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MEASURE-VALUED SOLUTIONS TO A NONLINEAR
FOURTH-ORDER REGULARIZATION OF FORWARD-BACKWARD

PARABOLIC EQUATIONS∗

MICHIEL BERTSCH† , LORENZO GIACOMELLI‡ , AND ALBERTO TESEI§

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We introduce and analyze a new, nonlinear fourth-order regularization of forward-
backward parabolic equations. In one space dimension, under general assumptions on the potentials,
which include those of Perona--Malik type, we prove existence of Radon measure-valued solutions
under both natural and essential boundary conditions. If the decay at infinity of the nonlinearities is
sufficiently fast, we also exhibit examples of local solutions whose atomic part arises and/or persists
(in contrast to the linear fourth-order regularization) and even disappears within finite time (in
contrast to pseudoparabolic regularizations).
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1. Introduction.

1.1. Motivation and goals. The Perona--Malik equation is a nonlinear diffusion
equation which is of forward-backward parabolic character. For example, in one space
dimension it reduces to

wt = \bigl( \varphi (wx)\bigr\rfloor x,
and the diffusion mechanism is expressed by the natural condition that s\varphi (s) > 0 for
s ≠ 0. Typically \varphi (±∞) = \varphi (0) = 0, \varphi ′ > 0 in an interval (−u,u) where the equation is
forward parabolic, and \varphi ′ < 0 in the intervals (−∞,−u) and (u,∞) where the equation
is backward parabolic.

The Perona--Malik equation arises in various applications [3, 26, 28]. In a model
for temperature (or salinity) stratification in turbulent shear flow in the ocean [3],
the equation is intrinsically one-dimensional (x is the vertical component), wx is non-
negative (deeper in the ocean, water is colder) and backward parabolicity models the
decrease in magnitude of turbulent temperature fluxes for large temperature gradi-
ents. In the multidimensional case, the Perona--Malik equation arises in the context of
image processing [28]. We refer the reader to [19, 25] for recent referenced discussions
on the analytical theory developed so far.

Due to its ill-posedness, it is natural to introduce suitable regularizations of the
Perona-Malik equation (see, e.g., [1, 3, 4, 5, 6, 16, 24, 25] and references therein).
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MEASURE-VALUED SOLUTIONS TO FOURTH-ORDER EQUATIONS 375

However, because of the intrinsically unstable character of backward parabolic equa-
tions, one may reasonably expect the qualitative behavior of solutions to strongly
depend on the type of regularization. Let us briefly discuss two types of regulariza-
tion, both of which are local and of higher order.

In the context of temperature stratification in the ocean, modeling considerations
[3] suggest adopting a nonlinear pseudoparabolic regularization ,

(1.1) wt = \bigl( \varphi (wx) + \tau \bigl( \psi (wx)\bigr\rfloor t\bigr\rfloor x ,

where \tau is a small parameter and \psi is an increasing but bounded function. The
boundedness of \psi makes the equation strongly degenerate for large values of the
gradient. Adding to (1.1) appropriate initial-boundary conditions leads to a well-
posed initial-boundary value problem, but it was observed for the first time in [3]
that, due to the strong degeneracy of the equation, there are solutions which develop
spatial discontinuities (jumps) within finite time, whose amplitude then increases with
time; in particular, jumps cannot disappear.

In [5], a linear fourth-order regularization was analyzed for two prototypical forms
of \varphi ,

(1.2) wt = \bigr) \varphi (wx) − \varepsilon 2wxxx\bigl\lceil x ,

where \varepsilon is a small parameter. Observe that (1.2), say in a spatial interval \Omega = (a, b) ⊂
\BbbR , has a natural gradient flow structure with respect to the functional

∫
\Omega 
(\Phi (wx) +

\varepsilon 2

2
w2
xx) dx , \Phi (u) ∶= ∫

u

0
\varphi (s)ds .

The H2-control encoded by the functional implies, in contrast to (1.1), that solutions
to (1.2) remain smooth.

Concerning the qualitative behavior of solutions, interesting numerical experi-
ments, strengthened by various analytical observations, have been performed on (1.2)
[5] as well as on other regularizations [24, 25] of the Perona--Malik equation. These
experiments suggest mechanisms analogous to spinodal decomposition and coarsen-
ing, characterized by three different time scales: an initial, short time-scale where
staircase-type or ramp-type microstructures (also referred to as wrinkles) develop in
regions where {\varphi ′ < 0} in order to reduce the energy in the backward regime; an inter-
mediate time-scale during which diffusion operates in regions where {\varphi ′ > 0}, whereas
in {\varphi ′ < 0} microstructures evolve into macroscopic steps; and a final, long-time scale
where solutions are close to piecewise constant functions, with neighboring plateaus
colliding and merging. In particular, coarsening occurs at both intermediate and long
time-scales, with disappearance of jump discontinuities.

Notable efforts have been devoted to the qualitative description of such behav-
ior, e.g., in terms of time-scales and finite-dimensional reduction [5, 6, 18, 19]. In
this regard, however, the regularization mechanisms in (1.1) and (1.2) suffer from
one disadvantage. On one hand, (1.2) has continuous solutions, in which jumps are
replaced by diffuse interfaces with high (but finite) gradients; on the other hand,
though (1.1) does allow for discontinuous solutions, jumps cannot disappear; hence
the aforementioned coarsening phenomenon cannot be modeled by (1.1).

The main motivation of the present paper is to introduce a new regularization
mechanism which overcomes both disadvantages, allowing for discontinuous solutions
with jumps that can both appear (as is assumed to occur in the early-stage devel-
opment of microstructures) and disappear (as is assumed to occur in the subsequent
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376 MICHIEL BERTSCH, LORENZO GIACOMELLI, ALBERTO TESEI

coarsening): it consists of a nonlinear fourth-order regularization, which maintains
the gradient flow structure of (1.2) but strongly degenerates for large values of wx.
More precisely, consider the functional

(1.3) ∫
\Omega 
(\Phi (wx) +

\varepsilon 2

2
\bigl( \psi (wx)\bigr\rfloor 2x) dx , \Phi (u) = ∫

u

0
\varphi (s)ds ,

where \psi is again an odd, bounded, and increasing function. The corresponding regu-
larization of the Perona--Malik equation is

(1.4) wt = \bigr) \varphi (wx) − \varepsilon 2\psi ′(wx)\bigl( \psi (wx)\bigr\rfloor xx\bigl\lceil x .

In the present paper, we will first prove an existence result, introduced in section
1.3, which covers the case of discontinuous initial data with bounded variation. Then,
through the construction of special solutions introduced in section 1.4 and elaborated
in section 6, we will argue that the new regularization (1.4) does what we designed it
for; that is,

● in contrast to (1.2), solutions to (1.4) are not necessarily smooth: jump dis-
continuities persist for some time and may also appear within finite time;
and

● in contrast to (1.1), jump discontinuities may not only appear but also dis-
appear within finite time, at least when \Phi is bounded at infinity.

We see these properties as the basic advantage of (1.4), which might permit a
better understanding and a quantitative description of the aforementioned staircasing
and coarsening phenomena. For instance, by extending the methods used in section 6,
it might be possible (though highly nontrivial, due to the higher-order character of the
equation) to construct self-similar solutions which exhibit a coarsening phenomenon,
in the sense that one jump discontinuity grows at the expense of a ``train"" of other
jumps which decrease. As a by-product, such a construction would provide infor-
mation about the typical space and time-scales for the coarsening phenomenon. We
hope to investigate these features, as well as other qualitative properties of solutions
to (1.4), in the future.

To conclude this subsection, we stress that our analysis is heavily based on the
fact that \Omega ⊆ \BbbR . In the multidimensional case, the most natural extension of (1.4)
would amount to studying the formal gradient flow of

∫
\Omega 
(\Phi (\bigcup ∇w\bigcup ) + \varepsilon 

2

2
\bigcup div(\bfitpsi (∇w))\bigcup 2) dx

with \Phi as in (1.3) and \bfitpsi (\bfitxi ) = \psi (\bigcup \bfitxi \bigcup )
\bigcup \bfitxi \bigcup 
\bfitxi . However, such a generalization will definitely

require new tools.

1.2. Setting. Since jumps of w correspond to Dirac masses for wx, the meaning
of \Phi (wx) is unclear. To highlight this mathematical difficulty, we find it convenient
to differentiate the equation with respect to x and to describe the problem in terms
of the Radon measure

u = wx
(in the one-dimensional framework, it is of course equivalent to work with w or its
distributional derivative). This leads to the equation

(1.5) ut = vxx in Q ∶= \Omega × (0,∞), v ∶= \varphi (u) − \varepsilon 2\psi ′(u)\bigl( \psi (u)\bigr\rfloor xx,
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MEASURE-VALUED SOLUTIONS TO FOURTH-ORDER EQUATIONS 377

which we complement with either natural boundary conditions,

(1.6a) \bigl( \psi (u)\bigr\rfloor x = vx = 0 in \partial \Omega × (0,∞), u = u0 in \Omega × {0},

or essential boundary conditions,

(1.6b) \psi (u) = v = 0 in \partial \Omega × (0,∞), u = u0 in \Omega × {0} .

Here \varepsilon is a positive constant, \Omega ≡ (a, b) ⊂ \BbbR is a bounded interval, and u0 is a Radon
measure on \Omega . Typical examples of the functions \varphi and \psi are

\varphi (u) = u

(1 + u2)\alpha +1
2

with \alpha > 0 and \psi (u) = ∫
u

0

ds

(1 + s2)\sigma +1
2

with \sigma > 0,(1.7)

\varphi (u) = ue−\alpha 
\biggr\rfloor 
1+u2

with \alpha > 0 and \psi (u) = ∫
u

0
e−\sigma 

\biggr\rfloor 
1+s2ds with \sigma > 0 .(1.8)

In both (1.7) and (1.8), \varphi is of ``Perona--Malik type"" (see [3, 26, 28]). In case (1.7),

(1.9) \bigcup \varphi (u)\bigcup ∼ \bigcup u\bigcup −\alpha and \bigcup \psi (u)\bigcup ∼ \gamma − \bigcup u \bigcup −\sigma 

\sigma 
as \bigcup u\bigcup →∞ ,

with \gamma = \psi (∞). However, the assumptions under which problem (1.5)--(1.6) will be
addressed hold for a much wider class of nonlinearities and include the case in which
\varphi does not vanish at infinity (see subsection 3.1).

1.3. Existence results. The first purpose of the present paper is to construct
Radon measure-valued solutions of problem (1.5)--(1.6) (see Theorem 3.8). Two
a priori estimates are at the core of both the solution concept and the existence
theory.

The first estimate reflects the gradient flow structure of (1.5) with respect to the
energy

(1.10) E\bigl( u\bigr\rfloor ∶= ∫
\Omega 
(\Phi (u) + \varepsilon 

2

2
\bigl( \psi (u)\bigr\rfloor 2x) dx

(cf. (1.3)) and may be formally obtained as follows:

d

dt
E\bigl( u(t)\bigr\rfloor = ∫

\Omega 
(\varphi (u)ut + \varepsilon 2\bigl( \psi (u)\bigr\rfloor x\bigl( \psi (u)\bigr\rfloor xt)dx

(1.6)= ∫
\Omega 
(\varphi (u) − \varepsilon 2\bigl( \psi (u)\bigr\rfloor xx\psi ′(u))utdx

(1.5),(1.6)= −∫
\Omega 
v2xdx .

As we shall elaborate in subsection 3.2, nontrivial initial measures ``with finite energy""
exist provided \psi ′ is sufficiently degenerate at infinity (\sigma > 1\Uparrow 2 in case (1.7)): their
singular part concentrates on the set where the regular part blows up (see Figure 1).
In this case, the energy estimate guarantees that such a property is preserved for later
times, additionally providing a uniform control on the ``flux"" vx.

The second a priori estimate is of entropy type: letting \Psi be a primitive of \psi , we
see that, formally,

d

dt
∫
\Omega 
\Psi (u(t))dx = ∫

\Omega 
\psi (u)utdx

(1.5),(1.6)= ∫
\Omega 
\bigl( \psi (u)\bigr\rfloor xx\varphi (u) − \varepsilon 2 ∫

\Omega 
\psi ′(u)\bigl( \psi (u)\bigr\rfloor 2xxdx.

Since \psi is increasing, the second integral has negative sign, whereas the first may
be either absorbed into or controlled by the energy, depending on suitable relations
between the behavior of \varphi and \psi (cf. (H3) below): in the prototype case (1.7),
(H3) holds for \sigma ≤ 2\alpha . The entropy estimate provides uniform controls on both the
``pressure"" v and, since \Psi has linear growth at infinity, the L1-norm of u(⋅, t).
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u
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Fig. 1.

