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ABSTRACT. The paper is concerned with the Steklov eigenvalue problem on cuboids of
arbitrary dimension. We prove a two-term asymptotic formula for the counting func-
tion of Steklov eigenvalues on cuboids in dimension d ∏ 3. Apart from the standard
Weyl term, we calculate explicitly the second term in the asymptotics, capturing the
contribution of the (d ° 2)–dimensional facets of a cuboid. Our approach is based on
lattice counting techniques. While this strategy is similar to the one used for the Dirich-
let Laplacian, the Steklov case carries additional complications. In particular, it is not
clear how to establish directly the completeness of the system of Steklov eigenfunctions
admitting separation of variables. We prove this result using a family of auxiliary Robin
boundary value problems. Moreover, the correspondence between the Steklov eigenval-
ues and lattice points is not exact, and hence more delicate analysis is required to obtain
spectral asymptotics. Some other related results are presented, such as an isoperimet-
ric inequality for the first Steklov eigenvalue, a concentration property of high frequency
Steklov eigenfunctions and applications to spectral determination of cuboids.

1. INTRODUCTION AND MAIN RESULTS

1.1. Asymptotics of the Steklov spectrum. The Steklov eigenvalues of a bounded Eu-
clidean domain ≠ Ω Rd are the real numbers æ 2 R for which there exists a nonzero
harmonic function u :≠!R such that @nu =æu on the boundary @≠. Here @n denotes
the outward normal derivative, which exists almost everywhere provided the boundary
@≠ is Lipschitz. Under this assumption, it is known that for d ∏ 2 the Steklov spectrum
is discrete (see [1]) and is given by the increasing sequence of eigenvalues 0 =æ0 <æ1 ∑
æ2 ∑ . . . %1, where each eigenvalue is repeated according to its multiplicity. The count-
ing function N : R! N is then defined by N (æ) := #{ j 2 N : æ j < æ}. For domains with
smooth boundary, one can show using pseudodifferential techniques that the counting
function satisfies Weyl’s law

N (æ) = !d°1

(2º)d°1
Vold°1(@≠)æd°1 +O(æd°2) as æ%+1,(1.1.1)

where !d°1 is the measure of the unit ball B1(0) Ω Rd°1. The remainder estimate in
(1.1.1) is sharp and attained on a round ball. Moreover, a two-term asymptotic formula
for the counting function holds under a non-periodicity condition of the geodesic flow
on @≠ (see [14, formula (5.1.8)]).

Understanding precise asymptotics for Steklov eigenvalues on domains with singu-
larities, such as corners and edges, is significantly more challenging, since pseudodif-
ferential techniques do not work in this case (see [5, Section 3] for a discussion). Using
variational methods, one can prove a one-term Weyl asymptotic formula that holds for
any piecewise C 1 Euclidean domain (see [1]):

N (æ) = !d°1

(2º)d°1
Vold°1(@≠)æd°1 +o(æd°1) as æ%+1.(1.1.2)
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However, in order to get sharper asymptotics, one needs to understand the contribu-
tion of singularities to the counting function. In two dimensions, some results in this
direction have been recently obtained in [12]. In the present paper we aim to explore
the most basic higher-dimensional example: the Euclidean cuboids.

1.2. Main result. Given d 2N, the cuboid1 with parameters a1, . . . , ad > 0 is defined as a
product of the intervals

≠= (°a1, a1)£ (°a2, a2)£ . . .£ (°ad , ad ) ΩRd .

If a1 = a2 = ·· · = ad we say that≠ is a cube. The main result of this paper is the following
theorem.

Theorem 1.1. Let ≠ Ω Rd be the cuboid with parameters a1, . . . , ad > 0. For d ∏ 3, the
counting function of Steklov eigenvalues satisfies a two-term asymptotic formula as æ!
1:

(1.2.1) N (æ) =C1 Vold°1(@≠)æd°1 +C2 Vold°2(@2≠)æd°2 +O
°
æ¥

¢
,

where @2≠ denotes the union of all the (d °2)-dimensional facets of ≠. Here ¥ = 2/3 for
d = 3 and ¥= d °2° 1

d°1 for d ∏ 4. The constants C1 and C2 are given by

C1 =
!d°1

(2º)d°1

and

C2 =
2

d°2
2 !d°2

(2º)d°2
°

2Gd°1,1

ºd°1
° !d°2

2(2º)d°2

where

Gd°1,1 =
Zº/2

0
. . .

Zº/2

0| {z }
d°2

arccot

√
d°2Y

j=1
cscµ j

!
d°2Y

k=1
sink (µk )dµ1 . . . dµd°2.

For d = 2, the counting function admits a one-term asymptotics

N (æ) =º°1 Vol1(@≠)æ+O (1) .

Remark 1.2. It can be shown that C2 > 0 for all d ∏ 3, see Appendix B. The constants Gd ,1
are special cases of constants Gp,q which will be introduced in Section 3. The constants
G2,1 and G3,1 can be computed explicitly as

G2,1 =
1
2

≥
°1+

p
2
¥
º

G3,1 =
1
8

(°2+º)º.

Remark 1.3. For d = 2, the above asymptotics also follows from [12, Corollary 1.6.1].

Remark 1.4. For d = 3, Theorem 1.1 predicts that

R(æ) = N (æ)°C1 Vol2(@≠)æ2 °C2 Vol1(@2≠)æ

æ2/3

is a bounded function of æ. In order to validate the expression for the constant C2 ob-
tained in Theorem 1.1, we have checked numerically that this claim holds, using the

1Cuboids are also often referred to as boxes, d-orthotopes or hyperrectangles. The term “cuboids” appears
to be more common in recent literature on spectral geometry (see [6, 18]).
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FIGURE 1. N (æ)°C1 Vol2(@≠)æ2°C2 Vol1(@2≠)æ
æ2/3 for æ< 750.

approximate eigenvalues introduced in Section 3 on a cube with side lengths 2. Fig-
ure 1 shows that |R(æ)| ∑ 3 for æ < 750 which corresponds to approximately a million
eigenvalues.

1.3. Outline of the proof. The proof of Theorem 1.1 is given in Section 3. The outline
of the argument is as follows. First, we show that the Steklov eigenvalue problem on a
cuboid admits separation of variables, see Lemma 2.1 below. Separation of variables
yields eigenfunctions that are produts of trigonometric, hyperbolic and possibly linear
factors. One can check that the number of eigenvalues corresponding to eigenfunctions
containing linear terms is at most finite, see Theorem 2.6. The same theorem also shows
that the eigenvalue counting problem can be reduced to a family of approximate lattice
counting problems. More specifically, given 1 ∑ p ∑ d , we consider the counting func-
tion Np of eigenvalues corresponding to eigenfunctions with exactly p trigonometric
factors. It turns out that for each p > 1, the counting function Np satisfies a two-term
asymptotic formula, see Proposition 3.1. The functions Np for p = d °1 and p = d °2
are the dominant ones. In particular, the main term in (1.2.1) corresponds to the main
term in the asymptotics for Nd°1. The second term in (1.2.1) is obtained as as a sum of
the main term in the asymptotics of Nd°2 and the second term in Nd°1. The latter also
splits into two parts: one is the standard contribution of overcounted lattice points (see
Lemma 3.17), and the other has to do with the geometry of the domain Eæ defined by
(3.4.12) arising in the lattice counting problem. While this domain Eæ converges to a ball
as æ!1, the approximation produces an error that contributes to the second term of
(1.2.1). This explains why the coefficient C2 is represented by a sum of three constants.
Note that while two of these constants are negative, the coefficient C2 is always positive,
see Appendix B.

1.4. Discussion. The second term in Weyl asymptotics (1.2.1) for cuboids could be com-
pared with the corresponding term in the asymptotic expression [14, formula (5.1.8)]
mentioned earlier, which holds on smooth manifolds with boundary, satisfying a non-
periodicity condition. Recall that in the smooth case, the second term is proportional
to the integral of the mean curvature of the boundary. A similar interpretation could be
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given to the second term in (1.2.1), if an analogue of the mean curvature for cuboids is
thought of as a ±-function supported on the union of the (d °2)-dimensional facets.

It would be very interesting to establish an analogue of Theorem 1.1 for arbitrary Eu-
clidean polyhedra and, more generally, for Riemannian manifolds with edges, satisfying
certain non-periodicity assumptions. While the present paper was in the final stages of
preparation, V. Ivrii [10] informed us on his work in progress in this direction. We believe
that a two-term Weyl asymptotic formula (1.2.1) holds for any polyhedron in dimension
d ∏ 3, with the coefficients C1 and C2 depending on the dimension and the angles be-
tween the (d °1)-dimensional facets of a polyhedron.

Another promising direction of further research in the subject is to explore the as-
ymptotic expansion for the Steklov heat trace on Euclidean polyhedra, as well as on
arbitrary Riemannian manifolds with edges. In particular, one could ask whether the
Steklov spectral asymptotics contains information on the lower-dimensional facets of
polyhedra. While the Weyl asymptotics does not appear to be accurate enough for that
purpose, the Steklov heat trace asymptotics is likely to give a positive answer to this
question. We intend to explore it elsewhere.

Remark 1.5. The existence of a two-term asymptotic formula for the counting func-
tion of Steklov eigenvalues on a cube was claimed earlier in [13]. However, the proof
of this claim contained a miscalculation invalidating the argument. Indeed, in the be-
ginning of [13, Section 3], the authors write down the boundary condition at xi = 0 in
case Øi < 0 and get c1

p
|Øi | = ∏c2, while it should be °c1

p
|Øi | = ∏c2, since the normal

derivative at xi = 0 is °@i . Due to this missing minus sign, the authors obtain the equa-
tion sin(

p
Øi ) = 0 leading to an exact correspondence between Steklov eigenvalues and

lattice points. However, in reality this correspondence is only approximate (see subsec-
tion 2.3), and therefore counting eigenvalues is a significantly more difficult task. Note
also that the completeness of eigenfunctions admitting separation of variables was not
justified in [13].

