Joint distribution of the process and its sojourn time
in a half-line [a,+00) for pseudo-processes driven by a
high-order heat-type equation
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Abstract

Let (X(t)):>0 be the pseudo-process driven by the high-order heat-type equation 2% = :I:gziﬁ,
where N is an integer greater than 2. We consider the sojourn time spent by (X (t)):>0 in [a, +00)
(a € R), up to a fixed time ¢t > 0: To(t) = fot 1[4, +00)(X(s)) ds. The purpose of this paper is to
explicit the joint pseudo-distribution of the vector (T4 (t), X (t)) when the pseudo-process starts at a
point x € R at time 0. The method consists in solving a boundary value problem satisfied by the
Laplace transform of the aforementioned distribution.
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1 Introduction

Let N be an integer greater than 2 and let x, = (—1)"*N/2if N is even, s, = #1 if N is odd. Let us
introduce the pseudo-process X = (X (t)):>0 related to the high-order heat-type equation

Ou Ny

a = /{NaxiN. (11)

This pseudo-process is driven by a family of signed measures (P, ).cr, which are not probability measures,
such that for any positive integer n, any t > 0,0 =tg <t; < --- < t, and © = x9,%1,...,Tpn,y € R,

P{X(t) € dy} = p(t;x —y)dy

and
n

}P)w{X(tl) S dl‘l, Ce ,X(tn) S dxn} = Hp(ti —ti_1;Ti—1 — J)Z) dz;.
i=1
In the above definition, the function p stands for the “heat-kernel” associated with the equation (1.1).
It solves (1.1) together with the initial condition p(0;z) = 6(x) and it is characterized by its Fourier

transform as
+oo —tulV i 1
. e if N is even
elux t; T dl’ — . ’
/,oo pe) { e Y N s odd,

Pseudo-processes have been introduced and studied by many authors in the early 60’s:
chronologically some pioneering works are [6] to [11], [20], [21]. In all these papers the
efforts were made in providing accurate and proper definitions of pseudo-processes driven
by signed, complex or vectorial measures. The heat-type equations of order 3 and 4 are of
special interest since they arise, for instance, in various problems of linear elasticity.

Subsequently, more specific aspects of the pseudo-process X introduced here have been considered.
In [1], [2], [4], [5], [13] to [19], [22] to [27], the authors paid attention to several classical functionals: first
or last overshooting time above or below a fixed level, up-to-date maximum and minimum functionals,
sojourn times in a half-line... Many explicit results are known about the pseudo-distribution of the various
aforementioned functionals. In this paper, we focus on the sojourn time of X in a half-line [a, +00) up
to a fixed time t. Set

T(0) = [ Bssoy(X(2)) .

Actually, this continuous-time functional is not well-defined since the pseudo-process X can be simulta-
neously defined only at a finite number of instants. Nevertheless, some ad-hoc definitions can be given,
especially for computing certain expectations related to T, (t) (see definitions (1.2) and (1.3)).

The functional T, (t) has often been of interest: in [15], Krylov explicitly computed the distribution
of Ty(t) in the case where N is even and the starting point is exactly 0; he obtained the famous Lévy’s
arcsine law. In [14] and [23], Hochberg, Nikitin and Orsingher treated the case where N is equal to 3, 5
or 7 with a possible conditioning on an event depending on X (¢). In [16], Lachal explicitly determined
the distribution of Ty(t) in the general case (for any positive integer N) which is a Beta law. In a recent
work [5], we have obtained a representation for the joint pseudo-distribution of the vector (Ty(t), X (t))
when the starting point is exactly x = 0. For this, we introduced a construction of the pseudo-process
based on observations of X on dyadic times and we used Spitzer’s identity which works especially in the
case where z = 0.

The aim of this paper is to compute the joint pseudo-distribution of the vector (7,(t), X (t)) for any
starting point « € R, that is the pseudo-probability distribution function (ppdf in short)

BoATu(t) € ds, X(¢) € dy}/(ds dy).
Since the pseudo-process X is invariant by translation, we have
Pw{Ta(t) € dst(t> € dy}/<ds dy) = Pasfa{TO(t) € dS7X(t) € dy - a}/(ds dy)

and we only need to compute the ppdf B.{T'(t) € ds, X (¢) € dy}/(dsdy), s € [0,t], y € R, where
T(t) = To(t). The approach we used in [5] is not efficient in the present situation since Spitzer’s identity



does not allow us to treat the general case of any starting point x different from 0. So, we follow here
the Feynman-Kac approach which leads to solving partial differential equations. Set

x(s,t;x,y) =BAT(¢) € ds, X (t) € dy}/(dsdy),

t
@, (tz,y) = m(e‘“T(”,X(t)Edy)/dy=/ e M x(s, tyz,y) ds,
0

E
o0

%(s;w,y):/ e Mx(s,ty2,y) dt,

oy y) = /O e Mo (tz,y)dt,

&@yr:/ e p(tie — y)dt.

0

Because of the lack of complete definition of the pseudo-process X over all continuous times, ad-hoc
definitions for the functions x, @, and ¢, , have been proposed. The following definitions can
be found in the literature: either

x(s,t;2,y) A Jim P{TL(t) € ds, X (t) € dy}/(ds dy),

w, (t;2,y) defl nh_)ngo E, (e_”Té(t),X(t) € dy)/dy, (1.2)

oy (@) € lim e ME, (e 7+ X (1) € dy)/dy]dt

n—oo 0

or
Mmmwwmm{<mwﬂwwﬂwww@,
@, (t;2,y) < hm E, (e #T+®, X ([2"]/2") € dy) /dy, (1.3)
¢y (z,y) L lim OOO e M[E, (T2, X ([27]/2") € dy) /dy]dt
where

[Qnt]

Zn 0roo) (X (Kt/n)), T2( 2nZ]l 0.4+00) (X (k/27)).

These definitions supply an appropriate support for computing the pseudo-distribution of T'(¢). The first
definition is particularly suitable/appropriate for the Feynman-Kac approach (it is based on
a subdivision of the interval [0,t]) while the second is convenient for the Spitzer approach (it is related
to a subdivision of the time axis independent of ¢).

As in [15] for instance, the function =, is a solution of

A O,
KNW(t;xay) = 5 L, y) + plp o0y (7)), (E 2, ) (1.4)

with initial condition o, (0;2,y) = d,(x) and the function ¢, , is a Feynman-Kac functional which solves
the differential equation

- 3N<,0W (2,y) = {()\ + 1) o, (x,y) = 0y(x) if 2 >0, (15)

NoopN Ao, (@, y) = by(z) ifx<0.
Together with (1.5), the function ¢,  fulfills the conditions

@, is (N — 1) times differentiable at 0 and (/N — 2) times differentiable at y,

aNflsOAY“ N aNfl(pX“ B B (1.6)
W(y Y) — W(y JY) = —Ky

An explanation of (1.4), (1.5) and (1.6), relies on an underlying integral equation which can be stated as
follows. The function w, satisfies the following integral equation:

+oo
w,(t;z,y) =p(t;z —y // p(s;x —2) @ (t — s;2,y)dsdz, (1.7)
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and then, by taking the Laplace transform with respect to ¢, the function ¢, , satisfies the integral
equation below:

oo () = o(@,y) — 1 / @) gy (2ry) de. (18)

