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1 Introduction

Let N be an integer equal or greater than 2 and κ
N

= (−1)1+N/2 if N is even, κ
N

= ±1 if N is odd.
Consider the heat-type equation of order N :

∂u

∂t
= κ

N

∂Nu

∂xN
. (1.1)

For N = 2, this equation is the classical normalized heat equation and its relationship with linear
Brownian motion is of the most well-known. For N > 2, it is known that no ordinary stochastic process
can be associated with this equation. Nevertheless a Markov “pseudo-process” can be constructed by
imitating the case N = 2. This pseudo-process, X = (X(t))t≥0 say, is driven by a signed measure as
follows. Let p(t;x) denote the elementary solution of Eq. (1.1), that is, p solves (1.1) with the initial
condition p(0;x) = δ(x). This solution is characterized by its Fourier transform (see, e.g., [13])∫ +∞

−∞
eiµx p(t;x) dx = eκN t(−iµ)N .

The function p is real, not always positive and its total mass is equal to one:∫ +∞

−∞
p(t;x) dx = 1.

Moreover, its total absolute value mass ρ exceeds one:

ρ =
∫ +∞

−∞
|p(t;x)|dx > 1.

In fact, if N is even, p is symmetric and ρ < +∞, and if N is odd, ρ = +∞. The signed function p is
interpreted as the pseudo-probability for X to lie at a certain location at a certain time. More precisely,
for any time t > 0 and any locations x, y ∈ R, one defines

P{X(t) ∈ dy|X(0) = x}/dy = p(t;x− y).

Roughly speaking, the distribution of the pseudo-process X is defined through its finite-dimensional
distributions according to the Markov rule: for any n > 1, any times t1, . . . , tn such that 0 < t1 < · · · < tn
and any locations x, y1, . . . , yn ∈ R,

P{X(t1) ∈ dy1, . . . X(tn) ∈ dyn|X(0) = x}/dy1 . . . dyn =
n∏
i=1

p(ti − ti−1; yi−1 − yi)

where t0 = 0 and y0 = x.
This pseudo-process has been studied by several authors: see the references [2] to [4] and the references

[8] to [20].
Now, we consider the sojourn time of X in the interval [0,+∞) up to a fixed time t:

T (t) =
∫ t

0

1l[0,+∞)(X(s)) ds.

The computation of the pseudo-distribution of T (t) has been done by Beghin, Hochberg, Nikitin, Ors-
ingher and Ragozina in some particular cases (see [2, 4, 9, 16, 20]), and by Krylov and the second author
in more general cases (see [10, 11]).

The method adopted therein is the use of the Feynman-Kac functional which leads to certain dif-
ferential equations. We point out that the pseudo-distribution of T (t) is actually a genuine probability
distribution and in the case where N is even, T (t) obeys the famous Paul Lévy’s arcsine law, that is

P{T (t) ∈ ds}/ds =
1l(0,t)(s)

π
√
s(t− s)

.

We also mention that the sojourn time of X in a small interval (−ε, ε) is used in [3] to define a local time
for X at 0. The evaluation of the pseudo-distribution of the sojourn time T (t) together with the up-to-
date value of the pseudo-process, X(t), has been tackled only in the particular cases N = 3 and N = 4
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by Beghin, Hochberg, Orsingher and Ragozina (see [2, 4]). Their results have been obtained by solving
certain differential equations leading to some linear systems. In [2, 4, 11], the Laplace transform of the
sojourn time serves as an intermediate tool for computing the distribution of the up-to-date maximum
of X.

In this paper, our aim is to derive the joint pseudo-distribution of the couple (T (t), X(t)) for any
integer N . Since the Feynman-Kac approach used in [2, 4] leads to very cumbersome calculations, we
employ an alternative method based on Spitzer’s identity. The idea of using this identity for studying
the pseudo-process X appeared already in [8] and [18]. Since the pseudo-process X is properly defined
only in the case where N is an even integer, the results we obtain are valid in this case. Throughout the
paper, we shall then assume that N is even. Nevertheless, we formally perform all computations also in
the case where N is odd, even if they are not justified.

The paper is organized as follows.

• In Section 2, we write down the settings that will be used. Actually, the pseudo-process X is not well
defined on the whole half-line [0,+∞). It is properly defined on dyadic times k/2n, k, n ∈ N. So,
we introduce ad-hoc definitions for X(t) and T (t) as well as for some related pseudo-expectations.
For instance, we shall give a meaning to the quantity

E(λ, µ, ν) = E
[∫ ∞

0

e−λt+iµX(t)−νT (t) dt
]

which is interpreted as the 3-parameters Laplace-Fourier transform of (T (t), X(t)). We also recall
in this part some algebraic known results.

• In Section 3, we explicitly compute E(λ, µ, ν) with the help of Spitzer’s identity. This is Theorem 3.1.

• Sections 4, 5 and 6 are devoted to successively inverting the Laplace-Fourier transform with respect
to µ, ν and λ respectively. More precisely, in Section 4, we perform the inversion with respect to µ;
this yields Theorem 4.1. Next, we perform the inversion with respect to ν which gives Theorems 5.1
and 5.2. Finally, we carry out the inversion with respect to λ and the main results of this paper
are Theorems 6.2 and 6.3. In each section, we examine the particular cases N = 3 (case of an
asymmetric pseudo-process) and N = 4 (case of the biharmonic pseudo-process). For N = 2 (case
of rescaled Brownian motion), one can retrieve several classical formulas and we refer the reader to
the first draft of this paper [6]. Moreover, our results recover several known formulas concerning
the marginal distribution of T (t), see also [6].

• The final appendix (Section 7) contains a discussion on Spitzer’s identity as well as some technical
computations.

2 Settings

2.1 A first list of settings

In this part, we introduce for each integer n a step-process Xn coinciding with the pseudo-process X on
the times k/2n, k ∈ N. Fix n ∈ N. Set, for any k ∈ N, Xk,n = X(k/2n) and for any t ∈ [k/2n, (k+1)/2n),
X(t) = Xk,n. We can write globally

Xn(t) =
∞∑
k=0

Xk,n1l[k/2n,(k+1)/2n)(t).

Now, we recall from [13] the definitions of tame functions, functions of discrete observations, and admis-
sible functions associated with the pseudo-process X. They were introduced by Nishioka [18] in the case
N = 4.

Definition 2.1. Fix n ∈ N. A tame function for X is a function of a finite number k of obser-
vations of the pseudo-process X at times j/2n, 1 ≤ j ≤ k, that is a quantity of the form Fk,n =
F (X(1/2n), . . . , X(k/2n)) for a certain k and a certain bounded Borel function F : Rk −→ C. The
“expectation” of Fk,n is defined as

E(Fk,n) =
∫
. . .

∫
Rk
F (x1, . . . , xk) p(1/2n;x− x1) . . . p(1/2n;xk−1 − xk) dx1 . . . dxk.
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Definition 2.2. Fix n ∈ N. A function of the discrete observations of X at times k/2n, k ≥ 1, is a
convergent series of tame functions: FXn =

∑∞
k=1 Fk,n where Fk,n is a tame function for all k ≥ 1.

Assuming the series
∑∞
k=1 |E(Fk,n)| convergent, the “expectation” of FXn is defined as

E(FXn) =
∞∑
k=1

E(Fk,n).

Definition 2.3. An admissible function is a functional FX of the pseudo-process X which is the limit
of a sequence (FXn)n∈N of functions of discrete observations of X: FX = limn→∞ FXn , such that the
sequence (E(FXn))n∈N is convergent. The “expectation” of FX is defined as

E(FX) = lim
n→∞

E(FXn).

In this paper, we are concerned with the sojourn time of X in [0,+∞):

T (t) =
∫ t

0

1l[0,+∞)(X(s)) ds.

In order to give a proper meaning to this quantity, we introduce the similar object related to Xn:

Tn(t) =
∫ t

0

1l[0,+∞)(Xn(s)) ds.

For determining the distribution of Tn(t), we compute its 3-parameters Laplace-Fourier transform:

En(λ, µ, ν) = E
[∫ ∞

0

e−λt+iµXn(t)−νTn(t) dt
]
.

In Section 3, we prove that the sequence (En(λ, µ, ν))n∈N is convergent and we compute its limit:

lim
n→∞

En(λ, µ, ν) = E(λ, µ, ν).

Formally, E(λ, µ, ν) is interpreted as

E(λ, µ, ν) = E
[∫ ∞

0

e−λt+iµX(t)−νT (t) dt
]

where the quantity
∫∞

0
e−λt+iµX(t)−νT (t) dt is an admissible function of X. This computation is performed

with the aid of Spitzer’s identity. This latter concerns the classical random walk. Nevertheless, since it
hinges on combinatorial arguments, it can be applied to the context of pseudo-processes. We clarify this
point in Section 3.

2.2 A second list of settings

We introduce some algebraic settings. Let θi, 1 ≤ i ≤ N , be the N th roots of κ
N

and

J = {i ∈ {1, . . . , N} : <θi > 0}, K = {i ∈ {1, . . . , N} : <θi < 0}.

Of course, the cardinalities of J and K sum to N : #J + #K = N . We state several results related to
the θi’s which are proved in [11, 13]. We have the elementary equalities

∑
j∈J

θj +
∑
k∈K

θk =
N∑
i=1

θi = 0,

(∏
j∈J

θj

)(∏
k∈K

θk

)
=

N∏
i=1

θi = (−1)N−1κ
N

(2.1)

and
N∏
i=1

(x− θi) =
N∏
i=1

(x− θ̄i) = xN − κ
N
. (2.2)

Moreover, from formula (5.10) in [13],

∏
k∈K

(x− θk) =
#K∑
`=0

(−1)`σ` x#K−`, (2.3)
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where σ` =
∑

k1<···<k`
k1,...,k`∈K

θk1 . . . θk` . We have by Lemma 11 in [11]

∑
j∈J

θj
∏

i∈J\{j}

θix− θj
θi − θj

=
∑
j∈J

θj = −
∑
k∈K

θk =


1

sin π
N

if N is even,

1
2 sin π

2N

=
cos π

2N

sin π
N

if N is odd.
(2.4)

Set Aj =
∏
i∈J\{j}

θi
θi−θj for j ∈ J , and Bk =

∏
i∈K\{k}

θi
θi−θk for k ∈ K. The Aj ’s and Bk’s solve a

Vandermonde system: we have ∑
j∈J

Aj =
∑
k∈K

Bk = 1
(2.5)∑

j∈J
Ajθ

m
j = 0 for 1 ≤ m ≤ #J − 1,

∑
k∈K

Bkθ
m
k = 0 for 1 ≤ m ≤ #K − 1.

Observing that 1/θj = θ̄j for j ∈ J , that {θj , j ∈ J} = {θ̄j , j ∈ J} and similarly for the θk’s, k ∈ K,
formula (2.11) in [13] gives∑
j∈J

Ajθj
θj − x

=
∑
j∈J

Aj
1− θ̄jx

=
1∏

j∈J(1− θjx)
,

∑
k∈K

Bkθk
θk − x

=
∑
k∈K

Bk
1− θ̄kx

=
1∏

k∈K(1− θkx)
(2.6)

In particular, ∑
j∈J

Ajθj
θj − θk

=
1

NBk
,

∑
k∈K

Bkθk
θk − θj

=
1

NAj
. (2.7)

Set, for any m ∈ Z, αm =
∑
j∈J Ajθ

m
j and βm =

∑
k∈K Bkθ

m
k . We have, by formula (2.11) of [13],

β#K = (−1)#K−1
∏
k∈K θk. Moreover, β#K+1 = (−1)#K−1

(∏
k∈K θk

)(∑
k∈K θk

)
. The proof of this

claim is postponed to Lemma 7.2 in the appendix. We sum up this information and (2.5) into

βm =



1 if m = 0,
0 if 1 ≤ m ≤ #K − 1,
(−1)#K−1

∏
k∈K θk if m = #K,

(−1)#K−1
(∏

k∈K θk
)(∑

k∈K θk
)

if m = #K + 1,
κ
N

if m = N.