1.4. Evolution of singularities. The second purpose of the present paper is
to give examples of local solutions of (1.5) (namely, solutions defined in a subset of \Omega )
whose singular part increases or decreases in time. In Theorem 3.9 we prove that such
local solutions exist in a particular case of (1.9) if both \varphi and \psi ′ decay sufficiently
fast: \alpha > 1 and \sigma > 1\Uparrow 2. These solutions have the form of a Dirac mass concentrated
at a point and surrounded by a spatially constant regular part which blows up at that
point (cf. (3.13)--(3.14)).

The spontaneous appearance of singularities confirms that solutions of problem
(1.5)--(1.6) are, like those of (1.1), intrinsically Radon measure-valued (see [8, 9, 10,
11, 12, 13, 14, 31]). In both cases this phenomenon is caused by the negative sign of
\varphi ′(u) and the smallness of \psi ′(u) for large values of u.

Theorem 3.9 also provides examples of local measure-valued solutions for which
the singular part of the measure disappears in finite time. As we mentioned already,
this phenomenon is new and does not occur in the case of (1.1), where singular parts
can only grow.

1.5. Plan. The paper is organized as follows. In section 2 we collect some pre-
liminary facts and characterize measures with finite energy. In section 3 we state
precise assumptions, give the definition of global and local solutions of problem (1.5)--
(1.6), and state the main results of the paper. In section 4 we address solutions of
approximating problems by which in section 5 we prove the general existence result
for measure-valued initial data (see Theorem 3.8). In section 6 we provide examples
of local solutions of (1.5) with growing or decreasing singular part. Finally, in the
appendix we prove some facts concerning measures with finite energy, and we adapt
to the present case the standard proof of existence when \psi is nondegenerate and u0
is a function, which is needed to deal with the approximating problems.

2. Preliminaries. For every measurable function f defined on \Omega , the positive
and negative parts of f are f± ∶= max{±f,0}. For the sake of brevity, we write ∞
instead of +∞.

2.1. Radon measures. We denote by\scrM (\Omega ) the space of finite Radon measures
on \Omega and by\scrM +(\Omega ) and the cone of nonnegative measures in\scrM (\Omega ). If \mu 1, \mu 2 ∈\scrM (\Omega ),
we write \mu 1 ≤ \mu 2 if \mu 2−\mu 1 ∈\scrM +(\Omega ). For \mu ∈\scrM (\Omega ), \mu = \mu +−\mu − is the Jordan decompo-
sition into positive and negative parts, and \mu = \mu ac+\mu s is the Lebesgue decomposition
into absolutely continuous and singular parts with respect to the Lebesgue measure
on \Omega ; \mu r ∈ L1(\Omega ) denotes the density of \mu ac. The Jordan decomposition is minimal,
in the sense that \mu = \mu (1) − \mu (2) with \mu (1), \mu (2) ∈\scrM +(\Omega ) implies \mu + ≤ \mu (1), \mu − ≤ \mu (2).
Given \mu ∈\scrM (\Omega ) and a Borel set F ⊆ \Omega , the restriction \mu ⌞ F ∈\scrM (\Omega ) is defined by
(\mu ⌞ F )(G) ∶= \mu (F ∩ G) for any Borel set G ⊆ \Omega . Similar notation is used for the
spaces of finite Radon measures on QT = \Omega × (0, T ).

We denote by \coprod ⋅, ⋅\widetilde \Omega the duality map between \scrM (\Omega ) and the space Cc(\Omega ) of
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continuous functions with compact support in \Omega . By abuse of notation, we also set

\coprod \mu , \rho \widetilde \Omega ∶= ∫
\Omega 
\rho (x)d\mu (x) if \mu ∈\scrM (\Omega ) and \rho ∈ L1(\Omega , \mu ).

For T > 0 we denote by L∞(0, T ;\scrM (\Omega )) the set of measures z ∈\scrM (QT ) for which
for a.e. t ∈ (0, T ) there is a measure z(⋅, t) ∈\scrM (\Omega ) such that

(i) for all \zeta ∈ Cc(QT ) the map t↦ \coprod z(⋅, t), \zeta (⋅, t)\widetilde \Omega belongs to L1(0, T ) and

(2.1) \coprod z, \zeta \widetilde QT
= ∫

T

0
\coprod z(⋅, t), \zeta (⋅, t)\widetilde \Omega dt ;

(ii) the map t↦ \prod z(t)\prod \scrM (\Omega ) belongs to L
∞(0, T ).

Accordingly, we use the notation

\prod z\prod L∞(0,T ;\scrM (\Omega )) ∶= ess sup
t∈(0,T )

\prod z(t)\prod \scrM (\Omega ) for z ∈ L∞(0, T ;\scrM (\Omega )) .

Observe that by the above definition the map t ↦ \coprod z(⋅, t), \rho \widetilde \Omega is measurable for all
\rho ∈ Cc(\Omega ), and thus the map z ∶ (0, T )→\scrM (\Omega ) is weakly* measurable. For simplicity
we use the notation L∞(0, T ;\scrM (\Omega )) instead of the more correct L∞w∗(0, T ;\scrM (\Omega )).

If z ∈ L∞(0, T ;\scrM (\Omega )), for every Borel set F ⊆ QT there holds

z(F ) = ∫
T

0
z(⋅, t) (Ft)dt ,

where Ft ∶= {x ∈ \Omega \bigcup (x, t) ∈ F} is the t-section of F . It is easily seen that z is
concentrated on a Borel set F ⊆ QT if and only if z(⋅, t) is concentrated on the section
Ft for a.e. t ∈ (0, T ) (see [31, Proposition 4.2]).

If z ∈ L∞(0, T ;\scrM (\Omega )), then also zac, zs ∈ L∞(0, T ;\scrM (\Omega )) and, by (2.1),
(2.2)

\coprod zac , \zeta \widetilde QT
=∬

QT

zr \zeta dxdt , \coprod zs, \zeta \widetilde QT
= ∫

T

0
\coprod zs(⋅, t), \zeta (⋅, t)\widetilde \Omega dt for \zeta ∈ Cc(QT ) .

One easily checks that

(2.3) zac(⋅, t) = \bigl( z(⋅, t)\bigr\rfloor ac , zs(⋅, t) = \bigl( z(⋅, t)\bigr\rfloor s for a.e. t ∈ (0, T ) .

In particular,

(2.4) zr(⋅, t) = \bigl( z(⋅, t)\bigr\rfloor r for a.e. t ∈ (0, T ) ,

where \bigl( z(⋅, t)\bigr\rfloor r denotes the density of the measure \bigl( z(⋅, t)\bigr\rfloor ac: for \zeta ∈ C(\Omega ),

\coprod \bigl( z(⋅, t)\bigr\rfloor ac, \zeta \widetilde \Omega = ∫
\Omega 
\bigl( z(⋅, t)\bigr\rfloor r\zeta dx = ∫

\Omega 
zr(⋅, t) \zeta dx for a.e. t ∈ (0, T ) .

In view of (2.2)--(2.4), we always identify the quantities which appear on either side
of equalities (2.3)--(2.4).

2.2. Function spaces. In addition to the standard Sobolev spaces Hk(\Omega ) (k ∈
\BbbN ), the following spaces are convenient to define in order to deal with different bound-
ary conditions:

C1
∗(\Omega ) ∶=

\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

C1(\Omega ) in case (1.6a),

C1
c (\Omega ) in case (1.6b) ,

H1
∗(\Omega ) ∶=

\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

H1(\Omega ) in case (1.6a),

H1
0(\Omega ) in case (1.6b) ,

H3
∗(\Omega ) ∶=

\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

{u ∈H3(\Omega ) \bigcup ux = 0 on \partial \Omega } in case (1.6a),

{u ∈H3(\Omega ) \bigcup u = uxx = 0 on \partial \Omega } in case (1.6b) .
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By \coprod ⋅, ⋅\widetilde ∗ we denote the duality map between the spaces (H1
∗(\Omega ))′ and H1

∗(\Omega ). We
use the following well-known result [30, 21]; cf. the discussion in [17].

Lemma 2.1 (Aubin--Lions--Dubinski\u {\i}--Simon). Let T > 0, and let X,Y,Z be
reflexive Banach spaces, such that X is compactly embedded into Y and Y is con-
tinuously embedded into Z. Then the following embeddings are compact:

{u ∈ L2(0, T ;X) \bigcup ut ∈ L2(0, T ;Z)}↪ L2(0, T ;Y ),
{u ∈ L∞(0, T ;X) \bigcup ut ∈ L2(0, T ;Z)}↪ C(\bigl( 0, T \bigr\rfloor ;Y ).

We also make use of the following result, which is a particular case of Proposition
3.1 and Remark 3.2 in [7].

Lemma 2.2. Let X ⊂ L2(\Omega ) be dense with continuous embedding. If z ∈ L2(0, T ;X)
with zt ∈ L2(0, T ;X ′), then z ∈ C(\bigl( 0, T \bigr\rfloor ;L2(\Omega )) and

1

2
∫
\Omega 
z2(x, t2)dx −

1

2
∫
\Omega 
z2(x, t1)dx = ∫

t2

t1
\coprod zt(⋅, t), z(⋅, t)\widetilde X′,Xdt .

3. Main results.

3.1. Assumptions. Throughout the paper we assume that \varphi and \psi satisfy the
following conditions (H1)--(H3). On \varphi we assume that

(H1)

\bigr) \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr] 

(i) \varphi ∈ C1(\BbbR ) ∩W 1,∞(\BbbR ), \varphi (0) = 0;

(ii) a function \Phi ∶ \BbbR → \BbbR and a constant k0 > 0 exist such that

\Phi ′(u) = \varphi (u) , 0 ≤ \Phi (u) ≤ k0\bigcup u\bigcup for all u ∈ \BbbR .
Note that the assumptions on \varphi are very weak: in particular, we do not assume

symmetry, and \varphi ′ may change sign arbitrarily many times. The assumption \varphi (0) = 0
is needed to treat essential boundary conditions, the sign condition on \Phi provides a
lower bound on the energy, and the growth condition on \Phi allows one to consider
measure-valued initial data.

As to \psi , we assume that k1 > 0, \gamma > 0 exist such that

(H2)
\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

(i) \psi ∈ C3(\BbbR ) ∩W 3,∞(\BbbR ), \psi odd, \psi ′ > 0 in \BbbR , lim
u→∞

\psi (u) = \gamma ;

(ii) \bigcup \psi ′′(u)\bigcup ≤ k1 \psi ′(u) for any u ∈ \BbbR .
Note that by (H2)(i),

(3.1) 0 ≤ \Psi (u) ≤ \gamma \bigcup u\bigcup for all u ∈ \BbbR , where \Psi (u) ∶= ∫
u

0
\psi (s)ds.

The functions \varphi and \psi are related by the following assumption: there exists k2 ≥ 0
such that

(H3)
\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

either (i) \bigl( \varphi (u)\bigr\rfloor 2 ≤ k2 \psi ′(u)\bigl( 1 +\Psi (u)\bigr\rfloor for all u ∈ \BbbR ,
or (ii) \bigcup \varphi ′(u)\bigcup ≤ k2\bigcup \psi ′(u)\bigcup for all u ∈ \BbbR .

Generally speaking, (H3) relates the behavior of \varphi to that of \psi . (H3)(i) covers
the prototypal cases (1.7) and (1.8): indeed, a straightforward computation shows
that in these cases (H3)(i) holds if 0 < \sigma ≤ 2\alpha , whereas (H3)(ii) gives the stronger
constraint 0 < \sigma ≤ \alpha . In fact, (H3)(ii) is better suited (by appropriately choosing the
regularization \psi ) to be applied when \varphi (−∞) < \varphi (∞).

Remark 3.1. The oddness assumption in (H2)(i) is made only for convenience
and could be omitted provided \psi (0) = \psi ′′(0) = 0, which are used to treat essential
boundary conditions.
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3.2. Admissible initial data. We consider Radon measures ``with finite
energy"" in the following sense.

Definition 3.2. Let (H1) and (H2)(i) hold. A measure u ∈ \scrM (\Omega ) has finite
energy if there exists a sequence {un} ⊂H1(\Omega ) such that

un
∗⇀ u in\scrM (\Omega ) ,(3.2)

sup
n
E\bigl( un\bigr\rfloor ≤ E0 for some E0 > 0 .(3.3)

Note that by (3.2) we have

(3.4) sup
n

\prod un\prod L1(\Omega ) ≤M0 for some M0 > 0 .

Measures with finite energy are characterized as follows.

Proposition 3.3. Assume (H1) and (H2)(i). A measure u ∈\scrM (\Omega ) has finite
energy if and only if u ∈ \scrA (\Omega ), where

\scrA (\Omega ) ∶= {u ∈\scrM (\Omega ) \bigcup \psi (ur) ∈H1(\Omega ), u±s = u±s ⌞ \scrS ±(\Omega )} ,
\scrS ±(\Omega ) ∶= {x ∈ \Omega \bigcup \psi (ur(x)) = ±\gamma } .

