical TM0 SW
excitation for LW radiation and polarization control of the
far-field pattern. Indeed, polarization diversity can be made
possible by properly tuning the relative magnitude and phase
between these planar integrated sources in the ground plane.

The SWLs considered here represent an arrangement of
magnetic dipole sources on the ground of a GDS made with
a high value for the relative dielectric constant (εr > 10),
and by substrates having thickness according to h

√
εr/λ0 ≈

1/4 [31], they excite a bound TM0 mode whilst operat-
ing above the TE1 mode cutoff frequency. Typically, under
these conditions more than 80% of the input power can be
coupled into the dominant TM0 SW mode of the slab for
radiation [27], [31]. Our reported array-fed, 2-D planar, LWA
design is illustrated in Fig. 1. The square arrangement of
SWLs in the ground plane, positioned at the origin is also
shown in the relevant inset. The four-port (i.e., 2 × 2) feeder
can excite a cylindrical SW perturbed by the top azimuthally
symmetric bull-eye MSG.

The distance between elements is sized considering the
phase constant βTM0 of the TM0 surface wave of the GDS.

The MSG, indeed, is not homogenizable and, thus, it does
not provide translational invariance. Therefore, since the four
SWLs are not placed exactly in the center, each of them
operates ‘‘seeing’’ aMSGnot exactly azimuthally symmetric.
However, by enforcing the condition da = λg/2, with λg =
2π/βTM0 one gets a mutual distance da between opposite
SWLs of 4.1 mm [27], which is further finely tuned to opti-
mize the 50-� input impedance matching. This distance is
small enough to keep the SWL array within the first annular
ring of the MSG, and to let it constitute a good discrete
approximation of a continuous, azimuthally directed, mag-
netic ring source concentric to the annular MSG.

A. DISPERSIVE ANALYSIS
To characterize the modal features of the open waveg-
uide, a dispersive analysis of the equivalent 1-D linearized
(lossless) structure, i.e., the metal strip grating over a
grounded dielectric slab (MSG-GDS), has been developed by
using the MoM approach in [41] and [42], as was previously
done for similar 2-D annular configurations in [30], [31],
[37], [43], and [44], where a detailed discussion on these
modeling aspects was provided considering both far- and
near-field regimes.

The modal spectrum propagating along the linearized
periodic structure can be divided into TM and TE modes,
each mode being characterized by a Floquet representation
in terms of an infinite number of space harmonics with
wavenumbers defined by kρn = β0 + 2πn

/
d − jα [11], d

being the period of the grating. Typically, the radial LWA
structure is optimized for radiation through the n = −1 space
harmonic [1, Ch. 7]. By properly designing the MSG, low
attenuation rates can be obtained and directive beam patterns
can be observed in the far-field (see, e.g., [31], [33], [37]).

The normalized dispersion curves of the LW phase and
attenuation constants, β−1 and α, versus frequency, for the
LWA structure considered here are reported in Fig. 2. The
substrate has permittivity εr = 10.2 and thickness h =
1.27mm (see Fig. 1). A further case, which stems by practical
tolerancing considerations for the relative dielectric constant
of the employed GDS, i.e. εr = 11.5, as for the similar LWA
structure (see Figs. 16 and 17 from [31]), is also consid-
ered. It can be observed that the n = −1 space-harmonic
phase constant for the considered LW mode increases almost
linearly with frequency, changing its sign passing through
broadside, i.e., β−1/k0 = 0, at an open stop-band frequency
value fc equal to about 21.5 GHz [20.3 GHz] for εr = 10.2
[for εr = 11.5]. This defines a proper LW (i.e., for negative
values of β−1/k0) and an improper LW (i.e., for the positive
ones) [1, Ch. 7].

Depending on the feed configuration and on the operating
frequencies, the CLW supported by the corresponding 2-D
LWA can generate a conical or conical-sector (two-sided)
pattern in the far-field, with the main beam scanning with the
frequency from backward endfire towards broadside (f < fc).
With an increase in frequency and such that |β−1| ≤ α

(i.e., at the beam splitting condition [45]), the conical beam
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coalesces into a single pencil beam radiating at broadside.
Then for a continued increase of the frequency, the beam
opens again (β−1 ≥ α) and the resulting conical or conical-
sector beam continues scanning from broadside to forward
endfire. This frequency-scanning concept for the two-sided
pattern is illustrated in Fig. 1.