(2.8)

We also have
α−m =

∑
j∈J

Aj
θmj

= κ
N

∑
j∈J

Ajθ
N−m
j = κ

N
αN−m

and then

α−m =



1 if m = 0,
κ
N

(−1)#J−1
(∏

j∈J θj
)(∑

j∈J θj
)

if m = #K − 1,
κ
N

(−1)#J−1
∏
j∈J θj if m = #K,

0 if #K + 1 ≤ m ≤ N − 1,
κ
N

if m = N.

(2.9)

In particular, by (2.1),

α0β0 = α−NβN = 1, α−#Kβ#K = −1, α−#Kβ#K+1 =
∑
j∈J

θj , α1−#Kβ#K =
∑
k∈K

θk. (2.10)

Concerning the kernel p, we have from Proposition 1 in [11]

p(t; 0) =


Γ
(

1
N

)
Nπt1/N

if N is even,

Γ
(

1
N

)
cos
(
π

2N

)
Nπt1/N

if N is odd.

(2.11)
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Proposition 3 in [11] states

P{X(t) ≥ 0} =
∫ ∞

0

p(t;−ξ) dξ =
#J
N

, P{X(t) ≤ 0} =
∫ 0

−∞
p(t;−ξ) dξ =

#K
N

(2.12)

and formulas (4.7) and (4.8) in [13] yield, for λ > 0 and µ ∈ R,∫ ∞
0

e−λt

t
dt
∫ 0

−∞

(
eiµξ − 1

)
p(t;−ξ) dξ = log

( ∏
k∈K

N
√
λ

N
√
λ− iµθk

)
,

(2.13)∫ ∞
0

e−λt

t
dt
∫ ∞

0

(
eiµξ − 1

)
p(t;−ξ) dξ = log

(∏
j∈J

N
√
λ

N
√
λ− iµθj

)
.

Let us introduce, for j ∈ J , m ≤ N − 1 and x ≥ 0,

Ij,m(τ ;x) =
Ni

2π

(
e−i

m
N π

∫ ∞
0

ξN−m−1e−τξ
N−θjei

π
N xξ dξ − eimN π

∫ ∞
0

ξN−m−1e−τξ
N−θje−i

π
N xξ dξ

)
. (2.14)

Formula (5.13) in [13] gives, for 0 ≤ m ≤ N − 1 and x ≥ 0,∫ ∞
0

e−λτIj,m(τ ;x) dτ = λ−
m
N e−θj

N√
λx. (2.15)

We introduce in a very similar manner the functions Ik,m(τ ;x) for k ∈ K and x ≤ 0.

Example 2.1. Case N = 3.
• For κ3 = +1, the third roots of κ3 are θ1 = 1, θ2 = ei

2π
3 , θ3 = e−i

2π
3 , and the settings read J = {1},

K = {2, 3}, A1 = 1, B2 = e−i
π
6√

3
, B3 = ei

π
6√
3

, α0 = α−1 = α−2 = 1, β0 = 1, β−1 = −1. Moreover,

I1,0(τ ;x) =
3i
2π

(∫ ∞
0

ξ2 e−τξ
3−ei

π
3 xξ dξ −

∫ ∞
0

ξ2 e−τξ
3−e−i

π
3 xξ dξ

)
.

• For κ3 = −1, the third roots of κ3 are θ1 = ei
π
3 , θ2 = e−i

π
3 , θ3 = −1. The settings read J = {1, 2},

K = {3}, A1 = ei
π
6√
3

, A2 = e−i
π
6√

3
, B3 = 1, α0 = α−1 = 1, β0 = β−2 = 1, β−1 = −1. Moreover,

I1,1(τ ;x) =
3i
2π

(
e−i

π
3

∫ ∞
0

ξ e−τξ
3−ei

2π
3 xξ dξ − eiπ3

∫ ∞
0

ξ e−τξ
3−xξ dξ

)
,

I2,1(τ ;x) =
3i
2π

(
e−i

π
3

∫ ∞
0

ξ e−τξ
3−xξ dξ − eiπ3

∫ ∞
0

ξ e−τξ
3−e−i

2π
3 xξ dξ

)
.

Actually, the three functions I1,0, I1,1 and I2,1 can be expressed by mean of the Airy function Hi defined

as Hi(z) = 1
π

∫∞
0
e−

ξ3

3 +zξ dξ (see, e.g., [1, Chap. 10.4]). Indeed, we easily have by a change of variables,
differentiation and integration by parts, for τ > 0 and z ∈ C,∫ ∞

0

e−τξ
3+zξ dξ =

π

(3τ)4/3
Hi
(

z
3
√

3τ

)
,∫ ∞

0

ξ e−τξ
3+zξ dξ =

π

(3τ)2/3
Hi′
(

z
3
√

3τ

)
,∫ ∞

0

ξ2 e−τξ
3+zξ dξ =

πz

(3τ)4/3
Hi
(

z
3
√

3τ

)
+

1
3τ
.

Therefore,

I1,0(τ ;x) =
x

2 3
√

3 τ4/3

[
ei
π
6 Hi

(
− e−i

π
3 x

3
√

3τ

)
+ e−i

π
6 Hi

(
− ei

π
3 x

3
√

3τ

)]
, (2.16)

I1,1(τ ;x) =
3
√

3
2τ2/3

[
ei
π
6 Hi′

(
− ei

2π
3 x

3
√

3τ

)
+ e−i

π
6 Hi′

(
− x

3
√

3τ

)]
, (2.17)

I2,1(τ ;x) =
3
√

3
2τ2/3

[
ei
π
6 Hi′

(
− x

3
√

3τ

)
+ e−i

π
6 Hi′

(
− e−i

2π
3 x

3
√

3τ

)]
. (2.18)
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Example 2.2. Case N = 4: we have κ4 = −1. This is the case of the biharmonic pseudo-process. The
fourth roots of κ4 are θ1 = e−i

π
4 , θ2 = ei

π
4 , θ3 = ei

3π
4 , θ4 = e−i

3π
4 and the notations read in this case

J = {1, 2}, K = {3, 4}, A1 = B3 = e−i
π
4√

2
, A2 = B4 = ei

π
4√
2

, α0 = α−2 = 1, α−1 =
√

2, β0 = β−2 = 1,

β−1 = −
√

2. Moreover,

I1,1(τ ;x) =
2
π

(
ei
π
4

∫ ∞
0

ξ2 e−τξ
4−xξ dξ + e−i

π
4

∫ ∞
0

ξ2 e−τξ
4+ixξ dξ

)
,

(2.19)

I2,1(τ ;x) =
2
π

(
ei
π
4

∫ ∞
0

ξ2 e−τξ
4−ixξ dξ + e−i

π
4

∫ ∞
0

ξ2 e−τξ
4−xξ dξ

)
.

3 Evaluation of E(λ, µ, ν)

The goal of this section is to evaluate the limit E(λ, µ, ν) = limn→∞En(λ, µ, ν). We write En(λ, µ, ν) =
E[Fn(λ, µ, ν)] with

Fn(λ, µ, ν) =
∫ ∞

0

e−λt+iµXn(t)−νTn(t) dt.

Let us rewrite the sojourn time Tn(t) as follows:

Tn(t) =
[2nt]∑
j=0

∫ (j+1)/2n

j/2n
1l[0,+∞)(Xn(s)) ds−

∫ ([2nt]+1)/2n

t

1l[0,+∞)(Xn(s)) ds

=
[2nt]∑
j=0

∫ (j+1)/2n

j/2n
1l[0,+∞)(Xj,n) ds−

∫ ([2nt]+1)/2n

t

1l[0,+∞)(X[2nt],n) ds

=
1
2n

[2nt]∑
j=0

1l[0,+∞)(Xj,n) +
(
t− [2nt] + 1

2n

)
1l[0,+∞)(X[2nt],n).

Set T0,n = 0 and, for k ≥ 1,

Tk,n =
1
2n

k∑
j=1

1l[0,+∞)(Xj,n).

For k ≥ 0 and t ∈ [k/2n, (k + 1)/2n), we see that

Tn(t) = Tk,n +
(
t− k + 1

2n

)
1l[0,+∞)(Xk,n) +

1
2n
.

With this decomposition at hand, we can begin to compute Fn(λ, µ, ν):

Fn(λ, µ, ν) =
∫ ∞

0

e−λt+iµXn(t)−νTn(t) dt

=
∞∑
k=0

∫ (k+1)/2n

k/2n
e−λt+iµXk,n−νTk,n−

ν
2n+ν( k+1

2n −t)1l[0,+∞)(Xk,n) dt

= e−ν/2
n

( ∞∑
k=0

∫ (k+1)/2n

k/2n
e−λt+ν( k+1

2n −t)1l[0,+∞)(Xk,n) dt

)
eiµXk,n−νTk,n .

The value of the above integral is∫ (k+1)/2n

k/2n
e−λt+ν( k+1

2n −t)1l[0,+∞)(Xk,n) dt = e−λ(k+1)/2n e
[λ+ν1l[0,+∞)(Xk,n)]/2n − 1
λ+ ν1l[0,+∞)(Xk,n)

.

Therefore,

Fn(λ, µ, ν) =
1− e−(λ+ν)/2n

λ+ ν

∞∑
k=0

e−λk/2
n+iµXk,n−νTk,n1l[0,+∞)(Xk,n)
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+ e−ν/2
n 1− e−λ/2n

λ

∞∑
k=0

e−λk/2
n+iµXk,n−νTk,n1l(−∞,0)(Xk,n).

Before applying the expectation to this last expression, we have to check that it defines a function of
discrete observations of the pseudo-process X which satisfies the conditions of Definition 2.2. This fact
is stated in the proposition below.

Proposition 3.1. Suppose N even and fix an integer n. For any complex λ such that <(λ) > 0 and
any ν > 0, the series

∑∞
k=0 e

−λk/2nE
[
eiµXk,n−νTk,n1l[0,+∞)(Xk,n)

]
and

∑∞
k=0 e

−λk/2nE
[
eiµXk,n−νTk,n

1l(−∞,0)(Xk,n)
]

are absolutely convergent and their sums are given by

∞∑
k=0

e−λk/2
n

E
[
eiµXk,n−νTk,n1l[0,+∞)(Xk,n)

]
=
eν/2

n − S+
n (λ, µ, ν)

eν/2n − 1
,

∞∑
k=0

e−λk/2
n

E
[
eiµXk,n−νTk,n1l(−∞,0)(Xk,n)

]
=
eν/2

n

[S−n (λ, µ, ν)− 1]
eν/2n − 1

,

where

S+
n (λ, µ, ν) = exp

(
−
∞∑
k=1

(
1− e−νk/2

n
) e−λk/2n

k
E
[
eiµXk,n1l[0,+∞)(Xk,n)

])
,

S−n (λ, µ, ν) = exp

( ∞∑
k=1

(
1− e−νk/2

n
) e−λk/2n

k
E
[
eiµXk,n1l(−∞,0)(Xk,n)

])
.

Proof
• Step 1. First, notice that for any k ≥ 1, we have∣∣E[eiµXk,n−νTk,n1l[0,+∞)(Xk,n)

]∣∣
=
∣∣∣∣ ∫ . . .∫

Rk−1×[0,+∞)

eiµxk−
ν
2n

Pk
j=1 1l[0,+∞)(xj) P{X1,n ∈ dx1, . . . , Xk,n ∈ dxk}

∣∣∣∣
=
∣∣∣∣ ∫ . . .∫

Rk−1×[0,+∞)

eiµxk−
ν
2n

Pk
j=1 1l[0,+∞)(xj) p

(
1
2n

;x1

) k−1∏
j=1

p

(
1
2n

;xj − xj+1

)
dx1 . . . dxk

∣∣∣∣
≤
∫
. . .