On one hand, since the heat-kernel p satisfies nNngﬁ(t; r—y) = %(t; x —y) with p(0;2 —y) = 0,(x), we

can see by differentiating with respect to ¢ and z, that (1.7) yields the differential equation (1.4). On the
N

other hand, since the function p, satisfies /ﬁN%w—gj\%(x,y) = Ao,(z,y) — 0y(x) as well as conditions (1.6)

(see [16]), we can see in the same manner that (1.8) yields the differential equation (1.5) together with

conditions (1.6). An heuristic derivation of (1.7) consists in writing

t t
1—e 7O = /0 1o, 00) (X (5)) exp (u / Lo, 400 (X (u)) d“> ds
t

t
= u/o ]1[0,+Oo)(X(5))e*M[T(t)*T(S)] ds = M/O ]1[07+OO)(X(5))e’“[T(t’S)Oes] ds,

where (0;)s>0 is the usual shift operator defined by X (t) o 8, = X(s +t) for all s,¢ > 0, and next in
applying the Markov property of the pseudo-process X:

ptiz —y) — w(tz,y) =E, (1 —e T X(t) € dy)/dy

¢
= / [Eo( 0, 00) (X (5)) IO X (1~ 5) 00, € dy) /dy] ds
0
t pt+oo
= u// P.{X(s) € dz} [Ez(e*“T(t*S), X(t—s)e€ dy) /dy} ds
0o
t pt+oo
:u// p(s;r — z) w (t — s;2,y) dsdz.
00

All this should be made rigorous (in the case where N is even at least) by introducing the step process
obtained by sampling X on the dyadic times k/2", k,n € N, as, e.g., in [18] and [25]. We shall not go
further in this direction. In this work instead, our aim is to solve the boundary value problem (1.5)-(1.6)
and next to exhibit an explicit representation of the joint ppdf of the vector (Tp(t), X (¢)) under B,.

The paper is organized as follows. Section 2 contains some settings. In Section 3 we completely
solve the system (1.5)-(1.6) and derive explicitly ¢, (z,y). Section 4 and 5 are devoted to inverting
the two-parameters Laplace transform ¢, (z,y). Our main result is displayed in Theorems 5.1 and 5.2.
In each section, we shall split our analysis into two parts corresponding to the case where y > 0 and
y < 0. Because of the asymmetry of the problem, we shall write out all the results associated with the
aforementioned cases even if they look like similar. We shall provide all the details when y > 0 and omit
the analogous computations related to the case where y < 0.

2 Settings

In order to solve Eq. (1.5) it is useful to introduce the N*'! roots (6;)icr of ky: 0N =k, for all i € T

(I contains N successive integers). We also introduce the sets of indices J = {i € I : Re(6;) > 0} and
K ={ieI:Re(l) <0} Wehave JUK =1, #J+ #K = N, #J = #K = N/2 if N is even,
|#J — #K| =1if N is odd, x, = (-1)#/~! and

[[@-6) =2 s, (2.1)
Set, for j,5' € J and k, k' € K,

6. 0
A] = H 9_[ ]—9’ Bk: - H
e} ! J

and

Cijk = [ (6505 —0;26k), Dy = [] (6x6xr — 046;).

jreld k'"eK



For 2 = 0, formula (2.1) gives [],c, 0; = (—1)""'x, = (—=1)#¥. On the other hand, since the non-real
roots labeled by J (respectively by K) are conjugate two by two, we have

[[0:=1 and ]J 6x=(-1)# . (2.2)
JjeJ keK
For a fixed index i € I, we have

N 01\7 N—-1

N N-1 .,
—0.) = T — Ry _ T —U; _ 9N71,p p_ X
(z —6x) x—0; x —0; ! T gr+t’
v p=0 "1

ien\{i} ’ p=0

which yields for x = 6;

N
IT 6 —6i)="2= (2.3)
. . 0;
eI\ {i}
By (2.2), we have for j € J

_ — 0, R
I ®—6,)=(n* 1( )( J) vy (2.4)
3'€I\ {4} 3'€I\{5} j'e\ {5} I

and for k € K
_ 0 — 0Oy 1
0 oo 1 o) 1 5) e
k'e K\{k} K eK\{k} 1eK\{k} k kDk
In view of (2.3) and (2.4), we get for j' € J and k € K
[Licr gy (05 — 0i)
IT 6y — 6w) = P2 g = NAy (2.6)
WK e gy (05 = 057)
and next 0 (0 o) NA
ke \Yi" — YK 3’
5 — 1) = == . 2
I @ —6e) 0, — O 0 — O @7)
k'e K\{k}

We also recall the expression of the A-potential o, (see [16]):

?29 60 f(m v) forIE(foo,y],

o\(z,y) = A (2.8)
T L > B VA=) for & € [y, +00).
NA keK

3 Solving the system (1.5)-(1.6)

In this part, we explicitly solve the boundary problem (1.5)-(1.6). We divide our analysis into two cases:
the case where y > 0 and the case where y < 0.
3.1 Casey>0
Assume that y > 0. Eq. (1.5) can be written as
8 Pr )‘Sax,p(xvy) if z e (*O0,0),

SN (1Y) = A+ p)e(ey) ifee(0y)
A+ w) e, (z,y) ifz € (y,+oo).

In the particular case where y = 0, the interval (0,y) is empty. The solution of this equation has the form

Ky

sz(y) ¥V Aa if x € (—00,0),
il
o () =4 2 aiy) VI it e (0,y),
e iel
3 eily) HVFE i a e (y, +00),
iel




where the unknowns (a;(y))icr, (b:(y))icr and (¢;(y))icr are to be determined.
First, by combining (1.8) and (2.8), we see that, for large enough negative z, ¢, (v,y) is a linear

combination of eej%””, j € J. Then b; = 0 for all i € K. Second, by (1.8), we see that the integral
157 0u(x, 2) ¢, (2,y) dz must be convergent. Due to (2.8), this implies that for large enough positive z,

@, .(x,y) is only a linear combination of I8 Atue e K. Thus, ¢; = 0 for any i € J. As a byproduct,
we have to search ¢,  in the form

Z b;i(y) diVe if x € (—o0,0),

jedJ
NXTax -
o) = S a@ VT ta e (0,)
" icl

Z ck(y) VAT i g e (y, 4+00).
keK

By the conditions (1.6), the unknowns (a;(y))icr, (bj(y));jes and (cx(y))rer verify

AR D b ()0 = (A+ )V Y ai(y)d ifO<p<N-1
jeJ i€l
0.3 F 0.3 F 0 f0spsN-2
DI DR ) K S, I Y
il keK (X + p)t-1/N

In order to simplify the notations we set v = YX + p and § = V. The system writes

0D biw)0] =" _aily) ifO<p<N -1,
jed i€l
0 if0<p< N -2, (3.1)
D0, 3 o Oy <p<
Z 9 ’yy+z ap(y) — cx(y))0pe" Y = Ky oo N 1.
jeJ kEK AN-T
Put
- a;(y) "7 ifieJ,
ai(y) = P
(a;(y) —ci(y))e” ifie K.

