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Abstract
We consider the 1-harmonic flow of maps from a bounded domain into a submanifold of
a Euclidean space, i.e., the gradient flow of the total variation functional restricted to maps
taking values in themanifold.We restrict ourselves to Lipschitz initial data.We prove unique-
ness and, in the case of a convex domain, local existence of solutions to the flow equations. If
the target manifold has non-positive sectional curvature or in the case that the datum is small,
solutions are shown to exist globally and to become constant in finite time. We also consider
the case where the domain is a compact Riemannianmanifold without boundary, thus solving
the homotopy problem for 1-harmonic maps under some assumptions on both manifolds.
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1 Introduction

Let (N , g) be a complete, connected smooth n-dimensional Riemannian manifold (without
boundary). Throughout the paper, without loss of generality [21,34], we will treat it as an
isometrically embedded submanifold in the Euclidean space RN . Given an open, bounded
Lipschitz domain Ω ⊂ R

m we consider the formal steepest descent flow with respect to the
L2 distance of the functional TVN

Ω : the total variation functional constrained to functions
taking values in N , given for smooth u by

TVN
Ω [u] =

∫
Ω

|∇u|. (1)

Following the L2-steepest descent flow is one way of controlled decreasing TVN
Ω , which

is a problem appearing in image processing. Besides the caseN ⊆ S
N−1, which appears in

denoising of optical flows [40] or color images [41], other examples of targets appearing in
applications include the space of isometries SO(3) × R

3 [28], the cylinder R2 × S
1 (LCh

color space) [45] and the space of positive definite symmetric matrices (diffusion tensors)
Sym+(3) [45]. All of these examples are homogeneous spaces, and therefore have natural
invariant metrics. Our main goal in this paper is to develop a well-posedness theory for the
flow in a generality encompassing these cases. As some of these manifolds are non-compact,
we refrain from the unnecessary (although convenient) assumption of compactness of N .

Given a point p ∈ N , we denote by

πp : TpR
N ≡ R

N → TpN

the orthogonal projection onto the tangent space ofN at p, TpN . Similarly, π⊥
p will denote

the orthogonal projection of RN onto the normal space TpN ⊥. The centered dot will denote
the Euclidean scalar product on R

m or RN , while k stacked dots will denote the induced
scalar product on a Cartesian product of any k-tuple of these spaces. Calculating the first
variation of (1) at u, one obtains that the flow in a time interval [0, T [ starting with initial
datum u0 is formally given by the system

ut = πu

(
div ∇u

|∇u|
)

in ]0, T [×Ω, (2)

νΩ · ∇u
|∇u| = 0 in ]0, T [×∂Ω, (3)

u(0, ·) ≡ u0. (4)

The symbol νΩ denotes the external unit normal of Ω , which is definedH m−1-a.e., on ∂Ω .
The meaning of the expression ∇u

|∇u| in (2), (3) deserves a clarification even for smooth u: we

understand ∇u
|∇u| as a multifunction

∇u
|∇u| : (t, x) ↦

{ ∇u(t,x)
|∇u(t,x)| if ∇u(t, x) 	= 0
B(0, 1) ⊂ R

m × Tu(t,x)N if ∇u(t, x) = 0
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and require that (2), (3) are satisfied for an appropriate selection. This is formalized in the
following definition, which is an adapted version of [3, Definition 2.5]. Here and in the
following we will use the notation

X(U ,N ) = {w ∈ X(U ,RN ) : w(y) ∈ N for a. e. y ∈ U },
whereU is any domain inRl (or a compact l-dimensionalRiemannianmanifold), l = 1, 2, . . .
and X(U ,RN ) is a subspace of L1

loc(U ,RN ).

Definition 1 Let T ∈]0,∞]. We say that

u ∈ W 1,2
loc ([0, T [×Ω,N ) with ∇u ∈ L∞

loc([0, T [×Ω,Rm·N )

is a (regular) solution to (2) (in [0, T [) if there exists Z ∈ L∞(]0, T [×Ω,Rm·N ) with
div Z ∈ L2

loc([0, T [×Ω,RN ) satisfying

Z ∈ ∇u
|∇u| , (5)

ut = πu(div Z) (6)

L 1+m − a. e. in ]0, T [×Ω . We say that a regular solution u to (2) satisfies (homogeneous)
Neumann boundary condition (3) if

νΩ · Z = 0 (7)

L 1 ⊗ H m−1 − a. e. in ]0, T [×∂Ω .

Remark 1 Due toMorrey embedding theorem, any regular solution to (2) has a representative
that is locally Hölder continuous on [0, T [×Ω [22, Theorem 5]. We will identify it with this
representative. In particular, the initial condition (4) can be understood pointwise. On the
other hand, νΩ · Z in (7) has to be understood as the normal trace of an L∞ vector field with
integrable divergence, as defined in [4,42].

If conditions in Definition 1 are satisfied, wewill often say that the pair (u, Z) is a (regular)
solution to (2) and/or (3). We will often use equivalent (see e.g., the proof of Lemma 2) form
of (6):

ut = div Z + Au(uxi ,Zi ), (8)

where Ap denotes the second fundamental form of N at p ∈ N and Z = (Z1, . . . ,Zm).
Here and throughout the paper, we use Einstein’s summation convention.

The adjective regular in Definition 1 is justified by the following considerations. Firstly,
W 1,∞(Ω) is the highest Sobolev regularity that is preserved by the scalar total variation flow
[5,25]. Secondly, such attribute distinguishes the class of solutions in Definition 1 from weak
(energy) solutions, whose natural spatial regularity is BV (Ω). However, we note that in the
constrained case, even defining a proper concept of solution is non-trivial in the BV setting,
the crucial issue being an appropriate identification of the right-hand side of (6) or of (8). In
this regard, the only case considered so far is N ⊆ S

n , in which (8) drastically simplifies
due to the isotropy of the sphere:

ut = div Z + u|∇u|.
Suitably defined solutions to (2), (3) have been obtained in [15] when the initial datum is
contained in an hyper-octant of Sn [15]. When n = 1, the assumption on u0 may be relaxed
and uniqueness results are available too [14]. A notion of solution extending the one in [14,15]
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to (N −1)-dimensional manifolds with unique geodesics has been proposed in [9]. Existence
of solutions for a discretized Dirichlet problem for (2) in the caseN = S

n , m = 2 has been
obtained in [20]. The validity of Definition 1 is supported by the well-posedness results that
we obtain. First of all, regular solutions are unique.

Theorem 1 Suppose that u1,u2 are two regular solutions to (2), (3) in [0, T [, T ∈]0,∞[
such that u1(0, ·) = u2(0, ·) = u0. Then u1 ≡ u2.

The proof Theorem 1 is different from the proofs of analogous results for p-harmonic
flow in [12,23] in that we do not use strict monotonicity of the p-Laplace operator (since it
does not hold for p = 1).

Provided that Ω is convex, we are able to construct local-in-time Lipschitz solutions to
(2), (3). We need the assumption of convexity, as we are forced to use global L p estimates
for ∇u. Localization of these estimates is not available due to the strong degeneracy of the
1-Laplace operator div ∇u

|∇u| . In fact, at least in the case of anisotropic total variation flow,

there are examples of non-convex Lipschitz Ω , where W 1,p(Ω) regularity classes are not
preserved by the flow [27]. The assumption of convexity is not very restrictive from the point
of view of image processing, as typical domains in applications are rectangles (or boxes of
different dimensions).

The existential theory depends on the sectional curvature KN of N or, equivalently, on
the Riemannian curvature tensor RN of N . We denote by KN the supremum of sectional
curvature over N , i.e.,

KN = sup

{
v · RN

p (v,w)w

|v|2|w|2 − (v · w)2

∣∣∣∣∣ p ∈ N , v,w ∈ TpN linearly independent

}
. (9)

Recall that KSO(n)×Rn is positive (and finite) and KS1×Rn , KSym+(n) are non-positive.

Theorem 2 Suppose that Ω is convex, the embedding of N in R
N is closed and KN < ∞.