1.5. An isoperimetric inequality for the first Steklov eigenvalue. Given a cuboid ≠ Ω
Rd with parameters a1, . . . , ad > 0, let≠? and≠] be the cubes such that

Vold°1@≠
? = Vold°1@≠ and Vold ≠

] = Vold ≠.

Theorem 1.6. For any cuboid≠,

• æ1(≠?) ∏æ1(≠), with equality if and only if≠? =≠;
• æ1(≠]) ∏æ1(≠), with equality if and only if≠] =≠.

The proof of the theorem is presented in Section 4.3. In a way, it is not surprising that
the cube, being the most symmetric of all cuboids, maximizes æ1 under both volume
and surface area restrictions. Theorem 1.6 could be compared with the well-known We-
instock’s inequality [19] stating that the disk is a unique maximizer for æ1 among planar
simply connected domains with a given perimeter (see also a recent generalization of
this result for convex domains in higher dimensions obtained in [4]), as well as with
Brock’s result [3] which states that balls are unique maximizers among Euclidean do-
mains≠ΩRd with prescribed d–volume.

It follows from Theorem 1.6 that any cube is spectrally determined among all cuboids.

Corollary 1.7. Let≠ΩRd be a cuboid which is isospectral to the cube≠a ΩRm with side
lengths 2a > 0. Then d = m and≠=≠a.
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Proof. It follows from Theorem 1.1 that d = m and Vold°1(@≠) = Vold°1(@≠a). Moreover,
since æ1(≠) = æ1(≠a), the conclusion follows from the uniqueness of the maximizer in
Theorem 1.6. ⇤

Note that a similar corollary with an almost identical proof holds for planar simply-
connected domains, among which the disk is spectrally determined, using the case of
equality in Weinstock’s theorem [19].

Is still unknown whether there exist nonisometric Steklov isospectral Euclidean do-
mains. Our results imply that if two rectangles are Steklov isospectral, they are isometric.

Corollary 1.8. The Steklov spectrum of a rectangle uniquely determines its side lengths.

The proof of this corollary is presented in Section 4.4. Let us conclude the introduc-
tion with the following conjecture:

Conjecture 1.9. Any two Steklov isospectral cuboids are isometric.

Plan of the paper. In Section 2, we explore the structure of Steklov eigenvalues and
eigenfunctions on cuboids. In particular, in subsection 2.1 we describe separation of
variables and prove that it yields a complete system of Steklov eigenfunctions. In sub-
section 2.2 a classification of eigenfunctions is presented based on the number of linear,
trigonometric and hyperbolic terms, which is later used in subsection 2.3 to reduce the
problem of counting eigenvalues to counting approximate lattice points. Theorem 1.1
is proved in Section 3. This is the most technicallly involved part of the paper, involv-
ing tools from analytic number theory and Fourier analysis. Other results of the paper
are proved in Section 4. In particular, a somewhat surprising observation that Steklov
eigenfunctions may concentrate on lower dimensional facets of cuboids is presented in
subsection 4.1. Subsections 4.3 and 4.4 provide the proofs of Theorem 1.6 and Corollary
1.8. Appendix A contains the proof of an auxiliary Lemma A.1 used in subsection 3.4. In
Appendix B we justify the positivity of the constant C2 as stated in Remark 1.2.

Remark 1.10. Right before submitting our paper on the archive, we learned of the preprint
[17] which discusses Steklov eigenvalues of rectangles and cuboids of dimension 3. Note
that [17, Conjecture 3.1] immediately follows from our Proposition 4.2.

Acknowledgments. We would like to thank Leonid Parnovski for useful discussions. In
particular, they lead us to the results presented in subsection 4.1. Part of this work was
accomplished in 2016 when A.G. visited the Institut de mathématiques de Neuchâtel,
and its hospitality is gratefully acknowledged. Research of A.G. is supported by NSERC
and FRQNT. Research of J.L. is supported by the Alexander Graham Bell Canada Gradu-
ate Scholarship. Research of I.P. is supported by NSERC, FRQNT and Canada Research
Chairs Program. Research of A.S. is supported by PRIN 2015.

2. EIGENFUNCTIONS AND SEPARATION OF VARIABLES

2.1. Separation of variables. The following lemma shows that the method of separa-
tion of variables is applicable to the computation of the Steklov spectrum of a product
of compact manifolds with boundary. In particular, we justify completeness of the sys-
tem of Steklov eigenfunctions admitting separation of variables.

Lemma 2.1. Let M1 and M2 be smooth compact Riemannian manifolds with bound-
ary. Let æ ∏ 0 be a Steklov eigenvalue of the product manifold M = M1 £ M2 with the
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eigenspace Fæ Ω L2(M). There exists a basis (u(1), . . . ,u(m)) of Fæ such that each u( j ) :
M1 £M2 !R is separable:

u( j )(x1, x2) = u( j )
1 (x1)u( j )

2 (x2), 1 ∑ j ∑ m,

where u( j )
1 : M1 !R and u( j )

2 : M2 !R.

Proof. Consider the Robin problem with parameter æ∏ 0 on M
(
¢u +∏u = 0 in M ,

@nu =æu on @M .

It is well known that the Robin problem on M admits separation of variables, since
L2(M) = L2(M1)≠ L2(M2) is a product space, see e.g. [16, Section 11.5]. The number
æ∏ 0 is a Steklov eigenvalue of M if and only if 0 is an eigenvalue of the Robin problem
with parameter æ, and the corresponding eigenspace is the same for both problems.
Since one can find a separated eigenbasis for Fæ by virtue of it being a Robin eigenspace
on M , it then suffices to use the same basis for Fæ when we consider it as a Steklov
eigenspace. ⇤

Remark 2.2. It is not easy to show directly that the traces of all separable Steklov eigen-
functions form a basis in L2(@M), since the boundary @M of a product manifold is not
itself a product manifold.

Remark 2.3. Lemma 2.1 yields completeness of the system of separable Steklov eigen-
functions on cuboids. Surprisingly, a complete proof of this result has not appeared in
the literature even in the case of rectangles. Note that the completeness argument for
the square presented in [5, Section 3] does not extend to arbitrary rectangles, contrary
to the claim made in [2, Section 4] and in [17]. Indeed, the proof given in [5] uses in
a crucial way the diagonal symmetries of the square, which allow to use a connection
to the vibrating beam problem via mixed Steklov-Neumann-Dirichlet problems on an
isosceles right triangle.

Let d 2 N and consider the cuboid ≠ with parameters a1, . . . , ad > 0. Because ≠ is a
product of compact intervals, it follows from Lemma 2.1 that there exists a complete set©
u j

™
j2N0

of separated Steklov eigenfunctions on ≠. Consider a function u :≠!R given
by the product u(x) = u1(x1) . . .ud (xd ), where u j : [°a j , a j ] ! R. Requiring u to be a
Steklov eigenfunction with eigenvalue æ ∏ 0 leads to numbers ∏1,∏2, . . . ,∏d 2 R such
that

(2.1.1)

8
>><

>>:

u00
j +∏ j u j = 0 on (°a j , a j ),

u0
j (a j ) =æu j (a j ),

°u0
j (°a j ) =æu j (°a j ),

subject to the harmonicity condition

(2.1.2)
dX

j=1
∏ j = 0.

The following lemma describes the eigenvalues and eigenfunctions of the auxilary one-
dimensional Steklov spectral problem (2.1.1) with a parameter ∏ 2R.
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Lemma 2.4. Let ∏ 2R. The non-zero solutions' : [°a, a] !R of the differential equation
'00+∏'= 0 subject to the boundary conditions

'0(a) =æ'(a) and °'0(°a) =æ'(°a)

for some constant æ∏ 0, are constant multiples of one the following functions:

(i) For ∏= 0, '(t ) ¥ 1 and æ= 0 or '(t ) = t and æ= a°1.

(ii) For ∏=Æ2 > 0, one of

'(t ) = sin(Æt ) with æ=Æcot(Æa),

'(t ) = cos(Æt ) with æ=°Æ tan(Æa).

In other words, for each ` 2 {0,1}, æ=Æcot
°
Æa +`º2

¢
is an eigenvalue.

(iii) For ∏=°Ø2 < 0, one of

'(t ) = sinh(Øt ) with æ=Øcoth(Øa)

'(t ) = cosh(Øt ) with æ=Ø tanh(Øa).

In other words, for each j 2 {°1,1}, æ=Ø tanh(Øa) j is an eigenvalue.

It will be useful to introduce a uniform notation for these eigenvalues. Given a > 0
and ` 2 {0,1}, let

Ta,`(x) = x cot
≥
ax +`º

2

¥
=

(
x cot(ax) for `= 0,

°x tan(ax) for `= 1,

and

Ha,`(x) =
(

x coth(ax) for `= 0,

x tanh(ax) for `= 1.

It follows from Lemma 2.4 that separable eigenfunctions are products of linear fac-
tors, trigonometric factors (the function sin for `= 0, and cos for `= 1) and hyperbolic
factors (the function sinh for ` = 0, and cosh for ` = 1). A careful accounting of these
will be presented.

2.2. Classification of eigenfunctions. It follows from the previous paragraph that there
is a complete set of Steklov eigenfunctions which are given by products of linear, trigono-
metric and hyperbolic factors. They are of the form

u(x1, . . . , xd ) =
Y

i2ø0

xi
Y

j2ø1

Trig j (Æ j x j )
Y

k2ø2

Hypk (Øk xk )(2.2.1)

where ø0,ø1,ø2 are disjoint subsets of Sd := {1,2, . . . ,d} such that ø0 [ø1 [ø2 = Sd , and
each Trig j 2 {sin,cos} and Hypk 2 {sinh,cosh}. In order for this function to be a Steklov
eigenfunction corresponding to the eigenvalueæ> 0, the function u must be harmonic.
This amounts to the following restatement of condition (2.1.2) in terms of the constants
Æ j and Øk :

X

j2ø1

Æ2
j =

X

k2ø2

Ø2
k .(2.2.2)

This equation will be called the harmonicity condition. Moreover, the spectral parame-
ter æ has to be the same on each face of the cuboid. By Lemma 2.4 this translates into
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the following equations, called the compatibility conditions:

æ=

8
><

>:

a°1
i for i 2 ø0,

Tai ,`(i )(Æi ) for i 2 ø1,

Hai ,`(i )(Øi ) for i 2 ø2.