The second equation of (3.1) yields the following system of N equations with the N unknowns a;(y),
1el:
0 f0<p<N-—2

Zai(y)eg): Ry e AT
~ SN ifp=N—-1.

This is a classical Vandermonde system the solution of which is

~ R, .
a;(y) = AN Hi/eIC{i}(ei 6 1el
In view of (2.3) we have
a;(y) = #, i€l
We notice that a;(y) does not depend on y. We deduce that
4i(y) = ey @O irje
NAN-1

0r
ak(y) = N’YN_l

e W 4 er(y) if ke K.

Now, we need to compute the ¢ (y), k € K. The first equation of (3.1) yields

ij( 65”+Z —ar(y))(0xy)?P Zaj (0;v)F for0<p< N —1.
jeJ keK jeJ



This can be rewritten into a matrix form as
, : (05 (¥)) ;e
(((ejé)P)OSPSN_1 : <(9W>”)o<p<zv1> x ( 7 =>4 ) (B )gepen 1)  (32)
e ke K (—ak(W)ker/) s

where the index p € {0,..., N — 1} in (0;0)? and (6i7)? stands for the row index and the indices j € J
in (0;0)” and k € K in (6x7)? stand for the column indices. The quantities (b;(y)),c s (—ar(y))ex and
((0;7)7)g<p< 1 are 1-column matrices.

Put ¥; = 0,0 for j € J and 9y = Oy for k € K, a;(y) = b;(y) for j € J and ay(y) = —ax(y) for
k € K. From (3.2) we obtain the following Vandermonde system:

((ﬂf)ogpéjl\/q) x ((%(y))ier) ZJ% ( 6,7) )OSPSN—1>‘ (3.3)

In order to solve (3.3), we first solve, for each j € J, the partial Vandermonde system below:

Zaiﬁf = (7P, 0<p<N-1 (3.4)
iel
The solution of (3.4) is given by
_ 07 — Vi .
ieI{i}

Indeed, the polynomial A defined by

_ P x — Vi
x)izﬂi , H Vi — Dy
i€l i'eI\{i}
is such that A(9;) = 97, i € I and degree(A) < #I —1 = N — 1. The polynomial zP satisfies the
same conditions. Since these conditions uniquely determine the polynomial A (this is the so-called
Lagrange interpolating polynomial), we deduce that A(z) = zP for all . Thus, choosing «; as in (3.5),
A(0;7) = > ;e a9y = (0;+)? which proves that (3.5) is the solution of (3.4).
Now the solution of the system (3.3) is obtained by taking the linear combination of the foregoing
solutions (3.5):

@ i — 191'/ .
O[»L(y) = Z a,j/ (y) H %19‘/, 1€ I. (3-6)
J'eJ eI\ {i} ¢
Recalling that a;/(y) = a%_l e~%" for j' € J, (3.6) yields the following expressions for b;(y), j € J,
J N~ J

and ax(y), cx(y), k € K.
e For j € J, we have
Oy =i\ e,
b;(y) lee ( 11 19._19.,>e "
i'ed vensy 7"
where
(9j/’7 - ’191'/ - ej/’y - Hj//(s (Gj/ - tgk)’y
pis 9 — 0y I 0, — 0,00 11 06 — Ory
ireI\{j} J"eI\{5} keK
_ P Tlex(i =00 ILrengn @7 = 9]‘”5).
6#I =1 Tne (05 —05) [iex (050 — 6x7)
In view of (2.4) and (2.6), we see that

lrer (5 = 0k)
Lrengy s = 05)

= HNNGJ'AJ'A]‘/ .

Therefore

Ky 0 A mengy Oy —070)\ .
bi(y) = g 00 Ay J e ' je
J( ) 75 #J 1 o= ( erK(H_](S — ek,}/)



e For k € K, we have

0y =V \ g,
ar(y) = — lea ( H 1]9k—?9¢/>e b

j'ed i'eI\{k}

where

H /’y 192/ H ] Yy — 9 (5 H ﬁj/ - Hk/
i eI\{k} Uk = Oy = 0; 5 ke \{k} O — O

In view of (2.5) and (2.7), we see that

kaok/ o 0‘7/79]6

H 9]1 — Qk/ _NAjlekBk
k'e K\{k}

Therefore

GkBk ]7—0-6 —0./vy
a(y) = J5= 1J€J9,_9,€<Hem 6,5 )° " FE

We finally obtain that
O

ot Y keEK
~

cr(y) = ar(y) —

As a byproduct we have obtained the form below for the function ¢, (z,y).

Proposition 3.1 Suppose y > 0. The function ¢, (v,y) admits the following representation:

for x € (—00,0],
Hj//ej\{j}(aj"Y - aj”é)

K
2 “(.T’y) = 71\,_ HAQ/A/ l9j5w70j/'yy;
) (yo)#7=1 j,j’ZeJ T Tlkex (050 — 01y)
for z €10,y],
1 xr— 9 A ekBk GJ’Y — (9]/5 (0rz—6,)
o, (T.y) = —— —ZeeM 2 11 ( 0 gttt |
v L jeJ jeJkEK _0k' e 9k7—9]/5
for x € [y, +00),
1 Ory(z—y) 9 A GkBk ijy _ 9]-,5 (Orz—0,1)
SOA,M(%?J):ﬁ ——Zﬁe’” Y+ Z H S eV (Orz—=0;5y) |
v L keK jeJkEK ] _Hk jred 9[;;’)/—9]/6

Remark 3.1 Ifwe take u = 0in ¢, (v,y), we retrieve the A-potential of the pseudo-process X: ¢, (v,y) =
o0,(z,y). Explicitly, we have v =6 = VX,

93‘7—93"5) 11 (93'—‘93‘/)
H 0 Sy R ) =,
e <9W =050/ oy \Ok =0y

and by (2.4) and (2.6)

HJ”EJ\{]}(QJ/PY_QJ”(S) _ 6#J_#K_1 H]”GJ\{]}(Q]’ _e.j”) 6jj/§#J_#K_1 Kn

[Teer (050 — 0kv) [Teer (05 — Ok) A NA;O Ay

As a result, the formulas of Proposition 3.1 supply (2.8). We can sum up the two expressions of o, (z,y)
for x € [0,y] and x € [y, +00) into the following one: for x € [0, +00),

1 0:A.0, By Ojy—0;0 0.
eulon) e font o 3 GG T] (995 .
T jeTrex U3 T Uk gy \URY

Remark 3.2 Suppose that y = 0. By Proposition 3.1, we have on the one hand for z <0

6,0z

eV
0) 0;A; 0 Ay Ojiy — 016 .
Pxul:0) #J 1 Z Z H (057 =0; )] [Trex (050 — 0ry)

jeJ i'ed 3"'eI\{j}




After several computations which are postponed to Appendix A, we get, for x <0,

o) = [ ML T X (0 € dy)/ayl| ar
' 0 y=

—Ze A 11 ( »W—ej)] OiVAe, (3.7)

jeJ j'ed

It is then easy to retrieve Formula (24) of [16]. Choosing now x =0, ¢, (x,0) yields

1675 )

j'ed

¢,,(0,0) = ZHA

jeJ

We can see (cf. again Appendiz A) that

(3.8)

#aul0,0) = /OOQ e M[Eg(e T, X (1) € dy)/dy] ‘ (Ze ) W 2y

jed

This is Formula (26) of [16] which leads to the famous uniform distribution of the sojourn time in
[0,400) for the pseudo-bridge process (X (s)|X (t) = 0)o<s<t (see Theorem 13 of [16]):

1
By{T'(t) € ds|X(t) =0}/ds = n T4 (5).
On the other hand, we have for x >0

Oy

2% M($ 0 N 1 Z QkBk
keK

9 —tgk Jied 91(7—9]'/5 NBk

jeJ

As previously, after several computations which are postponed to Appendiz A, we get, for x > 0,

[ A
11 ek—e,ﬂ>
k’eK( Atp

It is easy to retrieve Formula (24) of [16] in this case.