We specifically propose here a highly directive broad-
side, polarization-reconfigurable, pencil beam, by properly
selecting an operating frequency near the splitting condi-
tion; i.e., β−1 ≈ α, which corresponds to about 21.4 GHz
[20.0 GHz] for εr = 10.2 [εr = 11.5]. By inspec-
tion of Fig. 2 a good leakage rate (i.e., α/k0 of the order
of 0.05) is obtained when considering εr = 11.5. Hence,
we have selected an operating frequency of about 20 GHz
for the practically realized and measured LWA structure.
With this choice, to provide a radiation efficiency of about
90%, a radius for the antenna aperture equal to 8.5 cm was
selected [1, Ch. 7].

FIGURE 2. Normalized phase (left axis) and attenuation (right axis)
constant of the TM LW mode for the considered MSG-GDS. Period and
width of the metallic strip are d = 7 mm and w = 1.25 mm, respectively.
Two relative dielectric constants are considered: solid [dashed] line
εr = 10.2[= 11.5].

B. SELECTION OF THE ANTENNA OPERATING STATE
Once a commercially available GDS has been selected,
the antenna operating state (AOS) for the LWA can be further
studied [30], [31], which can enable optimal LW radiation
from the guiding structure in the form of two-sided far-field
patterns as well as a directive pencil beam at broadside.
To support the description of the AOSs, Fig. 3 reports the
corresponding Brillouin diagram for the structure in Fig. 2.
The perturbed TMmode (black and gray lines) is shown with
an open LW stopband at about 21.5 GHz. Also, the perturbed
TE1 mode can exist between about 20.8 GHz and 21.4 GHz
when the TM mode is radiating, defining a suitable MSG-
GDS configuration for one particular AOS.

By further analysis of the dispersive modes for the LWA,
three distinct AOSs can be generally defined when antenna
radiation is based on the leakage of the fundamental TM0 SW
mode [31]:

AOS1: the TE1 mode can radiate;
AOS2: the TE1 mode is bound;
AOS3: the TE1 SW mode is suppressed or cut-off.

FIGURE 3. Brillouin diagram for the structure defined in Fig. 2 for
εr = 10.2. The blue solid and dashed lines represent the unperturbed
mode.

As discussed in [31], AOS1 is considered to be unsuitable
for efficient antenna operation since radiation can occur by
both the TE1 and TM0 modes of the MSG-GDS. This can
correspond to a multitude of leaky waves which can simul-
taneously radiate along the guiding surface. However, both
AOS2 and AOS3 are suitable for the generation of broadside
pencil beams in the far-field when efficient excitation of TM
SWs is achieved by the feed system adopted here. In general,
these AOSs are also frequency dependent and a LWA could
start radiating in one operating state and enter into another
with an increase in frequency. Given these possibilities for
the different AOSs, and their dispersion behavior, careful
attention is required during LWA design.

When examining the considered MSG of this paper,
the TM0 mode starts radiating at backward endfire by excita-
tion of the n = −1 space harmonic and the TE1mode is below
cutoff, thus defining AOS3. For example, it can be observed
in the dispersive diagram (see Fig. 3 with εr = 10.2, h = 1.27
mm, and w/d = 0.179, w being the width of the metallic
strip) that the unperturbed (solid and dashed blue lines) [per-
turbed, solid black and gray lines] TM0 mode indicates LW
radiation above 17.41 GHz [16.75 GHz]. Below the cutoff
of the perturbed TE1 SW mode, its relevant phase constant
is improper real, thus representing a nonphysical solution.
This AOS defines an LWA which can support a two-sided
conical pattern in the far field where the beam angle scans
with frequency towards broadside; i.e. f < fc as illustrated
in Fig. 1. With an increase in frequency, the TE1 mode can
be supported by the MSG-GDS (between 20.81 GHz and
21.45 GHz), with broadside radiation made mainly possible
by the dominantly excited TM0 mode. This frequency range
constitutes an MSG and LWA configuration offering AOS2,
and we consider this suitable for our proposed design to
ensure maximum realized gain at broadside.