∫
Rk

∣∣∣∣p( 1
2n

;x1

) k−1∏
j=1

p

(
1
2n

;xj − xj+1

)∣∣∣∣ dx1 . . . dxk

=
∫
. . .

∫
Rk

k∏
j=1

∣∣∣∣ p( 1
2n

; yj

)∣∣∣∣dy1 . . . dyk =
k∏
j=1

∫ +∞

−∞

∣∣∣∣ p( 1
2n

; yj

)∣∣∣∣dyj = ρk.

Hence, we derive the following inequality:

∞∑
k=1

∣∣∣e−λk/2nE
[
eiµXk,n−νTk,n1l[0,+∞)(Xk,n)

]∣∣∣ ≤ ∞∑
k=1

ρk
∣∣∣e−λk/2n ∣∣∣ =

1
1− ρe−<(λ)/2n

.

We can easily see that this bound holds true also when the factor 1l[0,+∞)(Xk,n) is replaced by 1l(−∞,0)(Xk,n).
This shows that the two series of Proposition 3.1 are finite for λ ∈ C such that ρe−<(λ)/2n < 1, that is
<(λ) > 2n log ρ.

• Step 2. For λ ∈ C such that <(λ) > 2n log ρ, the Spitzer’s identity (7.2) (see Lemma 7.1 in the
appendix) gives for the first series of Proposition 3.1

∞∑
k=0

e−λk/2
n

E
[
eiµXk,n−νTk,n1l[0,+∞)(Xk,n)

]
=

1
eν/2n − 1

[
eν/2

n

− exp

(
−
∞∑
k=1

(
1− e−νk/2

n
) e−λk/2n

k
E
[
eiµXk,n1l[0,+∞)(Xk,n)

])]
. (3.1)
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The right-hand side of (3.1) is an analytic continuation of the Dirichlet series lying in the left-hand side
of (3.1), which is defined on the half-plane {λ ∈ C : <(λ) > 0}. Moreover, for any ε > 0, this continuation
is bounded over the half-plane {λ ∈ C : <(λ) ≥ ε}. Indeed, we have

∣∣E[eiµXk,n1l[0,+∞)(Xk,n)
]∣∣ =

∣∣∣∣ ∫ +∞

0

eiµξp

(
k

2n
;−ξ

)
dξ
∣∣∣∣ ≤ ∫ +∞

0

∣∣∣∣ p( k

2n
;−ξ

)∣∣∣∣dξ < ρ

and then∣∣∣∣∣ exp

(
−
∞∑
k=1

(
1− e−νk/2

n
) e−λk/2n

k
E
[
eiµXk,n1l[0,+∞)(Xk,n)

])∣∣∣∣∣
≤ exp

(
ρ

∞∑
k=1

e−<(λ)k/2n

k

)
= exp

(
−ρ log(1− e−<(λ)/2n)

)
=

1
(1− e−<(λ)/2n)ρ

.

Therefore, if <(λ) ≥ ε,∣∣∣∣∣ exp

(
−
∞∑
k=1

(
1− e−νk/2

n
) e−λk/2n

k
E
[
eiµXk,n1l[0,+∞)(Xk,n)

])∣∣∣∣∣ ≤ 1
(1− e−ε/2n)ρ

.

This proves that the left-hand side of this last inequality is bounded for <(λ) ≥ ε. By a lemma of Bohr
([5]), we deduce that the abscissas of convergence, absolute convergence and boundedness of the Dirichlet
series

∑∞
k=0 e

−λk/2nE
[
eiµXk,n−νTk,n1l[0,+∞)(Xk,n)

]
are identical. So, this series converges absolutely on

the half-plane {λ ∈ C : <(λ) > 0} and (3.1) holds on this half-plane. A similar conclusion holds for the
second series of Proposition 3.1. The proof is finished. �

Thanks to Proposition 3.1, we see that the functional Fn(λ, µ, ν) is a function of the discrete obser-
vations of X and, by Definition 2.2, its expectation can be computed as follows:

En(λ, µ, ν) =
1− e−(λ+ν)/2n

λ+ ν

eν/2
n − S+

n (λ, µ, ν)
eν/2n − 1

+
1− e−λ/2n

λ

S−n (λ, µ, ν)− 1
eν/2n − 1

=
(
eν/2

n

(1− e−(λ+ν)/2n)
(λ+ ν)(eν/2n − 1)

− 1− e−λ/2n

λ(eν/2n − 1)

)
+

1− e−λ/2n

λ(eν/2n − 1)
S−n (λ, µ, ν)− 1− e−(λ+ν)/2n

(λ+ ν)(eν/2n − 1)
S+
n (λ, µ, ν). (3.2)

Now, we have to evaluate the limit E(λ, µ, ν) of En(λ, µ, ν) as n goes toward infinity. It is easy to see
that this limit exists; see the proof of Theorem 3.1 below. Formally, we write E(λ, µ, ν) = E[F (λ, µ, ν)]
with

F (λ, µ, ν) =
∫ ∞

0

e−λt+iµX(t)−νT (t) dt.

Then, we can say that the functional F (λ, µ, ν) is an admissible function of X in the sense of Definition 2.3.
The value of its expectation E(λ, µ, ν) is given in the following theorem.

Theorem 3.1. The 3-parameters Laplace-Fourier transform of the couple (T (t), X(t)) is given by

E(λ, µ, ν) =
1∏

j∈J(N
√
λ+ ν − iµθj)

∏
k∈K(N

√
λ− iµθk)

. (3.3)

Proof
It is plain that the term lying within the biggest parentheses in the last equality of (3.2) tends to zero as
n goes towards infinity and that the coefficients lying before S+

n (λ, µ, ν) and S−n (λ, µ, ν) tend to 1/ν. As
a byproduct, we derive at the limit when n→∞,

E(λ, µ, ν) =
1
ν

[
S−(λ, µ, ν)− S+(λ, µ, ν)

]
(3.4)

where we set

S+(λ, µ, ν) = lim
n→∞

S+
n (λ, µ, ν) = exp

(
−
∫ ∞

0

E
[
eiµX(t)1l[0,+∞)(X(t))

](
1− e−νt

) e−λt
t

dt
)
,

9



S−(λ, µ, ν) = lim
n→∞

S−n (λ, µ, ν) = exp
(∫ ∞

0

E
[
eiµX(t)1l(−∞,0)(X(t))

](
1− e−νt

) e−λt
t

dt
)
.

We have∫ ∞
0

E
[
eiµX(t)1l[0,+∞)(X(t))

](
1− e−νt

) e−λt
t

dt

=
∫ ∞

0

E
[(
eiµX(t) − 1

)
1l[0,+∞)(X(t))

] e−λt
t

dt−
∫ ∞

0

E
[(
eiµX(t) − 1

)
1l[0,+∞)(X(t))

] e−(λ+ν)t

t
dt

+
∫ ∞

0

P{X(t) ≥ 0} e
−λt − e−(λ+ν)t

t
dt

=
∫ ∞

0

e−λt

t
dt
∫ ∞

0

(
eiµξ − 1

)
p(t;−ξ) dξ −

∫ ∞
0

e−(λ+ν)t

t
dt
∫ ∞

0

(
eiµξ − 1

)
p(t;−ξ) dξ

+ P{X(1) ≥ 0}
∫ ∞

0

e−λt − e−(λ+ν)t

t
dt.

In view of (2.12) and (2.13) and using the elementary equality
∫∞

0
e−λt−e−(λ+ν)t

t dt = log
(
λ+ν
λ

)
, we have∫ ∞

0

E
[
eiµX(t)1l[0,+∞)(X(t))

](
1− e−νt

) e−λt
t

dt

= log

(∏
j∈J

N
√
λ

N
√
λ− iµθj

)
− log

(∏
j∈J

N
√
λ+ ν

N
√
λ+ ν − iµθj

)
+

#J
N

log
(
λ+ ν

λ

)
= log

(∏
j∈J

N
√
λ+ ν − iµθj
N
√
λ− iµθj

)
.

We then deduce the value of S+(λ, µ, ν). By (2.2),

S+(λ, µ, ν) =
∏
j∈J

N
√
λ− iµθj

N
√
λ+ ν − iµθj

=
∏N
`=1(N
√
λ− iµθ`)∏

j∈J(N
√
λ+ ν − iµθj)

∏
k∈K(N

√
λ− iµθk)

=
λ− κ

N
(iµ)N∏

j∈J(N
√
λ+ ν − iµθj)

∏
k∈K(N

√
λ− iµθk)

. (3.5)

Similarly, the value of S−(λ, µ, ν) is given by

S−(λ, µ, ν) =
∏
k∈K

N
√
λ+ ν − iµθk
N
√
λ− iµθk

=
λ+ ν − κ

N
(iµ)N∏

j∈J(N
√
λ+ ν − iµθj)

∏
k∈K(N

√
λ− iµθk)

. (3.6)

Finally, putting (3.5) and (3.6) into (3.4) immediately leads to (3.3). �

Remark 3.1. We can rewrite (3.3) as

E(λ, µ, ν) =
1

λ
#K
N (λ+ ν)

#J
N

∏
j∈J

N
√
λ+ ν

N
√
λ+ ν − iµθj

∏
k∈K

N
√
λ

N
√
λ− iµθk

. (3.7)

Actually, this form is more suitable for the inversion of the Laplace-Fourier transform.

In the three next sections, we progressively invert the 3-parameters Laplace-Fourier transform E(λ, µ, ν).

4 Inverting with respect to µ

In this part, we invert E(λ, µ, ν) given by (3.7) with respect to µ.

Theorem 4.1. We have, for λ, ν > 0,∫ ∞
0

e−λt
[
E
(
e−νT (t), X(t) ∈ dx

)
/dx

]
dt
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=


1

λ
#K−1
N (λ+ ν)

#J−1
N

∑
j∈J

Ajθj

(∑
k∈K

Bkθk

θk
N
√
λ− θjN

√
λ+ ν

)
e−θj

N√λ+ν x if x ≥ 0,

1

λ
#K−1
N (λ+ ν)

#J−1
N

∑
k∈K

Bkθk

(∑
j∈J

Ajθj

θk
N
√
λ− θjN

√
λ+ ν

)
e−θk

N√
λx if x ≤ 0.

(4.1)

Proof
By (2.6) applied to x = iµ/N

√
λ+ ν and x = iµ/N

√
λ, we have

∏
j∈J

N
√
λ+ ν

N
√
λ+ ν − iµθj

∏
k∈K

N
√
λ

N
√
λ− iµθk

=
∏
j∈J

1
1− iµ

N√λ+ν
θj

∏
k∈K

1
1− iµ

N√
λ
θk

=
∑
j∈J

Ajθj

θj − iµ
N√λ+ν

∑
k∈K

Bkθk

θk − iµ
N√
λ

= N
√
λ(λ+ ν)

∑
j∈J
k∈K

AjBkθjθk

(θjN
√
λ+ ν − iµ)(θk

N
√
λ− iµ)

.

Let us write that

1
(θjN
√
λ+ ν − iµ)(θk

N
√
λ− iµ)

=
1

θk
N
√
λ− θjN

√
λ+ µ

(
1

θj
N
√
λ+ ν − iµ

− 1
θk
N
√
λ− iµ

)
=

1
θk
N
√
λ− θjN

√
λ+ µ

(∫ ∞
0

e(iµ−θjN
√
λ+µ)x dx+

∫ 0

−∞
e(iµ−θkN

√
λ)x dx

)
.