Given u0 ∈ W 1,∞(Ω,N ), we denote T† = (KN ‖∇u0‖L∞)−1 if KN > 0 and T† =
+∞ otherwise. There exists a regular solution u to (2)–(4) in [0, T†[ satisfying the energy
inequality

ess sup
t∈[0,T†[

∫
Ω

|∇u(t, ·)| +
∫ T†

0

∫
Ω

u2t ≤
∫

Ω

|∇u0|. (10)

This theorem bears a similarity to [17, Theorem 3.4], where Lipschitz local-in-time solutions
to (2) are constructed in the case where Ω is a flat torus, i.e., a box with periodic boundary
conditions. However, aside from the choice of boundary condition, there are differences
between these results—most importantly, in [17], smallness of ∇u0 in L1+ε(Ω) is assumed.
This is because in [17], global solutions to p-harmonic flows constructed in [13] for small
initial data are used as an approximation. In our case a different approximation scheme is
proposed. In fact we cannot use the results in [13] as non-trivial boundary conditions are not
handled there.

At least in the case of Dirichlet boundary data, regular solutions to (2) can blow up in
finite time, as shown by explicit examples in [8,16]. In our case, we prove that solutions exist
globally in time, provided that the range of the initial datum is contained in a small enough ball
inN . In fact, in this case they become constant in finite time, similarly as for the scalar total
variation flow [18]. Note that in the case of inhomogeneous Dirichlet boundary conditions,
the evolution of generic initial data under 1-harmonic flow does not stop in finite time [19],
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in contrast to what is observed in the scalar total variation flow, at least in 1-dimensional
domains [25]. Let us denote by Bg(p, R) the ball centered at p ∈ N of radius R > 0 with
respect to the metric induced by g on N .

Theorem 3 Let p0 ∈ N , u0 ∈ W 1,∞(Ω,N ) and u be a regular solution to (2)–(4) in [0, T [.
Suppose that u0(Ω) ∈ Bg(p0, R), R > 0. There exist

– a constant R∗ = R∗(N ,p0) > 0 such that if R < R∗, then u(t,Ω) ∈ Bg(p0, R) for
t ∈]0, T [,

– constants R̃∗ = R̃∗(N ,p0) ∈]0, R∗[, C = C(Ω,N ,p0) > 0 and u∗ ∈ N such that if
R < min

(
R̃∗, T

C

)
, then u(t, ·) ≡ u∗ for t ∈]C R, T [.

In the particular case KN ≤ 0 no blow-up occurs for any Lipschitz datum, and we can
obtain a stronger result of global existence. Owing to particularly simple topology of Rie-
mannian manifolds with KN ≤ 0, we need not assume the existence of a closed embedding
of N into R

N in this case.

Theorem 4 Suppose that Ω is convex and KN ≤ 0. Let u0 ∈ W 1,∞(Ω,N ). There exists a
regular solution u to (2)–(4) in [0,∞[ satisfying the energy inequality (10). There exists T∗ =
T∗(u0) ∈ [0,∞[ and u∗ = u∗(u0) ∈ N such that u(t, ·) ≡ u∗ for t ≥ T∗. Furthermore,

ess sup
t>0

‖∇u(t, ·)‖L∞(Ω) ≤ ‖∇u0‖L∞(Ω).

We remark that in the scalar case the preservation of the W 1,∞ bound follows from [7,
Corollary 5.6]. However, the methods there are not readily adaptable to vectorial problems.

From the point of view of imaging science, the rigorously defined notion of regular solu-
tion to (2)–(4) provides a theoretical basis for computing a total variation diminishing flow
via a finite difference scheme. Ourwell-posedness results should then be expected to translate
to stability results for such a scheme. In these terms, the requirement of Lipschitz regularity
of data is not a significant restriction, as it corresponds to the boundedness of difference
quotients on the level of discretization. In the case whereN has non-positive sectional cur-
vature (Theorem 4), stability propagates indefinitely, even if initial image exhibits prominent
contours. However, this is not necessarily the case anymore for general N , as the bound
on existence time T† of the solution constructed in Theorem 2 deteriorates with increasing
Lipschitz constant of the datum. For this reason, well-posedness for a notion of solution
defined on the energy space BV (Ω,N ) would be more desirable. In fact, we plan to use the
present paper as a basis for treating this problem.

The regular 1-harmonic flow that we consider here is continuous over the spacetime, and
hence capable of generating homotopy. For this reason we find it appropriate to discuss in
detail the case where the domain is a compact Riemannian manifold (M , γ ). In this setting,
the total variation functional takes form

TVN
M [u] =

∫
M

| du|γ dμγ . (11)

To explain the notation in (11), we introduce local coordinates x ↦ (x1, . . . , xm) onM and
denote γ (v,w) = γabv

awb for any vector fields v,w onM ,
(
γ ab
)
1≤a,b≤m = (γab)

−1
1≤a,b≤m .

We have | du|γ = (γ abui
xa ui

xb )
1
2 and dμγ = | det (γab)| 12 dL m . In this setting, the system

of Eq. (2) representing the flow becomes
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ut = πu

(
divγ

du
| du|
)

in ]0, T [×M . (12)

The expression for divγ acting on a 1-form ϑ on M in coordinates is

divγ ϑ = | det (γab)|− 1
2

(
| det (γab)| 12 γ abϑb

)
xa

.

Observe that (12) is a formal limit as p → 1+ of systems

ut = πu(divγ (| du|p−2 du)) in ]0, T [×M (13)

corresponding to p-harmonic map flows between Riemannian manifolds. These were first
considered in the case p = 2 in connection with the homotopy problem for harmonic maps,
i.e., the problem of finding a harmonic map homotopic to a given one. The problem was
solved in [11] under the condition that KN ≤ 0 by constructing the harmonic map flow.
An analogous result was later obtained in [12] for any p > 1. We note that there are several
non-equivalent notions of p-harmonic maps, among them weakly p-harmonic maps, i.e.,
stationary weak solutions to (13).

We introduce the notation

du
| du|γ : (t, x) ↦

{
du(t,x)

| du(t,x)|γ if du(t, x) 	= 0

Bγ (0, 1) ⊂ T ∗
x M × Tu(t,x)N if du(t, x) = 0.

Measurable selections of du
| du|γ (t, ·) can be seen as L∞ sections of the bundle T ∗M × R

N

over M for a.e., t ∈]0, T [, see [35] for reference. As in [35], we let L p(T ∗M × R
N )

denote L p sections of this bundle, p ∈ [1,∞]. Similarly, we denote by L p(]0, T [×T ∗M ×
R

N ) the space of L p sections of the bundle ]0, T [×T ∗M × R
N over ]0, T [×M , and by

L p
loc([0, T [×T ∗M × R

N ) the space of measurable sections of this bundle which are p-
integrable locally on [0, T [×M . We are ready to introduce a concept of solution to (12).

Definition 2 Let T ∈]0,∞]. We say that

u ∈ W 1,2
loc ([0, T [×M ,N ) with du ∈ L∞

loc([0, T [×T ∗M × R
N )

is a (regular) solution to (12) (in [0, T [) if there exists Z ∈ L∞(]0, T [×T ∗M × R
N ) with

divγ Z ∈ L2
loc([0, T [×M ,RN ) satisfying

Z ∈ du
| du|γ , (14)

ut = πu(divγ Z) (15)

L 1+m − a. e. in ]0, T [×M .

The strength of our result in this case depends on the sign of the Ricci curvature RicM of
M . Opposite to the usual convention, we define it as a (2, 0) tensor, i.e.,

(RicM )ab = γ acγ bd(RM )e
ced (16)

in coordinates. We denote

RicM = min

{
RicMp (ϑ, η)

|ϑ |γ |η|γ

∣∣∣∣∣p ∈ M ,ϑ, η ∈ T ∗
p M \{0}

}
.
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Theorem 5 Let (M , γ ) be a compact, orientable Riemannian manifold and let (N , g) be a
compact submanifold in the Euclidean space R

N . Given u0 ∈ W 1,∞(M ,N ), there exists
T ∈]0,∞] and a unique regular solution to (12), (4) in [0, T [.

If KN ≤ 0, the solution exists in [0,∞[. If in addition RicM ≥ 0, there exists a
sequence (tk) ⊂]0,∞[, tk → ∞, u∗ ∈ W 1,∞(M ,N ) and Z∗ ∈ L∞(T ∗M × R

N ) with
divγ Z∗ ∈ L∞(M ,RN ) such that

πu∗(divγ Z∗) = 0, Z∗ ∈ du∗
| du∗|γ , (17)

u(tk, ·) → u∗ in C(M ,N ). (18)

As u is continuous and the sequence (u(tk, ·)) converges to u∗ in C(M ,N ), u∗ and u0
are homotopic. Thus, we have solved the homotopy problem for (weakly) 1-harmonic maps
assuming that M is orientable with RicM ≥ 0 and KN ≤ 0.