Antenna operation in this frequency regime can be further
understood by examining the reflection coefficient in Fig. 4
and when observing the far-field beam pattern for the pro-
posed 2-D bull-eye configuration (see Fig. 5). Both consider
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FIGURE 4. Reflection coefficient for the LWA structure with one
non-directive SWL at the origin. Values are compared to full-wave
simulations and a noticeable frequency shift is observed which is related
to a practical tolerancing value for the relative dielectric constant of the
employed GDS. A similar frequency shift (of about 1.5 GHz) was observed
by the authors for the LWA presented in [31] which realized AOS3.

the basic case of a single non-directive SWL source placed
at the origin (see Fig. 4 inset). Mainly due to the orientation
of the individual SWL at the origin, this LWA can support
two-sided frequency-beam scanning in the E(x-z) plane with
sustained broadside radiation near fc (≈ 20GHz) and conical-
sector beam scanning with an increase in frequency.

This LWA grating topology (with w/d = 0.179) allows
for TE wave propagation when the TM0 SW mode is radi-
ating which defines AOS2. Practically, this condition is
realized by the MSG and the planar non-directive SWL
which can generate TE field maximums in the ±y-directions
(along with the dominant TM fields in the ±x-directions
for LW radiation) [31], [37]. These TE waves are not sup-
pressed, or reflected by the MSG, but supported in the
noted passband regime (between 20.81 and 21.45 GHz, see
Fig. 3). Consequently, reflection coefficient minimums can
be reduced at the input at about 19.3 GHz for the mea-
surements and about 21 GHz [20 GHz] as observed for the
simulations which consider εr = 10.2 [εr = 11.5] in Fig. 4.
This downward frequency shift of about 1.5 GHz is con-

sistent with previous findings [31] as well as the LW open-
stopband frequency, fc (≈ 20 GHz) when considering εr =
11.5 (see Fig. 2). These matching conditions and the possi-
bility of supporting TE fields in the form of microstrip ring
modes of the ‘‘bull-eye’’ structure [31], help to facilitate a
broadside beam maximum at about 20 GHz with gain values
of more than 15 dBi. This can be observed in the measure-
ments (see Fig. 15 from [31]) for the MSGwith w/d = 0.179
and with the single non-directive SWL. It should be men-
tioned that when considering other ‘‘bull-eye’’ configurations
that suppress TE fields, i.e., belonging to AOS3, but with
the azimuthal symmetry required here, similar realized gains
were not observed; i.e., maximum values of only about 13 dBi
were realized and with increased reflection loss values [31].
Given these findings, the design frequency of about 20 GHz
and MSG-GDS configuration (with w/d = 0.179 for AOS2)

FIGURE 5. Measured 2-D beam patterns in the far-field with a single
non-directive SWL at the structure origin (for h = 1.27 mm and
w/d = 0.179 as in Fig. 2). High-quality two-sided beam scanning is
observed as a function of frequency as well as a broadside pencil beam.

should be considered most suitable when requiring a LWA
design with azimuthal symmetry and a directive pencil beam
at broadside with maximum realized gain (about 15 dBi).

This 2-D LWA structure is investigated here using the
four-port SWL source configuration. The fabricated antenna
structure (see Fig. 11 in the following) as well as some details
regarding full-wave simulations, CLW theory and measure-
ments are outlined in the next sections. In particular, it is
shown that, by properly exciting the four sources, by means
of synthesis of am = 0 CLW, or, one or twom = 1 CLWs, LP
and CP patterns as well as sum and delta beams can flexibly
be synthesized.

III. RADIATION FEATURES
To accurately analyze the radiation features and the polar-
ization diversity offered by the proposed LWA, we report
here a full-wave numerical analysis of the array-fed LWA;
they are performed with CST Microwave Studio exciting the
structure with ideal horizontal magnetic monopoles placed
on the ground plane. The structure parameters are as in Fig. 2
with the theoretical value for the permittivity of the GDS
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FIGURE 6. Simulated RHCP far-field pattern at f = 21.4 GHz. (a) 3-D plot
in dBi; (b) arbitrary azimuth cut.