The proof of Proposition 3.3 is essentially contained in [15] (see section A.1),
where it is also shown that if u ∈ \scrA (\Omega ), the sequence can be chosen such that {\psi (un)}
converges strongly to \psi (ur) in H1(\Omega ).

Remark 3.4. It follows immediately from Proposition 3.3 that a Dirac mass is
not an element of \scrA (\Omega ). However, if the degeneracy of \psi ′ is sufficiently strong,
the set \scrA (\Omega ) contains the sum of a Dirac mass concentrated at any x0 ∈ \Omega with
a nonnegative function having an integrable, yet suitably strong, singularity at x0.
In the prototypal case (1.9), Proposition 3.3 immediately implies that the measure
u = z + \delta x0 , z(x) ∶= \bigcup x − x0\bigcup −\beta belongs to \scrA (\Omega ) for any \sigma > 1\Uparrow 2 and any \beta ∈ ( 1

2\sigma 
,1).

3.3. The notion of solution. Let us first define local (in time and possibly in
space) solutions of (1.5).

Definition 3.5. Let \Omega 0 ⊆ \Omega be open, and let T ∈ (0,∞). A local solution of (1.5)
in Q0T ∶= \Omega 0 × (0, T ) with initial datum u0 ∈\scrM (\Omega 0) is a pair (u, v) such that

(i) u ∈ L∞(0, T ;\scrM (\Omega 0)), \psi (ur) ∈ C(Q0T ) ∩ L∞(0, T ;H1(\Omega 0)), and \bigl( \psi (ur)\bigr\rfloor xx ∈
L2
loc(Q0T ∖ \scrS (Q0T )), where

(3.5) \scrS (Q0T ) ∶= {(x, t) ∈ Q0T \bigcap \bigcup \psi (ur)(x, t)\bigcup = \gamma } ;

(ii) v ∈ L2(0, T ;H1(\Omega 0)) and

(3.6) v = \varphi (ur) − \varepsilon 2\psi ′(ur)\bigl( \psi (ur)\bigr\rfloor xx a.e. in Q0T ;

(iii) u(⋅, t) ∈ \scrA (\Omega 0) for a.e. t ∈ (0, T );
(iv) for all \zeta ∈ C1(\bigl( 0, T \bigr\rfloor ;C1

c (\Omega 0)) such that \zeta (⋅, T ) = 0 in \Omega 0, there holds

(3.7) ∫
T

0
\coprod u(⋅, t), \zeta t(⋅, t)\widetilde \Omega 0

dt −∬
Q0T

vx \zeta x dxdt = − \coprod u0, \zeta (⋅,0)\widetilde \Omega 0
.D

ow
nl

oa
de

d 
02

/2
5/

19
 to

 1
51

.1
00

.3
8.

13
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

382 MICHIEL BERTSCH, LORENZO GIACOMELLI, ALBERTO TESEI

Remark 3.6. By (i), \psi (ur)(⋅, t) ∈ H1(\Omega 0) for a.e. t ∈ (0, T ), so (iii) is equivalent
to
(3.8)
u±s(⋅, t) = u±s(⋅, t) ⌞ \scrS ±t (\Omega 0) for a.e. t ∈ (0, T ), \scrS ±t (\Omega 0) ∶= {x ∈ \Omega 0 \bigcup \psi (ur)(x, t) = ±\gamma } .

Observe that the set \scrS t(\Omega 0) ∶= \scrS +t (\Omega 0) ∪ \scrS −t (\Omega 0) is the t-section of the set in (3.5):

\scrS t(\Omega 0) = {x ∈ \Omega 0 \bigcup \bigcup \psi (ur)(x, t)\bigcup = \gamma } = {x ∈ \Omega 0 \bigcup (x, t) ∈ \scrS (Q0T )} .

We now define global (in time and space) solutions to (1.5)--(1.6).

Definition 3.7. Let u0 ∈\scrM (\Omega ). By a solution of problem (1.5)--(1.6) we mean
a pair (u, v) such that

(i) (u, v) is a local solution to (1.5) in \Omega ×(0, T ) for all T >0, \psi (ur)∈L∞(0,∞;H1(\Omega )),
and vx ∈ L2(Q);

(ii) for all T > 0, (3.7) holds with \Omega 0 = \Omega for all \zeta ∈ C1(\bigl( 0, T \bigr\rfloor ;C1
∗(\Omega )) such that

\zeta (⋅, T ) = 0 in \Omega ;
(iii)a in case (1.6a), \bigl( \psi (ur)\bigr\rfloor x = 0 on \partial \Omega × (0,∞) in the sense that

(3.9) ∬
Q
\bigl( \psi (ur)\bigr\rfloor xx \zeta dxdt = −∬

Q
\bigl( \psi (ur)\bigr\rfloor x \zeta x dxdt

for all \zeta ∈ C1
c (Q ∖ \scrS (Q));

(iii)b in case (1.6b), \psi (ur) ∈ L∞(0,∞;H1
0(\Omega )) and v ∈ L2

loc(\bigl( 0,∞);H1
0(\Omega )).

3.4. The existence result. The first main result of the paper is the following.

Theorem 3.8. Assume (H1)--(H3). Then for every u0 ∈ \scrA (\Omega ) there exists a
solution (u, v) of problem (1.5)--(1.6).

The proof is based on an approximating procedure. For u0 ∈ \scrA (\Omega ), let {u0n} be
a sequence given by Definition 3.2, and let

(3.10) \psi n(u) ∶= \psi (u) +
1

\kappa n
(u ∈ \BbbR ), where \kappa n ∶=max{n, 1

2
\prod u0n\prod L∞(\Omega ) 

(the choice of \kappa n is motivated by the proof of Lemma 4.4). Clearly, \psi n → \psi pointwise
in \BbbR . We consider the following nondegenerate approximating problems associated
with (1.5)--(1.6):

(3.11) ut = vxx in Q, v ∶= \varphi (u) − \varepsilon 2\psi ′n(u)\bigl( \psi n(u)\bigr\rfloor xx ,

with either natural or essential homogeneous boundary conditions,

ux = vx = 0 in \partial \Omega × (0,∞), u = u0n in \Omega × {0} ,(3.12a)

u = v = 0 in \partial \Omega × (0,∞), u = u0n in \Omega × {0},(3.12b)

respectively. Thanks to nondegeneracy, existence of strong solutions to (3.11)--(3.12)
may be proved by a Galerkin-type argument (see Proposition 4.1), which is relatively
standard in the framework of nonlinear higher-order equations (see, e.g., [2, 20, 22,
23]). Note, however, that the nonlinearity of the first-order term in the energy forces
us to use a two-step argument, requiring a preliminary local existence result based on
auxiliary interpolation estimates. Then Theorem 3.8 is proved by considering limiting
points of the sequence {un} in suitable topologies.
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3.5. Formation and disappearance of singularities. The second main result
shows that, in contrast to the pseudoparabolic regularization, the singular part of
solutions to (1.5) may either appear for t > 0 (starting from an L1-initial datum) or
disappear in finite time. Let \varphi , \psi be such that

(H4) \varphi (u) = u−\alpha , \psi (u) = \gamma − 1

\sigma 
u−\sigma for all u ≥ \=u for some \alpha ,\sigma , \=u > 0

(in this connection see (1.9)), and let \delta 0 denote the Dirac mass at x = 0.

Theorem 3.9. Assume (H4), and let \alpha > 1, \sigma > 1
2
. For any t0 > 0 and V ≥ 0

there exist two four-parameter families of local solutions to (1.5) of the form

u1(x, t) = \~u(x) + V \delta 0(x)t , t > 0,(3.13)

u2(x, t) = \~u(x) + V \delta 0(x)(t0 − t) , t ∈ (0, t0),(3.14)

with x ∈ \Omega 0 ∶= (−\xi , \xi ) for some \xi > 0. In both cases, \~u ∈ L1(\Omega 0) ∩ C4(\Omega 0 ∖ {0}) and
for some c ∈ \BbbR ∖ {0} there holds

\bigcup x\bigcup 2\Uparrow (2\sigma +1)\~u(x)→ c as \bigcup x\bigcup → 0 .

For solutions of type (3.13) the singular part appears for t > 0, whereas (3.14)
provides an example of a Dirac mass which disappears at time t0. The number of free
parameters is consistent with that of boundary conditions in (1.6); thus it is reasonable
to expect that a local solution of (1.5) may be turned into a global solution of (1.5)--
(1.6) by tuning these parameters. Based on our experience, however, there may be
technical obstructions in achieving this goal by, e.g., a shooting argument, due to the
lack of straightforward monotonicity properties in nonlinear higher-order ODEs. In
any event, since the formation/disappearance of singularities is a local phenomenon,
we prefer to put the issue aside in this first investigation. Finally, note that in (3.13)
u(⋅,0) = \~u is unbounded: we do not know whether there exist bounded initial data for
which the solution develops a nontrivial singular part within finite time.

4. A priori estimates. According to (3.10), we define approximating energies

(4.1) En\bigl( u(⋅, t)\bigr\rfloor ∶= ∫
\Omega 
(\Phi (u) + \varepsilon 

2

2
\bigl( \psi n(u)\bigr\rfloor 2x)(x, t)dx .

In this section and the following one we assume that the initial datum u0 is a measure
with finite energy.

In the appendix, a general existence result for problem (1.5)--(1.6) under a non-
degeneracy assumption on \psi is proven (see Theorem A.2). This result applies in
particular to problem (3.11)--(3.12) and provides the following starting point of our
analysis.

Proposition 4.1. Assume (H1)−-(H2). For u0 ∈ \scrA (\Omega ), let {u0n} be as in Def-
inition 3.2. Let \kappa n ≥ 1 and \psi n be defined by (3.10) (n ∈ \BbbN ). Then there exists
a strong solution un to (3.11)--(3.12), in the sense that for all T > 0 there holds

un ∈ L2(0, T ;H3
∗(\Omega )) ∩C(\bigl( 0, T \bigr\rfloor ;H1

∗(\Omega )), unt ∈ L2(0, T ; (H1
∗(\Omega ))

′), un(⋅,0) = u0n,

(4.2) ∫
T

0
\coprod unt, \zeta \widetilde ∗dt = −∬

QT

vnx\zeta x dxdt for all \zeta ∈ L2(0, T ;H1
∗(\Omega )),
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where

(4.3) vn ∶= \varphi (un) − \varepsilon 2\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor xx,

and

(4.4) En\bigl( un(⋅, t2)\bigr\rfloor + ∫
t2

t1
∫
\Omega 
v2nx dxdt = En\bigl( un(⋅, t1)\bigr\rfloor if 0 ≤ t1 < t2 <∞.

Our goal is to prove a few a priori estimates on strong solutions of problem
(3.11)--(3.12). Throughout the section CT > 0 (resp., C > 0) denotes a generic positive
constant independent of n (resp., of n and T ).

Lemma 4.2. Let {un} be given by Proposition 4.1. Then the following holds:

ess sup
t∈(0,∞)

En\bigl( un(⋅, t)\bigr\rfloor +∬
Q
v2nx dxdt ≤ C ,(4.5)

∫
\Omega 
un(x, t)dx = ∫

\Omega 
u0n(x)dx for all t > 0 in case (3.12a),(4.6)

\prod unt\prod 2L2(0,∞;(H1
∗
(\Omega ))′) ≤ C .(4.7)

Proof. Inequality (4.5) follows from (4.4) and (3.3). In case (3.12a), (4.6) follows
immediately from (4.2). Concerning (4.7), from (4.2) for a.e. t ∈ (0,∞) we get

\bigcup \coprod unt(⋅, t), \zeta \widetilde ∗\bigcup ≤ (∫
\Omega 
v2nx(x, t)dx)

1\Uparrow 2

\prod \zeta \prod H1
∗
(\Omega ) for all \zeta ∈H1

∗(\Omega ),

and thus (4.7) follows from (4.5).

The following lemma shows that estimate (4.5), together with (4.6) or (3.12b),
implies boundedness and equicontinuity of the sequence {\psi n(un)}. Here assumption
(H2)(ii) plays an essential role.

Lemma 4.3. Let {un} be given by Proposition 4.1. Then
(i) there holds

(4.8) \prod \psi n(un)\prod L∞(Q) ≤ C ;

(ii) for all t ∈ (0,∞), x1, x2 ∈ \Omega ,

(4.9) \bigcup \psi n(un)(x1, t) − \psi n(un)(x2, t)\bigcup ≤ C \bigcup x1 − x2\bigcup 1\Uparrow 2 ;

(iii) for all x ∈ \Omega , 0 ≤ t1 ≤ t2 <∞,

(4.10) \bigcup \psi n(un)(x, t1) − \psi n(un)(x, t2)\bigcup ≤ C\bigl( (t2 − t1)1\Uparrow 8 + (t2 − t1)1\Uparrow 6\bigr\rfloor .