The plan of the paper is the following one: Firstly, in Sect. 2, we prove Theorem 1. In
Sect. 3, we obtain well-posedness of an approximating system to (2)–(4) and we obtain some
a priori estimates (independent of the parameter of approximation) for their solutions. This
permits us to prove Theorem 2, to which Sect. 4 is devoted. The asymptotic behaviour is
treated in the next sections: in Sect. 5, we prove Theorem 3 while in Sect. 6, we treat the case
of non-positive curvature; i.e., Theorem 4. Section 7 is devoted to the case where the domain
is a compact Riemannian manifold, in which we prove Theorem 5. The last part of the paper
is an appendix where some technical lemmata are stated and proven.

2 Uniqueness

In this section, we give the proof of Theorem 1.
Let (u1, Z1), (u2, Z2) be two regular solutions to (2), (3). For i = 1, 2 there holds

ui
t = div Zi + Aui

(
ui

x j ,Z
i
j

)
.

Here and in the rest of this section, ui
x j and Zi

j denote, respectively, the derivative of u
i in

direction of x j and the j-th component of Zi , i = 1, 2, j = 1, . . . , m. We calculate

1

2

d

dt

∫
Ω

|u1 − u2|2 =
∫

Ω

(u1 − u2) · (div Z1 − div Z2)

+
∫

Ω

(u1 − u2) ·
(
Au1(u

1
x j ,Z

1
j ) − Au2

(
u2x j ,Z

2
j

))
. (19)

In the first term on the r.h.s. of (19) we integrate by parts, yielding∫
Ω

(u1 − u2) · (div Z1 − div Z2) = −
∫

Ω

(|∇u1| − ∇u1 .. Z2 + |∇u2| − ∇u2 .. Z1
)

which is non-positive as |Zi | ≤ 1, i = 1, 2. Next, we note that for any p1,p2 ∈ N contained
in a fixed compact subset K of N we have∣∣∣π⊥

pi (p
1 − p2)

∣∣∣ ≤ C1(K )|p1 − p2|2

for i = 1, 2. The exponent two on the right-hand side follows from the second-order Taylor
expansion of π⊥

pi (p − pi ) around pi : indeed

p − pi = exp−1
pi p + O(|p − pi |2)

123
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in a neighborhood U ⊂ N of pi , where exp−1
pi : U → Tpi N is the logarithmic map of N

at pi (see e.g., [31, Lemma A.1]). Such exponent is crucial for the following Gronwall-type
argument.

As u1, u2 are continuous on [0, T ] × Ω (we assume without loss of generality that T
is finite), there is indeed a compact set K = K (u1,u2) in N with ui ([0, T ] × Ω) ⊂ K ,
i = 1, 2. Therefore, as Aui is valued in Tui N ⊥ (i = 1, 2) there is a constant C2 depending
on K and the norms of ∇u1, ∇u2 in L∞(]0, T [×Ω,RN ) such that

1

2

d

dt

∫
Ω

|u1 − u2|2 ≤ C2

∫
Ω

|u1 − u2|2

for a.e., t ∈]0, T [. Thus, if u1(0, ·) = u2(0, ·), we have u1 ≡ u2 due to Gronwall’s lemma.

3 The approximate system

In this section, Ω ⊂ R
m is assumed to be an open, bounded, smooth, convex domain

and 0 < α < 1. Given ε > 0, T ∈]0,∞] we consider the approximating system for
uε : [0, T [×Ω → N :

uε
t = πuε

(
div ∇uε√

ε2+|∇uε |2

)
in ]0, T [×Ω, (20)

νΩ · ∇uε = 0 in ]0, T [×∂Ω, (21)

uε(0, ·) = u0. (22)

Further in this section, we will drop the index ε and denote Z = ∇u√
ε2+|∇u|2 .

We will obtain solutions to (20)–(22) in parabolic Hölder spaces as defined in [26, Chap-
ter I]. Let us introduce some necessary notation. Given numbers k = 0, 1, . . ., 0 < α < 1 and

an interval I , we write C
k+α
2 ,k+α(ΩI ,R

N ) for the parabolic Hölder space on ΩI = I × Ω

of order k + α. Similarly, we write u ∈ C
k+α
2 ,k+α

loc (Ω I ,R
N ) if u ∈ C

k+α
2 ,k+α(ΩK ,RN ) for

every interval K compactly included in I .

3.1 Uniform bounds

In this subsection,we prove essential a priori estimates foru ∈ C
3+α
2 ,3+α

loc (Ω [0,T [,N ) solving
(20), (21) with a given ε, T > 0. For brevity, we denote

v = (|∇u|2 + ε2
) 1
2 , v0 = (|∇u0|2 + ε2

) 1
2 .

The basic energy estimate reflects the gradient flow structure behind (20), (21).

Lemma 1 Let u ∈ C
3+α
2 ,3+α

loc (Ω [0,T [,N ) satisfy (20), (21). Then

sup
t∈[0,T [

∫
Ω

v(t, ·) +
∫ T

0

∫
Ω

u2t ≤
∫

Ω

v0. (23)
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Proof The estimate follows from the equality

d

dt

∫
Ω

v =
∫

Ω

Z .. ∇ut = −
∫

Ω

u2t

which holds as ut (t, x) ∈ Tu(t,x)N for (t, x) ∈]0, T [×Ω . ��
In order to derive further uniform bounds, our main tool is the following version of

Bochner’s identity (see [29, Chapter 1] for the case of harmonic maps).

Lemma 2 Let u ∈ C
3+α
2 ,3+α

loc (Ω [0,T [,N ) satisfy (20). Then, on ]0, T [×Ω ,

1

2

d

dt
|∇u|2 = (∇u .. ∇Zi )xi − (πu∇2u)

... ∇Z + Zi · RN
u (uxi ,ux j )ux j . (24)

Proof Given t ∈]0, T [, x ∈ Ω , we choose a local orthonormal frame (Nk)k=1,...,N−n on N
around u(t, x). For any p ∈ N close enough to u(t, x), we express using this frame

π⊥
p = Nk

p ⊗ Nk
p, Ap(X,Y) = (X · DpNk Y)Nk

p, (25)

whereX,Y ∈ TpN ,Nk
p denotes the value ofN

k at p and DpNk : TpN → R
N is the tangent

map to Nk at p, that is DwNk ws = (Nk
w)s for any C1 curve s ↦ w(s) ∈ N . We recall

that Ap is symmetric and does not depend on the choice of (Nk) [38, Chapter 7], and by
convention

X ⊗ Yu = (Y · u)X, (X ⊗ Yu) · v = (Y · u)(X · v) (26)

for any X,Y,u, v ∈ R
N .

First, we calculate

−Nk
u ⊗ Nk

u div Z = −Nk
u(N

k
u · Z j︸ ︷︷ ︸
=0

)x j + Nk
u((N

k
u)x j · Z j ) = Au(ux j ,Z j )

which allows us to rewrite (20) as

ut = div Z + Au(ux j ,Z j ). (27)

Using (27), we obtain

1

2

d

dt
|∇u|2 = ∇u .. ∇div Z + ∇u .. ∇Au(uxi ,Zi )

= (∇u .. ∇Zi )xi − ∇2u ... ∇Z + (ux j · Au(uxi ,Zi )︸ ︷︷ ︸
=0

)
x j

−Δu · Au(uxi ,Zi ) (28)

where in the last line we used that Au is orthogonal to ux j ∈ TuN .
Next we perform the following calculations:

(
π⊥
u ∇2u

) ... ∇Z
(25)= (

Nk
u ⊗ Nk

u∇2u
) ... ∇Z = (Nk

u ⊗ Nk
u uxi x j ) · Zi,x j

(26)2= Nk
u · uxi x j Nk

u · Zi,x j

= (
(Nk

u · uxi︸ ︷︷ ︸
=0

)x j − (Nk
u)x j · uxi

)(
(Nk

u · Zi︸ ︷︷ ︸
=0

)x j − (Nk
u)x j · Zi

)

= Au(uxi ,ux j ) · Au(ux j ,Zi )
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and similarly

π⊥
u Δu

(26)1= (Nk
u · ux j x j )Nk

u = ((Nk
u · ux j︸ ︷︷ ︸
=0

)x j − (Nk
u)x j · ux j

)
Nk
u = −Au(ux j ,ux j ),

so that

Δu · Au(uxi ,Zi ) = π⊥
u Δu · Au(uxi ,Zi ) = −Au(ux j ,ux j ) · Au(uxi ,Zi ).