\/)\-&- Z 0. By

I VAT, (3.9)
I

@, J(7,0) =

keK

Remark 3.3 Suppose that x =0 and y > 0. Proposition 3.1 yields in this case

GkBk Qﬂ — 9]'/(5 1
25— 11 (ew—ej,a T va ¢

keK j'ed

@, ,(0,y) = e 12914 —0i7y,
jeJ

In Appendiz B, we show that o, (0,y) can be rewritten as

01 B, 0.
©,,(0,y) = — e 15#K 129A (Z Gy - 9k5> iy, (3.10)

jedJ keK
We retrieve Formula (4.1) of [5].

The expressions lying in Proposition 3.1 are not tractable for inverting the Laplace transform ¢, (x,y).
So we transform them in order to derive a more appropriate form. For this we introduce the rational
fractions defined, for 7,7’ € J and k € K, as

H”GJ\{ }(0 /x—aj'/) Q. —0.;
F.. - J ) - J J .
o (7) [iex Orz —05) Garte) = 11 (91'/50 - 9k)

j'eJ

Let us expand them into partial fractions.

o We first observe that



Fyj(x) /- + 0
() =
JJ erK 0 {#J=#K+1} = Opt — 9

with

0,0, _
[Lrenin (JGT - 91‘”) 07 ey (05057 — 056r)

0,0, ! —
Hwer\in (#—91‘) 0 ey (O — Or)

Qjjrk = Iig}ek(akx 0;)Fjj(w) =

By (2.6) we extract
ax 00 B G
K
07" (0 — 0)

ajjrk = (=1)

and then pK SK—#T1
—1) 0 - B Ciiryg
F.. — (=1)#Eg#E, , ( k i’k
() = DT =i + 58w 2 (6, 0,) (00 )

keK

e Analogously we observe that

Bjj'k
Gir(r) =1+ 3 525
jred J k
with
0_7//9
B 1i 0 00)G x(2) Hj//eJ< 0; - _9]') 1 [Lnecs(050k —0;0;)
k= e §'T = Ug)Gk(T) = M = — o\
$—>0k/9.7” H]"EJ\{J } <% — Qk) Qj,ezft] 1 Hg”eJ\{J }(9 . ) ,)
By (2.5) we extract
.A C /k
ﬁj]/k - ( )#J Q#Jjjl
k
and then . )
,,C, e
G]k( )=1+ 0#‘] I Z Q,Jx_ﬂe .
jred J k

Therefore we can rewrite the fractions lying in Proposition 3.1 as

ijfeJ\{j}(‘gj’V - 9j"5)
erK(9j5 — k)

= (—1)#K#IHFEE i (v/6)

SHT—#K G#K—#J+1Bkc,,,k
_ g1 _ n k JJ 3.11
J {#J=#K+1} g keK (05 — k) (Ory — 0;6) ( )
and s ( #I-1 A C
J’Y 9 Ji'k
_ 3.12
1;[] Gy — 05 Gik(0/7) =1+ ~—7=—7 Ze;]em 008 @12

With (3.11) and (3.12) at hands, we derive the new expression below for o, (z,y). Recall that v = {/A + u
and § = VX

Proposition 3.2 Suppose y > 0. The function ¢, (v,y) can be written as follows:
for z € (—o00,0],

[N Ve N s
or (2, y) = O H#pJ=#K+1} lz ngjeejﬁ

#K | #K
JjeJ

> 0# Ajet VAT

jeJ

. Ky 3 A0, Ay 0K H#ITLR 0y VA e =0, VR E iy
(A + )#J A J.g'€d, keK e#K (05— Ok) O+ 1 — \f

A+ p) A~

for x € [0, +00),

10



_ 0,450k By 3w 00a-0,0)
L '
A+t [ eimen 00

BV, — .
+ry YA+ 1 Z 0;A; A BCjjry, e VATH(Ox2—05y)
N - .
jj'€J keK 077 72(0; — 01) 0NN+ 1 — 0; N

oy () = oy, (2, y) +

3.2 Casey<0
Assume now that y < 0. In this case Eq. (1.5) can be written as
3NSDM A@A,u(xvy) if 2 € (—00,y),

Ry g (1:9) =A@y (@) if & € (y,0),
A+ w e, (2,y) ifze (0,+00).

As in the foregoing case, the solution of this equation has the form

S it e (o).
jed
N x .
o, (2,y) = Z a;(y) P VA if z € (y,0),
' i€l
Z cu(y) VAT if 0 e (0, +00),
keK

where the unknowns (a;(y))ier, (b;(y))jes and (ck(y))kex satisty, due to (1.6),

A+ % Y ) =A% Y ai(y)o? if0<p< N1,
keK iel
0 if0<p<N -2,
S a3 byt = 8, T
i€l jed oy tp=N-1L

With calculations analogous to those performed in the case y > 0 we obtain the result below.

Proposition 3.3 Suppose y < 0. The function ¢, (v,y) admits the following representation:

for x € (=0, 0],

1 Z 0;A;01 By, (Hké — Ok/7> 052000,
k€K

ru@y) = 0\, y) — sx—1
’ ’ Nt jesrex %0 030 = Oy

for x € [0, +00),

A ey Ond = 00y) 4y s
@A,#(mvy) = (fyé)ﬁ Z 0. B0 By HjEJ(Qk’y — Hjé) Ok 1T—01 8y

k€K
Remark 3.4 Letting p tend to +oo (and then v — +00), we have that % — 1 and e7* — 0 for
7 ./
x>0 and k € K, and then
1 3 0;4i0:Br o(6,0-0.1)

o,(z,y) — TN_1 )
o, (T, y) — 0 jeT keK O —0;

0 if x € [0, 4+00).

if ¢ € (—00,0],

On the other hand we formally have that

lim o (t;z,y) = lim E,(e™T® X(t) € dy)/dy = IP’I{ Orgai(tX(S) <0,X(t) € dy}/dy
_s_

H—»—‘,—oo H—»—‘,—oo

from which we deduce that

lim o, (z,y)= /000 e M {]P’x{ max X(s) <0,X(t) € dy}/dy} dt.

p——+00 0<s<t

Then, for x,y < 0, we retrieve the pseudo-distribution of (maxo<s<; X(s), X(t)) (through its Laplace
transform with respect to t) displayed in [18].
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As in the previous case, we need to expand the fractions lying in Proposition 3.3. Since the compu-
tations are quite similar to the previous case, we omit them and we only produce the second form for
@, (z,y) below.