(2.2.3)

Here the function ` : Sd ! {0,1} is used to specify which trigonometric and hyperbolic
functions are used, according to the convention introduced in Lemma 2.4. The cor-
responding eigenfunction (2.2.1) is then given precisely by the product of the factors
ui : [°ai , ai ] !Rwhich are specified by

ui (xi ) =

8
><

>:

Trig`(i )(Æi xi ) for i 2 ø1,

Hyp`(i )(Øi xi ) for i 2 ø2,

xi otherwise,

(2.2.4)

where Trig0 = sin, Trig1 = cos, Hyp0 = sinh and Hyp1 = cosh.
Note that any separated eigenfunction that has a linear factor u j (x j ) = x j contributes

the eigenvalue æ = a°1
j to the spectrum. Since the multiplicity of each eigenvalue is fi-

nite, this can occur at most a finite number of times. We summarize the above men-
tioned facts in the following theorem.

Theorem 2.5. Let p 2 {1, . . . ,d°1}, and let Tp be the set of all ordered bipartitions ø = (ø1,ø2)
of {1, . . . ,d} in the sets of cardinality p and q = d°p. For each ø 2Tp and any ` : ø1[ø2 !
{0,1}, let Sø,` be the set of all numbers æ> 0 for which there exist positive numbers Æi for
i 2 ø1 and Ø j , for j 2 ø2, which solve

æ= Tai ,`(i )(Æi ) = Ha j ,`( j )(Ø j ) 8i 2 ø1, j 2 ø2

subject to the constraint X

i2ø1

Æ2
i =

X

j2ø2

Ø2
j .

Denote also by S0 the collection of Steklov eigenvalues corresponding to separated eigen-
functions having a linear factor. Then the Steklov spectrum of a cuboid ≠ is given by the
union of S0 which contains at most finitely many elements, and the families Sø,l for all
possible choices of ø and `.

2.3. Reduction to approximate lattice counting. We will now give a more precise de-
scription of the spectrum by constructing a correspondence between the Steklov eigen-
values of cuboids and the vertices of certain lattices.

Let≠ be a cuboid with parameters a1, . . . , ad . Let p 2 {1, . . . ,d °1} represent the num-
ber of trigonometric factors of a separated eigenfunction without linear factors. Each
bipartition ø= (ø1,ø2) 2Tp then corresponds to a separated eigenfunction of the form

u(x1, . . . , xd ) =
Y

j2ø1

Trig j (Æ j x j )
Y

k2ø2

Hypk (Øk xk )(2.3.1)

LetN0 = {0,1,2, . . . } be the set of nonnegtive integers. Given n 2Np
0 , let

In = In,p,ø :=
Y

i2ø1

µ
niº

2ai
,

(ni +1)º
2ai

∏
ΩRp .

The boxes In are fundamental domains of a lattice. The following theorem shows
that each box gives rise to a cluster of at most 2q eigenvalues and, moreover, the boxes
In with n 2Np and |n| large enough correspond to precisely 2q eigenvalues.
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Theorem 2.6. Given p 2 {1, . . . ,d ° 1}, and q = d ° p, let ø 2 Tp specify the position of
trigonometric and hyperbolic factors of eigenfunctions of the form (2.3.1). The following
assertions hold:

(i) Eigenfunctions of the form (2.3.1) form a complete system of Steklov eigenfunctions on
a cuboid up to a finite number of eigenfunctions containing linear factors.

(ii) For each n 2Np , there exist at most 2q eigenfunctions of the form (2.3.1) with Æ 2 In.

(iii) There exists a number N 2N, such that for every n 2Np with |n| > N , there are exactly
2q eigenfunctions of the form (2.3.1) with Æ 2 In. The corresponding eigenvalues æ(k)

n ,
with k 2

©
1, . . . ,2q™

, satisfy

(2.3.2) æ(k)
n = |Æn|p

q
+O

°
|n|°1

¢

for some Æn 2 In.

(iv) There exist only finitely many eigenfunctions of the form (2.3.1) such that n 2Np
0 \Np .

For each n 2Np
0 \Np , there are at most 2q eigenfunctions of the form (2.3.1) with Æ 2 In.

Assertions (ii) and (iii) essentially say that up to a finite number of boxes, there is al-
ways exactly 2q solutions in the box In, while assertion (iv) says that while some boxes
touching the coordinate hyperplanes

©
x j = 0

™
might contain solutions, this will only

happen a finite number of times. This means that while all the three cases are needed
to fully describe the spectrum, asymptotically we can only count eigenvalues described
by (iii), up to a O (1) error.

Proof of Theorem 2.6. Assertion (i) is a direct consequence of Lemmas 2.1 and 2.4. In
order to prove assertion (ii), for each ` : Sd ! {0,1} and n 2 Np we will show that there
exists at most one eigenfunction. Up to a small error, the corresponding eigenvalue will
be equal to the norm of a point which is located in the box I2n+m,p,ø, where m 2 {0,1}p

is determined by the restriction of ` to ø1. Together with the choice of ` on ø2, this will
account for clusters of at most 2q eigenvalues corresponding to each of the boxes In.

Construction of an eigenfunction. For each i 2 ø2, the function Øi 7! Hai ,`(i )(Øi ), is in-
creasing and positive for Øi > 0. It satisfies Hai ,`(i )(Øi ) =Øi +O(Ø°1

i ) as Øi !1 and

lim
Øi!0

Hai ,`(i )(Øi ) =
(

1
ai

if `(i ) = 0,

0 if `(i ) = 1.

This implies that the equations

Hai ,`(i )(Øi ) = Ha j ,`( j )(Ø j ) 8i , j 2 ø2(2.3.3)

define a connected curve CH =CH ,p,ø ΩRq (the index H stands for “hyperbolic”) which
behaves like the diagonal

{Ø 2Rq : Øi =Ø j for each i , j 2 ø2}

to infinite order as |Ø| ! 1. The common value given by equation (2.3.3) increases
monotonically from some c ∏ 0 to infinity along the curve CH as it moves away from the
origin. In fact, this non-negative constant is

c` = max{0, a°1
i : i 2 ø2,`(i ) = 0}.

On the other hand, for each i 2 ø1 the restricted function

(2.3.4) Tai ,`(i ) :
µ

niº

ai
+ `(i )º

2ai
,

niº

a1
+ (`(i )+1)º

2ai

∏
°! [0,1),
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FIGURE 2. Various CT curves in the situation where d = 3, p = 2 and
ø1 = {1,2}.

is decreasing and surjective. Hence, for each point Ø 2 CH Ω Rq , there exist unique
numbers

Æi (Ø) 2
µ

niº

ai
+ `(i )º

2ai
,

niº

a1
+ (`(i )+1)º

2ai

∏
( for each i 2 ø1)

such that

(2.3.5) Tai ,`(i )(Æi ) = Ha j ,`( j )(Ø j ) 8i 2 ø1, j 2 ø2.

This defines an image curve CT ΩRp given by

CT = {Æi (Ø) : i 2 ø1,Ø 2CH }.

In other words, we have defined a continuous map Æ : CH °! CT between these two
curves. It follows from (2.3.4) that the curve CT is contained in the box I2n+m, where
m 2 {0,1}p is determined by the restriction of ` to ø1. In particular, as the value of |Ø|
increases from its minimal value to +1 along the curve CH , the value of |Æ(Ø)| is con-
tained in the compact interval

"

inf
x2I2n+m

|x|, sup
x2I2n+m

|x|
#

Ω (0,1).

Hence, if infx2I2n+m |x| > c` there will be a pointØ 2CH such thatÆ=Æ(Ø) satisfy |Æ| = |Ø|.
This amounts to saying that any of the common values given by (2.3.5) is a Steklov eigen-
value of the cuboid. It follows from monotonicity of each factors in Equation (2.3.5) that
this solution (Æ,Ø) is unique.
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FIGURE 3. The curve CH corresponding to `(3) = 1 and `(4) = 0:
x3 tanh(x3) = x4 coth(x4).

Remark 2.7. Let d = 4, a1 = a2 = a3 = a4 = 1, p = 2 and ø1 = (1,2). In this case, Figure
2 shows the intersections of the four different curves CT with the boxes I2n+m Ω R2 for
n = (12,2) and m 2 {0,1}2. The corresponding curve CH for the particular choice of the
hyperbolic factor given by `(3) = 1 and `(4) = 0, is shown on Figure 3. On each of these
curves, the marked point corresponds to the solution of the compatibility equations.
Note that the curves CT intersect two of the boxes, and the functions Tai ,`(i ) defined on
them are positive in one box and negative in the other. The solutions of the compatibil-
ity equations lie on the positive side.

We now turn to assertion (iii). Observe first that there is a uniform bound on c` hence
there is a N such that if |n| > N then

inf
x2In

|x| > c`.

From the previous discussion this ensures that there are exactly 2q solutions in the box
In. We proceed in two steps for the more quantitative part of the statement. First,
we prove that eigenvalues do take the form (2.3.2), and then we show that for all k 2©
1,2. . . ,2q™

the same Æn works.