Therefore, we can rewrite E(λ, µ, ν) as

E(λ, µ, ν) =
1

λ
#K−1
N (λ+ ν)

#J−1
N

×
∑
j∈J
k∈K

AjBkθjθk

θk
N
√
λ− θjN

√
λ+ ν

∫ ∞
−∞

eiµx
(
e−θk

N√
λx1l(−∞,0](x) + e−θj

N√λ+ν x1l[0,∞)(x)
)

dx

which is nothing but the Fourier transform with respect to µ of the right-hand side of (4.1). �

Remark 4.1. One can observe that formula (24) in [11] involves the density of (T (t), X(t)), this latter
being evaluated at the extremity X(t) = 0 when the starting point is x. By invoking the duality, we
could derive an alternative representation for (4.1). Nevertheless, this representation is not tractable for
performing the inversion with respect to ν.

Example 4.1. For N = 3, we have two cases to consider. Although this situation is not correctly
defined, (4.1) writes formally, with the numerical values of Example 2.1, in the case κ3 = 1,∫ ∞

0

e−λt
[
E
(
e−νT (t), X(t) ∈ dx

)
/dx

]
dt

=


e−

3√λ+ν x

λ2/3 + 3
√
λ(λ+ ν) + (λ+ ν)2/3

if x ≥ 0,

e
3√
λ

2 x

√
3 3
√
λ

√
3 3
√
λ cos

( √
3

3√
λ

2 x
)
− (2 3
√
λ+ ν + 3

√
λ ) sin

( √
3

3√
λ

2 x
)

λ2/3 + 3
√
λ(λ+ ν) + (λ+ ν)2/3

if x ≤ 0,

and in the case κ3 = −1,∫ ∞
0

e−λt
[
E
(
e−νT (t), X(t) ∈ dx

)
/dx

]
dt

11



=


e−

3√λ+ν
2 x

√
3 3
√
λ+ ν

√
3 3
√
λ+ ν cos

( √
3 3√λ+ν

2 x
)

+ ( 3
√
λ+ ν + 2 3

√
λ ) sin

( √
3 3√λ+ν

2 x
)

λ2/3 + 3
√
λ(λ+ ν) + (λ+ ν)2/3

if x ≥ 0,

e
3√
λx

λ2/3 + 3
√
λ(λ+ ν) + (λ+ ν)2/3

if x ≤ 0.

Example 4.2. For N = 4, formula (4.1) supplies, with the numerical values of Example 2.2,∫ ∞
0

e−λt
[
E
(
e−νT (t), X(t) ∈ dx

)
/dx

]
dt

=



√
2 e−

4√λ+ν√
2

x

4
√
λ+ ν (

√
λ+
√
λ+ ν)( 4

√
λ+ 4
√
λ+ ν)

[
4
√
λ+ ν cos

( 4
√
λ+ ν√

2
x

)
+ 4
√
λ sin

( 4
√
λ+ ν√

2
x

)]
if x ≥ 0,

√
2 e

4√
λ√
2
x

4
√
λ (
√
λ+
√
λ+ ν)( 4

√
λ+ 4
√
λ+ ν)

[
4
√
λ cos

( 4
√
λ√
2
x

)
− 4
√
λ+ ν sin

( 4
√
λ√
2
x

)]
if x ≤ 0.

5 Inverting with respect to ν

In this section, we carry out the inversion with respect to the parameter ν. The cases x ≤ 0 and x ≥ 0
lead to results which are not quite analogous. This is due to the asymmetry of our problem. So, we split
our analysis into two subsections related to the cases x ≤ 0 and x ≥ 0.

5.1 The case x ≤ 0

Theorem 5.1. The Laplace transform with respect to t of the density of the couple (T (t), X(t)) is given,
when x ≤ 0, by∫ ∞

0

e−λt [P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)] dt

= − e−λs

λ
#K−1
N s

#K
N

#K∑
m=0

α−m (λs)
m
N E1,m+#J

N
(λs)

∑
k∈K

Bkθ
m+1
k e−θk

N√
λx. (5.1)

Proof
Recall (4.1) in the case x ≤ 0:∫ ∞

0

e−λt
[
E
(
e−νT (t), X(t) ∈ dx

)
/dx

]
dt

=
1

λ
#K−1
N (λ+ ν)

#J−1
N

∑
k∈K

Bkθk

(∑
j∈J

Ajθj

θk
N
√
λ− θjN

√
λ+ ν

)
e−θk

N√
λx.

We have to invert with respect to ν the quantity

1

(λ+ ν)
#J−1
N

∑
j∈J

Ajθj

θk
N
√
λ− θjN

√
λ+ ν

= −
∑
j∈J

Aj

(λ+ ν)
#J−1
N (N
√
λ+ ν − θk

θj

N
√
λ)
.

By using the following elementary equality, which is valid for α > 0,

1
(λ+ ν)α

=
1

Γ(α)

∫ ∞
0

e−(λ+ν)ssα−1 ds =
∫ ∞

0

e−νs
(
sα−1e−λs

Γ(α)

)
ds,

we obtain, for |β| < N
√
λ+ ν,

1
N
√
λ+ ν − β

=
1

N
√
λ+ ν

1
1− β

N√λ+ν

=
∞∑
r=0

βr

(λ+ ν)
r+1
N

=
∞∑
r=0

βr

Γ
(
r+1
N

) ∫ ∞
0

e−(λ+ν)ss
r+1
N −1 ds
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=
∫ ∞

0

e−νs

(
s

1
N−1e−λs

∞∑
r=0

(β N
√
s )r

Γ
(
r+1
N

) )ds.

The sum lying in the last displayed equality can be expressed by means of the Mittag-Leffler function
(see [7, Chap. xviii]): Ea,b(ξ) =

∑∞
r=0

ξr

Γ(ar+b) . Then,

1
N
√
λ+ ν − β

=
∫ ∞

0

e−νs
(
s

1
N−1e−λsE 1

N ,
1
N

(β N
√
s )
)

ds. (5.2)

Next, we write

∑
j∈J

Aj
N
√
λ+ ν − θk

θj

N
√
λ

=
∫ ∞

0

e−νs

[
s

1
N−1e−λs

∑
j∈J

Aj E 1
N ,

1
N

(
θk
θj

N
√
λs

)]
ds, (5.3)

where ∑
j∈J

Aj E 1
N ,

1
N

(
θk
θj

N
√
λs

)
=
∑
j∈J

Aj

∞∑
r=0

(
θk
θj

)r (λs)
r
N

Γ
(
r+1
N

) =
∞∑
r=0

(
θrk
∑
j∈J

Aj
θrj

)
(λs)

r
N

Γ
(
r+1
N

) .
When performing the euclidian division of r by N , we can write r as r = `N + m with ` ≥ 0 and
0 ≤ m ≤ N − 1. With this, we have θ−rj = (θNj )−` θ−mj = κ`

N
θ−mj and θrk = κ`

N
θmk . Then,

θrk
∑
j∈J

Aj
θrj

= θmk
∑
j∈J

Aj
θmj

= θmk α−m.

Hence, since by (2.9) the α−m, #K + 1 ≤ m ≤ N , vanish,

∑
j∈J

Aj E 1
N ,

1
N

(
θk
θj

N
√
λs

)
=
∞∑
`=0

#K∑
m=0

α−mθ
m
k

(λs)`+
m
N

Γ
(
`+ m+1

N

) =
#K∑
m=0

α−m θ
m
k (λs)

m
N E1,m+1

N
(λs)

and (5.3) becomes

∑
j∈J

Aj
N
√
λ+ ν − θk

θj

N
√
λ

=
∫ ∞

0

e−νs

(
s

1
N−1e−λs

#K∑
m=0

α−m θ
m
k (λs)

m
N E1,m+1

N
(λs)

)
ds.

As a result, by introducing a convolution product, we obtain∫ ∞
0

e−λt
[
E
(
e−νT (t), X(t) ∈ dx

)
/dx

]
dt

= − 1

λ
#K−1
N

∑
k∈K

Bkθke
−θkN
√
λx

×
∫ ∞

0

e−νs

(∫ s

0

σ
#J−1
N −1e−λσ

Γ
(

#J−1
N

) × e−λ(s−σ)

#K∑
m=0

α−mθ
m
k λ

m
N (s− σ)

m+1
N −1E1,m+1

N
(λ(s− σ)) dσ

)
ds.

By removing the Laplace transforms with respect to the parameter ν of each member of the foregoing
equality, we extract∫ ∞

0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt

= − e−λs

λ
#K−1
N

#K∑
m=0

α−mλ
m
N

(∑
k∈K

Bkθ
m+1
k e−θk

N√
λx

)∫ s

0

σ
#J−1
N −1

Γ
(

#J−1
N

) (s− σ)
m+1
N −1E1,m+1

N
(λ(s− σ)) dσ.

The integral lying on the right-hand side of the previous equality can be evaluated as follows:∫ s

0

σ
#J−1
N −1

Γ
(

#J−1
N

) (s− σ)
m+1
N −1E1,m+1

N
(λ(s− σ)) dσ =

∫ s

0

σ
#J−1
N −1

Γ
(

#J−1
N

) (s− σ)
m+1
N −1

∞∑
`=0

λ`(s− σ)`

Γ
(
`+ m+1

N

) dσ

13



=
∞∑
`=0

λ`
∫ s

0

σ
#J−1
N −1

Γ
(

#J−1
N

) (s− σ)`+
m+1
N −1

Γ
(
`+ m+1

N

) dσ

=
∞∑
`=0

λ`s`+
m+#J
N −1

Γ
(
`+ m+#J

N

) = s
m+#J
N −1E1,m+#J

N
(λs)

from which we deduce (5.1). �

Remark 5.1. An alternative expression for formula (5.1) is for x ≤ 0∫ ∞
0

e−λt [P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)] dt

= − e−λs

λ
#K−1
N s

#K
N

∑
j∈J
k∈K

AjBkθk E 1
N ,

#J
N

(
θk
θj

N
√
λs

)
e−θk

N√
λx. (5.4)

In effect, by (5.1),∫ ∞
0

e−λt [P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)] dt

= − e−λs

λ
#K−1
N s

#K
N

∞∑
`=0

#K∑
m=0

∑
k∈K

α−mBkθ
m+1
k

(λs)`+
m
N

Γ
(
`+ m+#J

N

) e−θkN√λx
= − e−λs

λ
#K−1
N s

#K
N

∞∑
`=0

N−1∑
m=0

∑
j∈J
k∈K

AjBkθk

(
θk
θj

)m (λs)`+
m
N

Γ
(
`+ m+#J

N

) e−θkN√λx.
In the last displayed equality, we have extended the sum with respect to m to the range 0 ≤ m ≤ N − 1
because, by (2.9), the α−m, #K+ 1 ≤ m ≤ N − 1, vanish. Let us introduce the index r = `N +m. Since(
θk
θj

)m
=
(
θk
θj

)r
, we have

∫ ∞
0

e−λt [P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)] dt = − e−λs

λ
#K−1
N s

#K
N

∑
j∈J
k∈K

AjBkθk

∞∑
r=0

(
θk
θj

N
√
λs
)r

Γ
(
r+#J
N

) e−θk
N√
λx

which coincide with (5.4).

Example 5.1. Case N = 3. We have formally for x ≤ 0, when κ3 = −1:∫ ∞
0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt = e
3√
λx

(
e−λs

3
√
s
E1, 23

(λs)− 3
√
λ

)
and when κ3 = 1:∫ ∞

0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt

=
e−λs+

3√
λ

2 x

√
3 3
√
λs2

[√
3 cos

(√
3 3
√
λx

2

)(
3
√
λsE1, 23

(λs)− (λs)2/3eλs
)

+ sin
(√

3 3
√
λx

2

)(
3
√
λsE1, 23

(λs) + (λs)2/3eλs − 2E1, 13
(λs)

)]
.