Proposition 3.4 Suppose y < 0. The function ¢, (v,y) can be written as follows:

for x € (—o0,0],
1

. Z 0JAJ9kBk' e%(eﬂ—eky)
M-~

@A,u(‘ra y) = Qx(mvy) - 0 — 0,
J

jEJ, kEK

VAN Z A;&;J_B;Bk,pjkk, e%(eﬂ_eky)N ];
eser 0750k = 05) O VNT -0V
for x € [0, +00),
Palesy) = MKZ—m [ Z akBkeekmw“ Z QﬁKBkeekNﬁy]
A+ ) F AN ek ek
+ #}71 S— Z ofJ*#K+1AjBk0k/Bk/Djkk, eekmm_gk,%y.
A+ W) T AT e 0771 (0; — 1) 0N+ 1 — 0N

4 Inverting with respect to u

In this section we invert the Laplace transform ¢, (x,y) with respect to p. Let us recall that

sox,u(af?y):/ e M (s;2,y) ds
0

with
y(s7,y) = / MB{T(t) € ds, X () € dy}/(ds dy)] dt.

As previously, we distinguish the two cases y > 0 and y < 0.

4.1 Casey >0

We need to invert the Laplace transform of the expressions of ¢, (z,y) lying in Proposition 3.2 with
respect to p. For this we shall make use of the identities

1 1 o
— = —/ e 5% 1ds  for a > 0,
v T(a) Jo

1 _
ve — 3

where E,5(§) = 307, m is the Mittag-Leffler function (see [12], p. 210). We also introduce, for
any integer m such that m < N — 1, the function I,,,(s; ) characterized by its Laplace transform:

/ e_us[sa_lEa,a(ﬁsa)] ds for v& > |ﬁ‘
0

00 o=V
/ e Ly (s;€)ds = ——  for Re(¢§) > 0.
0 vm/

—m/Ne

That is, I,,(s;€) is the inverse Laplace transform of the function v +— v —&V7 An expression for

I, (s;€) can be found in [18] and is

Ni —i%m > Nom—-1_—svN &N 13% i > N-m—1 —svN e % 13%
L.(s;6) = e 'N v e dv —e'N v e dv ).
0 0

T om
With this at hands, we extract
e~ 0V Aty

—_— = R T CH I E
o = e o)

12



and

e VATh (Brz—6;y) o0 (s ] 0 0.2)d > (At10) Lo1p vs)la
= = e~ 51,(8;0;y — 0,x)ds x e~ S1sVT'E1 1 s s
SRt bl (5050 = 0ur) s x| [+ By 1 (895)]
— /O o~ (A tu)s {/0 aﬁflE%% (ﬂ%)[a(s — 036y — Ox) da} ds.

In particular, the latter formula provides for « = N — 2 and § = %\W:

em(gkﬂﬂ—‘%y)
A+ ) (A 1 — 0,7N)

1 [ s 0
= — e M [e_ks/ ov B, 1< ) )\O’) In_o(s —0;0;y — Op) da] ds
0r Jo 0 NN G

andfora:#JflandB:Z—iW:
e—ej/my
A+ ) 5 (O N+ 11— 0,92

1 o 5
= — e Mo [e)‘s/ oN'E,
O Jo 0 N

2

(Zﬂ”/w) Iys1(s —0;0,y) da] ds.
k

. . V3T (0,2—0;v) 01 V3FR (2 —v) L. .

Similar representations hold for € o - )ifi’y nd ¢ (k/\ H;fiy . Combining all these results, we obtain
+u) N +p) N

the proposition below.

Proposition 4.1 Suppose y > 0. The function ,(s;x,y) admits the following representation:

for x € (—o0,0],
s | Lpr=#K+1 Ve
U(six,y) = mye [{#Ii” > 0,455V NS08 ALy (s365)
AN jeJ jeJ
K—#J

L1 3 A0 A BLCyon i VAz
e oK=L (0, — 6y)
N jgled keK J 3k

A

s 0;
< [ ot tEy (930) 1arats = oitym) do 1;
0 RN

for x € [0,+00),
0;A;0,B
Y (s;,y) = e [p(s; r—y)+ Z jg%kek In-1(s; 05y — Orz)
jed ke 3Tk
0;A; Ay BiCijrie 7 14 0 v .
+ Ky Z 9,?5]71(9]-—91@) /0 o By o Ao ) In_a(s — 038,y — Opx)do|.

Jj'€d, keK

Remark 4.1 The foregoing representation of ,(s;z,y) related to the case x > 0 involves the heat-kernel
p(s;x —y). We can write this latter by means of the function In_;1. Indeed, using the definition of the

function o, , we see that for £ > 0,

_ 1 oVxe _ [T [ .
gx(f,())f—mzeke =/ e ¥ D OIn-a(t;=04€) | dt

keEK keK

which entails that

PE) =~ D BT (5 —046).

keK

Similarly, for £ <0,
1

p(t:6) = 5 D OiIn-1(t; —0;6).

jeJ

13



4.2 Case y <0

Since the computations are quite similar, we only produce the result corresponding to the case where
y <0.

Proposition 4.2 Suppose y < 0. The function ¢,(s;x,y) admits the following representation:

for x € (—o0,0],

1 0:A.0,.B
U (si2,y) = lQA (@y) + 7= ]ejikak VA0 | 5, (s)
ATV eimer Vi T Ok
B ii Z ziKglcQBkBk/Djkk/ e)\SSI{IIE&’fV(:j\N/E) e%(ej:%@ky);
A JET k k' EK 0; Ok (O — 0;) K

for z € [0, +00),
Ty o
by(s;,y) = “FEHIL [ > Ok Bilys(s; gkx)H S 0 B ekﬁyl
AN KEK Py
HJ#Jf#KJrlAjBk@k/Bk,Djkk/
+ = D 77
AT jedJ, kk'eK ek (gj — ek’)

S 0
X/O UJillE]%]”{,(e]N\/ )\J> I#Jfl(S—O';—ekl')dO'

k

e—As—Ok/%y

5 Inverting with respect to A

This part is devoted to inverting the Laplace transform ,(s; z,y) with respect to A. We recall that

o0 o0
U(s;2,y) = / e Mx(s, tyz,y) dt = / e Mx(s, tx,y) dt
0 s

where x(s,t;2,y) = P.{T(t) € ds, X(t) € dy}/(dsdy) x 1jg4(s) is the quantity of main interest of this
work. For this, we have to write E%%(% V )\J) as a Laplace transform with respect to A. We note that,
for any complex number 3 such that |3 < V%,

/we—t*A%—lEll(ﬁf dX = Z /OO eTANF AN = 150:(5)?: L
0 NN (pﬂ) 0 Vt = Vt Vit -

N

Then, by Bromwich’s inversion formula, we have for any ¢ > |3|V

c+ioco e)\t

By 1 (BYN) = 1/C ———dt.