(i.e., εr = 10.2); one single frequency is analyzed, equal to
f = 21.4 GHz, which corresponds to broadside radiation for
the considered LWA (see Fig. 2 for εr = 10.2).

Figure 6(a) reports a 3-D representation of the far-field
patterns obtained by exciting the four ideal sources with the
same amplitude and a phase progression from 0◦ to 270◦

(quadrature). A well-defined high-directional CP pencil
beam, directed to broadside, is obtained. In fact the magnetic
currents of the antipodal sources, that would be antiparallel
with equiphased excitation, are here parallel thanks to their
180◦ electrical phase difference; hence, they radiate in-phase
at broadside. The two antipodal pairs that constitute the array
excite CLWs with a standing-wave azimuthal dependence of
cos (φ) and sin (φ), respectively. Also, since the two pairs are
electrically in quadrature, their superposition is equivalent to
a single CLW with a traveling wave having e±jφ azimuthal
dependence that can generate a CP broadside far-field beam.

Since the pattern is azimuthally symmetric, an arbitrary
azimuthal cut is reported in Fig. 6(b). The beam shows a
maximum value for the directivity equal to 26 dBi, with
a side-lobe level (SLL) below about 13 dBi, which is a
standard value for non-tapered LWAs [1, Ch. 7]. We should
mention that such a highly-directional beam is obtained with
a greatly reduced number of elements with respect to the
conventional free-space implementation of printed microstrip
patches (some discussion on the array thinning concept can
be found in [46]).

FIGURE 7. Simulated sum-beam pattern at f = 21.4 GHz. (a) 3-D plot
in dBi; (b) two azimuth cuts are reported: φ = 0◦ = 90◦ and φ = 45◦.

Figures 7 and 8 report a 3-D representation of the sum
and delta far-field patterns, which enables the generation

FIGURE 8. Simulated delta beam pattern at f = 21.4 GHz. (a) 3-D plot
in dBi; (b) arbitrary azimuth cut.

of highly directional beams for monopulse. Of course the
antenna can operate by switching from one polarization state
to the monopulse configuration by an external coupling cir-
cuit and/or feeding transmission lines of the required length,
for example. The sum pattern (see Fig. 7) is obtained by
enforcing an equi-amplitude excitation of the four sources
and phasing from port 1 to port 4 as 0◦, 0◦, 180◦, 180◦

(or as 0◦, 180◦, 180◦, 0◦). Also in this case the two antipodal
source pairs that constitute the array excite two CLWs with a
standing-wave azimuthal dependence of cos (φ) and sin (φ),
respectively. However, now that such pairs are electrically
in phase, their superposition is equivalent to a single CLW
with a standing-wave cos(φ ± π/4) dependence; this deter-
mines the asymmetric shape of the 3-D pattern (which is
not azimuthally symmetric, see Fig. 7b). The delta pattern
(see Fig. 8), instead, is obtained by enforcing equi-amplitude
and equi-phase SW sources, thus exciting an azimuthally
symmetric CLW.As expected, the delta beam presents amini-
mum at broadside (since, as already noted, any two antipodal
sources will radiate out of phase at broadside) whereas the
sum beam has a maximum at broadside; furthermore both
cases show a good SLL, the highest sidelobe being more than
15 dB below the main-beam maximum.

FIGURE 9. (a) Simulated conical pattern at f = 18 GHz, 3-D plot in dBi;
(b) scanning conical pattern for different frequency values (see legend).

It is also worth mentioning that, by means of an equi-
amplitude and equi-phase excitation, the proposed LWA can
also radiate a conical beam which scans with frequency
[17], [33], [39]. This is achieved in the frequency region
where |β−1| ≥ α, and sustained leakage is provided by
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FIGURE 10. Simulated LP far-field pattern defining a conical-sector beam
pattern that scans with frequency to broadside where ports 1 and 3 are
driven with a 180◦ phase difference. (a) 3-D plot in dBi; (b) φ = 0◦
azimuth cut of the scanning pattern for different frequencies.