Example 5.2. Case N = 4. We have, for x ≥ 0,∫ ∞
0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt

=
√

2 e−λs+
4√
λ√
2
x

4
√
λ
√
s

[
cos
( 4
√
λx√
2

)(
4
√
λsE1, 34

(λs)−
√
λs eλs

)
+ sin

( 4
√
λx√
2

)(
4
√
λsE1, 34

(λs)− E1, 12
(λs)

)]
.
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5.2 The case x ≥ 0

Theorem 5.2. The Laplace transform with respect to t of the density of the couple (T (t), X(t)) is given,
when x ≥ 0, by∫ ∞

0

e−λt[P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt

= − e−λs

λ
#K−1
N

∑
j∈J
k∈K

AjBkθk

∫ s

0

σ
1
N−1E 1

N ,
1
N

(
θk
θj

N
√
λσ

)
Ij,#J−1(s− σ;x) dσ (5.5)

where the function Ij,#J−1 is defined by (2.14).

Proof
Recall (4.1) in the case x ≥ 0:∫ ∞

0

e−λt
[
E
(
e−νT (t), X(t) ∈ dx

)
/dx

]
dt

=
1

λ
#K−1
N (λ+ ν)

#J−1
N

∑
j∈J

Ajθj

(∑
k∈K

Bkθk

θk
N
√
λ− θjN

√
λ+ ν

)
e−θj

N√λ+ν x.

We have to invert the quantity e−θj
N√λ+ν x

(λ+ν)
#J−1
N (N

√
λ+ν− θkθj

N√
λ )

with respect to ν. Recalling (5.2) and (2.15),

1
N
√
λ+ ν − β

=
∫ ∞

0

e−νs
(
s

1
N−1e−λsE 1

N ,
1
N

(
β N
√
s
))

ds,

e−θj
N√λ+ν x

(λ+ ν)
#J−1
N

=
∫ ∞

0

e−νs
(
e−λsIj,#J−1(s;x)

)
ds,

we get by convolution

e−θj
N√λ+ν x

(λ+ ν)
#J−1
N

(
N
√
λ+ ν − θk

θj

N
√
λ
)

=
∫ ∞

0

e−νs
(∫ s

0

σ
1
N−1e−λσE 1

N ,
1
N

(
θk
θj

N
√
λσ

)
× e−λ(s−σ)Ij,#J−1(s− σ;x) dσ

)
ds

=
∫ ∞

0

e−νs
(
e−λs

∫ s

0

σ
1
N−1E 1

N ,
1
N

(
θk
θj

N
√
λσ

)
Ij,#J−1(s− σ;x) dσ

)
ds.

This immediately yields (5.5). �

Remark 5.2. Noticing that

E 1
N ,

1
N

(
θk
θj

N
√
λσ

)
=
∞∑
r=0

θrk
θrj

(λσ)
r
N

Γ
(
r+1
N

) =
∞∑
`=0

N−1∑
m=0

θmk
θmj

(λσ)`+
m
N

Γ
(
`+ m+1

N

) =
N−1∑
m=0

θmk
θmj

(λσ)
m
N E1,m+1

N
(λσ)

and reminding that, from (2.8), the βm, 1 ≤ m ≤ #K − 1, vanish, we can rewrite (5.5) in the following
form. For x ≥ 0,∫ ∞

0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt

= −e−λs
N−1∑

m=#K−1

(∑
k∈K

Bkθ
m+1
k

)
λ
m−#K+1

N

∫ s

0

σ
m+1
N −1E1,m+1

N
(λσ)

(∑
j∈J

Aj
θmj

Ij,#J−1(s− σ;x)

)
dσ

= −e−λs
N∑

m=#K

βm λ
m−#K
N

∫ s

0

σ
m
N−1E1,mN

(λσ) Φm(s− σ;x) dσ (5.6)

with Φm(τ ;x) =
∑
j∈J

Aj

θm−1
j

Ij,#J−1(τ ;x).
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Remark 5.3. For x = 0, using formula (5.1) which is valid for x ≤ 0, we get, by (2.8), (2.9) and (2.10),∫ ∞
0

e−λt P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)
∣∣∣
x=0

dt

= − e−λs

λ
#K−1
N s

#K
N

#K∑
m=0

α−m βm+1 (λs)
m
N E1,m+#J

N
(λs)

= − e−λs

λ
#K−1
N s

#K
N

(
α1−#K β#K (λs)

#K−1
N E1,1− 1

N
(λs) + α−#K β#K+1 (λs)

#K
N E1,1(λs)

)
=

e−λs

λ
#K−1
N s

#K
N

(∑
j∈J

θj(λs)
#K−1
N E1,1− 1

N
(λs) +

∑
k∈K

θk(λs)
#K
N eλs

)

=

(∑
j∈J

θj

)
e−λs

N
√
s

(
E1,1− 1

N
(λs)− N

√
λs eλs

)
. (5.7)

On the other hand, with formula (5.6) which is valid for x ≥ 0,∫ ∞
0

e−λt P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)
∣∣∣
x=0

dt

= −e−λs
N∑

m=#K

βm λ
m−#K
N

∫ s

0

σ
m
N−1E1,mN

(λσ) Φm(s− σ; 0) dσ (5.8)

with

Φm(τ ; 0) =
Ni

2π

(∑
j∈J

Aj

θm−1
j

)(
e−i

#J−1
N π − ei

#J−1
N π

)∫ ∞
0

ξ#Ke−τξ
N

dξ

=
Γ
(

#K+1
N

)
sin
(

#J−1
N π

)
π τ

#K+1
N

α1−m =
α1−m

Γ
(

#J−1
N

)
τ

#K+1
N

.

In view of (2.8), (2.9) and (2.10), we have∫ ∞
0

e−λt P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)
∣∣∣
x=0

dt

=
e−λs

Γ
(

#J−1
N

)
(∑

j∈J
θj

)∫ s

0

σ
#K
N −1

(s− σ)
#K+1
N

E1,#KN
(λσ) dσ

+

(∑
k∈K

θk

)
N
√
λ

∫ s

0

σ
#K+1
N −1

(s− σ)
#K+1
N

E1,#K+1
N

(λσ) dσ

]

=

(∑
j∈J

θj

)
e−λs

Γ
(

#J−1
N

) e−λs( ∞∑
`=0

B
(
`+ #K

N , 1− #K+1
N

)
Γ
(
`+ #K

N

) λ`s`−
1
N

−N
√
λ

∞∑
`=0

B
(
`+ #K+1

N , 1− #K+1
N

)
Γ
(
`+ #K+1

N

) (λs)`
)

=

(∑
j∈J

θj

)
e−λs

N
√
s

(
E1,1− 1

N
(λs)− N

√
λs eλs

)
.

Thus, we have checked that the two different formulas (5.7) and (5.8) lead to the same result.

Example 5.3. Case N = 3. For x ≥ 0, (5.5) supplies formally with the numerical values of Example 2.1,
when κ3 = −1,∫ ∞

0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt
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=
e−λs√

3

(
e
iπ
6

∫ s

0

σ−2/3E 1
3 ,

1
3

(
− e−iπ3 3

√
λσ
)
I1,1(s− σ;x) dσ

+ e−
iπ
6

∫ s

0

σ−2/3E 1
3 ,

1
3

(
− eiπ3 3

√
λσ
)
I2,1(s− σ;x) dσ

)
and when κ3 = 1,∫ ∞

0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt

=
i e−λs√

3 3
√
λ

(∫ s

0

σ−2/3E 1
3 ,

1
3

(
e−i

2π
3

3
√
λσ
)
I1,0(s− σ;x) dσ

−
∫ s

0

σ−2/3E 1
3 ,

1
3

(
ei

2π
3

3
√
λσ
)
I1,0(s− σ;x) dσ

)
.

The functions I1,0, I1,1 and I2,1 above are respectively given by (2.16), (2.17) and (2.18).

Example 5.4. Case N = 4. For x ≥ 0, (5.5) supplies, with the numerical values of Example 2.2,∫ ∞
0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)] dt

= −e
−λs

2 4
√
λ

(
ei
π
4

∫ s

0

σ−3/4E 1
4 ,

1
4

(
− 4
√
λσ
)
I1,1(s− σ;x) dσ

+ e−i
3π
4

∫ s

0

σ−3/4E 1
4 ,

1
4

(
− i 4
√
λσ
)
I1,1(s− σ;x) dσ

+ ei
3π
4

∫ s

0

σ−3/4E 1
4 ,

1
4

(
i

4
√
λσ
)
I2,1(s− σ;x) dσ

+ e−i
π
4

∫ s

0

σ−3/4E 1
4 ,

1
4

(
− 4
√
λσ
)
I2,1(s− σ;x) dσ

)
.

The functions I1,1 and I2,1 above are given by (2.19).

6 Inverting with respect to λ

In this section, we perform the last inversion in F (λ, µ, ν) in order to derive the distribution of the couple
(T (t), X(t)). As in the previous section, we treat separately the two cases x ≤ 0 and x ≥ 0.

6.1 The case x ≤ 0

Theorem 6.1. The distribution of the couple (T (t), X(t)) is given, for x ≤ 0, by

P{T (t) ∈ ds,X(t) ∈ dx}/dsdx

= −Ni
2π

#K∑
m=0

α−ms
m−#K
N

∫ ∞
0

ξm+#Je−(t−s)ξNKm(xξ)E1,m+#J
N

(−sξN ) dξ (6.1)

where
Km(z) = e−i

#K−m−1
N π

∑
k∈K

Bkθ
m+1
k e−θke

i π
N z − ei

#K−m−1
N π

∑
k∈K

Bkθ
m+1
k e−θke

−i π
N z.

Proof
Assume x ≤ 0. Recalling (5.1), we have∫ ∞

0

e−λt [P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)]dt

= − e−λs

λ
#K−1
N s

#K
N

#K∑
m=0

α−m(λs)
m
N E1,m+#J

N
(λs)

∑
k∈K

Bkθ
m+1
k e−θk

N√
λx
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= − N
√
λ e−λs

#K∑
m=0

α−m

∞∑
`=0

(λs)`+
m−#K
N

Γ
(
`+ m+#J

N

) ∑
k∈K

Bkθ
m+1
k e−θk

N√
λx

= −
∞∑
`=0

#K∑
m=0

α−m
s`+

m−#K
N

Γ
(
`+ m+#J

N

) ∑
k∈K

Bkθ
m+1
k λ`+

m−#K+1
N e−λs−θk

N√
λx. (6.2)

We need to invert the quantity λ`+
m−#K+1

N e−λs−θk
N√
λx for ` ≥ 0 and 0 ≤ m ≤ #K with respect to λ.