NN AT Joioo tN¥ —f
Suppose now that § = g—i% with j € J and k € K. The possible singularities of the function t — m
satisfy t = BN = . Thus the only possible singularity is 0. But o'/N — 3 = 9’“9—;03'% # 0 which implies
that the function ¢t — m has no singularity. So, we can shift the integration line Re ¢ = ¢ to the
line Re ¢t = 0 and next refold this latter to a loop enclosing the half-line Im ¢t = 0, Ret < 0. Roughly

speaking, this loop is defined as the union of the two half-lines Im ¢ =07, Re t <0 (from —oo to 0) and
Imt=0%, Ret <0 (from 0 to —o0). As a byproduct, we get

A% 0 oMt 0 oAt
By o (6YX) = [ / g / _ dt}
NN 21w o e Nt - o €N/t

_AE /m[ ! }
© 2 —¥Yi-B ¥

1

B Sin(%))\l_ﬁ /oo 7/\t\/z
B T 0 t¥ — 23 cos(&; YN + 32

14



We find it interesting to mention that when § is a negative number (obtained when 6; = —6y), for-
mula (5.1) is a particular case of a general representation of the Mittag-Leffler function which can be
found in [3]. By integrating (5.1) by parts, we obtain

[ Ty - —
0 t¥ —2Bcos(ENN + 32 0 ¥ —2Bcos(E)tV + 32 A

N

L™ B Gt 20
N FAA ° (tF — 23 cos(Z)tN + (32)2
Finally, we derive the following representation for g = z—z%:
N 1™
E%’%(ﬁﬁ) = {Vﬁ/o e f(t:;B)dt
with

sin() 1R (% — tF)

f(6:6) = mN (t% — 26cos(%)t% + 62)2.

5.1 Casey>0

Assume that y > 0. Regarding the expressions of 1),(s;x,y) in Proposition 4.1, we see that we have to
perform the following inversions with respect to A:

s Y e s+ VA e
e = / e Mo (tydt, S / e M (t — 5 —0,2) dt,
0 AN s
87A3+01%z 5 0]' i\f/i o v t—s 9j N
W Ib’lif(@k )\0> :/5 e [/o I#K(T;—ij)f(t—s—ﬂ%\/g) dT:| dt,

0, o 1 t=s 1 0
—As 1" N _ —At ~—1 J° N
© E}W}V(ak AU) _/s ‘ [F(l) /0 <t_S_T) f<T, Ok \/E)dT] o

N
By using all these identities, we can extract the ppdf x(s, t;x,y).

Theorem 5.1 The pseudo-distribution of (T(t), X (t)) is given by the following formulas: for s € [0,1]
andy > 0,

if x € (—00,0],

X(S,t, iE,y) = Ky ]1{#J:#K+1}

Z 0;A; Ly (t — s; GJ:L')“Z HfJAjI#K(s; Gjy)]

jeJ jeJ
K—+#J
$ A0y Ay 07 BLCijn

+ Ky
070, — O)

/ Jﬁflf#{]_l(s —o0;0;y)do
§,j'€J, kEK 0
t—s 9
x/ I#K(T;—ij)f<t—s—r;#%)dr;
0 k
if © € [0, 400),
0,;A;0; By,

tix—
pltiz—y)+ 3 P
jeJ, keK

x(s, t;z,y) =

INfl(t; 9jy — Hkx)] 5S(t)

0:A:A;BCs s
Ty Z W/ oN n_o(s — 030,y — Opx) do
jj' €S keK Tk (]_ k) 0
t—s 1 _q
(t_S_T)N .ej'N
X/o F(%) f(Tvok\/E>dT.

Remark 5.1 For = 0 Theorem 5.1 yields a representation of the pseudo-distribution of (T'(t), X (t))
under By which apparently differs from that we obtained in [5] (formula (6.1)) by using Spitzer’s identity.
It seems difficult to prove directly the equality of both representations without comparing their Laplace
transforms. We made this last comparison in Remark 3.3.
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Remark 5.2 The term multiplied by the atom 6:(¢) in the last case (i.e. when x > 0) of Theo-
rem 5.1 yields for x,y > 0:

P {T(t) = t, X(t) € dy}/dy = ]P’z{ Join X (s) > 0. X(1) € dy}/dy

IN,l(t;ﬁjy — ka) (52)

The quantity above is nothing but the distribution of the pseudo-process (X (t))i>o killed when overshooting
level 0 from below, that is P,{X(t) € dy, 7, > t}/dy where 7, = inf{t > 0 : X(¢t) < 0}. Moreover, by
integrating (5.2) with respect to y on (0,+00), we obtain

A.0.B oo
1B / In_1(t:¢) dC. (5.3)
Qj — 0y P

In the last integral above, the integration path is a half-line in the complex plane going from —Opx to
infinity in the direction of the positive real axis. Using the definition of the function I,, we see that

0o B +oo 1 +oo N e_I\V/Xf i _
/ e M (/ Ip(tQ C) dC) dt = )\j / € V¢ d¢ = bl / N /\tIPJrl(t; 5) dt
0 ¢ vJe AW 0

from which we extract

AT =0} = [ plugact

e jeJ keK

+oo
/5 1,(6:0) ¢ = T (1€). (5.4)

Then, by (4.1) and (5.4), for x <0,

xT —+oo
| wega=1- | (tsds—l——z/ IO =1+ 3 Iy(t ). (55)

> i kek Y Ok keEK

As a result, using (5.3), (5.4) and (5.5),

o . A;jOr By .
BAT(t) =t} =1~ + > In(t—Ok) + | 5,0, In(t; —0p)
keK jeJ keK
=1+ GkBk llij - i IN(t; —@kIL'). (56)
L0, —0, N
kEK jeg v

Finally, thanks to (2.10) of [18], we have

0,A; 1
0 J7] —A. — _
kze — 0 ]Z] <0j—9k J) NB;

and, plugging this into (5.6), we get the pseudo-distribution of 7, : for x >0,

P{ry <t} =Y Brly(t;—0kx).
keK

In order to retrieve the ppdf of i (see [18]), we need to differentiate the function In with respect to time.
We have

o0 _J\yi >
/O —Ata[ L) dt = /\/ e ML (4€) dt — I,(0;€) = Z Af :/0 e M n(t:€)dt

and then

O (1:6) = 1 n(1:6).

The ppdf of 7, s thus given, for x > 0, by

P {7y €dt}/dt =Y Biplo(t; —6xx).
keK
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5.2 Casey<0

We now assume that y < 0. Regarding the expression of ©,(s;z,y) in Proposition 4.2, we see that we
need the following inversions with respect to A:

e%(owf(?ky) 00 Y efAsfek%y 00 iV
Y E— z/ "In—1(t;0ky — 0;2) dt, = :/ e Ly (t—s;0,y)dt,
N s
7)\3 Gk’ Iy oo t—s 9
—At . o — _J
)\#va T % JIV( > e {/0 I#K(T,Qk/y)f<t s —T; i f) d’7':| dt,
ef)\s+f(0]270ky) 0]' N oo Y t—s 0
Y E}{N}V( k,\/)\s)_/s e [/o IN_l(T;Hky—sz)f( —s—T;ek/\f>dT}d

As a result, we derive the ppdf x(s,t;z,y).

Theorem 5.2 The pseudo-distribution of (T(t), X (t)) is given by the following formulas; for s € [0,t]
and y < 0,

if x € (—00,0],

0,A;6,B
X(s tia,y) = [p(t; z—y)+ Y %’;’“ In-1(t; 0y — 9]'1)] do(s)
jed kex 47k

. , 1 t—s .