Localisation. Fix the restriction ` : ø2 ! {0,1}q for the moment. The various choices
of trigonometric factors (represented by the choice of ` : ø1 ! {0,1}) gives rises to ex-
actly one solution Æ2n+m in each of the of the 2p boxes I2n+m, where m runs over all
choices of m 2 {0,1}p . For each of these m, the corresponding eigenvalue is given by
any of the functions appearing in Equation (2.3.5) evaluated on any of the coordinates
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of (Æ2n+m,Ø2n+m) 2Rp £Rq . It follows that for each j 2 ø2, and n 2Nq

|Øn|2 =
X

i2ø2

Ø2
n,i = qØ2

n, j +O
°
|n|°1

¢
.

Hence for each j 2 ø2,

Øn, j =
|Øn|p

q
+O

°
|n|°1

¢
.

The corresponding eigenvalue is therefore given, for any j 2 ø2, by

æn = Ha j ,`( j )(Øn, j ) =
|Øn|p

q
+O

°
|n|°1

¢
= |Æn|p

q
+O

°
|n|°1

¢
,

as was announced.

Clustering. If `,`0 : Sd ! {0,1} agree on ø1, it follows from

Ha j ,`( j )(x)°Ha j ,`0( j )(x) =O
°
x°1¢

that the corresponding eigenvalues satisfy

æn,`°æn,`0 =O
°
|n|°1

¢
.

The various choices of the restriction ` : ø2 ! {0,1} therefore lead to 2q eigenvalues sat-
isfying

æk
n = |Æn|p

q
+O

°
|n|°1

¢
for k = 1, . . . ,2q .

Exceptional eigenvalues. For n 2Np
0 \Np we have that ni = 0 for at least one i 2 ø1. On

the interval
≥
0, º

2ai

i
, the function Tai ,0 is positive while Tai ,1 is negative, hence an eigen-

value can only correspond to `(i ) = 0. In this case, the range of Tai ,0 is
£
0, a°1

i

¢
. A corre-

sponding eigenvalue is therefore bounded above by a°1
i . There is only a finite number

of these, proving assertion (iv).
This concludes the proof of Theorem 2.6. ⇤

In the next section we will take up the task of understanding the asymptotic behavior
of the counting function N (æ).

3. EIGENVALUE ASYMPTOTICS

The goal of Section 3 is to prove Theorem 1.1. The plan is to represent the counting
function N (æ) as a sum of auxiliary counting functions corresponding to different fam-
ilies of eigenvalues provided by Theorem 2.6. Each of those counting functions will be
then investigated using lattice counting techniques.

3.1. A hierarchy of counting functions. Let p 2 {1,2, . . . ,d °1}. Given ø = (ø1,ø2) 2 Tp

and ` : Sd ! {0,1}, define the counting function Nø,` :R!N by

Nø,`(æ) = #{ j 2N : æ j 2 Sø,` and æ j <æ}.

Recall that the bipartition ø defines the location ø1 of the trigonometric factors, and the
location ø2 of the hyperbolic factors, whereas the function ` distinguishes between sin
and cos trigonometric factors, and sinh and cosh hyperbolic factors. We also introduce

(3.1.1) Nø(æ) :=
X

`:Sd!{0,1}
Nø,`(æ) and Np (æ) :=

X

ø2Tp

Nø(æ).
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Since there is only a finite number of eigenfunctions with linear factors, one has

N (æ) =
d°1X

p=1
Np (æ)+O (1) .

Set q = d °p and let @q≠ denote the union of p-dimensional facets of a cuboid ≠. Our
goal is to prove the following asymptotics for Np (æ).

Proposition 3.1. For each p = 1, . . . . ,d °1, we have:

(3.1.2) Np (æ) =
p

q p

(2º)p !p Volp (@q (≠))æp + cp Volp°1(@q+1≠)æp°1 +O
°
æ¥p

¢
,

where cp are some explicitly computable constants and

¥p = max
µ

p °1° 1
p

, p °2+ 2
p +1

∂
=

(
2/3 if p = 2,

p °1°1/p otherwise.

We prove Proposition 3.1 in subsection 3.5.

3.2. Quasi-eigenvalues. In this section, we observe that the clustering of eigenvalues in
Theorem 2.6 allows us to simplify the eigenvalue counting problem. Essentially, we will
count every cluster as one eigenvalue with a weight equal to the number of eigenvalues
in the cluster.

Definition 3.2. Given p 2 Sd , q = d °p, ø 2 Tp , ` : Sd ! {0,1} and n 2Np , the number
|Æn|p

q defined in (2.3.2) is called a quasi-eigenvalue of multiplicity 2q .

It is clear from Theorem 2.6 that

N (æ) =
d°1X

p=1
2q #

Ω
n 2Np :

|Æn|p
q

<æ
æ
+O (1) .(3.2.1)

The factor 2q accounts for the clustering of eigenvalues around the corresponding quasi-
eigenvalue. Note that the O (1) error can be absorbed in the error term in (1.2.1). There-
fore, in view of (3.2.1), for our purposes there is no need to distinguish between counting
eigenvalues and quasi-eigenvalues.

3.3. Eigenfunctions with a single trigonometric factor. Consider first the case p = 1.The
choice of sin or cos for the trigonometric factor and the choice of the coordinate corre-
sponding to the trigonometric factor yields 2d families of eigenfunctions, each having
2d°1 possibilities for the choice of the hyperbolic factor. As follows from Theorem 2.6,
each of the 2d families contributes a cluster of 2d°1 eigenvalues which correspond to
the same quasi-eigenvalue. Therefore, as was mentioned earlier, this cluster can be
counted for our purposes as a single quasi-eigenvalue of multiplicity 2d°1. The com-
patibility equations

(3.3.1) Hai ,`(i )(Øi ) = Ha j ,`( j )(Ø j ) 8i , j 2 ø2

define a connected curve in Rd°1 which goes to infinity along the diagonal while its
value increases to +1. Equating (3.3.1) to Tak ,`(k), k 2 ø1 amounts to solving the follow-
ing equations:

Æk cot(akÆk ) = Ækp
d °1

+O
°
Æ°1

k

¢
if `(k) = 0,
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and

°Æk tan(akÆk ) = Ækp
d °1

+O
°
Æ°1

k

¢
if `(k) = 1.

This yields eigenvalues of the form

æ=

8
<

:

º j
a j

p
d°1

+ 1
a j

p
d°1

arccot((d °1)°1/2)+O
°

j°1
¢

if `(k) = 0,
º j

a j
p

d°1
+ 1

a j
p

d°1
arctan((d °1)°1/2)+O

°
j°1

¢
if `(k) = 1,

each with quasi-multiplicity 2d°1. Given that arccot and arctan are bounded functions,
and since

Vol1(@d°1≠) = 2d
dX

j=1
a j ,

we have that

N1(æ) = !1
p

d °1
2º

Vol1(@d°1≠)æ+O (1) .

This concludes the proof of Theorem 1.1 for d = 2, since p = 1 is the only possibility
in this case. Observe that for d = 2, this is indeed the expected first term of Weyl’s law
(1.1.2).

3.4. Eigenfunctions with many trigonometric factors. In this subsection, we count
the number of eigenvalues associated with eigenfunctions with more than one trigono-
metric factor. The idea is to write the eigenvalues as the norms of points Æ 2 Rp that
are close to some lattice points. The main difficulty is that the compatibility equations
are transcendental, making it impossible to explicitly find Æ. We will therefore approx-
imate the eigenvalues in a controlled way, and we will show that this approximation
results in a small enough error that could be absorbed in the remainder in the two-term
asymptotics for the eigenvalue counting function. Finally, we will use the lattice point
counting techniques going back to [8, 15], and more recently used in [11].

3.4.1. Approximate eigenvalues. Suppose that d ∏ 3 and p 2 {2, . . . ,d° 1}. Let ø 2Tp and
` : Sd ! {0,1} be given.

Given n 2 Np , it follows from Theorem 2.6 and the compatibility equations (2.2.3),
that the corresponding solution Æ=Æn 2 In satisfies the following for each i , j 2 ø1

Æi cot
µ
Æi ai +

`(i )º
2

∂
=Æ j cot

µ
Æ j a j +

`( j )º
2

∂
= |Æn|p

q
+O

°
|n|°1

¢
.

Hence, for each i 2 ø1, we have, choosing the principal branch of arccot, a family of
solutions indexed by n 2Np

Æi ai =
µ
ni +

`(i )
2

∂
º+arccot

√
1
p

q

"

1+
X

j 6=i2ø1

µ
Æ j

Æi

∂2
#1/2!

+O
°
|n|°1

¢
.
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Since Æi =
≥
ni+ `(i )

2

¥
º

ai
+O(1), we can rewrite the previous equation as follows

(3.4.1)

Æi =

≥
ni + `(i )

2

¥
º

ai

+ 1
ai

arccot

0

BBBB@
1
p

q

2

66641+
X

j 6=i

0

BB@

≥
n j + `( j )

2

¥
º

a j
+ tÆ j (n)

≥
ni+ `(i )

2

¥
º

ai
+ tÆi (n)

1

CCA

23

7775

1/2
1

CCCCA
+O

°
|n|°1

¢
,

where the functions tÆ j are bounded. Since `(i ) ranges over {0,1}, the solution set to the
previous equation is the same as the one to

(3.4.2) Æi =
niº

2ai
+ 1

ai
arccot

0

B@
1
p

q

2

641+
X

j 6=i

0

@
n jº

2a j
+ tÆ j (n)

niº
2ai

+ tÆi (n)

1

A
2
3

75

1/21

CA+O
°
|n|°1

¢
.

Lemma 3.3. Define eÆi as

(3.4.3) eÆi =
niº

2ai
+ 1

ai
arccot

√
1
p

q

"

1+
X

j 6=i

µ
ai n j

a j ni

∂2
#1/2!

.

Then,

(3.4.4) eÆi =Æi +O
°
|n|°1¢

Proof. In Lemma A.1 in the Appendix, take xi = niº
ai

and√i = tÆi . Then, one readily sees
that

|x|≥ |n|,

where f ≥ g means that f =O
°
g
¢

and g =O
°

f
¢
. The lemma then follows. ⇤

Note that the right hand side of equation (3.4.3) does not depend on Æi anymore,
which makes it easier to analyse.