Hence, (28) may be rewritten as

1

2

d

dt
|∇u|2 = (∇u .. ∇Zi )xi − (πu∇2u

) ... ∇Z

−Au(uxi ,ux j ) · Au(ux j ,Zi ) + Au(ux j ,ux j ) · Au(uxi ,Zi ).

Finally, we recall the Gauss–Codazzi equation

W · RN
p (X,Y)Z = Ap(Y,Z) · Ap(X,W) − Ap(X,Z) · Ap(Y,W)

for any quadruple of vectors X,Y,Z,W ∈ TpN , p ∈ N , which finishes the proof. ��
We are now ready to derive uniform Lipschitz bounds.

Lemma 3 Let u ∈ C
3+α
2 ,3+α

loc (Ω [0,T [,N ) satisfy (20)–(22).

(i) If KN ∈]0,∞[, then

‖v(t, ·)‖L∞ ≤ ‖v0‖L∞

1 − t KN ‖v0‖L∞
(29)

for t ∈]0,min(T†, T )[, where T† := (KN ‖v0‖L∞)−1.
(ii) If KN ≤ 0, then for 0 < t < T < T† := +∞ there holds

‖v(t, ·)‖L∞ ≤ ‖v0‖L∞ . (30)

Proof Given a finite p ≥ 1, using (24) and integrating by parts, we calculate

1

p

d

dt

∫
Ω

v p =
∫

Ω

v p−2∇u .. ∇ut

= −
∫

Ω

v p−2(πu∇2u
) ... ∇Z − (p − 2)

∫
Ω

v p−4∇u .. ∇2u · ∇Z .. ∇u

+
∫

∂Ω

v p−2(∇u .. ∇Zi )(ν
Ω)i +

∫
Ω

v p−3uxi · RN
u (uxi ,ux j )ux j . (31)

We have

Zi
j,xk = v−1

(
ui

x j xk − Zi
j (∇uxk

.. Z)
)

and

∇Z j
.. ∇u = v−1(∇u .. ∇ux j − Zi

j Z i
k ∇uxk

.. ∇u)

for i = 1, . . . , N and j, k = 1, . . . , m. Thus, we can rewrite

∇u .. ∇2u · ∇Z .. ∇u = v−1∇u .. ∇ux j (I m
jk − Zi

j Z i
k)∇uxk

.. ∇u (32)
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(we use the notation Il = (I l
jk : j, k = 1, . . . , l) for the l-dimensional identity matrix). On

the other hand,

(πu∇2u)
... ∇Z = v−1(πu∇ux j ) .. (Im ⊗ IN − Z ⊗ Z) .. ∇ux j . (33)

From (32), (33) and the fact that |Z| ≤ 1, it is clear that, provided p ≥ 2, the first two terms
on the r.h.s. of (31) are non-positive. To treat the remaining boundary term, we extend νΩ

to a normal tubular neighbourhood of ∂Ω in such a way that it is constant in the fibers, and
calculate (at points in ∂Ω)

(∇u .. ∇Zi )(ν
Ω)i = ∇u j · ∇(Z j

i (νΩ)i ) − ∇u j · ∇(νΩ)i Z j
i

= −v−1νΩ · A ∂Ω(∇ui ,∇ui ). (34)

The term∇u j ·∇(Z j
i (νΩ)i ) vanishes because, due to (21),∇u j ∈ Tx∂Ω and∇(Z j

i (νΩ)i ) ∈
(Tx∂Ω)⊥ for j = 1, . . . N . ByA ∂Ω wedenoted the second fundamental formof hypersurface
∂Ω ,

A ∂Ω
x (X,Y) = (X · Dxν

Ω Y)νΩ
x

for x ∈ ∂Ω , where index x on A ∂Ω , νΩ denotes evaluation at x and Dxν
Ω : Tx∂Ω → R

m

is the tangent map of νΩ at x (see the remark after (25)). As Ω is convex, νΩ · A ∂Ω is
non-negative. This ends the proof of (30) in the case KN ≤ 0.

Now, assume that KN ∈]0,∞[. By virtue of the previous calculations and (9), we have
d

dt

(∫
Ω

v p
) 1

p ≤
(∫

Ω

v p
) 1

p −1

KN

∫
Ω

v p+1 ≤ KN

(∫
Ω

v p
) 1

p ‖v‖L∞ .

Passing to the limit p → ∞ we obtain, at least in a weak sense,

d

dt
‖v‖L∞ ≤ KN ‖v‖2L∞

which implies (29). ��

3.2 Existence for the approximate system

In order to prove existence of solutions to the approximate system we proceed similarly as
in [23, Section 3.]. The assumption that the embedding ofN into RN is closed enables us to
construct a metric h on R

N such that (N , g) is a totally geodesic Riemannian submanifold
of (RN , h) (see Lemma A.1 in the appendix), i.e.,

– the restriction of h to TN coincides with g, that is hp
∣∣
TpN ×TpN

≡ gp for p ∈ N ,

– there is a tubular neighborhood T of N in R
N such that the involution τ : T → T

given by multiplication by −1 in the fibers of T is an isometry.

The gradient flow of the unconstrained functional
∫
Ω

|∇u|h defined for any regular enough
function u : Ω → R

N is expressed by the system

ui
t = div ∇ui√

ε2+|∇u|2h
+ 1√

ε2+|∇u|2h
Γ i

jk(u)u j
xl u

k
xl , (35)

νΩ · ∇ui = 0, (36)

where i = 1, . . . , N and Γ i
jk are the Christoffel symbols of (RN , h). As h restricted to TN

coincides with g, the system (35), (36) is identical to (20), (36) as long as the range of u is
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contained in N . In order for C
3+α
2 ,3+α

loc (Ω[0,T [,N ) solutions to the system (35), (36) with
initial datum u0 to exist, the following compatibility conditions

νΩ · ∇ui
0 = 0 (37)

νΩ · ∇
(
div

∇ui
0√

ε2+|∇u0|2h
+ 1√

ε2+|∇u0|2h
Γ i

jk(u0)u
j
0,xl u

k
0,xl

)
= 0 (38)

on ∂Ω for i = 1, . . . , N need to be satisfied.

Proposition 1 Suppose that KN < ∞ and α ∈]0, 1[. Let u0 ∈ C3+α(Ω,N ) satisfy (37),
(38). Then for any ε > 0 the system (20)–(22) has a unique solution

u ∈ C
3+α
2 ,3+α

loc (Ω [0,T†[,N )

where T† = T†(‖∇u0‖L∞ , KN ) ∈]0,∞] is defined in Lemma 3.

Note that T† in Proposition 1 does not depend on ε.
The expressions on the right hand side of (35) make sense without assuming a priori that

the range of u is contained inN . This fact enables us to obtain a local-in-time solution using
known results for parabolic systems. For that purpose, the authors in [23] or in [12] combine a
general existence result from [30] with sectoriality estimates from [44]. On the other hand, in
[32] the author employs estimates from [37] and [33]. However, both [44] and [37] can only
be applied to the system with Dirichlet boundary condition, or to the case with no boundary.
As we are dealing with homogeneous Neumann boundary condition, we appeal instead to
a result of Acquistapace and Terreni [1, Theorem 1.1.] for quasilinear systems with general
boundary conditions.

To justify its applicability to our problem, let us briefly check the assumptions. We can
rewrite the divergence part of the right hand side of (35) as Akl(∇u)uxk xl , where Akl : RN →
R

N is given by

Akl(P) = 1√
ε2+|P|2h

(
I m
kl I

N − Pk√
ε2+|P|2h

⊗ Pl√
ε2+|P|2h

)
,

for k, l = 1, . . . , m with P = (P1, . . . ,Pm). (Akl) defines a locally uniformly strongly elliptic
operator (see e.g., [2]) and therefore satisfies assumption (0.2) from [1]. It is easy to check
that (36) satisfies the complementarity condition (0.3) from [1], and that the system satisfies
regularity condition (0.4) from [1].

Thus, as u0 ∈ C2+α(Ω,N ) satisfies compatibility condition (37), we obtain for
any p > m the existence of unique solution to (21), (35) with initial datum u0 in
C1+ α

2 ([0, T0[, L p(Ω,RN )) ∩ C
α
2 ([0, T0[, W 2,p(Ω,RN )) for some T0 > 0. We choose p

so that W 2,p(Ω) ⊂ C1,α(Ω). Then, we can treat the system (21), (35) as a linear system
with C

α
2 ,α coefficients and apply [26, Theorem VII.10.1] to obtain u ∈ C1+ α

2 ,2+α(Ω[0,T0[).
As long as u(t, ·) ∈ C2+α(Ω,RN ), we can extend the solution via Acquistapace–Terreni
theorem. Therefore, there exists a maximal time T∗ ≤ ∞ such that

– u exists in C
1+ α

2 ,2+α

loc (Ω [0,T∗[,RN ),

– the norm of u in C1+ α
2 ,2+α(Ω[0,t[,RN ) blows up as t → T −∗ if T∗ < ∞.