- Z iffkkak/Djkk Sﬁ_l/ INfl(TQka—ejw)fGE—S—T; :j %> dr,
JEJ bk EK 0] O (O — 0;) 0 Kk

if x € [0, 400),

X(st2,y) = Vpg—ui41y [ Z Ok Brlys(s; —91@55)“ Z 07" Bylys(t — s 9ky)1

keK keEK
S

o7 —H#ENL A B0 Br Do
J / / / oN 1I#J 1(s — o5 —0px)do
jed kk'eK

077 (0, — 0w 0
t—s .
></ I#K(T;Gk/y)f(t—s—ﬂ ZJ {V/E) dr.
0 k

Remark 5.3 The term multiplied by the atom dy(s) in the first case (i.e. when z < 0) of
Theorem 5.2 yields for xz,y < 0:

P {T(t) = 0, X(t) € dy}/dy = IP;{ max, X(s) <0,X(t) € dy}/dy

0;A;0,B
=p(tiz—y) + Z e

0. —0 IN,l(t;ka—Hja:).
jed kek Ik

This is the distribution of the pseudo-process (X (t))t>0 killed when overshooting level O from above,
that is P,{X(t) € dy, 7y > t}/dy where 77 = inf{t > 0: X(t) > 0}. As in Remark 5.2, it may be seen
that
PQJ{TJ c dt}/dt = ZAjIO(t; —ej.’L').
jed

Remark 5.4 [t is possible to check the following identity: for xz,y > 0,

CALAS, -, s s o 1, )
Z %/ Jﬁil[N*Q(S—J;ejy_gkx)dJ/ %JC(T; 0; %> ar
jierker On (03— 0k) Jo 0 r) 0,

_ Z QJAJAA_]/B]@CJJ/IQ) (tis)%fl/ IN_l(S*U,ejyfekx)f<O—7 Zk
0

CHT—2 ,
jirerwer 950k (0 — Ok 3’

\N/ﬁ) do.  (5.7)

This means that the sum involving the double integral (with respect to o and T) lying in the two last cases
of Theorem 5.1 can be reduced into a sum involving only a single integral. The foregoing equality can
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be proved directly by using Laplace transform and some algebra; see Appendiz C for the details. Using
similar algebra, we could check the following equality: if x <0 <y,

> Ay Ay 0" BiCijn
070 — 0)

s t—s 9
< [ s = 0 do [ Laclri=0s2) (1 s 207 ) ar
0 0 k

j.j'ed, keK

=— > A0, Ay 0F T BLC
TETRN

t—s s
x/ 0%_11#;{,1(1?—5—0; —b;x) do/ I#J(T;Hj/y)f(s—T;e—k%) dr.
0 0 0

jj'€J kEK

Nonetheless, in this last case, both sums involve double integrals without any simplification. An explana-
tion for these identities can be found in duality. In [16] the dual pseudo-process X* = —X of X is intro-
duced. In the case where N is even, the pseudo-processes X and X* have the same pseudo-distributions,
while, in the case where N is odd, if we denote by X (resp. X~ ) the pseudo-process associated with
Ky = +1 (resp. —1), we have the identities in distribution (XT)* = X~ and (X7)* = X*. Let us in-
troduce analogous notations for the settings J, K, 0;,0y, Aj, By, Cjjrk, Djgir : when N is even, the settings
J, K, 05,01, Aj, By, Cjjii, Djrpe are interchanged into K, J, =0y, —0;, By, Aj, D, Cjjri, while, when N
is odd, the settings JT, KT, 9;', 0, Aj, B, Cj‘-"j,k, D;}Ck, are interchanged into K—, J~, =0, ,—0;, B;", A7,
Diirrs Chjre (where the superscripts refer to ky, = +1). As in [16], we have x(s,t;z,y) = x(t—s,t; —x, —y)
when N is even and x* (s, t;x,y) = xT(t — s,t; —x, —y) when N is odd; this explains formula (5.7).

Remark 5.5 By integrating each formula of Theorem 5.1 and Theorem 5.2 with respect to y, we can write
out a representation for the marginal ppdf of T'(t). In Remarks 5.2 and 5.3 we have already displayed the
parts associated with the atoms 0 and t. For s € (0,t), the continuous part is given by

if x € (—o0,0],

. , - i t—s
RATO cd)fas= S R A [ ety (1o i gl ) ar
jermrex ] Or (01 — 05) 0 0

o Z A A OB Cyyy, [F oW &
INEZS oK1 g 7K
( N ) J.j’€J, kEK J (0 — Ok) 0 (s—o)'~

t—s .
></ I#K(T;—ij)f(t—s—T;Z—J%>dT,
0 k
if x € [0, 400),

BAT(t) € ds}/ds = —ry Z A;éj_/gBijj,k (t— 5)%71/ In(o;—0x) f<8 —0; O
jj'ed keK ej'ek (93‘ —0r) 0 Hj,

o7 FE A BB D
07701 (0; — O

m)dg

1
_W Z

L
oN yy1(s—o;—0kx)do
N ) jed kkeK 0

x/ot_srll\?”f(t—s—r;z;;%)dr

In the computations, we have made use of (5.4), (5.7), I,(t;0) = t¥~1/T'(£) as well as of the following

equalities:
+oo
/0 (ZefJAjI#K(S;Gjy)> dy = (ZefJ_lAj>1#K+1(s;0) =0,

JjeJ jEJ
0
/ ( > 0  Belys(t—s; m)) dy = —( > e#*m) Lujsr(t—s:0) =0.
—® \keK keK

Forxz =0, we obtain an a priori intricate expression of the pseudo-probability Po{T'(t) € ds}/ds. Actually,
it is known that this latter admits a very simple representation (a Beta law, see, e.g., [16]). Neverthe-
less, it seems difficult to check directly (without computing any Laplace transform) the equality of both
representations.
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Remark 5.6 Let us introduce the last time above level O before time t as well as the first time above level
0 after time t:

o(t) =sup{s € [0,t] : X(s) >0}, <(t) =inf{s>1t: X(s) > 0}.

We are dealing with an excursion under level O straddling time t for the pseudo-process (X (s))s>o0. Using
the pseudo-Markov property, we easily get the following relationship between the couple (o(t),s(t)) and
the family (T'(s))s>o0: foro <t <,

P.A{o(t) <o,¢(t) >} = ]P’w{ sup X(s) < O} =E.(Px(o){T(s — 0) = 0}ix(s)<0})

s€lo,s]
0
— [ plosa - 9BAT( ~ o) =0} d
with
PA{T(s—0)=0}=1— ZA]‘IO(§ —o;—0;§).
jed
Appendix

A Proof of (3.7), (3.8) and (3.9)

Suppose that y = 0. By Proposition 3.1, we have for z <0

eGjéw
@y (7, 0) 0;A; 05 Aj 0y — 0;10) .
) #J ' gze;f ;e:J ”61;{{3'} T Hkerc (050 = O)
Let us expand the product below:
#T-2
T Giv=0508) = 0* 71+ > ep(07)P6* 17
J"eJ\{j} p=0

where the ¢,, 0 < p < #J — 2 are some coefficients depending on the 6;~, j” € J\ {j}, but not on the
index j'. Recalling that the A;, j° € J, solve a Vandermonde system, we have )., 0% A; = 0 for