We now have eigenvalues indexed by n 2Np given by

(3.4.5) æn =
s

1
q

X

i2ø1

eÆ2
i +O

°
|n|°1¢ .

Definition 3.4. The numbers

(3.4.6) eæn =
s

1
q

X

i2ø1

eÆ2
i

are called the approximate eigenvalues.

Remark 3.5. Up until now, eigenvalues, quasi-eigenvalues and approximate eigenvalues
were indexed by n 2Np . In the following two theorems it is convenient to use n 2N to
index them in an ascending order.

The following lemma allows us to estimate the error induced by counting approxi-
mate eigenvalues instead of eigenvalues.
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Lemma 3.6. Let (an), (bn) be two sequences of positive numbers which tend to infinity.
Suppose there exists a number s >°1 such that an = bn +O

°
b°s

n
¢
. Let

Na(∏) = #{n : an <∏} and Nb(∏) = #{n : bn <∏} .

Suppose that there exists a number K such that

Na(∏) =
KX

k=0
ck∏

p°k +O
°
∏r ¢

,

with r < p °K . Then,

(3.4.7) Nb(∏) =
KX

k=0
ck∏

p°k +O
≥
∏r 0

¥

where r 0 = max(r, p °1° s).

Remark 3.7. Note that if r 0 ∏ p °K , some of the terms in the sum in (3.4.7) might be
absorbed in the error term.

Proof. Indeed, the assumption on the sequences an and bn implies that there exists
c > 0 such that

Na

≥
∏+ c

∏s

¥
∑ Nb(∏) ∑ Na

≥
∏° c

∏s

¥
.

A direct computation of Na(∏± c∏°s ) completes the proof of the lemma. ⇤

Recall now the definition of Nø(æ) given by (3.1.1). We will write eNø for the counting
function of the corresponding approximate eigenvalues.

Lemma 3.8. We have: ØØ eNø(æ)°Nø(æ)
ØØ=O

°
æp°1°1/p¢

.

Proof. Both the eigenvalues and the approximate eigenvalues are, up to a bounded er-
ror, the norms of the points of the lattice ° = Lp

i=1
º

2ai
p

qN, repeated 2q times. Denote

by ln :=
©
|∞| :∞ 2 °

™
n the sequence of norms of the points of the lattice ° arranged in

ascending order. It is well known that there is a constant C such that

Nl (æ) =Cæp +O
°
æp°1¢ ,

where C depends on ° and Nl denotes the counting function of the sequence ln as in
Lemma 3.6. Applying Lemma 3.6 with s = 0 yields

Nø(æ) = 2qCæp +O
°
æp°1¢ .

Reversing this expression tells us that

(3.4.8) æn =
≥ n

2qC

¥1/p
+o

°
n1/p¢

.

From equations (3.4.6) and (3.4.8) we have that

eæn =æn +O
°
n°1/p¢

.

Therefore, applying once again Lemma 3.6, but this time with s = 1/p, yields

(3.4.9) Nø(æ) = eNø(æ)+O
°
æp°1°1/p¢

.

⇤
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3.4.2. Another representation of the counting function. For every ø, let us now define a
family of sets Eæ ΩRp with the property that

(3.4.10) eNø(æ) =
X

n2Np
2q¬

≥ n
æ

¥
+O (1) ,

where ¬ := ¬æ is the indicator function of Eæ. Let us define elliptic polar coordinates in
Rp with the convention that µp = 0 :

(3.4.11)

r 2 =
X

i2ø1

µ
ºxi

2ai
p

q

∂2

,

x j = r
2a j

p
q

º
cos(µ j )

Y

i< j
sin(µi ).

We define the family of sets

(3.4.12) Eæ :=
(

(r,µ) 2Rp : r 2 + 2r
æ

X

j2ø1

1
a j

g j (µ)+ H(µ)
æ2 < 1

)

,

with

(3.4.13) g j (µ) := cosµ j
Y

i< j
sinµi arccot

√
1
p

q

"

1+
X

i 6= j

µ
xi

x j

∂2
#1/2!

,

and

H = H(µ) =
X

j2ø1

1

a2
j

arccot

√
1
p

q

"

1+
X

i 6= j

µ
xi

x j

∂2
#1/2!2

.

From equation (3.4.6), we can observe that the evaluation of ¬ at æ°1n in coordinates
(3.4.11) is 1 if and only if eæn <æ. If |n| > N as in Theorem 2.6, there are 2q solutions close
to any order to eæn. This achieves our stated goal of equation (3.4.10). Let us now prove
a few properties of the set Eæ that will be required in the sequel.

Lemma 3.9. There existsæ0 such that foræ>æ0 the set Eæ is strictly convex and the prin-
cipal curvatures of @Eæ are positive and uniformly bounded away from 0. Furthermore,
all the derivatives of the principal curvatures tend to 0 as æ!1.

Proof. From equation (3.4.12) @Eæ is the level set of a function F satisfying

(3.4.14)

F (r,µ) = r 2 +O
°
æ°1¢ ,

[rF (x)]i =
ºxi

ai
p

q
+O

°
æ°1¢ ,

HessF = diag
µ

º

ai
p

q

∂

i2ø1

+O
°
æ°1¢ ,

with the error estimates uniform in @Eæ. This yields that for æ large enough, the second
fundamental form of @Eæ is positive, with its smallest eigenvalue uniformly bounded
away from 0. This implies the claim on the principal curvatures, which in turn implies
strict convexity.

As for the derivatives of the principal curvatures, they are the derivatives of the eigen-
values of HessF . Observe that r g j and H are smooth away from the origin, hence all
their derivatives are bounded on @Eæ. This implies that the derivatives of HessF are
O

°
æ°1¢, hence the derivatives of its eigenvalues as well and they go to 0 as æ!1. ⇤
This argument also yields the following corollary.
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Corollary 3.10. The product of the principal curvatures of @Eæ is uniformly bounded
away from zero for æ large enough.

3.4.3. Poisson Summation Formula. In this section, we use the general scheme of the
proof of [11, Theorem 1.1]. Recall that

(3.4.15)

Nø(æ) =
X

n2Np
2q¬

≥ n
æ

¥
+O (1)

= 2q°p X

n2Zp
¬

≥ n
æ

¥
+Rø(æ)+O (1) ,

where Rø(æ) is the error term induced by the overcounting of points on hyperplanes
with one vanishing coordinate.

Our goal is now to compute the terms appearing in equation (3.4.15) using the Pois-
son summation formula which states, under sufficient smoothness assumptions that

(3.4.16)
X

n2Zp
f (n) =

X

m2Zp

bf (m)

where the Fourier transform is given by

bf (ª) :=
Z

Rp
f (x)e°2ºi x·ªdx.

However,¬ is not regular enough for us to use the Poisson summation formula, hence
we need to mollify it. Let us introduce a nonnegative function √ 2C1

c (R) supported in
[°1,1] and such that Z1

0
√(r )r p°1 dr = 1

Vp°1
,

with Vp°1 being the volume of the p °1 dimensional unit sphere in Rp . We then define
a family™≤ :Rp !R of radial bump functions of total mass 1 by

™≤(x) = 1
≤p √

µ |x|
≤

∂
.

Set™ :=™1 Consider the smooth function ¬≤ =™≤§¬. Note that

b™≤(ª) = b™(≤ª)

We now prove the following lemma.

Lemma 3.11. Let ¬+≤ ,¬°≤ :Rp !R be defined by

¬+≤ (x) =¬≤
°
(1°¥+≤)x

¢

¬°≤ (x) =¬≤
°
(1+¥°≤)x

¢

for some ¥°,¥+ > 0. One can choose ¥°,¥+ in such a way that for all æ large enough

¬°≤ (x) ∑¬(x) ∑¬+≤ (x)

for all x 2Rp and all ≤> 0 small enough.

Proof. For the first inequality, observe that

¬≤((1+¥°≤)x) =
Z

Rp
¬(y)™≤((1+¥°≤)x°y)dy

=
Z

B(1+¥°≤)x(≤)
¬(y)™≤((1+¥°≤)x°y)dy

∑ sup
B(1+¥°≤)x(≤)

¬(y).
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Hence, to show that ¬≤((1+¥°≤)x) ∑ ¬(x) for all x, by convexity of Eæ it is sufficient to
show that for all x 2 @Eæ, there exists ¥°, independent of æ such that the following holds
for each ≤> 0 small enough

B(1+¥°≤)x(≤)\Eæ =?.

Note that for all x 2 @Eæ, we have that

(3.4.17) dist((1+ t )x,@Eæ) = (x ·N@Eæ (x))t +O
°
t 2¢ ,

where N@Eæ is the Gauss map of the boundary. To see this, denote by Tx@Eæ the tangent
hyperplane of @Eæ at x, and by Px the orthogonal projection on that hyperplane. We
have by the triangle inequality that

|dist((1+ t )x,@Eæ)°dist((1+ t )x,Tx@Eæ)|∑ dist(Px((1+ t )x),@Eæ).

We observe that dist((1+ t )x,Tx@Eæ) = (x ·N@Eæ (x))t . Let F , as before, be the function in
Rp such that the set F ¥ 1 coincides with @Eæ. Taking the Taylor expansion of F around
x, we have that

dist(Px((1+ t )x),@Eæ) ∑ kHessF (x)k1|Px((1+ t )x)|2 =O
°
t 2¢ ,

where we used that kHessF (x)k1 is bounded uniformly for æ > æ0 and x 2 @Eæ. Note
that the strict convexity of @Eæ and equation (3.4.14) imply that x ·N@Eæ (x) is bounded
away from zero uniformly for æ>æ0. This implies that we can choose ¥° large enough
and independent in æ such that indeed

B(1+¥°≤)x(≤)\Eæ =?.