In particular, the sequence {\psi n(un)} is bounded and equicontinuous in Q.

Proof. Inequality (4.9) follows from (4.5) and the definition of En (see (4.1)). In
case (3.12b), (4.8) follows immediately from (4.9) and the equality \psi n(un(⋅, t)) = 0 on
\partial \Omega . In case (3.12a), by (3.10), (4.6), and (3.4), we obtain

\bigwedge ∫
\Omega 
\psi n(un(x, t))dx \bigwedge ≤ \bigwedge ∫

\Omega 
\psi (un(x, t))dx \bigwedge +

1

\kappa n
\bigwedge ∫

\Omega 
un(x, t)dx \bigwedge 

= \bigwedge ∫
\Omega 
\psi (un)(x, t)dx \bigwedge +

1

\kappa n
\bigwedge ∫

\Omega 
u0n(x)dx \bigwedge ≤ \gamma \bigcup \Omega \bigcup +M0.
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Hence the mean value of \psi n(un(⋅, t)) is uniformly controlled: together with (4.9),

this implies (4.8). To prove (4.10), choose a regularizing family \rho \eta (x) = 1
\eta 
\rho (x

\eta 
) (x ∈

\BbbR , \eta > 0), where \rho ∈ C∞
c (\BbbR ) is a standard mollifier with unit mass. Set

\psi n\eta (x, t) ∶= ∫
\Omega 
\rho \eta (x − y)\bigl( \psi n(un)\bigr\rfloor (y, t)dy .

Then for every fixed \=x ∈ \Omega and t1, t2 ∈ (0, T ), t1 ≤ t2, there holds

\bigcup \psi n(un)(\=x, t1) − \psi n(un)(\=x, t2)\bigcup ≤ \bigcup \psi n(un)(\=x, t1) − \psi n\eta (\=x, t1)\bigcup 
+\bigcup \psi n\eta (\=x, t1) − \psi n\eta (\=x, t2)\bigcup + \bigcup \psi n\eta (\=x, t2) − \psi n(un)(\=x, t2)\bigcup .(4.11)

By (4.9), there exists C > 0 such that for all x, t1, t2 as above, \eta > 0, and i = 1,2,
there holds

\bigcup \psi n(un)(\=x, ti) − \psi n\eta (\=x, ti)\bigcup ≤ ∫
\Omega 
\rho \eta (\=x − y)\bigcup \psi n(un)(\=x, ti) − \psi n(un)(y, ti)\bigcup dy(4.12)

≤ C ∫
\Omega 
\rho \eta (\=x − y) \bigcup \=x − y\bigcup 1\Uparrow 2 dy ≤ C \eta 1\Uparrow 2.

To estimate the second term in the right-hand side of (4.11) observe that, by assump-
tion (H2)(ii),

\bigcup \bigl( \psi ′n(un)\bigr\rfloor x\bigcup = \bigcup \psi ′′(un)unx\bigcup ≤ k1 \psi ′(un)\bigcup unx\bigcup ≤ k1 \bigcup \bigl( \psi n(un)\bigr\rfloor x\bigcup .

Using (4.2) and the above inequality we get

(4.13)

\bigcup \psi n\eta (\=x, t1) − \psi n\eta (\=x, t2)\bigcup = \bigwedge ∫
\Omega 
\rho \eta (\=x − y)\bigl( \psi n(un)(y, t1) − \psi n(un)(y, t2)\bigr\rfloor dy \bigwedge 

= \bigwedge ∫
t2

t1
\coprod unt(⋅, t), \psi ′n(un)(⋅, t)\rho \eta (\=x − ⋅)\widetilde ∗ dt \bigwedge 

= \bigwedge ∫
t2

t1
∫
\Omega 
vnx(x, t) {\psi ′n(un)(x, t)\rho \eta (\=x − x)}x dxdt \bigwedge 

≤ k1 ∫
t2

t1
∫
\Omega 
\bigcup vnx \bigl( \psi n(un)\bigr\rfloor x\bigcup (x, t)\rho \eta (\=x − x)dxdt

+∫
t2

t1
∫
\Omega 
\bigl( \bigcup vnx\bigcup \psi ′n(un)\bigr\rfloor (x, t) \bigcap \rho ′\eta (\=x−x)\bigcap dxdt =∶ k1 I1n+I2n.

It follows from (4.5) that

In1 ≤
\prod \rho \prod L∞(\BbbR )

\eta 
∫

t2

t1
\prod vnx(⋅, t)\prod L2(\Omega )\prod \bigl( \psi n(un)\bigr\rfloor x (⋅, t)\prod L2(\Omega ) dt

≤
\biggr\rfloor 
2 \prod \rho \prod L∞(\BbbR )

\varepsilon \eta 

⎛
⎝
ess sup
t∈(0,∞)

En\bigl( un(⋅, t)\bigr\rfloor 
⎞
⎠

1\Uparrow 2

(∫
∞

0
\prod vnx(⋅, t)\prod 2L2(\Omega ) dt)

1\Uparrow 2

(t2 − t1)1\Uparrow 2

≤
\biggr\rfloor 
2C \prod \rho \prod L∞(\BbbR )

\varepsilon \eta 
(t2 − t1)1\Uparrow 2 .

D
ow

nl
oa

de
d 

02
/2

5/
19

 to
 1

51
.1

00
.3

8.
13

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

386 MICHIEL BERTSCH, LORENZO GIACOMELLI, ALBERTO TESEI

Moreover, by (4.5) there holds

In2 ≤ (\prod \psi ′\prod L∞(\BbbR ) + 1)∫
t2

t1
∫
\Omega 
\bigcup vnx\bigcup (x, t) \bigcap \rho ′\eta (\=x − x)\bigcap dxdt(4.14)

≤
(\prod \psi ′\prod L∞(\BbbR ) + 1)\prod \rho ′\prod L∞(\BbbR )

\eta 3\Uparrow 2
∫

t2

t1
\prod vnx(⋅, t)\prod L2(\Omega ) dt

≤
(\prod \psi ′\prod L∞(\BbbR ) + 1)\prod \rho ′\prod L∞(\BbbR )

\eta 3\Uparrow 2
(∫

∞

0
\prod vnx(⋅, t)\prod 2L2(\Omega ) dt)

1\Uparrow 2

(t2 − t1)1\Uparrow 2

≤
(\prod \psi ′\prod L∞(\BbbR ) + 1)C1\Uparrow 2\prod \rho ′\prod L∞(\BbbR )

\eta 3\Uparrow 2
(t2 − t1)1\Uparrow 2 .

By (4.11)--(4.14) there exists K > 0 such that

(4.15) \bigcup \psi n(un)(\=x, t1) − \psi n(un)(\=x, t2)\bigcup ≤K \bigl\lfloor \eta 1\Uparrow 2 + (t2 − t1)1\Uparrow 2

\eta 
(1 + 1

\eta 1\Uparrow 2
)\bigr\} 

for all \=x, t1, t2 as above and \eta > 0. It is easily seen that minimizing the right-hand
side of (4.15) with respect to \eta in (0,∞) gives (4.10) (cf. subsection A.3). Hence the
result follows.

Let

(4.16) \Psi n(u) ∶= ∫
u

0
\psi n(s)ds = \Psi (u) + u2

2\kappa n
(u ∈ \BbbR ) .

The next entropy-type estimate is the base for obtaining uniform controls on the norms
of un and vn. Here the choice of \kappa n and assumption (H3) are essential ingredients in
the proof.

Lemma 4.4. Let {un} be given by Proposition 4.1. For any T > 0 there exists
CT > 0 such that for all n ∈ \BbbN ,

sup
t∈(0,T )

∫
\Omega 
\Psi n(un(x, t))dx +∬

QT

{\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xx} dxdt ≤ CT .(4.17)

Proof. First, by (4.16) and the definition of \kappa n (cf. (3.10)) we have

\bigcup \Psi n(u0n)\bigcup = \Psi n(\bigcup u0n\bigcup ) ≤ \gamma \bigcup u0n\bigcup +
u20n
2\kappa n

≤ (\gamma + 1)\bigcup u0n\bigcup ,

whence by (3.4),

(4.18) \prod \Psi n(u0n)\prod L1(\Omega ) ≤ (\gamma + 1)M0.

Choosing \psi n(un)(⋅, t) as test functions in (4.2), we have

In(t) ∶= ∫
\Omega 
\bigl( \Psi n(un(x, t)) −\Psi n(u0n(x))\bigr\rfloor dx = −∬

Qt

vnx\bigl( \psi n(un)\bigr\rfloor x dxds .

In view of the boundary conditions \psi n(un)x = 0 or vn = 0 on \partial \Omega , we may integrate
by parts once more, obtaining

(4.19) In(t) =∬
Qt

\varphi (un)\bigl( \psi n(un)\bigr\rfloor xx dxds − \varepsilon 2∬
Qt

\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xx dxds .
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MEASURE-VALUED SOLUTIONS TO FOURTH-ORDER EQUATIONS 387

We now distinguish two cases.

(i) If (H3)(i) holds, by the definition of \psi n, \Psi n we have

(4.20) \bigl( \varphi (u)\bigr\rfloor 2 ≤ k2\psi ′(u) \bigl( 1 +\Psi (u)\bigr\rfloor ≤ k2\psi ′n(u) \bigl( 1 +\Psi n(u)\bigr\rfloor for all u ∈ \BbbR , n ∈ \BbbN .

On the other hand, by Young's inequality,

∬
Qt

\varphi (un)\bigl( \psi n(un)\bigr\rfloor xx dxds≤
1

2\varepsilon 2
∬

Qt

\bigl( \varphi (un)\bigr\rfloor 2

\psi ′n(un)
dxds + \varepsilon 

2

2
∬

Qt

\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xxdxds,

whence by (4.19),

(4.21) In(t) ≤
1

2\varepsilon 2
∬

Qt

\bigl( \varphi (un)\bigr\rfloor 2

\psi ′n(un)
dxds − \varepsilon 

2

2
∬

Qt

\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xx dxds .

Therefore, by (4.20)--(4.21),

In(t) ≤
k2
2\varepsilon 2
∬

Qt

\bigl( 1 +\Psi n(un)\bigr\rfloor dxds −
\varepsilon 2

2
∬

Qt

\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xx dxds ,

whence the conclusion follows by a Gronwall argument and inequality (4.18).

(ii) If (H3)(ii) holds, then in view of the boundary conditions \psi n(un)x = 0 or
\varphi (un) = 0 on \partial \Omega we may integrate by parts the first integral in (4.19), obtaining

In(t) = −∬
Qt

\bigl( \varphi (un)\bigr\rfloor x\bigl( \psi n(un)\bigr\rfloor x dxds − \varepsilon 2∬
Qt

\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xx dxds

≤ k2∬
Qt

\bigl( \psi n(un)\bigr\rfloor 2x dxds − \varepsilon 2∬
Qt

\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xx dxds ,

whence the conclusion follows by (4.5) and (4.18).

Lemmas 4.2 and 4.4 combine into a few additional a priori bounds.

Lemma 4.5. Let {un} be given by Proposition 4.1. For any T > 0 there exists
CT > 0 such that for all n ∈ \BbbN ,

\prod un\prod L∞(0,T ;L1(\Omega )) ≤ CT ,(4.22)

\prod vn\prod L2(0,T ;H1
∗
(\Omega )) ≤ CT .(4.23)

Proof. To prove (4.22), let \=un ∶= \psi −1n (\gamma \Uparrow 2). Then

\Psi n(u) −\Psi n(\=un) = ∫
u

\=un

\psi n(s)ds ≥
\gamma 

2
(u − \=un) for all u ≥ \=un ,

whence

\bigcup u\bigcup ≤ \=un +
2

\gamma 
\Psi n(u) for all \bigcup u\bigcup ≥ \=un .

Therefore, since 0 < \=un < \psi −1 (\gamma 2 ) for all n ∈ \BbbN ,

∫
\Omega 
\bigcup un(x, t)\bigcup dx ≤ \=un \bigcup \Omega \bigcup +

2

\gamma 
∫
\Omega 
\Psi n(un(x, t))dx ≤ \psi −1 (

\gamma 

2
) \bigcup \Omega \bigcup + 2

\gamma 
∫
\Omega 
\Psi n(un(x, t))dx,

and the claim follows from (4.17). Concerning (4.23), by (4.17) for any T > 0 we have

\prod vn\prod 2L2(QT )
≤ 2\prod \varphi (un)\prod 2L2(QT )

+ 2\varepsilon 4\prod \psi ′n(un)\bigl( \psi n(un)\bigr\rfloor xx\prod 2L2(QT )

≤ 2\prod \varphi \prod 2L∞(\BbbR )\bigcup QT \bigcup + 2\varepsilon 4 (\prod \psi ′\prod L∞(\BbbR ) + 1)∬
QT

\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xx dxdt ≤ CT .