Since u ∈ C
1+ α

2 ,2+α

loc (Ω [0,T∗[,RN ), the coefficients of (35), seen as a linear equation, belong

to C
1+α
2 ,1+α

loc (Ω [0,T∗[). Therefore, provided u0 ∈ C3+α(Ω,RN ) and the additional compat-
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ibility condition (38) is satisfied, we may appeal once more to [26, Theorem VII.10.1] and

conclude that u ∈ C
3+α
2 ,3+α

loc (Ω [0,T∗[,RN ).
We now argue that u(t,Ω) ⊂ N for all t ∈ [0, T∗[. Suppose, to the contrary, that there

is t ∈]0, T∗[ with u(t,Ω) 	⊂ N . Let TN be the first time instance such that u(t,Ω) 	⊂ N
for TN < t < TN + δ with some δ > 0. Possibly diminishing δ we can assume that
u(t,Ω) ⊂ T for t ∈ [0, TN + δ[. Then τ ◦ u is a solution to (35) different to u with the
same initial and boundary conditions, thus violating uniqueness. Therefore, u(t,Ω) ⊂ N
for all t ∈ [0, T∗[.

It remains to show that T∗ ≥ T†, where T† is defined in Lemma 3. Suppose that T∗ < T†.
Lemma 3 yields

sup
t∈[0,T∗[

‖∇u(t, ·)‖L∞(Ω) < ∞. (39)

Let now q > m+2
1−α

. According to [26, Theorem VII.10.4 and Lemma II.3.3], there holds

u ∈ W 1,q(]0, T∗[, Lq(Ω,RN )) ∩ Lq(]0, T∗[, W 2,q(Ω,RN )) and consequently ∇u ∈
C

α
2 ,α(Ω[0,T∗[,Rm·N ). Now, [26, Theorem VII.10.1] yields u ∈ C1+ α

2 ,2+α(Ω[0,T∗[,RN ),
a contradiction.

4 Local existence

In this section we prove Theorem 2.
Step 1 We assume that Ω is smooth and the initial datum u0 ∈ C3+α(Ω) satisfies the
compatibility conditions (37), (38). We want to pass to the limit ε → 0+ in (20)–(22).
Owing to Lemmata 1 and 3, we have uniform bounds on uε

t in L2(]0, T [×Ω) and on ∇uε

in L∞(]0, T [×Ω) for any T < T†. Consequently, we also have a uniform bound on uε in

C
1

n+1 (]0, T [×Ω) [22]. All these imply that we can extract a sequence (uk) = (uεk ) from
(uε) such that

uk → u in C([0, T ] × Ω), ∇uk⇀∇u in L2(]0, T [×Ω).

Due to definition of Zε , we have ‖Zε‖L∞ ≤ 1, hence

Zk
∗
⇀Z in L∞(]0, T [×Ω) with |Z| ≤ 1 a. e. in ]0, T [×Ω (40)

for a sequence (Zk) = (Zεk ). Furthermore, by virtue of the strong convergence of uk ,

0 = π⊥
uk
Zk

∗
⇀π⊥

u Z in L∞(]0, T [×Ω). (41)

Next, note that due to the Hölder bound, the family uε is contained in a compact subset of
N . Rewriting (20) as

uε
t = div Zε + Auε (uε

xi ,Z
ε
i ), (42)

we deduce a uniform bound on div Zε in L2(]0, T [×Ω). By a standard div–curl reasoning,

∇uk
.. Zk⇀∇u .. Z in L2(]0, T [×Ω). (43)

A simple calculation shows that

∇uε .. Zε = |∇uε |2√
ε2+|∇uε |2 ≥ |∇uε| − ε. (44)
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Hence, by lower semicontinuity of | · | with respect to weak convergence, we get

∇u .. Z ≥ |∇u|. (45)

Collecting (40), (41), (43), (45) we obtain that ∇u and Z satisfy (5). Boundedness of div Zε

in L2(]0, T [×Ω) together with strong convergence of uk is enough to pass to the limit in
(20), (21), obtaining that ∇u and Z satisfy (6), (7).
Step 2 Now, we relax the regularity assumption on the initial datum to u0 ∈ W 1,∞(Ω,N ).
Take a sequence (u0, j ) ⊂ C∞(Ω,N ) such that u0, j converges uniformly to u0, satisfies
the compatibility conditions (37), (38) and

‖∇u0, j‖L∞ → ‖∇u0‖L∞ . (46)

Such a sequence is produced in Lemma A.2. By the previous step, there exists a regu-
lar solution (u j , Z j ) to (2), (3) with initial datum u0, j . Recall that due to the form of
estimates in Lemmata 1 and 3 the norms of u j,t in L2(]0, T [×Ω,RN ) and of ∇u j in
L∞(]0, T [×Ω,Rm·N ) are controlled by ‖∇u0, j‖L∞ . By virtue of (46), this control is uni-
form with respect to j . Hence, we can extract a subsequence converging to a regular solution
to (2)–(4) following the same argument as in the previous step, with (uε, Zε) replaced by
(u j , Z j ), except that now we have ∇u j

.. Z j = |∇u j | instead of (44).
Step 3 Next, we lift the smoothness assumption on the domain. A convex domain Ω can
be approximated with respect to the Hausdorff distance by smooth convex domains Ωk ⊂
Ω , k = 1, 2, . . .. For a proof of this result using the signed distance function of Ω , see
Lemma A.3 in the appendix. The reasoning in the previous paragraph yields a sequence of
pairs (uk, Zk), with k-th one satisfying (5)–(7) in ]0, T [×Ωk with initial datum u0|Ωk

. The
estimates provided by Lemmata 1 and 3 are uniform with respect to k. Hence, we can use
them as before together with a diagonal argument to extract subsequences of (uk), (Zk) that
converge on compact subsets of [0, T [×Ω to a regular solution (u, Z) to (2), (4) in ]0, T [×Ω .

Finally,we argue that the boundary condition (7) is satisfied. Let us fixϕ ∈ C1(]0, T [×Ω).
We have

∫ T

0

∫
∂Ω

ϕ νΩ · Z =
∫ T

0

∫
Ω

ϕ div Z + ∇ϕ · Z,

0 =
∫ T

0

∫
∂Ωk

ϕ νΩk · Zk =
∫ T

0

∫
Ωk

ϕ div Zk + ∇ϕ · Zk .

Let us denote f = ϕ div Z + ∇ϕ · Z, fk = ϕ div Zk + ∇ϕ · Zk . By virtue of Haus-
dorff convergence, for a given ε > 0, we are allowed to choose K ⊂ Ω and k0 so that
|]0, T [×(Ω\K )| ≤ ε2 and K ⊂ Ωk for k ≥ k0. Recalling (42), we note that ‖ fk‖L2(]0,T [×Ωk )

is controlled in terms of norms ‖uk,t‖L2(]0,T [×Ωk ) and ‖∇uk‖L∞(]0,T [×Ωk ) and hence is uni-
formly bounded.We can assume that ( fk |K )∞k=k0

converges weakly to f |K in L2(]0, T [×K ).

Thus, we can choose k ≥ k0 large enough so that
∣∣∣∫ T

0

∫
K f − fk

∣∣∣ ≤ ε. We estimate

∣∣∣∣
∫ T

0

∫
∂Ω

ϕ νΩ · Z
∣∣∣∣ ≤
∣∣∣∣
∫ T

0

∫
K

f − fk

∣∣∣∣+
∣∣∣∣
∫ T

0

∫
Ω\K

f

∣∣∣∣+
∣∣∣∣
∫ T

0

∫
Ωk\K

fk

∣∣∣∣
≤ (1 + ‖ f ‖L2(]0,T [×Ω) + ‖ fk‖L2(]0,T [×Ωk ))ε.