We intend to use (2.15) which is valid for 0 ≤ m ≤ N − 1. Actually (2.15) holds true also for m ≤ 0;
the proof of this claim is postponed to Lemma 7.3 in the appendix. As a byproduct, for any ` ≥ 0 and
0 ≤ m ≤ #K,

λ`+
m−#K+1

N e−λs−θk
N√
λx = e−λs

∫ ∞
0

e−λuIk,#K−`N−m−1(u;x) du

=
∫ ∞
s

e−λtIk,#K−`N−m−1(t− s;x) dt. (6.3)

Then, by putting (6.3) into (6.2) and next by eliminating the Laplace transform with respect to λ, we
extract

P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)

= −
∞∑
`=0

#K∑
m=0

α−m
s`+

m−#K
N

Γ
(
`+ m+#J

N

) ∑
k∈K

Bkθ
m+1
k Ik,#K−`N−m−1(t− s;x)

= −Ni
2π

∞∑
`=0

#K∑
m=0

α−m
s`+

m−#K
N

Γ
(
`+ m+#J

N

)
×
∑
k∈K

Bkθ
m+1
k

(
e−i

#K−`N−m−1
N π

∫ ∞
0

ξN−#K+`N+m e−(t−s)ξN−θkei
π
N xξ dξ

− ei
#K−`N−m−1

N π

∫ ∞
0

ξN−#K+`N+m e−(t−s)ξN−θke−i
π
N xξ dξ

)
= −Ni

2π

#K∑
m=0

α−ms
m−#K
N

∑
k∈K

Bkθ
m+1
k

×

(
e−i

#K−m−1
N π

∫ ∞
0

( ∞∑
`=0

(
−sξN

)̀
Γ
(
`+ m+#J

N

)) ξm+#J e−(t−s)ξN−θkei
π
N xξ dξ

− ei
#K−m−1

N π

∫ ∞
0

( ∞∑
`=0

(
−sξN

)̀
Γ
(
`+ m+#J

N

)) ξm+#J e−(t−s)ξN−θke−i
π
N xξ dξ

)

= −Ni
2π

#K∑
m=0

α−ms
m−#K
N

∑
k∈K

Bkθ
m+1
k

×
(
e−i

#K−m−1
N π

∫ ∞
0

ξm+#J e−(t−s) ξN−θkei
π
N xξ E1,m+#J

N

(
−sξN

)
dξ

− ei
#K−m−1

N π

∫ ∞
0

ξm+#J e−(t−s) ξN−θke−i
π
N xξ E1,m+#J

N

(
−sξN

)
dξ
)
.

The proof of (6.1) is established. �

Remark 6.1. Let us integrate (6.1) with respect to x on (−∞, 0]. We first compute, by using (2.8),∫ 0

−∞
Km(xξ) dx = −1

ξ

(∑
k∈K

Bkθ
m
k

)(
e−i

#K−m
N π − ei

#K−m
N π

)

=
2i
ξ

sin
(

#K −m
N

π

)
βm =


0 if 1 ≤ m ≤ #K,

2i
ξ

sin
(

#K
N

π

)
if m = 0.
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We then obtain

P{T (t) ∈ ds,X(t) ≤ 0}/ds =
N sin

(
#K
N π

)
πs

#K
N

∫ ∞
0

ξ#J−1 e−(t−s)ξN E1,#JN

(
−sξN

)
dξ

=
N sin

(
#K
N π

)
πs

#K
N

∞∑
`=0

(−s)`

Γ
(
`+ #J

N

) ∫ ∞
0

ξ`N+#J−1e−(t−s)ξN dξ

=
sin
(

#K
N π

)
πs

#K
N (t− s)#J

N

∞∑
`=0

(
− s

t− s

)̀
.

In the foregoing equality we must assume 0 < s < t/2 in order to make convergent the series. From this,
we extract

P{T (t) ∈ ds,X(t) ≤ 0}/ds =
sin
(

#K
N π

)
πt

(
t− s
s

)#K
N

. (6.4)

We retrieve Theorem 14 of [11].

Remark 6.2. Let us evaluate P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx) at x = 0. For 0 ≤ m ≤ #K,

Km(0) = e−i
#K−m−1

N π
∑
k∈K

Bkθ
m+1
k − ei

#K−m−1
N π

∑
k∈K

Bkθ
m+1
k = −2i sin

(
#K −m− 1

N
π

)
βm+1.

Observing that sin
(

#K−m−1
N π

)
= 0 if m = #K − 1, in view of (2.8), (2.9) and (2.10), we get

P{T (t) ∈ ds, X(t) ∈ dx}/ds
∣∣∣
x=0

=
N

π
sin
( π
N

)
α−#Kβ#K+1

∫ ∞
0

ξN e−(t−s)ξNE1,1

(
−sξN

)
dξ

=
N

π
sin
( π
N

)(∑
j∈J

θj

)∫ ∞
0

ξN e−tξ
N

dξ =
sin
(
π
N

)
Γ
(

1
N

)
Nπ t1+ 1

N

∑
j∈J

θj .

Thanks to (2.4) and (2.11), we see that

P{T (t) ∈ ds, X(t) ∈ dx}/ds
∣∣∣
x=0

=
1
t
p(t; 0)

and we deduce

P{T (t) ∈ ds|X(t) = 0}/ds =
1l(0,t)(s)

t
,

that is, (T (t)|X(t) = 0) has the uniform law on (0, t). This is Theorem 13 of [11].

6.2 The case x ≥ 0

The case x ≥ 0 can be related to the case x ≤ 0 by using the duality. Let us introduce the dual process
(X∗t )t≥0 of (Xt)t≥0 defined as X∗t = −Xt for any t ≥ 0. It is known that (see [11]):

• If N is even, the processes X and X∗ are identical in distribution (because of the symmetry of the
heat kernel p): X∗ d= X;

• If N is odd, we have the equalities in distribution (X+)∗ d= X− and (X−)∗ d= X+ where X+ is the
pseudo-process associated with κ

N
= +1 and X− the one associated with κ

N
= −1.

When N is even, we have {−θj , j ∈ J} = {θk, k ∈ K}. In this case, for any j ∈ J , there exists a unique
k ∈ K such that θj = −θk and then

Aj =
∏

i∈J\{j}

θi
θi − θj

=
∏

i∈K\{k}

−θi
−θi + θk

=
∏

i∈K\{k}

θi
θi − θk

= Bk

and
αm =

∑
j∈J

Ajθ
m
j =

∑
k∈K

Bk(−θk)m = (−1)mβm.

When N is odd, we distinguish the roots of κ
N

in the cases κ
N

= +1 and κ
N

= −1:
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• For κ
N

= +1, let θ+
i , 1 ≤ i ≤ N , denote the roots of 1 and set J+ = {i ∈ {1, . . . , N} : <(θ+

i ) > 0}
and K+ = {i ∈ {1, . . . , N} : <(θ+

i ) < 0};

• For κ
N

= −1, let θ−i , 1 ≤ i ≤ N , denote the roots of −1 and set J− = {i ∈ {1, . . . , N} : <(θ−i ) > 0}
and K− = {i ∈ {1, . . . , N} : <(θ−i ) < 0}.

We have {θ−j , i ∈ J−} = {−θ+
k , k ∈ K+} and {θ−k , k ∈ K−} = {−θ+

j , j ∈ J+}. In this case, for any
j ∈ J−, there exists a unique k ∈ K+ such that θ−j = −θ+

k and then

A−j =
∏

i∈J−\{j}

θ−i
θ−i − θ

−
j

=
∏

i∈K+\{k}

−θ+
i

−θ+
i − θ

+
k

=
∏

i∈K+\{k}

θ+
i

θ+
i − θ

+
k

= B+
k

and similarly A+
j = B−k . Moreover, we have

α−m =
∑
j∈J−

A−j (θ−j )m =
∑
k∈K+

B+
k (−θ+

k )m = (−1)m
∑
k∈K+

B+
k (θ+

k )m = (−1)mβ+
m

and similarly α+
m = (−1)mβ−m.

Now, concerning the connection between sojourn time and duality, we have the following fact. Set

T̃ (t) =
∫ t

0

1l(0,+∞)(X(u)) du and T ∗(t) =
∫ t

0

1l[0,+∞)(X∗(u)) du.

Since Spitzer’s identity holds true interchanging the closed interval [0,+∞) and the open interval (0,+∞),
it is easy to see that T (t) and T̃ (t) have the same distribution. On the other hand, we have

T̃ (t) =
∫ t

0

1l(0,+∞)(X(u)) du =
∫ t

0

1l(−∞,0)(X∗(u)) du =
∫ t

0

[1− 1l[0,+∞)(X∗(u))] du = t− T ∗(t).

We then deduce that T (t) and t − T ∗(t) have the same distribution. Consequently, we can state the
lemma below.

Lemma 6.1. The following identity holds:

P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx) = P{T ∗(t) ∈ d(t− s), X∗(t) ∈ d(−x)}/(dsdx).

As a result, the following result ensues.

Theorem 6.2. Assume N is even. The distribution of (T (t), X(t)) is given, for x ≥ 0, by

P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)

=
Ni

2π

#J∑
m=0

β−m (t− s)
m−#J
N

∫ ∞
0

ξm+#K e−sξ
N

Jm(xξ)E1,m+#K
N

(
−(t− s)ξN

)
dξ (6.5)

where
Jm(z) = e−i

#J−m−1
N π

∑
j∈J

Ajθ
m+1
j e−θje

i π
N z − ei

#J−m−1
N π

∑
j∈J

Ajθ
m+1
j e−θje

−i π
N z.

Proof
When N is even, we know that X∗ is identical in distribution to X and (T ∗(t), X∗(t)) is then distributed
like (T (t), X(t)). Thus, by (6.1) and Lemma 6.1, for x ≥ 0,

P{T (t) ∈ ds, X(t) ∈ dx}/(dsdx)
= P{T (t) ∈ d(t− s), X(t) ∈ d(−x)}/(dsdx)

= −Ni
2π

#K∑
m=0

α−m(t− s)
m−#K
N

∫ ∞
0

ξm+#Je−sξ
N

Km(−xξ)E1,m+#J
N

(−(t− s)ξN ) dξ.
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The discussion preceding Lemma 6.1 shows that

Km(z) = e−i
#J−m−1

N π
∑
j∈J

Aj(−θj)m+1eθje
i π
N z − ei

#J−m−1
N π

∑
j∈J

Aj(−θj)m+1eθje
−i π
N z.

We see that Km(z) = (−1)m+1Jm(−z) where the function Jm is written in Theorem 6.2. Finally, by
replacing α−m by (−1)mβ−m and #J , #K by #K, #J respectively (which actually coincide since N is
even), (6.5) ensues. �

If N is odd, although the results are not justified, similar formulas can be stated. We find it interesting
to produce them here. We set T±(t) =

∫ t
0

1l[0,+∞)(X±(u)) du.

Theorem 6.3. Suppose that N is odd. The distribution of (T+(t), X+(t)) is given, for x ≥ 0, by

P{T+(t) ∈ ds, X+(t) ∈ dx}/(dsdx)

=
Ni

2π

#J+∑
m=0

β+
−m(t− s)

m−#J+

N

∫ ∞
0

ξm+#K+
e−sξ

N

J +
m (xξ)E

1,m+#K+
N

(
−(t− s)ξN

)
dξ (6.6)

where

J +
m (z) = e−i

#J+−m−1
N π

∑
j∈J+

A+
j (θ+

j )m+1e−θ
+
j e

i π
N z − ei

#J+−m−1
N π

∑
j∈J+

A+
j (θ+

j )m+1e−θ
+
j e
−i π
N z.

Proof
When N is odd, we know that (X+)∗ d= X− and then ((T+)∗(t), (X+)∗(t)) d= (T−(t), X−(t)). Thus,
by (6.1) and Lemma 6.1, for x ≥ 0,

P{T+(t) ∈ ds, X+(t) ∈ dx}/(dsdx)
= P{T−(t) ∈ d(t− s), X−(t) ∈ d(−x)}/(dsdx)

= −Ni
2π

#K−∑
m=0

α−−m(t− s)
m−#K−

N

∫ ∞
0

ξm+#J− e−sξ
N

K−m(−xξ)E
1,m+#J−

N

(
−(t− s)ξN

)
dξ

where

K−m(z) = e−i
#K−−m−1

N π
∑
k∈K−

B−k (θ−k )m+1e−θ
−
k e

i π
N z − ei

#K−−m−1
N π

∑
k∈K−

B−k (θ−k )m+1e−θ
−
k e
−i π
N z.