Combined with (4.5), the above estimate yields (4.23).
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388 MICHIEL BERTSCH, LORENZO GIACOMELLI, ALBERTO TESEI

5. Proof of existence. We first collect some preliminary results about the lim-
iting points of the sequence {un} introduced in Proposition 4.1. From the previous
uniform estimates we obtain the following.

Proposition 5.1. Let {un} be given by Proposition 4.1. Then there exist a subse-
quence of {un} (not relabeled), u(1), u(2) ∈ L∞loc(\bigl( 0,∞);\scrM +(\Omega )), and v ∈ L2

loc(\bigl( 0,∞);
H1
∗(\Omega )) with vx ∈ L2(Q), such that

u+n
∗⇀ u(1) , u−n

∗⇀ u(2) , un
∗⇀ u ∶= u(1) − u(2) in\scrM (Q) ,(5.1)

unt ⇀ ut in L2(0,∞; (H1
∗(\Omega ))′) ,(5.2)

vn ⇀ v in L2
loc(\bigl( 0,∞);H1

∗(\Omega )) .(5.3)

Proof. Fix any T1 ∈ (0,∞). By inequality (4.22) the sequence {un} is bounded
in L1(QT1), and thus the same holds for the sequences {u±n}. Hence there exist a

subsequence {uk} ≡ {unk
} ⊆ {un} and u

(1)
1 , u

(2)
1 ∈\scrM +(QT1) such that

(5.4) u+k
∗⇀ u

(1)
1 , u−k

∗⇀ u
(2)
1 in\scrM (QT1) .

Arguing as in [29, Proposition 5.3] one proves that u
(1)
1 , u

(2)
1 ∈ L∞(0, T1;\scrM +(\Omega )).

Further, let T2 ∈ (T1,∞). By (4.22) there exist a subsequence {uj} ≡ {ukj} ⊆ {uk}
and u

(1)
2 , u

(2)
2 ∈\scrM +(QT2) such that

(5.5) u+j
∗⇀ u

(1)
2 , u−j

∗⇀ u
(2)
2 in\scrM (QT2) .

By (5.4)--(5.5) there holds u
(1)
1 = u

(1)
2 , u

(2)
1 = u

(2)
2 in \scrM (QT1). As before, one

proves that u
(1)
2 , u

(2)
2 ∈ L∞(0, T2;\scrM +(\Omega )). Iterating the procedure, by a diago-

nal argument there exist a subsequence of {un} (not relabeled for simplicity) and
u(1), u(2) ∈ L∞loc(\bigl( 0,∞);\scrM +(\Omega )) such that

u+n
∗⇀ u(1) , u−n

∗⇀ u(2) ⇒ un
∗⇀ u ∶= u(1) − u(2) in\scrM (QT ) for all T > 0 .

Then u ∈ L∞loc(\bigl( 0,∞);\scrM (\Omega )) and the limits in (5.1) hold.
To prove (5.2) observe that, by (4.7), there exist a subsequence of {unt} and

z ∈ L2(0,∞; (H1
∗(\Omega ))′) such that

(5.6) unt ⇀ z in L2(0,∞; (H1
∗(\Omega ))′) .

Plainly, by (5.1) and (5.6) there holds z = ut, and thus (5.2) follows. The convergence
in (5.3) follows similarly from (4.23).

Proposition 5.2. Let {un} be as in Proposition 5.1. Then there exist a subse-
quence (not relabeled) and a function w ∈ C(Q) ∩L∞(0,∞;H1

∗(\Omega )) such that

\psi n (un)→ w uniformly in Q,(5.7)

\psi n(un)
∗⇀ w in L∞(0,∞;H1(\Omega )) ,(5.8)

\bigcup w\bigcup ≤ \gamma in Q.(5.9)

Proof. The sequence {\psi n(un)} is bounded and equicontinuous in Q by Lemma
4.3, and hence the convergence in (5.7) follows immediately. By (4.5) and (4.8) there
exists C > 0 such that for all n ∈ \BbbN ,

\prod \psi n(un)\prod L∞(0,∞;H1
∗
(\Omega )) ≤ C ,
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and thus it is easily seen that w ∈ L∞(0,∞;H1
∗(\Omega )) and (5.8) holds. By (4.22), for

any T > 0 there exists CT > 0 such that for all n ∈ \BbbN ,

\prod \psi (un) − \psi n(un)\prod L∞(0,T ;L1(\Omega )) ≤
1

n
\prod un\prod L∞(0,T ;L1(\Omega )) ≤

CT
n
,

whence by (5.7),

\psi (un)→ w in L∞(0, T ;L1(\Omega )) .

Hence (possibly up to a subsequence) there holds \psi (un) → w a.e. in QT . Since
\bigcup \psi (u)\bigcup ≤ \gamma for all u ∈ \BbbR , inequality (5.9) follows.

Proposition 5.3. Let {un} and w be as in Proposition 5.2, and let

(5.10) \~\scrS ± ∶= {(x, t) ∈ Q \bigcap w(x, t) = ±\gamma } , \~\scrS ∶= \~\scrS + ∪ \~\scrS −.

Then \~\scrS has zero Lebesgue measure and

(5.11) u±n → \bigr) \psi −1(w)\bigl\lceil ± uniformly in every compact K ⊂ Q ∖ \~\scrS ± .

Proof. Let T > 0 be fixed. For any \eta ∈ (0, \gamma \Uparrow 2) set

\~\scrS \eta ,T ∶= {(x, t) ∈ QT \bigcap \bigcup w(x, t)\bigcup > \gamma − \eta } .

Then \~\scrS ∩QT ⊆ \~\scrS \eta ,T , and by (5.7) \bigcup \psi n(un)\bigcup ≥ \gamma − 2\eta in \~\scrS \eta ,T for all n sufficiently large.
Observe that

\bigcup \psi n(un(x, t))\bigcup ≥ \gamma − 2\eta ⇔ \bigcup un(x, t)\bigcup ≥ \psi −1n (\gamma − 2\eta )

since the function \psi n is strictly increasing and odd. Hence by inequality (4.22),

\bigcup \~\scrS ∩QT \bigcup ⋅ \psi −1n (\gamma − 2\eta ) ≤ \bigcup \~\scrS \eta ,T \bigcup ⋅ \psi −1n (\gamma − 2\eta ) ≤∬
QT

\bigcup un(x, t)\bigcup dxdt ≤ CT T ,

whence letting n→∞ we get

\bigcup \~\scrS ∩QT \bigcup ≤
CT T

\psi −1(\gamma − 2\eta )
.

Letting \eta → 0 in the above inequality proves that \bigcup \~\scrS ∩QT \bigcup = 0 for all T > 0, and thus
\bigcup \~\scrS \bigcup = 0 by the arbitrariness of T .

To prove (5.11) fix any compact subset K ⊂ Q ∖ \~\scrS + (observe that the sets \~\scrS ±, \~\scrS 
are closed since w is continuous). By (5.7), (5.9), and (5.10) there exists \eta ∈ (0, \gamma )
such that \psi n(un) ≤ \gamma − \eta in K for any n ∈ \BbbN sufficiently large. For every such n there
holds

0 ≤ \psi (u+n) = \psi n(u+n) −
u+n
\kappa n

≤ \gamma − \eta in K ,

whence u+n ≤ \psi −1(\gamma − \eta ) in K.
By assumption (H2)(i) there holds

(5.12) m ∶= min
\bigcup u\bigcup ≤\psi −1(\gamma −\eta )

\psi ′(u) > 0 .
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Therefore, since \psi is odd, we get

m \bigcup u+n − \bigr) \psi −1(w)\bigl\lceil 
+\bigcup 
C(K)

≤ \prod \psi (u+n) −w+\prod C(K) ≤ \int \bigl( \psi n(un)\bigr\rfloor 
+ −w+\int 

C(Q)
+ \psi 

−1(\gamma − \eta )
n

.

By (5.7), letting n→∞ in the above inequality we obtain the claim with ``+"" in (5.11).
The claim with ``−"" is proven similarly.

Proposition 5.4. Let u, w, and \~\scrS ± be as in Propositions 5.1--5.3. Then

(5.13) u±s = u±s ⌞ \~\scrS ± , ur = \bigl( \psi −1(w)\bigr\rfloor a.e. in Q.

Proof. By (5.1) and (5.11), for any \zeta ∈ Cc(Q ∖ \~\scrS +),

< u(1), \zeta >Q = lim
n→∞

< u+n, \zeta >Q = lim
n→∞

∬
Q
u+n\zeta dxdt = ∬

Q
\bigr) \psi −1(w)\bigl\lceil + \zeta dxdt ,

namely,

< u(1)s , \zeta >Q = ∬
Q
{\bigr) \psi −1(w)\bigl\lceil + − u(1)r } \zeta dxdt .

By the above equality, for any compact subset K ⊂ Q ∖ \~\scrS + the measure u
(1)
s ⌞K is

absolutely continuous with respect to the Lebesgue measure, and thus u
(1)
s ⌞K = 0.

Therefore,

< u(1)s , \zeta >Q = ∬
Q
{\bigr) \psi −1(w)\bigl\lceil + − u(1)r } \zeta dxdt = 0

for any \zeta as above. Hence we obtain

u(1)s = u(1)s ⌞ \~\scrS + , u(1)r = \bigr) \psi −1(w)\bigl\lceil + a.e. in Q

since \bigcup \~\scrS \bigcup = 0 (see Proposition 5.3). It is similarly seen that

u(2)s = u(2)s ⌞ \~\scrS − , u(2)r = \bigr) \psi −1(w)\bigl\lceil − a.e. in Q,

with u(2) as in (5.1). Then it holds that ur = \psi −1(w) a.e. in Q by Proposition 5.1 and

u
(1)
s (Q ∖ \~\scrS +) = u(2)s (Q ∖ \~\scrS −) = 0. By the minimality of the Jordan decomposition, it

follows that u±s(Q∖ \~\scrS ±) = 0, and thus u±s(F ∖ \~\scrS ±) = 0 for every Borel set F ⊆ Q. Hence
the result follows.

Remark 5.5. In view of the second equality in (5.13), hereafter we identify w ∈
C(Q) with the continuous representative of \psi (ur).

Proposition 5.6. Let {un}, u, v, w, and \~\scrS be as in Propositions 5.1--5.3. Then
(i) ur ∈ C(Q ∖ \~\scrS ) and

(5.14) un → ur uniformly in every compact K ⊂ Q ∖ \~\scrS ;

(ii) wxx ∈ L2
loc(Q ∖ \~\scrS ),

(5.15) \bigl( \psi n(un)\bigr\rfloor xx ⇀ wxx in L2
loc(Q ∖ \~\scrS ) ,

and in case (1.6a), for all \zeta ∈ C1
c (Q ∖ \~\scrS ),

(5.16) ∬
Q
wxx \zeta dxdt = −∬

Q
wx \zeta x dxdt ;

(iii) there holds

(5.17) v = \varphi (ur) − \varepsilon 2\psi ′(ur)\bigl( \psi (ur)\bigr\rfloor xx a.e. in Q.
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Proof. The convergence in (5.14) and the claim that ur ∈ C(Q ∖ \~\scrS ) follow from
(5.11) and Remark 5.5.

To prove (5.15), fix any compact subset K ⊂ Q∖ \~\scrS , and observe that K ⊂ QT ∖ \~\scrS 
for some T > 0. Arguing as in the proof of (5.11) and using (4.17), there exists CK > 0
such that for all n ∈ \BbbN sufficiently large,

∬
K
\bigl( \psi n(un)\bigr\rfloor 2xx dxdt ≤

1

m
∬

K
\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor 2xx dxdt ≤ CK ,

with m given by (5.12). Hence there exist a subsequence {unk
} ⊆ {un} and h ∈ L2(K)

such that

\bigl( \psi nk
(unk

)\bigr\rfloor xx ⇀ h in L2(K) as k →∞ .

Together with (5.7), this implies that

∬
K
h\zeta dxdt = lim

k→∞
∬

K
\bigl( \psi nk

(unk
)\bigr\rfloor xx \zeta dxdt = lim

k→∞
∬

K
\psi nk

(unk
) \zeta xx dxdt

=∬
K
w \zeta xx dxdt for any \zeta ∈ C2

c (K).

Therefore h = wxx ∈ L2(K), whence wxx ∈ L2
loc(Q ∖ \~\scrS ) by the arbitrariness of K, and

\bigl( \psi nk
(unk

)\bigr\rfloor xx ⇀ wxx in L2(K) .