As ε and ϕ are arbitrary, we are done.
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5 Finite extinction time

In order to prove Theorem 3 we will work directly with regular solutions to (2)–(4) in local
coordinates p ↦ (p1, . . . , pn) on N , in which (6) is expressed [11] as

ui
t = div Zi + Γ i

jk(u)u j
xl Zk

l , i = 1, . . . , n, (47)

where Γ i
jk are the Christoffel symbols of the chosen coordinate system. For p0 ∈ N we

denote

R∗(p0) = min

{
sup

{
R > 0 : R ≤ π

2

[
K Bg(p0,R)

]− 1
2

+

}
,
�(p0)
4

}
, (48)

where [K Bg(p0,R)]+ is the supremum of sectional curvature over Bg(p0, R) (compare with
(9)) or +0 if the supremum is negative, �(p0) is the infimum of lengths of maximal closed
geodesics in N passing through p0, and π is the length of a circle of radius 1

2 . R∗(p0) is
positive and lower than both the convexity radius and half of the injectivity radius injN (p0)
[36, Section 6.3.2].

First, we prove

Lemma 4 Let p0 ∈ N , u0 ∈ W 1,∞(Ω). If u0(Ω) ⊂ Bg(p0, R) with R ∈]0, R∗(p0)[, then
u(t,Ω) ⊂ Bg(p0, R), t ∈]0, T [.
Proof We proceed by contradiction. Let T∗ = inf{t ∈ [0, T [ : u(t,Ω) 	⊂ Bg(p0, R)}. Due
to continuity of u, there is a δ > 0 such that u(t,Ω) ⊂ Bg(p0, R∗(p0)) for t ∈ [0, T∗ + δ[.
We choose on Bg(p0, R∗(p0)) a polar coordinate system p ↦ (pr , pϑ1

, . . . , pϑn−1
) centered

at p0. Due to the block diagonal form of the metric in these coordinates, (47) for the radial
coordinate pr takes the form

ur
t = div Zr − 1

2 gϑ i ϑ j ,r (u)uϑ i

xl Zϑ j

l . (49)

Here and in the following, gϑ i ϑ j ,r denotes the derivative of gϑ i ϑ j (a function on N ) in
direction pr . Equation (49) is satisfied a.e., in the open set {(t, x) ∈]0, T∗ +δ[×Ω : u(t, x) 	=
p0}. Furthermore, there holds (see the proof of Corollary 2.4 in [36, Chapter 6])

(
gϑ i ϑ j ,r (p)

)n−1
i, j=1 ≥ 2

pr cos

([
K Bg(p0,R)

] 1
2
+ pr
) (

gϑ i ϑ j (p)
)n−1

i, j=1 for p ∈ N (50)

as quadratic forms. Taking into account (5), (7), (49), (50) and recalling that uxl is a non-
negative multiple of Zl for l = 1, . . . , m we calculate

1
2

d
dt

∫
Ω

(ur − R)2+ =
∫

Ω

(ur − R)+ur
t ≤ −

∫
{x∈Ω : ur (x)>R}

|∇ur |

−
∫

Ω

(ur − R)+
ur

(
cos

π

2

)
gϑ i ϑ j (u)uϑ i

xl Zϑ j

l ≤ 0. (51)

��
Next, we recall the notion of Riemannian center of mass. Let R < R∗(p0), p0 ∈ N . We

say that pc ∈ Bg(p0, R) is a center of mass of a Radon measure μ on Bg(p0, R) if pc is a
minimizer of the function fμ : Bg(p0, R) → [0,∞[ given by

fμ(p) = 1
2

∫
N

distg(·,p)2 dμ.
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A unique center of mass exists for any Radon measure on Bg(p0, R) and we have

0 = d fμ(pc) =
∫

Bg(p0,R)

exp−1
pc

dμ, (52)

where exp−1
pc

: Bg(pc, injN (pc)) → Tpc
N denotes the logarithmic map at pc. In (52), we

identified elements of T ∗
pc
N and Tpc

N via g [24, Section 1]. For p0 ∈ N , we denote

R̃∗(p0) = 1
2 inf
{

R∗(p) : p ∈ Bg
(
p0, R∗(p0)

)}
. (53)

We are ready to state

Lemma 5 Suppose that u0 ∈ W 1,∞(Ω) satisfies u0(Ω) ⊂ Bg
(
p0, R

)
, p0 ∈ N , 0 < R <

R̃∗(p0). Let pc(t) be the center of mass of the pushforward measure μ(t) = u(t, ·)#L m on
Bg(p0, R). There exists C0 = C0(Ω,N ,p0) > 0 such that

d

dt
fμ(pc) ≤ −C0R

2
m −1 fμ(pc)

1− 1
m (54)

for t > 0.

Proof We have

fμ(t)(pc(t)) = 1
2

∫
Ω

distg(u(t, ·),pc(t))
2 = 1

2

∫
Ω

ur (t, ·)2,

where we have chosen polar coordinates centered at pc(t). Employing (5), (7), (49), (50), (52)

and observing that cos

([
K Bg(pc,R)

] 1
2

+ R

)
≥ cos

([
K Bg(pc,R∗(pc))

] 1
2

+
R∗(pc)

2

)
∈
[√

2
2 , 1
]
,

d
dt fμ(pc) = 〈 d fμ(pc),pc,t

〉
T ∗
pc
N ,TpcN

+
∫

Ω

ur ur
t

≤ −
∫

Ω

|∇ur | − cos

([
K Bg(pc,R)

] 1
2

+ R

)∫
Ω

gϑ i ϑ j (u)uϑ i

xl Zϑ j

l

≤ −
√
2
2

∫
Ω

|∇u|g. (55)

This equation is rigorously justified by passing to the limit R → 0+ in the weak formulation
of (51) using Lebesgue monotone convergence theorem. Now, we choose on B(pc, R∗(pc))

coordinate system p ↦ exp−1
pc(t)

p = (p1, . . . , pn). From (55) we obtain that there exists a

constant C1 = C1(N ,p0) > 0 such that (recall that pr = √pi pi )

d

dt

∫
Ω

ui ui ≤ −C1

∫
Ω

√
ui

x j u
i
x j . (56)

Finally, applying Sobolev–Poincaré inequality (recall (52)):

(∫
Ω

ui ui
)1− 1

m ≤ R1− 2
m

(∫
Ω

(√
ui ui
) m

m−1
)1− 1

m ≤ C2R1− 2
m

∫
Ω

√
ui

x j u
i
x j (57)

with C2 = C2(Ω) > 0. Estimates (56), (57) add up to (54). ��
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Proof of Theorem 3 First of all, by Lemma 4, we obtain the bound u(t,Ω) ⊂ Bg(p0, R) if
u0(Ω) ⊂ Bg(p0, R) for R < R̃∗(p0) and any t ∈ [0, T [. Next, we deduce the estimate on
extinction time from (54) by solving the ordinary differential inequality, which yields

fμ(t)(pc(t))
1
m ≤
(

fμ(0)(pc(0))
1
m − 1

m C0R
2
m −1t
)

+ ,

where

fμ(t)(pc(t)) =
∫

Ω

dist(u(t, ·),pc)
2.

As fμ(0)(pc(0)) ≤ 1
2 |Ω|R2, there is u∗ ∈ N such that u(t, ·) ≡ u∗ for t ≥ C R, where

C = m
( |Ω|

2

) 1
m

C−1
0 . ��

6 Non-positive sectional curvature of the target

This section is devoted to the proof of Theorem 4.
Let T > 0 and suppose that Ω is convex and N is a complete Riemannian manifold

with KN ≤ 0. In order to prove Theorem 4 without the assumption that there is a closed
embedding of N into R

N , we introduce a universal cover γ : Ñ → N of N with a
Riemannian manifold (Ñ , g̃). As a simply-connected Riemannian manifold of non-positive
curvature, Ñ is diffeomorphic to Rn via the exponential map (this is the content of Cartan–
Hadamard theorem [10]). In other words, there is a global coordinate system on Ñ , p̃ ↦
exp−1

p̃0 p̃ = ( p̃1, . . . , p̃n). As Ω is topologically trivial, any function u0 ∈ C(Ω,N ) can be

lifted preserving any Sobolev or Hölder regularity to ũ0 ∈ C(Ω, Ñ ) such that u0 = γ ◦ ũ0.
Then, assuming thatΩ and u0 are of class C3+α and u0 satisfies the compatibility conditions
(37), (38) for i = 1, . . . , n, we consider the system

ũε,i
t = div ∇ũε,i√

ε2+|∇ũε |2g̃
+ 1√

ε2+|∇ũε |2g̃
Γ̃ i

jk (̃u
ε)̃uε, j

xl ũε,k
xl in ]0, T∗[×Ω,

∇ũε,i · νΩ = 0 in ]0, T∗[×∂Ω,

ũε,i (0, ·) = ũi
0,

i = 1, . . . , n. This system satisfies the assumptions of the Aquistapace–Terreni existence
theorem (see Sect. 3.2), hence a unique solution exists for some T∗ > 0. Vector lengths |̃uε

t |g̃
and |∇ũε|g̃ are invariant under local isometries of the target manifold, and any Riemannian
manifold is locally isometric to a submanifold in a Euclidean space. Therefore, we can repeat
the proofs of Lemmata 1, 2 and 3 performing the computations in a neighbourhood of any
point, obtaining bounds on ‖̃uε

t ‖L2(]0,T∗[×Ω) and ‖∇ũε‖L∞(]0,T∗[×Ω) independent on T∗.
Reasoning as in Sect. 3.2, the solution can be prolonged up to the arbitrary given T . Then,
taking uε = γ ◦ ũε , we obtain a solution to (20)–(22). Using the uniform bounds, we pass to
the limit as in Sect. 4 obtaining a regular solution u to (2)–(4) with any u0 ∈ W 1,∞(Ω) in
any convex Ω .