As in the proof of Theorem 6.2, we can write K−m(z) = (−1)m+1J +
m (−z) where the function J +

m is defined
in Theorem 6.3. Finally, by replacing α−m by (−1)mβ+

m and #J−, #K− by #K+, #J+ respectively, (6.6)
ensues. �

Formula (6.6) involves only quantities with associated ‘+’ signs. We have a similar formula for X−

by changing all ‘+’ into ‘−’. So, we can remove these signs in order to get a unified formula (this is (6.5))
which is valid for even N and, at least formally, for odd N without sign.

Remark 6.3. Let us integrate (6.5) with respect to x on [0,∞). We first calculate, recalling that
Jm(z) = (−1)m+1Km(−z) and referring to Remark 6.1,

∫ ∞
0

Jm(xξ) dx = (−1)m+1

∫ 0

−∞
Km(xξ) dx =


0 if 1 ≤ m ≤ #J,

−2i
ξ

sin
(

#J
N

π

)
if m = 0.

Then,

P{T (t) ∈ ds,X(t) ≥ 0}/ds =
N sin

(
#J
N π

)
π(t− s)#J

N

∫ ∞
0

ξ#K−1 e−sξ
N

E1,#KN

(
−(t− s)ξN

)
dξ

=
N sin

(
#J
N π

)
π(t− s)#J

N

∞∑
`=0

(−(t− s))`

Γ
(
`+ #K

N

) ∫ ∞
0

ξN`+#K−1e−sξ
N

dξ
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=
sin
(

#J
N π

)
πs

#K
N (t− s)#J

N

∞∑
`=0

(
− t− s

s

)̀
.

In the foregoing equality we must assume t/2 < s < t in order to make convergent the series. From this,
we extract

P{T (t) ∈ ds,X(t) ≥ 0}/ds =
sin
(

#J
N π

)
πt

(
s

t− s

)#J
N

(6.7)

and we retrieve Theorem 14 of [11]. By adding (6.4) and (6.7), we obtain the counterpart to the famous
Paul Lévy’s arc-sine law stated in [11] (Corollary 9):

P{T (t) ∈ ds}/ds =
sin
(

#J
N π

)
π

1l(0,t)(s)

s
#K
N (t− s)#J

N

.

6.3 Examples

In this part, we write out the distribution of the couple (T (t), X(t)) in the cases N = 3 and N = 4.

Example 6.1. Case N = 3. Let us recall that this case is not fully justified. Nevertheless, we find it
interesting to produce the formal corresponding results.
• Suppose κ3 = 1. Using E1,1

(
−sξ3

)
= e−sξ

3
and the values of Example 2.1, (6.1) writes, for x ≤ 0,

P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)

=
√

3
2π

(
s−2/3

∫ ∞
0

ξ e−(t−s)ξ3 K̃0(xξ)E1, 13

(
−sξ3

)
dξ

+ s−1/3

∫ ∞
0

ξ2 e−(t−s)ξ3 K̃1(xξ)E1, 23

(
−sξ3

)
dξ +

∫ ∞
0

ξ3 e−tξ
3
K̃2(xξ) dξ

)
where

K̃0(z) = −i
√

3K0(z) = ez − e−z/2
(

cos
√

3 z
2

+
√

3 sin
√

3 z
2

)
,

K̃1(z) = −i
√

3K1(z) = −ez + e−z/2
(

cos
√

3 z
2
−
√

3 sin
√

3 z
2

)
,

K̃2(z) = −i
√

3K2(z) = ez + 2e−z/2 cos
√

3 z
2

.

For x ≥ 0, (6.6) gives

P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)

=
3

2π

(
1

3
√
t− s

∫ ∞
0

ξ2 e−sξ
3
J̃0(xξ)E1, 23

(
−(t− s)ξ3

)
dξ +

∫ ∞
0

ξ3 e−tξ
3
J̃1(xξ) dξ

)
where

J̃0(z) = iJ0(z) = 2 e−z/2 sin
√

3 z
2

,

J̃1(z) = −iJ1(z) = e−z/2
(√

3 cos
√

3 z
2
− sin

√
3 z
2

)
.

• Suppose κ3 = −1. Likewise, for x ≤ 0,

P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)

=
3

2π

(
1

3
√
s

∫ ∞
0

ξ2 e−(t−s)ξ3 K̃0(xξ)E1, 23

(
−sξ3

)
dξ +

∫ ∞
0

ξ3 e−tξ
3
K̃1(xξ) dξ

)
where

K̃0(z) = −iK0(z) = −2 ez/2 sin
√

3 z
2

,
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K̃1(z) = −iK1(z) = ez/2
(√

3 cos
√

3 z
2

+ sin
√

3 z
2

)
.

For x ≥ 0,

P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)

=
√

3
2π

(
(t− s)−2/3

∫ ∞
0

ξ e−sξ
3
J̃0(xξ)E1, 13

(
−(t− s)ξ3

)
dξ

+ (t− s)−1/3

∫ ∞
0

ξ2 e−sξ
3
J̃1(xξ)E1, 23

(
−(t− s)ξ3

)
dξ +

∫ ∞
0

ξ3 e−tξ
3
J̃2(xξ) dξ

)
where

J̃0(z) = i
√

3J0(z) = e−z − ez/2
(

cos
√

3 z
2
−
√

3 sin
√

3 z
2

)
,

J̃1(z) = −i
√

3J1(z) = −e−z + ez/2
(

cos
√

3 z
2

+
√

3 sin
√

3 z
2

)
,

J̃2(z) = i
√

3J2(z) = e−z + 2 ez/2 cos
√

3 z
2

.

Example 6.2. Case N = 4. Referring to Example 2.2, formula (6.1) writes, for x ≤ 0,

P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)

=
2
π

(
1√
s

∫ ∞
0

ξ2 e−(t−s)ξ4 K̃0(xξ)E1, 12

(
−sξ4

)
dξ

+
√

2
4
√
s

∫ ∞
0

ξ3 e−(t−s)ξ4 K̃1(xξ)E1, 34

(
−sξ4

)
dξ +

∫ ∞
0

ξ4 e−tξ
4
K̃2(xξ) dξ

)
where

K̃0(z) = −iK0(z) = ez − cos z − sin z,

K̃1(z) = −iK1(z) = −ez + cos z − sin z,

K̃2(z) = −iK2(z) = ez + cos z + sin z.

For x ≥ 0, (6.5) reads

P{T (t) ∈ ds,X(t) ∈ dx}/(dsdx)

=
2
π

(
1√
t− s

∫ ∞
0

ξ2 e−sξ
4
J̃0(xξ)E1, 12

(
−(t− s)ξ4

)
dξ

+
√

2
4
√
t− s

∫ ∞
0

ξ3 e−sξ
4
J̃1(xξ)E1, 34

(
−(t− s)ξ4

)
dξ +

∫ ∞
0

ξ4 e−tξ
4
J̃2(xξ) dξ

)
where

J̃0(z) = iJ0(z) = e−z − cos z + sin z,

J̃1(z) = −iJ1(z) = −e−z + cos z + sin z,

J̃2(z) = iJ2(z) = e−z + cos z − sin z.

7 Appendix

Lemma 7.1 (Spitzer). Let (ξk)k≥1 be a sequence of independent identically distributed random variables
and set X0 = 0 and T0 = 0 and, for any k ≥ 1,

Xk = ξ1 + · · ·+ ξk, Tk =
k∑
j=1

1l[0,+∞)(Xk).

23



Then, for µ ∈ R, ν > 0 and |z| < 1,

∞∑
k=0

E
[
eiµXk−νTk

]
zk = exp

( ∞∑
k=1

E
[
eiµXk−νk1l[0,+∞)(Xk)

] zk
k

)
, (7.1)

∞∑
k=0

E
[
eiµXk−νTk1l[0,+∞)(Xk)

]
zk =

1
eν − 1

[
eν− exp

(
−
∞∑
k=1

(
1− e−νk

)
E
[
eiµXk1l[0,+∞)(Xk)

]zk
k

)]
, (7.2)

∞∑
k=0

E
[
eiµXk−νTk1l(−∞,0)(Xk)

]
zk =

eν

eν − 1

[
exp

( ∞∑
k=1

(
1− e−νk

)
E
[
eiµXk1l(−∞,0)(Xk)

] zk
k

)
− 1

]
. (7.3)

Proof
Formula (7.1) is stated in [21] without proof. So, we produce a proof below which is rather similar to one
lying in [21] related to the maximum functional of the Xk’s.

• Step 1. Set, for any (x1, . . . , xn) ∈ Rn and σ ∈ Sn (Sn being the set of the permutations of 1, 2, . . . , n),

U(x1, . . . , xn) =
n∑
k=1

1l[0,∞)

(
k∑
j=1

xj

)

and

V (σ;x1, . . . , xn) =
nσ∑
k=1

#ck(σ)1l[0,∞)

( ∑
j∈ck(σ)

xj

)
.

In the definition of V above, the permutation σ is decomposed into nσ cycles: σ = (c1(σ))(c2(σ)) . . . (cnσ (σ)).
In view of Theorem 2.3 in [21], we have the equality between the two following sets:

{U(σ(x1), . . . , σ(xn)), σ ∈ Sn} = {V (σ;x1, . . . , xn), σ ∈ Sn}.

We then deduce, for any bounded Borel functions φ and F ,

E[φ(Xn)F (U(ξ1, . . . , ξn))] =
1
n!

∑
σ∈Sn

E

[
φ

(
n∑
j=1

ξσ(j)

)
F (V (σ; ξ1, . . . , ξn))

]
.

In particular, for φ(x) = eiµx and F (x) = e−νx (where µ ∈ R and ν > 0 are fixed),

E
[
eiµXn−ν

Pn
k=1 1l[0,+∞)(

Pk
j=1 ξj)

]
=

1
n!

∑
σ∈Sn

E

[
exp

(
iµ

nσ∑
k=1

∑
j∈ck(σ)

ξj − ν
nσ∑
k=1

#ck(σ)1l[0,∞)

( ∑
j∈ck(σ)

ξj

))]

=
1
n!

∑
σ∈Sn

nσ∏
k=1

E

[
exp

(
iµ

∑
j∈ck(σ)

ξj − ν (#ck(σ))1l[0,∞)

( ∑
j∈ck(σ)

ξj

))]

=
1
n!

∑
σ∈Sn

nσ∏
k=1

E

[
exp

(
iµ

#ck(σ)∑
j=1

ξj − ν (#ck(σ))1l[0,∞)

(
#ck(σ)∑
j=1

ξj

))]
.

Denote by r`(σ) the number of cycles of length ` in σ for any ` ∈ {1, . . . , n}. We have r1(σ) + 2r2(σ) +
· · ·+ nrn(σ) = n. Then,

E
[
eiµXn−νTn

]
=

1
n!

∑
σ∈Sn

n∏
`=1

(
E
[
eiµXl−ν` 1l[0,∞)(X`)

])r`(σ)

=
1
n!

∑
k1,...,kn≥0:

k1+2k2+···+nkn=n

Nk1,...,kn

n∏
`=1

(
E
[
eiµX`−ν` 1l[0,∞)(X`)

])k`
where Nk1,...,kn is the number of the permutations σ of n objects satisfying r1(σ) = k1, . . . , rn(σ) = kn;
this number is equal to

Nk1,...,kn =
n!

(k1!1k1)(k2!2k2) . . . (kn!nkn)
.
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Then,

E
[
eiµXn−νTn

]
=

∑
k1,...,kn≥0:

k1+2k2+···+nkn=n

n∏
`=1

1
k`!`k`

(
E
[
eiµX`−ν` 1l[0,∞)(X`)

])k`
.