For the second inequality, we have

¬≤((1°¥+≤)x) =
Z

Rp
¬(y)™≤((1°¥+≤)x°y)dy

=
Z

B(1°¥+≤)x(≤)
¬(y)™≤((1°¥+≤)x°y)dy

∏ inf
B(1°¥+≤)x(≤)

¬(y).

Hence, to show that ¬(x) ∑¬≤((1°¥+)x), it is sufficient to show that for all x 2 @Eæ, there
exists ¥+ independent of æ such that

B(1°¥+)x(≤) Ω Eæ.

Using once again equation (3.4.17) and arguing exactly as above yields the desired num-
ber ¥+. ⇤

The following is an immediate corollary of the previous lemma:

Corollary 3.12. We have that

X

n2Zp
¬°≤

≥ n
æ

¥
∑

X

n2Zp
¬

≥ n
æ

¥
∑

X

n2Zp
¬+≤

≥ n
æ

¥
.
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We will now apply the Poisson summation formula (3.4.16) to ¬±≤ , which are smooth
functions. This yields, using the basic properties of the Fourier transform,

(3.4.18)

X

n2Zp
¬±≤

≥ n
æ

¥
=æp X

m2Zp
b¬±≤ (æm)

=æp X

m2Zp
(1+O (≤)) b¬

µ
æm

1®¥±≤

∂
b™

µ
≤mæ

1®¥±≤

∂

=æp Vol(Eæ)+O
°
≤æp¢

+ O

0

B@
X

m2Zp

m6=0

æp b¬
µ

æm
1®¥±≤

∂
b™

µ
≤mæ

1®¥±≤

∂
1

CA .

Note that for this expression to hold, we will need to later choose ≤ = o (1). Since ™ is
a Schwartz function, its Fourier transform is also Schwartz, hence to find estimates on
the asymptotic behaviour of equation (3.4.18), we only need to find bounds on b¬. This
is done in the following Lemma.

Lemma 3.13. For æ large enough, the Fourier transform of ¬ satisfies the upper bound

(3.4.19) b¬(ª) =O
≥
|ª|°

d+1
2

¥
.

Proof. Foræ large enough, the set Eæ is strictly convex and has smooth boundary. There-
fore, following [9, Theorem 2.29] we have that for any function f 2 C1(Rp ) such that
f 6= 0 on @Eæ, Z

Eæ
f (x)e°2ºi x·ªdx =O

≥
|ª|°

d+1
2

¥
,

where the implicit constants depend on the product of the principal curvatures of @Eæ
and stay bounded as long as the principal curvatures are bounded away from 0. Hence,
by equation (3.4.14), these constants will be uniformly bounded for æ large enough.
Applying this result with f (x) ¥ 1 yields the desired result. ⇤

Remark 3.14. Note that the estimates and the error terms obtained in [9, Theorem 2.29]
depend on the bounds on the derivatives of the principal curvatures. By Lemma 3.9 the
derivatives of the principal curvatures of @Eæ tend to zero as æ!1, and therefore they
could be bounded uniformly for æ>æ0.

We now find the dependence on ≤ of the third summand in (3.4.18). We will choose
the optimal value of ≤ such that the second and the third terms are both as small as
possible. Splitting the third summand into two terms we use equation (3.4.19) and the
fact that b™ is a Schwartz function to obtain

O

0

B@
X

m2Zp

m 6=0

æp b¬
µ

mæ

1®¥±≤

∂
b™

µ
≤mæ

1®¥±≤

∂
1

CA=O

0

@ X

0<|m|∑(≤æ)°1

æ
p°1

2
°
1®¥±≤

¢ p+1
2

|m|
p+1

2

+
X

|m|>(≤æ)°1

æ
p°1

2
°
1®¥±≤

¢ p+1
2 +N

|m|
p+1

2 +N (æ≤)N

1

A ,

for an arbitrary N > 0 which will be fixed below. Assuming that ≤ is small and and taking
into account that the summands on the right hand side are decreasing in |m|, we may
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estimate the first of those sums by

X

0<|m|∑(≤æ)°1

æ
p°1

2
°
1®¥±≤

¢ p+1
2

|m|
p+1

2

≥æ
p°1

2

Z(≤æ)°1

1

r p°1

r
p+1

2

dr

=O
≥
≤

1°p
2

¥
.

The second of those sums can be estimated, for N large enough that the integral con-
verges, by

X

|m|>(≤æ)°1

æ
p°1

2
°
1®¥±≤

¢ p+1
2 +N

|m|
p+1

2 +N (æ≤)N
≥æ

p°1
2 (æ≤)°N

Z1

(≤æ)°1

r p°1

r
p+1

2 +N
dr

=O
≥
≤

1°p
2

¥
.

The optimal ≤ to make both æp≤ and ≤
1°p

2 as small as possible is

≤=æ
°2p
1+p ,

yielding that

(3.4.20)
X

n2Zp
¬±≤

≥ n
æ

¥
=æp Vol(Eæ)+O

≥
æ

p°2+ 2
1+p

¥
.

We now compute the volume of Eæ.

Lemma 3.15. Let ß=Sp°1 \Rp
+. We have:

(3.4.21) Volp (Eæ) =
2ppq p

ºp !p
Y

j2ø1

a j °
22ppq pGp,q

ºpæ

X

j2ø1

Y

i 6= j
ai +O

°
æ°2¢ ,

where

(3.4.22) Gp,q =
Z

ß
g j (µ)dµ,

for any of the functions g j defined by equation (3.4.13).

Remark 3.16. Note that Gp,q does not depend on j by the symmetry of the construction
of g j .

Proof. By symmetry, we have that

Vol(Eæ) =
22ppq p

ºp

Z

ß

ZΩ(µ)

0
r p°1 Y

j2ø1

a j dr dµ

where Ω(µ) is the unique positive root (in r ) of the equation

r 2 + 2r
æ

X

j2ø1

g j (µ)

a j
+ H
æ2 °1 = 0.

One can observe that

Ω(µ) = 1° 1
æ

X

j2ø1

g j (µ)

a j
+O

°
æ°2¢ .

Thus, we get that

Vol(Eæ) = 22p

ºp

Y

j2ø1

a j

Z

ß

1
p
° 1
æ

X

j2ø1

g j (µ)

a j
+O

°
æ°2¢ dµ
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Integrating and replacing in the previous equation the definition of Gp,q in equation
(3.4.22) yields

(3.4.23) Vol(Eæ) = 2p

ºp !p
Y

j2ø1

a j °
22pGp,q

ºpæ

X

j2ø1

Y

i 6= j
ai +O

°
æ°2¢ .

⇤

Finally, we have to take into account the points that we have overcounted with coef-
ficient 1/2 on the hyperplanes {xi = 0}. This is given in the following lemma.

Lemma 3.17. The number of overcounted points on the hyperplanes {xi = 0} is

(3.4.24) Rø(æ) =
p

q p 2p!p°1æ
p°1

4(2º)p°1

X

j2ø1

Y

i 6= j
ai +O

°
æp°2¢ .

Proof. One can observe that Rø is given by

Rø(æ) = 1
2

X

i2ø1

#
©
æ°1Np°1 \Eæ\ {xi = 0}

™

Since Eæ is convex, rough lattice point counting estimates due to Gauss tell us that

Rø(æ) = 1
2
æp°1 X

i2ø1

Volp°1 (Eæ\ {xi = 0})+O
°
æp°2¢ .

Computing the volumes in the same way as in the proof of the previous lemma yields
the desired result. ⇤

3.5. Proof of Proposition 3.1. Recall that eNp is given by

eNp (æ) =
X

ø2Tp

eNø(æ).

Observe that X

ø2Tp

2p+q Y

j2ø1

a j = Volp (@q (≠))

and

(3.5.1)

X

ø2Tp

X

j2ø1

Y

i 6= j
2p+q ai = (q +1)2p+q X

ø2Tp°1

Y

j2ø1

a j

= (q +1)Volp°1(@q+1≠)).

Combining these two formulas with equations (3.4.15), (3.4.20) and Lemmas 3.15, 3.17,
yields

eNp (æ) =
p

q p

(2º)p !p Volp (@q (≠))æp + cp Volp°1(@q+1≠)æp°1 +O
≥
æ

p°2+ 2
p+1

¥
.

Using equation (3.5.1), we have that cp = c 0p + c 00p , where

c 0p =°
(q +1)

p
q pGp,q

ºp

comes from the second term in equation (3.4.21) and

c 00p =°
(q +1)

p
q p!p°1

4(2º)p°1

is obtained from the principal term in equation (3.4.24).
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We then have from equation (3.4.9) that

Np (æ) =
p

q p

(2º)p !p Volp (@q (≠))æp + cp Volp°1(@q+1≠)æp°1 +O
°
æ¥p

¢
,

where

¥p = max
µ

p °1°1/p, p °2+ 2
p +1

∂

=
(

2/3 if p = 2,

p °1°1/p otherwise.

This completes the proof of Proposition 3.1.

3.6. Proof of Theorem 1.1. Recall now that

N (æ) =
d°1X

p=1
Np (æ)+O (1) .

Hence, applying the previous results we get

N (æ) = Nd°1(æ)+Nd°2(æ)+O
°
æ¥d°1

¢

= 1

(2º)d°1
!d°1 Vold°1(@(≠))æd°1 + cd°1 Vold°2(@2≠)æd°2

+ 2
d°2

2

(2º)d°2
!d°2 Vold°2(@2(≠))æd°2 +O

°
æ¥d°1

¢

=C1 Vold°1(@≠)æd°1 +C2 Vold°2(@2≠)æd°2 +O
°
¥d°1

¢
.