FIGURE 11. Fabricated and measured planar antenna defined by a MSG
on a single-layer GDS with a 2 × 2 array of four SWLs placed at the origin
for controlled field excitation on the aperture. The measured antenna
prototype has 10 annular rings (w = 1.25 mm and d = 7 mm) defining
the top radial aperture (similar to the MSG-GDS in the inset of Fig. 4).

FIGURE 12. Measured reflection and transmission coefficients for the
fabricated 4-port antenna structure in Fig. 11. At the design frequency of
about 20 GHz all ports are matched with |Sii | and port coupling well
below 10 dB.

the LWA. Fig. 9(a) presents the conical scanning pattern at
f = 18 GHz, whereas Fig. 9(b) reports the scanning con-
ical beam for different frequencies over an arbitrary

FIGURE 13. Measured and simulated LP beam pattern in the x-z plane at
19.9 GHz when Ports 1 and Ports 3 are driven.

FIGURE 14. Measured and simulated LP beam pattern in the y-z plane at
19.9 GHz when Ports 2 and Ports 4 are driven.

FIGURE 15. Comparison of the measured and simulated normalized sum
and difference patterns at 19.9 GHz.

azimuthal cut. A two-sided (i.e., sector-like) conical pattern
can also be achieved, as shown in Fig. 10, when ports 1 and 3
are driven (ports 2 and 4 are off) with a 180◦ phase
difference, thus exciting a single CLWwith a sinφ azimuthal
dependence.
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FIGURE 16. Measured CP beam patterns at 19.9 GHz for the MSG ‘bull-eye’ LWA shown in Fig. 11 by quadrature feeding of the SWLs.
Directive beam patterns are observed at broadside with low cross-polarization levels (−10 dB). Observed gain values are also greater
than 10 dBi at broadside.

IV. EXPERIMENTAL RESULTS USING AN ARRAY OF SWLS
In this section, we report the experimental characterization
of the annular structure fed with a 2 × 2 non-directive SWL
array as shown in Fig. 11. Measurements of the LP and CP
as well as the delta and sum far-field beam patterns were per-
formed in a calibrated anechoic chamber (see Figs. 12 - 19),
while full-wave simulations of the complete structure were
completed using a commercial solver (CST Microwave
Studio). We emphasize that, during the measurements, net-
works of calibrated cables, power combiners, and external
couplers were used to achieve the required relative phase
difference between SWL elements.

To achieve the desired broadside pencil beam with
polarization-reconfigurable features for the proposed 2-D
LWA, the designed four-port SWL feed system can be suit-
ably driven to generate the desired m-order CLW on the
aperture. This is made possible by radiation of the relevant
TM LW mode at about 20 GHz considering AOS2 for the
designed MSG. If a uniform amplitude and constant phasing
is considered, since both the structure and the feed excitation
are azimuthally symmetric, the antenna radiates a dominant
m = 0 CLW mode [38]. Conversely, by keeping constant the
amplitude coefficients, and phasing the four SWLs (see inset
in Fig. 1) with a progressive 90◦ phase between elements, two
m = 1 CLWs (one in quadrature with respect to the other) can
be generated and a far-field CP beam is obtained.

At the same time, once the structure has been designed
to support a fast space harmonic (n = −1 in our case),
whose complex wavenumber kρ determines the propagation
features of the CLW, the relative magnitude and phase of the
elements within the feeding system, as well as the operational
frequency, determine the shape and polarization of the far-
field pattern realized by the LWfields excited on the aperture.

The employed SWL feed arrangement does not only offer
the benefits of a single-layer structure and integrated co-
planar waveguide feedline, but can also offer good reflection
losses; i.e., |Sii| < −12 dB (where i is the ith port as
shown in the inset of Fig. 12) with coupling values between
ports less than about 15 dB at the 20 GHz design frequency.
In addition, it should be mentioned that similar values were
observed for the complete simulations for the structure (not
shown for brevity). We should also mention that the |Sii|
curves in Fig. 12 are not superimposed, as expected due
to symmetry; this is mainly due to some very minor and

FIGURE 17. Measured axial ratio around the design frequency.

practical differences among the SWLs (due to fabrication)
and to cables and devices used to perform the measurement.