Since the above limit is the same for every convergent subsequence of {\bigl( \psi n(un)\bigr\rfloor xx},
the whole sequence weakly converges to wxx in L2(K), and (5.15) follows by the
arbitrariness of K. Also, in case (1.6a) by (5.8) and (5.15) there holds

∬
Q
wxx \zeta dxdt = lim

n→∞
∬

Q
\bigl( \psi n(un)\bigr\rfloor xx \zeta dxdt

= − lim
n→∞

∬
Q
\bigl( \psi n(un)\bigr\rfloor x \zeta x dxdt = −∬

Q
wx \zeta x dxdt for any \zeta ∈ C1

c (Q ∖ \~\scrS )

since \psi n(un)(⋅, t) ∈H3
∗(\Omega ) for a.e. t ∈ (0, T ) (see Proposition 4.1). This proves (5.16).

Finally, let us prove (5.17). Since \bigcup \~\scrS \bigcup = 0, by (5.14) and the regularity of \varphi ,

(5.18) \varphi (un)→ \varphi (ur) uniformly in every compact K ⊂ Q ∖ \~\scrS .

By (5.3) and (5.18) we get

(5.19) − \varepsilon 2\psi ′n(un)\bigl( \psi n(un)\bigr\rfloor xx = vn − \varphi (un)⇀ v − \varphi (ur) in L2
loc(Q ∖ \~\scrS ) .

On the other hand, by (5.14)--(5.15) there holds

(5.20) \psi ′n(un)\bigl( \psi n(un)\bigr\rfloor xx ⇀ \psi ′(ur)\bigl( \psi (ur)\bigr\rfloor xx in L2
loc(Q ∖ \~\scrS ) .

From (5.19)--(5.20) we obtain that v − \varphi (ur) = −\varepsilon 2\psi ′(ur)\bigl( \psi (ur)\bigr\rfloor xx a.e. in Q ∖ \~\scrS and
thus a.e. in Q since \bigcup \~\scrS \bigcup = 0.

Now we can prove Theorem 3.8.

Proof of Theorem 3.8. By Propositions 5.1--5.6 and Remark 5.5, the pair (u, v)
given by Proposition 5.1 satisfies all requirements of Definitions 3.5--3.7 with \scrS (Q) = \~\scrS 
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392 MICHIEL BERTSCH, LORENZO GIACOMELLI, ALBERTO TESEI

(in particular, equalities (3.8) follow from (5.13)), apart from equality (3.7), which we
now show. For any \zeta ∈ C(\bigl( 0,∞);C1

∗(\Omega )) and n ∈ \BbbN by (4.2), there holds

∬
QT

un\zeta t dxdt −∬
QT

vnx\zeta x dxdt = −∫
\Omega 
u0n(x)\zeta (x,0)dx .

By (3.2) and (5.1)--(5.3), letting n→∞ in the above equality, we obtain (3.7). Hence
the result follows.

6. Formation and disappearance of singularities. In this section we prove
Theorem 3.9. Namely, we construct some explicit local solutions of (1.5) if

(6.1) \varphi (u) = u−\alpha , \psi (u) = \gamma − u
−\sigma 

\sigma 
for u ≥ u > 0 (\alpha > 1, \sigma > 1

2
) .

Let \Omega 0 = (−\xi , \xi ) for some \xi > 0 to be chosen, and let t0 > 0. We look for solutions in
Q0t0 = \Omega 0 × \bigl( 0, t0) of the form

(6.2) u(x, t) = \~u(x) + \delta 0(x)A(t) ,

where \delta 0 is the Dirac mass concentrated at the origin, A ∈ C1(\bigl( 0, t0\bigr\rfloor ) is nonnegative,
and \~u ∈ L1(\Omega 0) ∩C4(\Omega 0 ∖ {0}) is such that

(6.3) \~u ≥ \=u and \~u(x)→∞ as \bigcup x\bigcup → 0 .

We require the regular part \~u of u to be a stationary solution:

(6.4) {\varphi (\~u) − \varepsilon 2\psi ′(\~u)\bigl( \psi (\~u)\bigr\rfloor xx}xx = 0 in \Omega 0 ∖ {0} .

In view of (6.1), it is natural to set

(6.5) v ∶= \~u−\alpha − \varepsilon 2\~u−(\sigma +1)\bigl( \~u−(\sigma +1)\~u′\bigr\rfloor ′ in \Omega 0 ∖ {0} .

Then (6.4), together with the constraint v ∈ H1(\Omega 0), implies that v must be a con-
tinuous piecewise linear function in \Omega 0,

(6.6) v =
\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

−D − F−x if − \xi < x ≤ 0,

−D − F+x if 0 < x < \xi ,

for some constants D > 0 and F± ∈ \BbbR .
By symmetry, we may restrict the construction of functions \~u which satisfy (6.3)

and (6.5)--(6.6) to the interval (0, \xi ). Setting y ∶= x\Uparrow \varepsilon , U(y) ∶= \~u(\varepsilon y), F ∶= \varepsilon F+,
\eta ∶= \xi \Uparrow \varepsilon , the problem becomes

(6.7)

\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

U−\alpha −U−(\sigma +1)\bigl( U−(\sigma +1)U ′\bigr\rfloor ′ = −D − Fy in (0, \eta ),
U(0+) =∞.

The next lemma provides the desired family of solutions to (6.7).

Lemma 6.1. Let \alpha > 1 and \sigma > 1
2
. For any D > 0 and F,C ∈ \BbbR , there exist \eta > 0

and a solution U ∈ L1(0, \eta ) such that U > \=u in (0, \eta ), and as y → 0+,

(6.8)

y−
2

2\sigma +1

      

U−
2\sigma +1
2 (y)
y

−
\biggr\} 

D

2
(2\sigma + 1)

      
→ C ,

y−
2

2\sigma +1 \bigl\lfloor yU
′(y)

U(y)
+ 2

2\sigma + 1
\bigr\} → − 4C

(2\sigma + 1)3

\biggr\} 
2

D
.
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MEASURE-VALUED SOLUTIONS TO FOURTH-ORDER EQUATIONS 393

Proof. Set

z ∶= U−\lambda , w ∶= yU
′

U
= −yz

′

\lambda z

for some \lambda > 0 to be chosen below. Then

zz′′ = −(\sigma 
\lambda 
− 1) (z′)2 − \lambda (D + Fy)z−

2\sigma +1
\lambda 

+2 − \lambda z−
2\sigma −\alpha +1

\lambda 
+2,

yw′ = y (− z
′

\lambda z
+ y(z

′)2

\lambda z2
− yz

′′

\lambda z
) = w + \sigma w2 + (D + Fy)y2z−

2\sigma +1
\lambda + y2z−

2\sigma −\alpha +1
\lambda .

Now we rescale z by y and change the independent variable:

s ∶= log y, \~z(s) ∶= e−sz(es), \~w(s) ∶= w(es).

Then we get

d\~z

ds
= −(2\sigma + 1

2
\~w + 1) \~z, d \~w

ds
= \~w+\sigma \~w2+(D+Fes)\~z−

2\sigma +1
\lambda e

2\lambda −2\sigma −1
\lambda s+\~z−

2\sigma −2\alpha +1
\lambda e

2\lambda −2\sigma +\alpha −1
\lambda s .

One easily checks that this system has an equilibrium as s → −∞ with \~z ∈ \BbbR ∖ {0} if
and only if

\lambda = 2\sigma + 1

2
.

In this case, the system reads as

d\~z

ds
= −(2\sigma + 1

2
\~w + 1) \~z, d \~w

ds
= \~w + \sigma \~w2 + (D + Fes)\~z−2 + e

2\alpha 
2\sigma +1

s\~z−2+
2\alpha 

2\sigma +1 ,

and (\~z, \~w) ≡ (
\biggr\rceil 

D
2
(2\sigma +1),− 2

2\sigma +1
) is an equilibrium as s→ −∞. Set z0 ∶=

\biggr\rceil 
D
2
(2\sigma +1)

and

Z(s) ∶= e−ms\bigl( \~z(s) − z0\bigr\rfloor , W (s) ∶= e−ms \bigr] \~w(s) + 2

2\sigma + 1
\bigl\{ 

with m > 0 to be chosen below. Then

dZ

ds
= −mZ − 2\sigma + 1

2
W \bigl( z0 +Zems\bigr\rfloor 

and, using also the definition of z0,

dW

ds
= − (m + 2\sigma − 1

2\sigma + 1
)W + \sigma W 2ems

− DZz−20 (2z0 +Zems) + Fe(1−m)s − e(
2\alpha 

2\sigma +1
−m)s(z0 +Zems)

2\alpha 
2\sigma +1

(z0+Zems)2
.

If m < 1 and m < 2\alpha 
2\sigma +1

, asymptotic equilibria as s → −∞ are determined by the
equations

2\sigma + 1

2
Wz0 = −mZ, (m + 2\sigma − 1

2\sigma + 1
)Wz0 = −2Dz−20 Z = − 4

(2\sigma + 1)2
Z ,

whence

\bigl\lfloor 2\sigma + 1

2m
− (m + 2\sigma − 1

2\sigma + 1
) (2\sigma + 1)2

4
\bigr\} Wz0 = 0 .
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394 MICHIEL BERTSCH, LORENZO GIACOMELLI, ALBERTO TESEI

To have nontrivial equilibria we choose m > 0 such that

2\sigma + 1

2m
= (m + 2\sigma − 1

2\sigma + 1
) (2\sigma + 1)2

4
⇔ (2\sigma + 1)m2 + (2\sigma − 1)m − 2 = 0 ⇒ m = 2

2\sigma + 1
.

(Since by assumption \alpha > 1 and \sigma > 1
2
, there holds m < 1 and m < 2\alpha 

2\sigma +1
.) Hence there

is a one-parameter family of asymptotic equilibria,

(Z,W ) = (C,− 4

(2\sigma + 1)2z0
C) (C ∈ \BbbR ) .

To make the above system autonomous we set

t ∶= e
s

(2\sigma +1)k ,
1

k
∶=min{2,2\sigma − 1,2\alpha − 2} > 0 .

Then

(6.9)

\bigr) \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr] 

dt
ds

= 1
(2\sigma +1)k

t,
dZ
ds

= − 2
2\sigma +1

Z − 2\sigma +1
2
z0W + 2\sigma +1

2
WZt2k,

dW
ds

= −W + \sigma W 2t2k − 2
(2\sigma +1)2

Z(2z0 +Zt2k)(z0 +Zt2k)−2

−Ft(2\sigma −1)k(z0 +Zt2k)−2 + t2(\alpha −1)k(z0 +Zt2k)
2(\alpha −1)
2\sigma +1 .

Linearization around (t,Z,W ) = (0,C,− 4
(2\sigma +1)2z0

C) leads to the matrix

⎛
⎜⎜
⎝

1
(2\sigma +1)k

0 0

... − 2
2\sigma +1

− 2\sigma +1
2
z0

... − 4
(2\sigma +1)2z0

−1

⎞
⎟⎟
⎠
,

with eigenvalues 1
(2\sigma +1)k

> 0, 0, and − 2\sigma +3
2\sigma +1

< 0 (the eigenvalue 0 occurs because

there is a continuum of equilibria). By the center manifold theorem (see e.g., [27,
section 2.7]), there exists a one-dimensional manifold which is stable as s → −∞
(i.e., corresponding to the positive eigenvalue). Therefore, for any C ∈ \BbbR there exists
a solution (t(s), Z(s),W (s)) of system (6.9) in an interval (−∞, sC) such that t =

e
1

(2\sigma +1)k
s
and (t(s), Z(s),W (s)) → (0,C,− 4C

(2\sigma +1)2z0
) as s → −∞. Translating this

solution into the original variables, with 0 < y < \eta + ∶= esC , we obtain that

y−1U−
2\sigma +1
2 (y) = \~z =

\biggr\} 
D

2
(2\sigma + 1) +Z(log y)y

2
2\sigma +1

=
\biggr\} 

D

2
(2\sigma + 1) + \bigl( C + o(1)\bigr\rfloor y

2
2\sigma +1 as y → 0+.

This proves the first convergence in (6.8); the other follows similarly from the definition
of w and \~w and the asymptotical behavior of W as y → 0+.

Now we can complete the proof of Theorem 3.9.