We can write explicitly C2 = c 0d°1 + cd°100 + 2
d°2

2 !d°2
(2º)d°2 to get indeed that

C2 =
2

d°2
2 !d°2

(2º)d°2
°

2Gd°1,1

ºd°1
° !d°2

2(2º)d°2

when d ∏ 3 and that

N (æ) = !1

2º
Vol1(@≠)æ+O (1)

when d = 2.
We can now give explicit expressions for the constants Gp,q :

Gp,q =
Zº/2

0
. . .

Zº/2

0
arccot

√
1
p

q

"

1+
p°1X

j=1
cot2µ j

Y

i> j
csc2µi

#1/2!p°1Y

k=1
sink (µk )dµ1 . . . dµp°1

=
Zº/2

0
. . .

Zº/2

0
arccot

√
1
p

q

p°1Y

j=1
cscµ j

!
p°1Y

k=1
sink (µk )dµ1 . . . dµp°1.

In particular, calculating the integrals for q = 1, p = 2 and q = 1, p = 3, we get:

G2,1 =
1
2

≥
°1+

p
2
¥
º

G3,1 =
1
8

(°2+º)º

This concludes the proof of Theorem 1.1.
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4. FURTHER RESULTS

4.1. Concentration of eigenfunctions. In this section, we discuss the behaviour of the
eigenfunctions, more precisely how they scar on the lower-dimensional facets of a cuboid.
This is made precise in the following theorem, where we will slightly abuse notation and
denote by uk both a Steklov eigenfunction and its boundary trace.

Theorem 4.1. Let≠ΩRd be the cuboid with parameters a1, . . . , ad > 0. Let p 2 {1, . . . ,d °1}
and let ø 2Tp . Consider the set

Xø = {x = (xø1 ,xø2 ) 2 @≠ : x j =±a j for j 2 ø2}.

Then, there exists a sequence of L2(@≠)-normalised eigenfunctions {uk } concentrating on
Xø and getting equidistributed around Xø in the following sense: for each measurable
U Ω Xø and every ≤> 0, consider the set

U≤ = {x = (xø1 ,xø2 ) 2 @≠ : xø1 2U and dist(x,U ) < ≤}.

Then, for every ≤> 0,

lim
k!1

Z

U≤

|uk (x)|2d x =
Volp (U )

Volp (Xø)
.

For example, on a cuboid of dimension 3, the set Xø is a union of four parallel edges
in case p = 1, while for p = 2 it is a union of two opposite faces.

Proof. Without loss of generality, we will suppose that U is a subset of one of the con-
nected components of Xø, say the one where x j = a j for all j 2 ø2. For k 2 N, let
k = (k, . . . ,k) 2 Rp and consider the pair (Æ(k),Ø(k)) satisfying the compatibility and har-
monicity conditions

Æ(k)
i cot

≥
Æ(k)

i ai

¥
=Ø(k)

j tanh
≥
Ø(k)

j a j

¥
8i 2 ø1, j 2 ø2

X

i2ø1

≥
Æ(k)

i

¥2
=

X

j2ø2

≥
Ø(k)

j

¥2

with Æ(k) 2 I2k. Note that this corresponds to choosing `(i ) = 0 for all i 2 ø1 and `( j ) = 1
for all j 2 ø2. Since

√
X

i2ø1

≥
Æ(k)

i

¥2
!1/2

= k

Az }| {√
X

i2ø1

µ
º

2ai

∂2
!1/2

+O (1) = Ak +O (1)

we have that for all j 2 ø2,

Ø(k)
j = A

p
q

k +O (1) .

Let vk (x) be the associated eigenfunction, and observe that

vk (x)2 =
Y

i2ø1

sin2
≥
Æ(k)

i xi

¥ Y

j2ø2

cosh2
≥
Ø(k)

j x j

¥

= 1
2p

Y

i2ø1

≥
1°cos

≥
2Æ(k)

i xi

¥¥ Y

j2ø2

cosh2
≥
Ø(k)

j x j

¥
,

= 1
2p

Y

i2ø1

µ
1°cos

µµ
ºk
ai

+O (1)
∂

xi

∂∂ Y

j2ø2

cosh2
µµ

A
p

q
k +O (1)

∂
x j

∂
.
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Defining the normalised eigenfunction

uk = vk

kvkkL2(@≠)
,

we estimate both kvkk2 := kvkk2
L2(@≠)

and
R

U≤
vk (x)2 dx. For kvkk2, we have that

(4.1.1)

kvkk2 = 1
2p

Y

i2ø1

Zai

°ai

1°cos
µµ
ºk
ai

+O (1)
∂

xi

∂
dxi

Y

j2ø2

Za j

°a j

cosh2 °
Ø j x j

¢
dx j

= 1

2d

°
Volp (Xø)+o (1)

¢ Y

j2ø2

Za j

°a j

cosh2 °
Ø j x j

¢
dx j

from the Riemann-Lebesgue lemma and the fact that

Vol(Xø) = 2q Y

i2ø1

Zai

°ai

dxi .

Furthermore, for all j 2 ø2 we have that

(4.1.2)

Za j

°a j

cosh2 °
Ø j x j

¢
dx j =

1
4

Za j

°a j

e
2
≥

Ap
q k+O(1)

¥
x j +e

°2
≥

Ap
q k+O(1)

¥
x j +2dx j

=
p

q

4Ak
e

2 Ap
q ka j (1+o (1)) .

Setting C =
p

q
4A , equations (4.1.1) and (4.1.2) yield together that

(4.1.3) kvkk2 = C q

2d kq
Volp (Xø)

√
Y

j2ø2

e
2 Ap

q ka j

!

(1+o (1))

We now also compute the integral of v2
k on U≤ where we get, in a similar fashion to

(4.1.1) that

(4.1.4)
Z

U≤

vk (x)2 dx = 1
2p

°
Volp (U )+o (1)

¢ Y

j2ø2

Za j

a j °≤
cosh2 °

Ø j x j
¢

dx j

We also have that

(4.1.5)
Za j

a j °≤
cosh2 °

Ø j x j
¢

dx j =
C
2

e
2 Ap

q ka j (1+o (1)) ,

where once again C =
p

q
4A . Together, equations (4.1.4) and (4.1.5) yield

(4.1.6)
Z

U≤

vk (x)dx = C q

2d kq
Volp (U )

√
Y

j2ø2

e
2 Ap

q ka j

!

(1+o (1)) .

Finally, putting equations (4.1.3) and (4.1.6) together yields indeed that

lim
k!1

Z

U≤

uk (x)2 dx = lim
k!1

Z

U≤

vk (x)2

kvkk2 dx =
Volp (U )

Volp (Xø)
,

concluding the proof.
⇤
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4.2. The first eigenfunction. In this section, we investigate the lowest nonzero eigen-
value æ1 on the cuboid. Let us first find the form of an eigenfunction u associated with
æ1. By Courant’s nodal theorem u has exactly 2 nodal domains. Thus, one of the factors
u j will have 2 nodal domains on the interval [°a j , a j ] and all the other factors only one
nodal domain. In other words there is one odd factor, and all the others are positive
even functions. We show the following proposition.

Proposition 4.2. Suppose that a1 ∑ . . . ∑ ad . Then there is Ø = (Ø1, . . . ,Ød°1) and Æd =
|Ø| < º

2ad
such that

u(x1, . . . , xd ) = sin(Æd xd )
d°1Y

k=1
cosh(Øk xk )

is an eigenfunction with eigenvalue æ1.

Proof. We will fist show that u is a product of one sine factor and d°1 hyperbolic cosine
factors. Suppose that one of the trigonometric factors was a cosine. Let us study the
number of nodal domains of cos(Æx j ) on the interval [°a j , a j ]. By the Steklov boundary
condition we have that

cos(Æa j ) =°æÆsin(Æa j ),

There are three possible cases, whether sin(Æa j ) is equal to, greater than or smaller than
0. Since the eigenvalue æ0 = 0 is simple, if sin(Æa j ) = 0 it would imply that cos(Æa j ) = 0,
which is impossible.

If sin(Æ j a j ) > 0, we have that cos(Æa j ) is negative. This would imply that the function
cos(Æx) has changed sign on [0, a j ] and since it is even it will have at least two zeroes
on [°a j , a j ], that is at least three nodal domains, in contradiction with Courant’s nodal
theorem.

Finally, if sin(Æa j ) < 0, this implies that Æa j >º, meaning that cos(Æx j ) has changed
sign at least once on [0, a j ]. This implies once again that there are at least three nodal
domains, completing the proof that no factor is cosine.

Since there can only be one odd factor, if one is linear all the other factors are a com-
bination of cosine and hyperbolic cosine. We just proved that none of the factors are co-
sine, and it is impossible for a product of linear functions with only hyperbolic cosines
to respect the harmonicity condition (2.1.2). We therefore deduce that the only odd
factor of u is a sine, and by the above discussion all of the other factors are hyperbolic
cosine. This implies that there exists some 1 ∑ j ∑ d , Æ j and Øk , k 6= j such that

u(x1, . . . , xd ) = sin(Æ j x j )
Y

k 6= j
cosh(Øk xk ),

and Æ j a j <º/2. The compatibility equations (2.2.3) hence become

Æ j cot(Æ j a j ) =Øk tanh(Øk ak )

Æ2
j = |Ø|2 =

X

k 6= j
Ø2

k ,

and æ1 is any member of the first equality. We show that æ1 is smallest when a j is the
largest side, i.e. a j = ad . Suppose not. Then, there is 1 ∑ k ∑ d °1 such that an eigen-
value associated with

v(x1, . . . , xd ) = sin(|∞|x j )
Y

k 6= j
cosh(∞ j x j ).
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is smaller than the one associated with

u(x1, . . . , xd ) = sin(|Ø|xd )
Y

k 6=d
cosh(Øk xk ).

The compatibility equations imply that for all k 6= j and k 6= d ,

∞k tanh(∞k ak ) <Øk tanh(Øk ak ).