Figure 13 reports the normalized patterns in the x-z plane
by activating ports 1 and 3 and keeping the remaining two off.
This excitation, having equi-amplitude and opposite phase,
generates an LP pattern (defined by a single m = 1 CLW).
The co-pol and cross-pol values are shown and a well-defined
pencil beam can be observed for both the measurements and
simulations (here and in the following, the latter are obtained
tuning the value of the permittivity of the GDS, as discussed
in Sect. II.A). Figure 14 reports the opposite case considering
again the same amplitude coefficients for the ports 2 and 4,
but with a 180◦ phase difference. The normalized LP pattern
is reported in the y-z plane, and again, agreement between the
simulated and measured broadside pencil beam is observed.
In addition, Fig. 15 also reports a comparison among the
measured and simulated sum and delta LP patterns obtained
by driving the SWL as discussed in Sec. III. As expected,
a slightly lower value (about 3 dB) is obtained for the delta
pattern due to its conical nature.

Figures 16(a)-(c) report the RHCP measured pencil
beam obtained by enforcing the following amplitude/phase
configuration at each port: 16 0◦; 1 6 90◦; 1 6 180◦; 1 6 270◦,
thus exciting two m = 1 CLWs. This quadrature feeding of
the SWLs was achieved using external couplers (one 180◦

and two 90◦) for the realization of a RHCP field distribution
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FIGURE 18. Measured 2-D difference pattern at 19.9 GHz (normalized and
linear units), similar results for the sum pattern were observed as in
Fig. 19. The unit of both axes are degrees.

FIGURE 19. Measured 2-D RHCP beam pattern at 19.9 GHz. Results
normalized to the observed maximum and shown in linear units. The unit
of both axes are degrees.

on the aperture. A directive pattern is observed at broad-
side with max gain values greater than 10 dBi. The cross-
polarization levels are well below 10 dB from the main max-
imum. The corresponding measured axial ratio is reported
in Fig. 17 for three different azimuthal cuts (not superim-
posed due to practical tolerances), showing minimum values
below 1 dB.

To better assess the diverse polarization performance of
the proposed LWA, we also discuss the 2-D representation
of the measured far-field patterns. For example, in Fig. 18
the 2-D measured delta pattern over the φ-θ plane is shown.

The null of the pattern at broadside is clearly visible, thus gen-
erating a conical beam radiating off broadside. These results
demonstrate that by controlling the relative phase and mag-
nitude between the SWLs, it is possible to reconfigure the
polarization state of the radiated beam and to generate
patterns also for monopulse operation. Finally, Fig. 19
presents the measured 2-D RHCP pattern over the φ-θ
plane, confirming the pencil-beam nature of the CP radi-
ation. A 3 dB radiating bandwidth at broadside of about
200 MHz has been achieved for the CP, sum/difference,
and the one-sided beams, which is suitable for monopulse
operation, as well as GPS and remote sensing applica-
tions. We also note that this bandwidth can be improved by
shortening the antenna aperture and operating with a more
relaxed beam-splitting condition, as numerically discussed
in [47].

V. CONCLUSION
A planar 2-D leaky-wave antenna providing a polarization-
reconfigurable broadside pencil beamwith high gain has been
theoretically analyzed, designed, and measured. Leaky-wave
theory has been exploited to determine the periodicity and
the width of the relevant metal strip grating able to support
directional radiation in the far field, as well as to characterize
the role of the zeroth-order and the higher-order cylindri-
cal leaky waves supported by the structure. The original
2 × 2 array of SWLs, fully integrated within the ground
plane of the proposed planar antenna, was also designed
and discussed. The possibility of radiating, through the same
design, linear and left/right circular polarization operation,
as well as sum and delta beams for monopulse, has been
demonstrated. Also, themeasured and simulated results are in
agreement and confirm the high quality of the circular polar-
ized beams at broadside. The proposed 2-D planar leaky-
wave antenna and 4-port surface-wave launcher feeding array
may serve as a good candidate for next-generation of com-
munication applications and other radar systems, which can
greatly benefit from the availability of high-gain pencil beams
with flexible control of the linear or circular polarization
state.
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