Proof of Theorem 3.9. Given D > 0 and F±,C± ∈ \BbbR , let U± be the solutions,
defined in (0, \eta ±), of (6.7) with F = \varepsilon F+ and C = C+ (resp., F = −\varepsilon F− and C = C−).
Then let \xi ∶= \varepsilon min{\eta +, \eta −}, \Omega 0 = (−\xi , \xi ), and

(6.10) \~u(x) ∶=
\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

U+(x\Uparrow \varepsilon ) 0 < x < \xi ,
U−(−x\Uparrow \varepsilon ) −\xi < x < 0 ,

and define u, v through (6.2) and (6.5).
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MEASURE-VALUED SOLUTIONS TO FOURTH-ORDER EQUATIONS 395

Let us check that (u, v) is a local solution in Q0t0 in the sense of Definition
3.5. By the very definition of u there holds u ∈ L∞(0, t0;\scrM (\Omega 0)), and it is easily
seen that ur = \~u ∈ C(\Omega 0), v ∈ H1(\Omega 0) (see (6.10), (6.8), and (6.6)). To show that
\bigl( \psi (\~u)\bigr\rfloor x ∈ L2(\Omega 0), observe that by (6.8),

U(y) ∼ cy−
2

2\sigma +1 and U ′(y) ∼ − 2

2\sigma + 1

U(y)
y

for some positive constant c. Then

\bigl( \psi (U)\bigr\rfloor 2y ∼
4

(2\sigma + 1)2
U(y)−2\sigma 

y2
∼ 4c−2\sigma 

(2\sigma + 1)2
y−

2
2\sigma +1 as y → 0+,

which is integrable around zero for \sigma > 1\Uparrow 2. Therefore, since \scrS t(\Omega 0) = {0} (see (6.1)
and (6.3)), there holds u(⋅, t) ∈ \scrA (\Omega 0) for all t ∈ (0, t0).

By standard density arguments it suffices to check equality (3.7) with \zeta (x, t) =
\rho (x)h(t), \rho ∈ C2

c (\Omega 0), h ∈ C1(\bigl( 0, t0\bigr\rfloor ) such that h(t0) = 0, in which case it simply reads

\rho (0)∫
t0

0
\bigl( A′(t) − (F− − F+)\bigr\rfloor h(t)dt = 0 .

By the arbitrariness of \rho and h, this equality is satisfied if and only if there holds
A′ = F− − F+ in \bigl( 0, t0\bigr\rfloor , namely if and only if

A(t) = A0 − (F+ − F−)t for 0 ≤ t ≤ t0

with some A0 ∈ \BbbR . If F+ < F−, we choose A0 = 0 and V = F− − F+ in (6.2), which
provides a solution of type (3.13). If F+ > F−, we choose V = F+ − F− and A0 = V t0,
thus exhibiting a solution of type (3.14). In both cases the four free parameters are
(F− + F+), D, C+, and C−. This completes the proof.

Appendix A.

A.1. Proof of Proposition 3.3. The fact that any u ∈ \scrA (\Omega ) has finite energy
follows by [15, Theorem A.2]. It remains to show that u ∈ A(\Omega ) if u has finite energy.
Let {un} ⊂ H1(\Omega ) be as in Definition 3.2. Since \bigcup \psi (un)\bigcup ≤ \gamma and (3.3) holds, the
sequence {\psi (un)} is bounded and equicontinuous. Hence there exists a subsequence
(not relabeled) such that

\psi (un)⇀ w in H1(\Omega ), \psi (un)→ w in C(\Omega ).

Let
\~\scrS ±(\Omega ) ∶= {x ∈ \Omega \bigcup w(x) = ±\gamma }.

Note that the sets \~\scrS ± are closed since w is continuous. As in the proof of Propositions
5.3--5.4, one shows that \bigcup \~S±(\Omega )\bigcup = 0 and

u±s = u±s ⌞ \~S±(\Omega ), ur = \bigl( \psi −1(w)\bigr\rfloor a.e. in \Omega .

Hence w = \psi (ur) a.e. in \Omega , \~S±(\Omega ) = \scrS ±(\Omega ), and the conclusion follows.

A.2. Nondegenerate problems. In this subsection we consider problem (1.5)--
(1.6) under the following assumptions: u0 ∈H1(\Omega ),

(H ′
1) \varphi ∈ C1(\BbbR ) , \varphi ′ ∈ L∞(\BbbR ) , \varphi (0) = 0,
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396 MICHIEL BERTSCH, LORENZO GIACOMELLI, ALBERTO TESEI

and

(H ′
2) {

(i) \psi ∈ C3(\BbbR ), \psi ′ ∈W 2,∞(\BbbR ), \psi odd;

(ii) there exists c0 > 0 such that \psi ′(u) ≥ c0 for all u ∈ \BbbR .

Observe that under assumption (H ′
2)(ii) problem (1.5)--(1.6) is nondegenerate. In this

case, a stronger notion of solutions to (1.5)--(1.6) may be given.

Definition A.1. Let u0 ∈H1(\Omega ) and \tau > 0. A strong solution of problem (1.5)--
(1.6) in \Omega × (0, T ) is a function u ∈ L2(0, T ;H3

∗(\Omega )) ∩ C(\bigl( 0, T \bigr\rfloor ;H1
∗(\Omega )) such that

ut ∈ L2(0, T ; (H1
∗(\Omega ))

′), u(⋅,0) = u0,

(A.1) ∫
T

0
\coprod ut, \zeta \widetilde ∗dt = −∬

QT

vx\zeta x dxdt for all \zeta ∈ L2(0, T ;H1
∗(\Omega )),

where v ∶= \varphi (u) − \varepsilon 2\psi ′(u)\bigl( \psi (u)\bigr\rfloor xx , and

(A.2) E\bigl( u(⋅, t2)\bigr\rfloor + ∫
t2

t1
∫
\Omega 
v2x dxdt = E\bigl( u(⋅, t1)\bigr\rfloor for all 0 ≤ t1 < t2 ≤ T.

We will prove the following.

Theorem A.2. Assume (H ′
1)−-(H ′

2). Then for any u0 ∈ H1(\Omega ) there exists a
function u ∶ \Omega × \bigl( 0,∞)→ \BbbR that is a strong solution to (1.5)--(1.6) in \Omega × (0, T ) for all
T > 0.

We will use the following well-known interpolation inequalities.

Lemma A.3. Let \Omega ⊂ \BbbR be open and connected. A universal constant K1 > 0 and
a constant K2 > 0 depending on \Omega exist, such that

∫
\Omega 
f6 dx ≤K1 (∫

\Omega 
f2xx dx)

1\Uparrow 2

(∫
\Omega 
f2 dx)

5\Uparrow 2

+K2 (∫
\Omega 
f2 dx)

3

,(A.3)

∫
\Omega 
\bigcup fx\bigcup 3 dx ≤K2 (∫

\Omega 
f2xx dx)

7\Uparrow 8

(∫
\Omega 
f2 dx)

5\Uparrow 8

+K2 (∫
\Omega 
f2 dx)

3\Uparrow 2

(A.4)

for any f ∈H2(\Omega ). Furthermore, K2 = 0 if f = 0 somewhere in \Omega .

The proof of Theorem A.2 is based on the following local existence result, which
will be proven by the Galerkin method.

Lemma A.4. Assume (H ′
1)--(H ′

2). Then for any u0 ∈H1(\Omega ) there exist \tau > 0 and
a strong solution u of (1.5)--(1.6) in \Omega × (0, \tau ).

Proof. Let {\phi j}j∈\BbbN ⊂ C∞(\Omega ) be the eigenfunctions of the Laplace operator with
appropriate boundary conditions,

(A.5)

{ −\phi ′′j = \lambda j\phi j in \Omega 
\phi ′j = 0 on \partial \Omega 

in case (1.6a), j ≥ 0,

{ −\phi ′′j = \lambda j\phi j in \Omega 
\phi j = 0 on \partial \Omega 

in case (1.6b), j ≥ 1,

normalized so that they are orthonormal in L2(\Omega ) (and orthogonal in H1
∗(\Omega )). Ob-

serve that the eigenfunctions \phi j are smooth, \lambda 0 = 0, and \phi 0 is constant.
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MEASURE-VALUED SOLUTIONS TO FOURTH-ORDER EQUATIONS 397

(1) Local existence of approximating solutions. Let u0 ∈H1(\Omega ). We seek approx-
imate solutions of (1.5)--(1.6) of the form

um(x, t) ∶=
m

∑
j=0

wjm(t)\phi j(x) , vm ∶= \varphi (um) − \varepsilon 2\psi ′(um)\bigl( \psi (um)\bigr\rfloor xx .(A.6)

Since \varphi (0) = \psi (0) = \psi ′′(0) = 0, we have

0 = umx = umxxx, hence vmx = 0 on \partial \Omega in case (1.6a),(A.7)

0 = um = umxx, hence vm = 0 on \partial \Omega in case (1.6b).(A.8)

The coefficients wjm are to be determined by requiring that

w′
km(t) = (umt(⋅, t), \phi k)L2(\Omega ) = − (vmx(⋅, t), \phi 

′
k)L2(\Omega ) (t > 0) ,(A.9)

wkm(0) = (um(⋅,0), \phi k)L2(\Omega ) = (u0, \phi k)L2(\Omega )(A.10)

for any k = 0, . . . ,m and any t ∈ (0, T ). Equalities (A.9)--(A.10) form a system of ordi-
nary differential equations for the unknowns w1m, . . . ,wmm. By (H ′

1) and (H ′
2)(i), the

right-hand side of (A.9) depends continuously on w1m, . . . ,wmm, and thus a solution
of (A.9)--(A.10) exists in some interval (0, Tm).

(2) Uniform estimate of Tm. By straightforward calculations, it follows from
(A.5)--(A.6) and (A.9) that

I ′m = ∫
\Omega 
vmx umxxx dx , where Im(t) ∶=

1

2
∫
\Omega 
u2mx(x, t)dx.

Recalling the definition of vm (cf. (A.6)), by Young's inequality and assumptions
(H ′

1)--(H ′
2) it is easily seen that for all m ∈ \BbbN and t ∈ (0, Tm) there holds

I ′m(t) +
\varepsilon 2

2c20
∫
\Omega 
u2mxxx(x, t)dx ≤ k1∫

\Omega 
\bigr) u2mx + u6mx + \bigcup umxx\bigcup 3\bigl\lceil (x, t)dx ,(A.11)

where the constant c0 is defined in (H ′
2)(ii) and k1 > 0 is independent of m. Applying

(A.3) and (A.4) with f = umx, by (A.11) and Young's inequality we obtain

(A.12) I ′m(t) + k2∫
\Omega 
u2mxxx(x, t)dx ≤ k3 \bigr) Im(t) + I5m(t)\bigl\lceil 

for all m ∈ \BbbN and t ∈ (0, Tm), with k2, k3 > 0 independent of m. Since Im(0) ≤
1
2
\prod u0\prod 2H1(\Omega ), from (A.12) we get

Im(t) ≤ F0(t) ∶=
\prod u0\prod 2H1(\Omega )e

k3t

(16 − \prod u0\prod 8H1(\Omega )
(e4k3t − 1))

1\Uparrow 4
for t < \tau 0 ∶=

1

4k3
log

⎛
⎝
16 + \prod u0\prod 8H1(\Omega )

\prod u0\prod 8H1(\Omega )

⎞
⎠

for all m ∈ \BbbN . Fix any \tau ∈ (0, \tau 0). By integrating (A.12) on \bigl( 0, \tau \bigr\rfloor , by the above
inequality we get for all m ∈ \BbbN ,

(A.13) sup
t∈\bigl( 0,\tau \bigr\rfloor 

∫
\Omega 
u2mx(x, t)dx + k2∬

Q\tau 

u2mxxx dxdt ≤ J\tau ∶= ∫
\tau 

0
\bigr) F0(t) + F 5

0 (t)\bigl\lceil dt .

In case (1.6b), by (A.13) and (A.8) there exists C\tau > 0 such that

(A.14) \prod um\prod L∞(0,\tau ;H1(\Omega )) ≤ C\tau for all m ∈ \BbbN .
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In case (1.6a), we need an additional estimate on the mean of um. Since \phi 0 is constant,
it follows from (A.9) that w′

0m ≡ 0 for all m. Hence, by (A.5)--(A.6) for all m ∈ \BbbN and
t ∈ (0, Tm) we have that

d

dt
∫
\Omega 
um(x, t)dx =

m

∑
j=0

w′
jm(t)∫

\Omega 
\phi j dx = w′

0m(t)\phi 0 \bigcup \Omega \bigcup = 0 ,

whence by (A.6) and (A.10),

(A.15) \bigwedge ∫
\Omega 
um(x, t)dx \bigwedge ≤ \prod u0\prod L1(\Omega ) for all m ∈ \BbbN and t ∈ (0, Tm).

Using (A.15) and (A.13), we obtain (A.14) also in case (1.6a). By estimate (A.14),
in both cases w1m, . . . ,wmm are uniformly bounded in \bigl( 0, \tau \bigr\rfloor , and thus solutions um
of (A.9)--(A.10) are defined up to time \tau for any \tau < \tau 0; in particular, Tm ≥ \tau 0 for all
m ∈ \BbbN .