Since x tanh(ax) is an increasing function, we deduce that ∞k ∑ Øk for all such k. How-
ever, we also have that

|∞|cot(|∞|ak ) < |Ø|cot(|Ø|ad )

and since x cot(ax) is decreasing on its first period and ak ∑ ad , this implies that |∞| > |Ø|.
From this, we therefore have that

Ø2
j +

X

k 6= j ,d
Ø2

k < ∞2
d +

X

k 6= j ,d
∞2

k .

Since for all k 6= j ,d we have that ∞k < Øk , we therefore deduce that Ø j < ∞d . However,
once again using the compatibility conditions, we have that

∞d tanh(∞d ad ) <Ø j tanh(Ø j a j ).

Since ad > a j , by monotonicity of x tanh(ax) we deduce that ∞d < Ø j , a contradiction.
Hence, we have that the first eigenfunction is, taking into account that Æd = |Ø|,

u(x1, . . . , xd ) = sin(|Ø|xd )
d°1Y

j=1
cosh(Ø j x j ),

⇤
concluding the proof of the proposition.

4.3. Proof of Theorem 1.6. The first eigenvalue is given by the following min-max prin-
ciple :

æ1(≠) = inf
u2C1(≠)R
@≠u=0

R≠[u] = inf
u2C1(≠)R
@≠u=0

R
≠ |ru|2
R
@≠u2 .

Denote by ≠0 the cube [°1,1]d . Then, for any cuboid ≠ = [°a1, a1]£ . . .£ [°ad , ad ] we
have that Z

≠
f (x)dx =

Z

≠0

f (a1x1, . . . , ad xd )
dY

i=1
ai dx

and

(4.3.1)

Z

@≠
f (x)dx =

dX

j=1

Z

@≠\
©

x j =±a j
™ f (x)dx

=
dX

j=1

Z

@≠0\
©

x j =±1
™ f (a1x1, . . . , ad xd )

Y

i 6= j
ai dx.

This allows us to consider integration only on≠0 for R≠. Observe that the eigenspace of
æ1(≠0) has dimension d , and that a basis for it is given by

u j (x1, . . . , xd ) = sin(|Ø|xd )
Y

i 6= j
cosh(Øi xi ).

The eigenfunctions u j are orthogonal to constants in the scalar product given by the
rescaled integral (4.3.1). Indeed, on all faces where the sin factor is not constant, the
integral vanishes since it is an odd function. On the pair of faces where the sin factor is
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constant, we have that u j (x1, . . . , a j , . . . , xd ) =°u j (x1, . . . ,°a j , . . . , xd ) hence the integrals
cancel out on these two faces.

Consider the eigenfunction

u =
dX

j=1
u j .

It is easy to see that the integral of u2 on any face of ≠0 is identical, and we have that
R≠0 [u] =æ1(≠0). We now compute

1
R≠[u]

=
Pd

j=1
Q

i 6= j ai
R
@≠0\

©
x j =±1

™ u2 dx
Qd

j=1 a j
R
≠0

|ru|2 dx

= 1
R≠0 [u]

1
d

Pd
j=1

Q
i 6= j ai

Qd
j=1 a j

.

Fix the volume Vold (≠) = Vold (≠0), hence
Q

j a j = 1. Then, from the inequality of arith-
metic and geometric means,

R≠0 [u]

R≠[u]
= 1

d

dX

j=1

Y

i 6= j
ai ∏

√
dY

j=1
ad°1

j

!1/d

= 1,

with equality if and only if for all j ,k,
Q

i 6= j ai = Q
i 6=k ai , which is true if and only if

a j = ak for all j ,k, which implies in turn that æ1(≠) ∑ æ1(≠0), with equality if and only
if≠ is a cube.

On the other hand, fix the area, Vold°1(≠) = Vold°1(≠0), hence
P

j
Q

i 6= j ai = d . Then,

R≠0 [u]

R≠[u]
=

√
Y

j
a j

!°1

=
√

dY

j=1

Y

i 6= j
ai

! d(1°d)
d

∏
√

1
d

dX

j=1

Y

i 6= j
ai

! 1°d
d

= 1,

with equality in the same case as before. Once again, this implies that æ1(≠) ∑ æ1(≠0),
with equality if and only if≠ is a cube.

4.4. Proof of Corollary 1.8. We want to show that among all rectangles, the Steklov
spectrum determines the lengths a1, a2 of its sides. From spectral asymptotics, the
perimeter of the rectangle is obtained, giving L = a1+a2, supposing without loss of gen-
erality that a1 ∑ a2. On the other hand, we have æ1, and we know that it is the smallest
root of

æ1 =Æcot(Æa1) =Æ tanh(Æa2).

Rewriting these to yield a2 as a function of Æ, L and æ1 gives

(4.4.1) a2 = f (Æ) = 1
Æ

arctanh
≥æ1

Æ

¥

and

(4.4.2) a2 = g (Æ) = L° 1
Æ

arccot
≥æ1

Æ

¥
.

Given æ1 and L, the intersection of these curves yield possible values a2 for Æ. We now
show that they intersect at only one point. Equation (4.4.1) is defined for Æ > æ1 and
taking the derivative yields

(4.4.3) f 0(Æ) =°
arctanh

°æ1
Æ

¢

Æ2 ° æ1

Æ3
µ
1° æ2

1
Æ2

∂ ,
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which is always negative for Æ > æ1, hence f is decreasing. We now show that g is in-
creasing on [æ1,1). We have that

g 0(Æ) =
arccot

°æ1
Æ

¢

Æ2 ° æ1

Æ3
µ
1+ æ2

1
Æ2

∂ .

Thus, g 0 is positive if

Æarccot
≥æ1

Æ

¥√

1+
æ2

1

Æ2

!

°æ1 ∏ 0.

However, we have that

Æarccot
≥æ1

Æ

¥√

1+
æ2

1

Æ2

!

°æ1 ∏
º

4
Æ+ º

4

æ2
1

Æ2 °æ1

hence we need to have that Æ2 ° 4æ1Æ
º +æ2

1 ∏ 0. This quantity is positive at Æ= æ1 since
2 ∏ 4/º and it is increasing since

2Æ> 4æ1

º
for Æ∏æ1. We conclude that g is increasing. This implies that f and g have exactly one
intersection point, say at Æ0. We have that a2 = f (Æ0) = g (Æ0) and a1 = L°a2. Note that
since the square maximises æ1 and since the eigenvalues are continuous functions of
the side lengths of a rectangle this means that among all rectangles with given area or
perimeter, æ1 is a decreasing function of a2.

APPENDIX A. PROOF OF LEMMA A.1

Lemma A.1. Let

fi (x) = arccot

√

c

"

1+
X

j 6=i

µ
x j

xi

∂2
#1/2!

.

for some c > 0 and where by convention arccot(1) = 0, and let √ :Rp !Rp be a bounded
function. Then,

(A.1)
ØØ fi (x+√(x))° fi (x)

ØØ=O
°
|x|°1¢ .

Proof. We have that ØØ fi (x)° fi (x0)
ØØ=O

°
|x°x0||r f (x0)|

¢
.

Consider spherical coordinates (r,µ1, . . . ,µp°1)

r = |x|,
x j = r cos(µ j )

Y

i< j
sin(µi ),

where by convention µp = 0.
Denote x = (r,µ) and x+√(x) = (r√,µ√). It is clear that since √ is bounded we have

that
|µ°µ√| =O

°
r°1¢ .

Indeed, from planar geometry we get that

tan(|µ°µ√|) ∑
supx2Rp √(x)

r
.

One can observe that the functions in Equation (A.1) depend only on µ√ and µ.
Hence, showing that the gradient is bounded in µ implies that | fi (x+√(x))° fi (x)| =
O

°
r°1¢.
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By symmetry, we can suppose without loss of generality that i = p in Equation (A.1).
Then, using repeatedly the identity 1+cot2µ = csc2µ we have that

fp (x) = arccot

√

c
p°1Y

j=1
cscµ j

!

.

Now, we have that

@µ j fp (x) = c
cotµ j

Qp°1
k=1 cscµk

1+ c2 Qp°1
k=1 csc2µk

.

This is bounded since when µ j ! nº, the singularities are of the same order on the
numerator and denominator while when it is any other µi ! nº, the singularities are of
order 1 in the numerator and 2 in the denominator. This concludes the proof. ⇤

APPENDIX B. POSITIVITY OF THE CONSTANT C2

We can rewrite C2 as

C2 =
(2

d+2
2 °2)º!d°2 °2d+1Gd°1,1

2(2º)d°1
,

and we need to show that C2 > 0 for d ∏ 3. This will be done by showing that

(B.1)
(2

d+2
2 °2)º!d°2

2d+1Gd°1,1
> 1.

Let us first observe that the integrand in Gd°1,1 is positive and that for anyµ 2 [0,º/2]d°2,
we have that

arccot

√
d°2Y

j=1
cscµ j

!

∑ arccot(1) < 1.

Hence,

Gd°1,1 =
Zº/2

0
. . .

Zº/2

0
arccot

√
d°2Y

j=1
cscµ j

!
d°2Y

k=1
sink (µk )dµ1 . . . dµd°2

∑
d°2Y

k=1

Zº/2

0
sink (µk )dµk

= 22°dº
2°d

2

°
≥

d
2

¥ .

The last equality is true for d = 3, and is seen to be true for all d ∏ 3 by induction using
the identity [7, 3.621 (1)]

Zº/2

0
sink (µ)dµ = 2k°1B

µ
k +1

2
,

k +1
2

∂
.

and the Gamma function duplication identity

°(µ)°
°
µ+1/2

¢
= 21°2µpº°(2µ).

Using the fact that

!d°2 =
º

d°2
2

°
≥

d
2

¥



THE STEKLOV SPECTRUM OF CUBOIDS 31

and replacing in Equation (B.1) we have that

(2
d+2

2 °2)º!d°2

2d+1Gd°1,1
∏ (2

d+2
2 °2)º

8
> 1

for all d ∏ 3, concluding the proof that C2 > 0.
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