Finally, we consider any lifting ũ : Ω → Ñ of u with ũt ∈ L2(]0, T [×Ω,RN ), ∇ũ ∈
L∞(]0, T [×Ω,RN ). As R∗ = +∞ for Ñ , arguments from Sect. 5 imply that ũ becomes
constant in finite time (if we take large enough T ), and consequently the same holds for
u = γ ◦ ũ.
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7 The case where the domain is a Riemannianmanifold

Throughout this section, we assume that (M , γ ) is an orientable, compact Riemannian man-
ifold. Our aim is to prove Theorem 5.

Similarly as in Sect. 3, given ε, T > 0 we first consider the following approximate system
for uε : [0, T [×M → N :

uε
t = πuε

(
divγ

duε√
ε2+| duε |2γ

)
in ]0, T [×M , (58)

uε(0, ·) = u0. (59)

Again, in what follows we drop the index ε and denote

Z = du√
ε2+| du|2γ

, v =
(
| du|2γ + ε2

) 1
2
, v0 =

(
| du0|2γ + ε2

) 1
2

Lemma 6 We have

sup
t∈[0,T [

∫
M

v(t, ·) +
∫ T

0

∫
M

u2t ≤
∫
M

v0. (60)

There exists T† = T†(RicM , KN , ‖v0‖L∞) ∈]0,∞] and a non-decreasing function

MRicM ,KN ,‖v0‖L∞ : ]0, T†[→]0,∞[
such that for t ∈]0,min(T , T†)[ there holds

‖v(t, ·)‖L∞ ≤ MRicM ,KN ,‖v0‖L∞ (t). (61)

If KN ≤ 0, T† = +∞. If moreover RicM ≥ 0, for t ∈]0, T [ there holds ‖v(t, ·)‖L∞ ≤
‖v0‖L∞ .

Proof We start by deriving a version of the Bochner formula (24) in our current setting. We
calculate:

1

2

d

dt
| du|2γ = γ abuxa · (πudivγ Z)xb =γ abuxa · (divγ Z)xb +γ abuxa · (πu)xbdivγ Z. (62)

Let us recall the expression of div γ as the trace of covariant derivative [6, Lemma 2.6],

div γ ϑ = γ abϑa;xb = (γ abϑa);xb (63)

(note that covariant derivative of the metric vanishes) and the Ricci identity [39, Chapter 5]

ϑa;xb xc − ϑa;xc xb = ϑd(RM )d
abc (64)

for the commutator of covariant derivatives of a 1-form ϑ on M . Using (64), we obtain

(γ cdZc;xd )xb = γ cdZc;xd xb = γ cdZc;xb xd + γ cdZe(R
M )e

cdb. (65)

By antisymmetry of the Riemannian tensor and (16),

γ cd(RM )e
cdb = −γ ed(RM )c

dcb = −(RicM )e f γ f b. (66)

An application of (63) yields

γ abuxa · γ cdZc;xb xd = (γ abuxa · γ cdZc;xb );xd − γ abuxa;xd · γ cdZc;xb

= divγ (γ abuxa · Z;xb ) − γ abγ cduxd ;xa · Zc;xb . (67)
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Combining (63), (65), (66) and (68) we obtain

γ abuxa · (divγ Z)xb = divγ (γ abuxa · Z;xb ) − γ abγ cduxd ;xa · Zc;xb − RicM (Zi , dui ).

(68)

From (62) and (68) we derive, proceeding as in the proof of Lemma 2, a Bochner-type
formula involving only coordinate-invariant expressions:

1

2

d

dt
| du|2γ = divγ (γ abuxa · Z;xb ) − γ abγ cd(πuuxd ;xa ) · Zc;xb

−RicM (Zi , dui ) + γ abγ cdZa · RN
u (uxb ,uxc )uxd . (69)

We take any p > 2 and calculate 1
p

d
dt | du|p

γ . Proceeding as in the proof of Lemma 3,
appealing to (63) and the fact that covariant derivatives of the metric vanish (or just working
in normal coordinates) we obtain

1

p

d

dt
v p ≤ divγ (v p−2γ abuxa · Z;xb ) − v p−3RicM ( dui , dui )

+ v p−3γ abγ cduxa · RN
u (uxb ,uxc )uxd

≤ divγ (v p−2γ abuxa · Z;xb ) − RicM v p−1 + KN v p+1. (70)

Next, we integrate (70) over M . As M is compact and orientable, the term∫
M

divγ (v p−2γ abuxa · Z;xb ) dμγ

vanishes due to Stokes theorem. We are led to the following estimate:

1

p

d

dt

∫
M

v p dμγ ≤ −RicM

∫
M

v p−1 dμγ + KN

∫
M

v p+1 dμγ

≤ −Ric−
M μγ (M )

1
p

(∫
M

v p dμγ

)1− 1
p + K +

N ‖v‖L∞
∫
M

v p dμγ ,

where we have used Hölder inequality and denoted Ric−
M = min (RicM , 0), K +

N =
max (KN , 0). Thus,

d

dt

(∫
M

v p dμγ

) 1
p ≤ −Ric−

M μγ (M )
1
p + K +

N ‖v‖L∞
(∫

M
v p dμγ

) 1
p

.

Passing to the limit p → ∞,

d

dt
‖v‖L∞ ≤ −Ric−

M + K +
N ‖v‖2L∞ . (71)

We let MRicM ,KN ,‖v0‖L∞ be the locally existing solution to

dM

dt
= −Ric−

M + K +
N M2

with initial datum‖v0‖L∞ , and let T† be themaximal time of existence of MRicM ,KN ,‖v0‖L∞ ,
completing the proof. ��
Proposition 2 Let u0 ∈ C3+α(M ,N ). There exist T† = T†(RicM , KN , ‖∇u0‖L∞) > 0

and unique solution u ∈ C
3+α
2 ,3+α

loc ([0, T†[×M ,N ) to the system (58), (59).
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Proof Let u0 ∈ C3+α(M ,N ). As in [23, Section 3], we show that there exists T > 0
and unique solution u ∈ C1([0, T ], Cα(M ,N )) ∩ C([0, T ], C2+α(M ,N )) to (58), (59).

Using linear theory [26], we rise regularity of the solution to C
3+α
2 ,3+α([0, T [×M ,N ).

Then, using the uniform bound on du in L∞ from Lemma 6 we show that the solution can
be extended to [0, T†[ as in the proof of Proposition 1. ��
Proof of Theorem 5 The proof of uniqueness follows along the lines of the proof ofTheorem1.
An important point is that integration by parts is allowed because M is orientable.