(3) Estimates of {um}, {vm} in \bigl( 0, \tau \bigr\rfloor for any \tau < \tau 0. From (A.13)--(A.14) we also
obtain for every m ∈ \BbbN ,

(A.16) \prod um\prod L2(0,\tau ;H3(\Omega )) ≤ C\tau 

(hereafter C\tau > 0 denotes a generic constant independent ofm). It follows from (A.14)
and (A.16) that

\prod vm\prod L2(0,\tau ;H1(\Omega )) ≤ C\tau ,(A.17)

\prod \varphi (um)\prod L∞(0,\tau ;H1(\Omega )) ≤ C\tau ,(A.18)

\prod \psi (um)\prod L2(0,\tau ;H3(\Omega )) ≤ C\tau .(A.19)

Let us prove that

\prod umt\prod L2(0,\tau ;(H1
∗
(\Omega ))′) ≤ C\tau ,(A.20)

\prod umtx\prod L2(0,\tau ;X′

∗
(\Omega )) ≤ C\tau ,(A.21)

where

X∗(\Omega ) ∶=
\bigr) \bigr\rceil \bigr\rceil \bigr\rfloor \bigr\rceil \bigr\rceil \bigr] 

{u ∈H2(\Omega ) \bigcup u ∈H1
0(\Omega ) } in case (1.6a),

{u ∈H2(\Omega ) \bigcup ux ∈H1
0(\Omega ) } in case (1.6b).

We fix any \zeta ∈ L2(0, \tau ;H1
∗(\Omega )) and denote by Pm the projection of L2(\Omega ) onto

span {\phi 0, . . . , \phi m} (in case (1.6a)) or span {\phi 1, . . . , \phi m} (in case (1.6b)). Then by
(A.9) and (A.17) we get

(A.22)

\bigwedge ∬
Q\tau 

umt\zeta dxdt \bigwedge = \bigwedge ∬
Q\tau 

umtPm\zeta dxdt \bigwedge = \bigwedge ∬
Q\tau 

vmx\bigl( Pm\zeta \bigr\rfloor x dxdt \bigwedge 

≤ (∬
Q\tau 

v2mx dxdt)
1\Uparrow 2

(∬
Q\tau 

\bigl( Pm\zeta \bigr\rfloor 2x dxdt)
1\Uparrow 2

≤ C\tau \prod \zeta x\prod L2(Q\tau ) ,

whence (A.20) follows. Inequality (A.21) also follows from (A.22):

\bigwedge ∬
Q\tau 

umtx\zeta dxdt\bigwedge = \bigwedge ∬
Q\tau 

umt\zeta xdxdt\bigwedge ≤ C\tau \prod \zeta xx\prod L2(Q\tau )

for all \zeta ∈ L2(0, \tau ;X∗(\Omega )).
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(4) The limit m→∞. By estimates (A.14), (A.16), and (A.20), there exist a sub-
sequence {um} (not relabeled) and a function u ∈ L∞(0, \tau ;H1(\Omega ))∩L2(0, \tau ;H3(\Omega )),
with ut ∈ L2 (0, \tau ; (H1(\Omega ))′), such that as m→∞,

um
∗⇀ u in L∞ (0, \tau ;H1

∗(\Omega )) ,(A.23)

um ⇀ u in L2 (0, \tau ;H3
∗(\Omega )) ,(A.24)

umt ⇀ ut in L2 (0, \tau ; (H1
∗(\Omega ))′) ,(A.25)

umtx ⇀ utx in L2 (0, \tau ;X ′
∗(\Omega )) .(A.26)

By Lemma 2.1 we also have

(A.27) um → u in L2 (0, \tau ;H2(\Omega )) ∩C(\bigl( 0, \tau \bigr\rfloor ;L2(\Omega )) and a.e. in Q\tau .

In view of (A.24) and (A.26), applying Lemma 2.2 with X = X∗(\Omega ) and z = ux, we
see that ux ∈ C(\bigl( 0, \tau \bigr\rfloor ;L2(\Omega )). Combined with (A.27), this yields that

(A.28) u ∈ C(\bigl( 0, \tau \bigr\rfloor ;H1
∗(\Omega )) .

By (A.27), (A.18)--(A.19), and the properties of \varphi and \psi we get (possibly up to a
subsequence)

\varphi (um)⇀ \varphi (u) in L2 (0, T ;H1(\Omega )) ,(A.29)

\bigl( \psi (um)\bigr\rfloor xx ⇀ \bigl( \psi (u)\bigr\rfloor xx in L2 (0, T ;H1(\Omega )) ,(A.30)

vm ⇀ v ∶= \varphi (u) − \varepsilon 2\psi ′(u)\bigl( \psi (u)\bigr\rfloor xx in L2 (\bigl( 0, \tau );H1
∗(\Omega )) .(A.31)

To prove (A.1) observe that, for all m,n ∈ \BbbN , m ≥ n, and \zeta ∈ L2(0, T ;H1
∗(\Omega )), there

holds

∬
Q\tau 

umt Pn\zeta dxdt = −∬
Q\tau 

vmx\bigl( Pn\zeta \bigr\rfloor x dxdt .

As m→∞, by (A.25) and (A.31) we obtain that

∫
T

0
\coprod ut, Pn\zeta \widetilde ∗dt = −∬

QT

vx\bigl( Pn\zeta \bigr\rfloor x dxdt ,

whence (A.1) follows by the arbitrariness of n. Therefore, the function u is a strong
solution of (1.5)--(1.6) in \Omega × (0, \tau ).

(5) Energy identity. It remains to prove equality (A.2). For all m ∈ \BbbN and
\zeta ∈ L2 (0, \tau ;X∗(\Omega )), we have

(A.32) ∬
Q\tau 

\bigl( \psi (um)\bigr\rfloor xt \zeta dxdt = −∬
Q\tau 

\psi ′(um)umt \zeta x dxdt .

Observe that by (A.14) there holds

∫
\tau 

0
\prod \psi ′(um)(⋅, t) \zeta x(⋅, t)\prod 2H1

∗
(\Omega ) dt ≤ C\tau ∫

\tau 

0
\prod \zeta x(⋅, t)\prod 2H1

∗
(\Omega ) dt

for some C\tau > 0. From (A.20), (A.32), and the above inequality we obtain

\bigwedge ∬
Q\tau 

\bigl( \psi (um)\bigr\rfloor xt \zeta dxdt \bigwedge ≤ C\tau \prod \zeta \prod L2(0,\tau ;X∗(\Omega )) .
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Hence {\bigl( \psi (um)\bigr\rfloor xt} converges weakly in L2 (0, \tau ;X ′
∗(\Omega )) (possibly up to a subse-

quence), and by (A.27) the weak limit is identified with \bigl( \psi (u)\bigr\rfloor xt, and thus

(A.33) \bigl( \psi (um)\bigr\rfloor xt ⇀ \bigl( \psi (u)\bigr\rfloor xt in L2 (0, \tau ;X ′
∗(\Omega )) .

By (A.25)--(A.27) and (A.33), letting m→∞ in (A.32) gives

(A.34) ∬
Q\tau 

\coprod \bigl( \psi (u)\bigr\rfloor xt, \zeta \widetilde X′

∗
(\Omega ),X∗(\Omega )dt = −∬

Q\tau 

\coprod ut, \psi ′(u)\zeta x\widetilde ∗ dt .

In view of (A.33), since \bigl( \psi (u)\bigr\rfloor x ∈ L2(0, \tau ;X∗(\Omega )), by Lemma 2.2 with X = X∗(\Omega )
and z = \bigl( \psi (u)\bigr\rfloor x there holds \bigl( \psi (u)\bigr\rfloor x ∈ C(\bigl( 0, \tau \bigr\rfloor ;L2(\Omega )), and

(A.35) ∫
\Omega 
\bigl( \psi (u)\bigr\rfloor 2x dx\bigwedge 

t=t2

t=t1

= ∫
t2

t1
\coprod \bigl( \psi (u)\bigr\rfloor xt, \bigl( \psi (u)\bigr\rfloor x\widetilde X′

∗
(\Omega ),X∗(\Omega ) dt

for all t1, t2 ∈ \bigl( 0, \tau ). By (A.28), we also have that \psi (u) ∈ C(\bigl( 0, \tau \bigr\rfloor ;H1(\Omega )) and
E\bigl( u(⋅, t)\bigr\rfloor ∈ C(\bigl( 0, \tau \bigr\rfloor ). Therefore, using (A.34)--(A.35),

E\bigl( u(⋅, t2)\bigr\rfloor −E\bigl( u(⋅, t1)\bigr\rfloor = ∫
t2

t1
{\coprod ut, \varphi (u)\widetilde ∗ + \coprod \bigl( \psi (u)\bigr\rfloor xt, \bigl( \psi (u)\bigr\rfloor x\widetilde X′

∗
(\Omega ),X∗(\Omega )}dt

= ∫
t2

t1
\coprod ut, \varphi (u) − \psi ′(u)\bigl( \psi (u)\bigr\rfloor xx\widetilde ∗ dt

for all 0 ≤ t1 < t2 ≤ \tau , which implies (A.2).

We are now ready to prove Theorem A.2.

Proof of Theorem A.2. Let u0 ∈H1(\Omega ). Set

\tau M ∶= sup{\tau > 0 \bigcup ∃ a strong solution u of (1.5)--(1.6) in \Omega × (0, \tau )} .

By Lemma A.4, \tau M is well defined and \tau M > 0. Hence there exists a function u which
is a strong solution of (1.5)--(1.6) in \Omega × (0, \tau ) for all \tau < \tau M . It follows from (A.1)
that

(A.36) ∫
\Omega 
u(x, t)dx = ∫

\Omega 
u0(x)dx for all t < \tau M in case (1.6a)

(no control on the mean is needed in case (1.6b) since u(⋅, t) ∈ H1
0(\Omega )). Using the

lower bound on \psi ′, it follows from (A.2) that

(A.37) sup
t∈(0,\tau M )

∫
\Omega 
u2x(x, t)dx +∬

Q\tau M

v2x ≤ C,

where C ≥ 1 denotes a generic constant independent of \tau M . Arguing as in the proof
of (A.20) and (A.21) in the proof of Lemma A.4, (A.36)--(A.37) yield
(A.38)

u ∈ L∞(0, \tau M ;H1
∗(\Omega )), ut ∈ L2(0, \tau M ; (H1

∗(\Omega ))′), utx ∈ L2(0, \tau M ;X ′
∗(\Omega )).

Assume by contradiction that \tau M <∞. Using Young's inequality, the boundedness of
u, and (H ′

2), we see that

C−1u2xxx ≤ \varepsilon 4(\psi ′(u))2u2xxx ≤ v2x +C (u2x + u6x + \bigcup uxx\bigcup 3) .
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Recalling (A.3) and (A.4) and using once more Young's inequality, for all \tau < \tau M we
have

∬
Q\tau 

u2xxx dxdt ≤ C∬
Q\tau 

(v2x + u2x)dxdt+
1

2
∬

Q\tau 

u2xxx dxdt+C∫
\tau 

0
(∫

\Omega 
u2x(x, t)dx)

5

dt

(A.37)
≤ C +C\tau M + 1

2
∬

Q\tau 

u2xxx dxdt.(A.39)

By (A.38) and (A.39), u ∈ L2
loc(\bigl( 0, \tau M);H3

∗(\Omega )) is upgraded to u ∈ L2(0, \tau M ;H3
∗(\Omega )).

Applying twice Lemma 2.2, in view of (A.38) we obtain u ∈ C(\bigl( 0, \tau M \bigr\rfloor ;H1
∗(\Omega )). In

particular,
u(⋅, t)→ u(⋅, \tau M) =∶ uM in H1

∗(\Omega ) as t→ \tau −M .

Applying Lemma A.4 with uM as initial datum at t = \tau M and patching solutions
together, we obtain a strong solution to (1.5)--(1.6) in (0, \tau M + \~\tau ) ×\Omega for some \~\tau > 0,
which contradicts the definition of \tau M . Thus \tau M =∞, and the result follows.

A.3. Estimating the right-hand side of (4.15). Setting y = \eta 1\Uparrow 2 and A = \bigcup t2−
t1\bigcup 1\Uparrow 2, we will equivalently estimate f(y) = y+Ay−2(1+y−1) for y > 0. Differentiating,
we see that the unique minimum point ym satisfies 2y−3m + 3y−4m = A−1. We now
distinguish two cases. If ym ≤ 1, then y−3m ≤ y−4m , so that 3A ≤ y4m ≤ 5A and, therefore,

min
y∈(0,∞)

f(y) ≤ (51\Uparrow 4 + 2 ⋅ 3−3\Uparrow 4)A1\Uparrow 4 if ym ≤ 1.

If, on the other hand ,ym ≥ 1, then y−4m ≤ y−3m , so that 2A ≤ y3m ≤ 5A and, therefore,

min
y∈(0,∞)

f(y) ≤ (51\Uparrow 3 + 2 ⋅ 2−2\Uparrow 3)A1\Uparrow 3 if ym ≥ 1.

Combining the two inequalities, we conclude that

min
y∈(0,∞)

f(y) ≤ (51\Uparrow 4 + 2 ⋅ 3−3\Uparrow 4)A1\Uparrow 4 + (51\Uparrow 3 + 21\Uparrow 3)A1\Uparrow 3.
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