• Step 2. Therefore, the identity between the generating functions follows: for |z| < 1,

∞∑
n=0

E
[
eiµXn−νTn

]
zn =

∑
n≥0,k1,...,kn≥0:

k1+2k2+···+nkn=n

n∏
`=1

1
k`!

(
E
[
eiµX`−ν` 1l[0,∞)(X`)

] z`
`

)k`

=
∑

k1,k2,···≥0

∞∏
`=1

1
k`!

(
E
[
eiµX`−ν` 1l[0,∞)(X`)

] z`
`

)k`

=
∞∏
`=1

[ ∞∑
k=1

1
k!

(
E
[
eiµX`−ν` 1l[0,∞)(X`)

] z`
`

)k ]

=
∞∏
`=1

exp
(

E
[
eiµX`−ν` 1l[0,∞)(X`)

] z`
`

)

= exp

( ∞∑
n=1

E
[
eiµXn−νn1l[0,+∞)(Xn)

] zn
n

)
.

The proof of (7.1) is finished.

• Step 3.
Using the elementary identity ea1lA(x)−1 = (ea−1)1lA(x) and noticing that Tk = Tk−1 + 1l[0,+∞)(Xk),

we get for any k ≥ 1,

E
[
eiµXk−νTk1l[0,+∞)(Xk)

]
= E

[
eiµXk−νTk

eν1l[0,+∞)(Xk) − 1
eν − 1

]
=

1
eν − 1

[
E
(
eiµXk−νTk−1

)
− E

(
eiµXk−νTk

)]
.

Now, since Xk = Xk−1 + ξk where Xk−1 and ξk are independent and ξk have the same distribution as ξ1,
we have, for k ≥ 1,

E
(
eiµXk−νTk−1

)
= E

(
eiµξ1

)
E
(
eiµXk−1−νTk−1

)
.

Therefore,

∞∑
k=1

E
[
eiµXk−νTk1l[0,+∞)(Xk)

]
zk =

1
eν − 1

∞∑
k=1

(
E
[
eiµXk−νTk−1

]
− E

[
eiµXk−νTk

])
zk

=
1

eν − 1

(
E
(
eiµξ1

) ∞∑
k=1

E
[
eiµXk−1−νTk−1

]
zk −

∞∑
k=1

E
[
eiµXk−νTk

]
zk

)

=
1

eν − 1

((
z E
(
eiµξ1

)
− 1
) ∞∑
k=0

E
[
eiµXk−νTk

]
zk + 1

)
. (7.4)

By putting (7.1) into (7.4), we extract

∞∑
k=0

E
[
eiµXk−νTk1l[0,+∞)(Xk)

]
zk =

1
eν − 1

[
eν −

(
1− z E

(
eiµξ1

))
S(µ, ν, z)

]
(7.5)

where we set

S(µ, ν, z) = exp

( ∞∑
k=1

E
[
eiµXk−νk1l[0,+∞)(Xk)

] zk
k

)
.

25



Next, using the elementary identity 1− ζ = exp[log(1− ζ)] = exp
[
−
∑∞
k=1 ζ

k/k
]

valid for |ζ| < 1,

1− z E
(
eiµξ1

)
= exp

(
−
∞∑
k=1

[
E
(
eiµξ1

)]k zk
k

)
= exp

(
−
∞∑
k=1

E
(
eiµXk

) zk
k

)

and then

(
1− z E

(
eiµξ1

))
S(µ, ν, z) = exp

( ∞∑
k=1

E
[
eiµXk−νk1l[0,+∞)(Xk) − eiµXk

] zk
k

)

= exp

(
−
∞∑
k=1

(
1− e−νk

)
E
[
eiµXk1l[0,+∞)(Xk)

] zk
k

)
. (7.6)

Hence, by putting (7.6) into (7.5), formula (7.2) entails.
By subtracting (7.5) from (7.1), we obtain the intermediate representation

∞∑
k=0

E
[
eiµXk−νTk1l(−∞,0)(Xk)

]
zk =

1
eν − 1

[(
eν − z E

(
eiµξ1

))
S(µ, ν, z)− eν

]
.

By writing, as previously,

eν − z E
(
eiµξ1

)
= eν exp

(
−
∞∑
k=1

E
(
eiµXk

) e−νkzk
k

)
,

we find

(
eν − z E

(
eiµξ1

))
S(µ, ν, z) = eν exp

( ∞∑
k=1

E
[
eiµXk−νk1l[0,+∞)(Xk) − eiµXk−νk

] zk
k

)

= eν exp

( ∞∑
k=1

(
1− e−νk

)
E
[
eiµXk1l(−∞,0)(Xk)

] zk
k

)
.

Finally, (7.3) ensues. �

Lemma 7.2. The following identities hold:

β#K = (−1)#K−1
∏
k∈K

θk, β#K+1 = (−1)#K−1

(∏
k∈K

θk

)(∑
k∈K

θk

)
.

Proof
We label the set K as {1, 2, 3, . . . ,#K}. By (2.5), we know that the Bk’s solve a Vandermonde system.
Then, by Cramer’s formulas, we can write them as fractions of some determinants: Bk = Vk/V where

V =

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
θ1 . . . θ#K

θ2
1 . . . θ2

#K
...

...

θ#K−1
1 . . . θ#K−1

#K

∣∣∣∣∣∣∣∣∣∣∣∣
and Vk =

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1 1 . . . 1
θ1 . . . θk−1 0 θk+1 . . . θ#K

θ2
1 . . . θ2

k−1 0 θ2
k+1 . . . θ2

#K
...

...
...

...
...

θ#K−1
1 . . . θ#K−1

k−1 0 θ#K−1
k+1 . . . θ#K−1

#K

∣∣∣∣∣∣∣∣∣∣∣∣
.

By expanding the determinant Vk with respect to its kth column and next factorizing it suitably, we easily
see that

Vk = (−1)k+1

∣∣∣∣∣∣∣∣∣∣
θ1 . . . θk−1 θk+1 . . . θ#K

θ2
1 . . . θ2

k−1 θ2
k+1 . . . θ2

#K
...

...
...

...

θ#K−1
1 . . . θ#K−1

k−1 θ#K−1
k+1 . . . θ#K−1

#K

∣∣∣∣∣∣∣∣∣∣
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= (−1)k+1

∏
i∈K θi

θk

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
θ1 . . . θk−1 θk+1 . . . θ#K

θ2
1 . . . θ2

k−1 θ2
k+1 . . . θ2

#K
...

...
...

...

θ#K−2
1 . . . θ#K−2

k−1 θ#K−2
k+1 . . . θ#K−2

#K

∣∣∣∣∣∣∣∣∣∣∣∣
.

With this at hands, we have

β#K =
∑
k∈K

Bkθ
#K
k =

∏
k∈K θk

V

∑
k∈K

(−1)k+1θ#K−1
k

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
θ1 . . . θk−1 θk+1 . . . θ#K

θ2
1 . . . θ2

k−1 θ2
k+1 . . . θ2

#K
...

...
...

...

θ#K−2
1 . . . θ#K−2

k−1 θ#K−2
k+1 . . . θ#K−2

#K

∣∣∣∣∣∣∣∣∣∣∣∣
.

We can observe that the sum lying on the above right-hand side is nothing but the expansion of the
determinant V with respect to its last row multiplied by the sign (−1)#K−1. This immediately ensues
that β#K = (−1)#K−1

∏
k∈K θk. Similarly,

β#K+1 =
∑
k∈K

Bkθ
#K+1
k =

∏
k∈K θk

V

∑
k∈K

(−1)k+1θ#K
k

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
θ1 . . . θk−1 θk+1 . . . θ#K

θ2
1 . . . θ2

k−1 θ2
k+1 . . . θ2

#K
...

...
...

...

θ#K−2
1 . . . θ#K−2

k−1 θ#K−2
k+1 . . . θ#K−2

#K

∣∣∣∣∣∣∣∣∣∣∣∣
.

The above sum is the expansion with respect to its last row, multiplied by the sign (−1)#K−1, of the
determinant V ′ defined as

V ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
θ1 . . . θ#K

θ2
1 . . . θ2

#K
...

...

θ#K−2
1 . . . θ#K−2

#K

θ#K
1 . . . θ#K

#K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let R0, R1, R2, . . . , R#K−2, R#K−1 denote the rows of V ′. We perform the substitution R#K−1 ←
R#K−1 +

∑#K
`=2(−1)`σ`R#K−` where the σ`’s are defined by (2.3). This substitution does not affect the

value of V ′ and it transforms, e.g., the first term of the last row into

θ#K
1 +

#K∑
`=2

(−1)`σ` θ
#K−`
1 .

Recall that σ` =
∑

1≤k1<···<k`≤#K θk1 . . . θk` . We decompose σ`, by isolating the terms involving θ1, into

θ1

∑
2≤k2<···<k`≤#K

θk2 . . . θk` +
∑

2≤k1<k2<···<k`≤#K

θk1θk2 . . . θk` = θ1 σ
′
`−1 + σ′`

where we set σ′#K = 0 and σ′` =
∑

2≤k1<k2<···<k`≤#K θk1θk2 . . . θk` . Therefore, we have

θ#K
1 +

#K∑
`=2

(−1)`σ` θ
#K−`
1 = θ#K

1 +
#K∑
`=2

(−1)`σ′`−1 θ
#K−`+1
1 +

#K∑
`=2

(−1)`σ′` θ
#K−`
1

= θ#K
1 + σ′1 θ

#K−1
1 = θ#K−1

1 (θ1 + σ′1) = θ#K−1
1

(∑
k∈K

θk

)
.

The foregoing manipulation works similarly for each term of the last row of V ′. So, we deduce that
V ′ =

(∑
k∈K θk

)
V and finally β#K+1 = (−1)#K−1

(∏
k∈K θk

)(∑
k∈K θk

)
. �
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Lemma 7.3. For any integer m ≤ N − 1 and any x ≥ 0,∫ ∞
0

e−λuIj,m(u;x) du = λ−
m
N e−θj

N√
λx. (2.15)

Proof
This formula is proved in [13] for 0 ≤ m ≤ N − 1. To prove that it holds true also for negative m, we
directly compute the Laplace transform of Ij,m(u;x). We have∫ ∞

0

e−λuIj,m(u;x) du =
Ni

2π

(
e−i

m
N π

∫ ∞
0

ξN−m−1

ξN + λ
e−θje

i π
N xξ dξ − eimN π

∫ ∞
0

ξN−m−1

ξN + λ
e−θje

−i π
N xξ dξ

)
.

Let us integrate the function H : z → zM−1

zN+λ
e−az for fixed a and M such that <(a) > 0 and M > 0 on the

contour ΓR = {ρeiϕ ∈ C : ϕ = 0, ρ ∈ [0, R]} ∪ {ρeiϕ ∈ C : ϕ ∈ (0,− 2π
N ), ρ = R} ∪ {ρeiϕ ∈ C : ϕ = − 2π

N ,
ρ ∈ (0, R]}. We get, by residues theorem,

−
∫ ∞

0

zM−1

zN + λ
e−az dz + e−2iMN π

∫ ∞
0

zM−1

zN + λ
e−ae

−i 2π
N z dz = 2iπResidue

(
H,

N
√
λ e−i

π
N

)
=

2iπ
N

(
N
√
λ
)M−N

e−i
M−N
N πe−a

N√
λ e−i

π
N

=
2π
Ni

λ
M
N −1e−i

M
N πe−a

N√
λ e−i

π
N .

For M = N −m and a = θj e
i πN x, this yields∫ ∞

0

e−λuIj;m(u;x) du = −e−imN πλ−mN × (−eimN π)e−θj
N√
λx = λ−

m
N e−θj

N√
λx.

Hence, (2.15) is valid for m ≤ N − 1. �
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