Given any initial datum u0 ∈ W 1,∞(M ,N ), we take an approximating family
(uε

0) ⊂ C3+α(M ,N ) such that uε
0 → u0 as ε → 0+ in C(M ,N ) and ‖ duε

0‖L∞ →
‖ du0‖L∞ . Proposition 2 generates a family (uε), where uε solves (58) with initial datum
uε
0. This family satisfies uniform bounds on (uε

t ) in L2(]0, T†[×M ,RN ) and on ( duε) in
L∞

loc([0, T†[×T ∗M ×R
N ). Using these bounds, we pass to the limit as in Sect. 4 and obtain

the regular solution (u, Z) to (12) in [0, T†[. Recall that if KN ≤ 0, T† = +∞.
Now we assume that KN ≤ 0 and RicM ≥ 0. In this case we have

ut ∈ L2(]0,∞[×M ,RN ), ‖ du(t, ·)‖L∞ ≤ ‖ du0‖L∞ in a. e. t > 0. (72)

Therefore, we can choose a sequence of time instances (tk) ⊂]0,∞[, tk → ∞ such that
there exists u∗ ∈ W 1,∞(M ,N ) with

u(tk, ·) → u∗ in C(M ,N ), ut (tk, ·)⇀0 in L2(M ,RN ), (73)

and

ut (tk, ·) = πu(tk ,·)
(
divγ Z(tk, ·)

)
, Z(tk, ·) ∈ du

| du|γ (tk, ·) μγ − a. e. inM . (74)

The first item in (74) can be rewritten as

ut (tk, ·) = divγ Z(tk, ·) + γ abAu(tk ,·)(uxa (tk, ·),Zb(tk, ·)),
hence (72) implies that the sequence divγ Z(tk, ·) is uniformly bounded in L2(M ,RN ). The
second item in (74) is equivalent to

π⊥
u(tk ,·)Z(tk, ·) = 0, |Z(tk, ·)|γ ≤ 1,

γ abuxa (tk, ·) · Zb(tk, ·) = | du(tk, ·)|γ μγ − a. e. inM .

Hence, there exists Z∗ ∈ L∞(T ∗M ×R
N ) satisfying divγ Z∗ ∈ L∞(M ,RN ) and (possibly

decimating the sequence (tk))

Z(tk, ·) ∗
⇀Z∗ in L∞(T ∗M × R

N ), divγ Z(tk, ·)⇀divγ Z∗ in L2(M ,RN ), (75)

π⊥
u∗Z∗ = 0, |Z∗|γ ≤ 1 μγ − a. e. inM . (76)

Using a standard div–curl reasoning and weak-star convergence of u(tk, ·) in W 1,∞(M ,N )

we also obtain

| du∗|γ ≤ lim inf | du(tk, ·)|γ = γ abu∗,xa · Z∗,b ≤ | du∗|γ μγ − a. e. inM .

This together with (76) yields the second item of (17). The first item of (17) is produced by
passing to the limit in the first item of (74) using (73), (75). ��
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Appendix: Technical lemmata

Lemma A.1 Let (N , g) be a closed embedded Riemannian submanifold in the Euclidean
space RN . There exists a Riemannian metric h on R

N such that (N , g) is a totally geodesic
Riemannian submanifold of (RN , h).

Proof Let R > 0. As N is a closed submanifold of RN , N ∩ B(0, R) is compact. Hence,
there is a non-increasing function R ↦ δR ∈]0, 1[ such that

NR,δ = {y + n : y ∈ N ∩ B(0, R),n ∈ TyN
⊥, |n| < δ}

is a tubular neighborhood of N ∩ B(0, R) in R
N that does not intersect N \B(0, R) for

δ ∈]0, δR[. Identifying Ty+nNR,δR with TyN × R
N−n , we define a Riemannian metric h R

on NR,δR as follows:

h R
p+n(w1 + w′

1,w2 + w′
2) = gp(w1,w2) + w′

1 · w′
2

for p ∈ N ∩ B(0, R), |n| < δR , w1,w2 ∈ TpN , w′
1,w

′
2 ∈ R

N−n . Next, we define the
tubular neighborhood of N

T =
∞⋃

k=1

Nk, 12 δk+1

so that {
R

N \T , N1,δ1 , N2,δ2 , . . .
}

is an open cover of RN . Indeed, if z /∈ R
N \T , i.e., z ∈ T , then letting k0 be the smallest

integer bound of |z|, we have

z ∈ T ∩ B(0, k0 + 1) ⊂
k0+1⋃
k=1

Nk, 12 δk+1
=

k0+1⋃
k=1

Nk, 12 δk+1
.

Here, we used the fact that U ∩⋃∞
k=1 Ak ⊂ ⋃∞

k=1 U ∩ Ak for any sequence of sets Ak and
open set U . Hence, by definition of k0, z ∈ Nk0,

1
2 δk0+1

. Therefore

z = y + n with |n| ≤ 1

2
δk0+1 < δk0+1 and y ∈ B(0, k0) ⊂ B(0, k0 + 1),

that is, z ∈ Nk0+1,δk0+1 .
We take a smooth partition of unity {ϕ0, ϕ1, ϕ2, . . .} subordinate to this cover (a con-

struction of a partition of unity subordinate to an infinite open cover can be found in [43,
Appendix C]) and define

hy(v1, v2) = ϕ0(y)v1 · v2 +
∞∑

k=1

ϕk(y)hk
y(v1, v2)

for y ∈ R
N . It is easy to check that (N , g) is a totally geodesic submanifold in (RN , h). ��
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Lemma A.2 Let u0 ∈ W 1,∞(Ω,N ). There exists a family (u0,ε) ⊂ C∞(Ω,N ), ε ∈]0, ε0[,
ε0 > 0 such that

– u0,ε → u0 in C(Ω,RN ) as ε → 0+,
– ‖∇u0,ε‖L∞ → ‖∇u0‖L∞ as ε → 0+,
– u0,ε satisfy compatibility conditions (37), (38) for ε ∈]0, ε0[.

Proof As ∂Ω is a compact smooth submanifold of Rm , there is ε′
0 > 0 and a tubular neigh-

bourhood of ∂Ω

T = {y + rνΩ, y ∈ ∂Ω, r ∈] − ε′
0, ε

′
0[}.

We extend u0 to w ∈ W 1,∞(Ω ∪ T ,N ) putting

w(y + rνΩ(y)) = y

for r ∈ [0, ε′
0[. For any ε ∈]0, ε′

0[ we define
Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}.

Mollifying w as in [24, Theorems 4.4, 4.6] we produce a family of maps (wε)ε∈]0,ε0[, ε0 ∈
]0, ε′

0[, wε ∈ C∞(Ω,N ) such that wε → u0 in C(Ω,N ) and ‖∇wε‖L∞ → ‖∇u0‖L∞ as
ε → 0+.

Now, let ηε ∈ C∞(]0, ε[, ]0, ε[) satisfy the conditions

– ηε(r) = r for r ∈ [ ε
2 , ε[,

– η′
ε(r) = 0 for r ∈]0, ε

4 ],
– 0 ≤ η′ ≤ 1.

We define Φε ∈ C∞(Ω,Ω) by

Φε(x) =
{
y − ηε(r)νΩ if x = y − rνΩ ∈ Ω\Ωε,

x if x ∈ Ωε.

It is easy to see that u0,ε = wε ◦ Φε satisfies the desired conditions. ��
Lemma A.3 Let Ω ⊂ R

m be open and convex. There exists a family (Ωε) of open, convex sets
with smooth boundary such that Ωε ⊂ Ω for ε ∈]0, ε0[, ε0 > 0 and the Hausdorff distance
of Ωε from Ω tends to zero as ε → 0+.

Proof Let d denote the signed distance function of Ω , i.e.,

d(x) = dist(x,Ω) − dist(x,Rm\Ω) for x ∈ R
m .

This function is convex and satisfies

|d(x) − d(y)| ≤ |x − y| for x, y in R
N . (77)

Let (ϕε)ε>0 be a standard family of mollifying kernels such that

suppϕε ⊂ B(0, ε) (78)

and denote dε = ϕε ∗ d . It is easy to check that dε is smooth and convex. Let us further
denote

Ωε = {x ∈ R
m : dε(x) < −ε}.
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As a sublevel set of a convex function, Ωε is convex. Now, denote by rΩ the inradius of Ω ,
equivalently rΩ = |min d|. Take ε0 = rΩ

3 and assume ε < ε0. Suppose that d(x) ≥ 0. Due
to (77), (78), we have

dε(x) =
∫

B(x,ε)
ϕε(x − y)d(y) dy > −ε.

Hence, Ωε ⊂ Ω . Similarly, if d(x) ≤ −2ε, then dε(x) < −ε. This in turn implies that

dist(∂Ωε, ∂Ω) = min{−d(x) : dε(x) = −ε} < 2ε. (79)

Denoting by xΩ the center of any circle inscribed in Ω ,

min dε ≤
∫

B(xΩ,ε)

ϕε(xΩ − y)d(y) dy < −rΩ + ε < −2ε. (80)

Recall that a critical point of a smooth convex functiononRm is necessarily its global (possibly
improper) minimum. Hence, by virtue of (79), (80),Ωε does not contain critical points of dε,
and so it is a smooth hypersurface. Finally, (79) implies the Hausdorff convergence of Ωε to
Ω as ε → 0+. ��
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