Jj'ed7g’
1<p<#J-1, ZJEJHJ A/fn and then
#I—2
> 054y T (057—0,0) = ( > 93%]&/)7#“'_” > Cp( > 9§f+1Aj’>W”5#J‘1_p = iy #!
j'ed j""eJ\{j} j'ed p=0 Jj'ed
On the other hand, by (2.1) we have [],.;(6;6 — 6;7) = (0;0)~ — k7Y = =k, (7" — 6%), and then

I 056 = 6xy) = e 0020 _ - :
11e [c/ @55~ 6,0) ~ #7107~ )

L (o5 )
I (5 93’)]‘

jed

As a byproduct, for z <0,

o, (2,0) = ZQA

jeJ

which proves (3.7). Choosing now = = 0 yields

©,.,(0,0) = ZOA

JGJ

The product lying in the last displayed equation can be expanded into

I (9,}—%)—( #"le#" <Z9 )9}#‘” #JZ2091’( )#H]

jled jled
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where the c , 0 < p < #J —2 are some coefficients depending on the 6/, j' € J, but not on the index j.

As prev1ously, with the additional aid of Z]EJ 9;#‘”'1/1 oy Z]EJ 6;, we get

J+1 J i 7=
eyl ( s _ej)] = (_1)#J[29]# A, - (Z@)(Z@f Aj>5 = <Zej>
jed jred jeJ j'ed jed jed
and then

o, (0,0) = <29>\N//\+ -

jeJ

This proves (3.8).
On the other hand, we have for x > 0

0
QOAM‘I 0 N I ZGkBk kYT
keK

9 —tgk Jied 91(7—9]‘/(5 ]\7B/C

jeg J
The sum lying within the brackets in the above equality can be written as follows:

9A Hj’y _0]"5> 1 GjAj
S ke’ = 0y —0;:0).
Z@ 0 H (9k7—9j/5 Hj/eJ(ek’Y_ej'é) = 0; — 0 H (057 —0;:0)

jer Tk jigg kjrgg

First, we observe that

[Tics (Oxy — 6:0) u
[T 0y 0,0 = S .
j,GJ ' ) Hk’GK(ak’y ek"a) N Hk'EK(0k7 - 9k15)

Second, invoking Formula (2.9) of [18]:

0,A;P(6;) P(X)
= + Ky C

which is valid for any polynomial P of degree #.J and coefficient of highest degree ¢, we obtain for
P(X) =]ljc;(vX —0;6) and X = Oy

A o0y — 0506
PP H(e-v—evé):nﬂe"( Y= 050)

0Ok ey I1jes(05 = 6x) "
which implies, in view of (2.1), and since [[,c ;(0; — 6x) = N By,

0;A; 0,7 — 0,6 1 #
_ Oy — O
257 H<9m—9j,5) NBr T n [T (0 = b00)

jes 3 Tk gy keK

k

As a result, for x > 0,

VA+p Z 0. B

keK

o (1,0) = Wiie,

A
0. — 0, 0
H(k * AJru)e

k'eK

This is exactly (3.9). W

B Proof of (3.10)

Suppose that z = 0 and y > 0. Proposition 3.1 yields

GkBk <9j’)/ — Gj/é) 1
+ e
Z 6‘ — Hk gl;IJ 9;67 — ijé NAJ

keK

=07y

¢, ,(0,y) = NlZOA

jeJ
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Since [[;c; (057 — 0:0) = [;c;(Oxy — 0:0) = Ky p1, we observe that
11 W) _H<9ﬂ—9ﬂ5) II (HW—M> -] (W)
j'ed (9]6/7 - aj/(s el gk’y - 07,5 ek 9]")/ - Gk/é ek 0]7 — ek/(;

Therefore,

HkBk <0j’y — Oj/(S) 1 GkBk
= Oy — 01 9).
Z;{ JI;IJ 0y —0;0)  Tloer (657 — Oxr0) ;; 0; — O 11 6 = 0e0)

0; —
As previously, we invoke the formula

0cBRP(OR) |, sk P(X) B
k;{ O — X = (=) [icx Ok — X)

which is valid for any polynomial P of degree #K and coefficient of highest degree ¢. We obtain for
P(X) =[lyex(¥X = 0x0) and X = 6, by using (2.6),

> 22 TL 0= 008) =# = o T 07 000)

keK keK I ek
and then
0= O oy \Oy = 050)  NA; - [liew(B57 = 0k)

Now, expanding the rational fraction 1/([], (07 — 0x0)) into partial fractions yields

1 _ 1 01, By
[Tex (057 = 0k0) SR Lt G, — 040

and finally

01, By, 0.
©,,.(0,y) = #] 15#1( 1 ZH Aj (Z 6,7 — 0;45) o

jedJ keK

We have checked (3.10). W

C Proof of (5.7)

Set, for any integer m such that m < N — 1 and any complex number 3,

Fm<s7t;aﬁ>=ﬁ-l/éfm@—o—;g)f(a;ﬁ%)do

0

Guls,t:6,0) = [ oF (s —osgyao [ LT Gy By dr

Let us compute the Laplace transforms of F,,(s,¢;¢, 5) and G,,(s,t;&, ). For this, we need the
result below concerning the Laplace transform of the Mittag-Leffler function.

Lemma C.1 The following identity holds for X\, > 0 and € C such that F5 < arg(f) < 2m — 35 :

PROOF
Referring to the asymptotics E1 1 (z) ~ —1/[I' (— 2 )% when z tends to infinity such that |arg(—z)| <

(1 — 5%)m (see Formula (21), p. 210 of [12]), the condition 7 < arg(8) < 27 — 7% makes sure the

absolute convergence of the integral lying in the statement of Lemma (C.1).
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First, suppose that A > u|3]"V. In this case we easily have

® i 2 (BYR)" [ e
/O PO lEﬁ,Ib(ﬂW)dt_Z(nJrl)/o oAty +1 1 gt

Suppose now that A < 1|3|". Recalling that

§ (BYut) = o / e f (55 8V1) ds

W’W
with L )
sin( %) SN2 — s™
JCY) Qi R i 0
TN (s¥ —20cos(F)s™ + (32)2
we obtain

/000 e_Mt%_lEN W(B\F dt \f/ e Myn—1 (/000 e_”sf(s;ﬁ%) ds)dt.

It may be easily seen that the double integral fooofooo e_’\t_“st%_lf(s; BVt) dsdt is not absolutely con-
vergent (because of its behavior near (0,0)). So, we can not interchange the integrals and we must excise
one integral near zero as follows:

OO—)\tf—l oo_s AN ~ lim OO—)\t—_1 EN—S o
/0 t~ (/0 e H f(s,ﬂ\/i)ds>dt_€1_>0+ [/0 LN (/0 e M f(s,ﬂ\/i)ds>dt

+/Oooe—/\ttzlv—1</€;oe_”3f(5;ﬁ%)ds)dt]. (C.1)

We begin by evaluating the first term lying on the right-hand side of (C.1):

N

o0 €
lim e‘*ttﬁ‘l(/ e_“sf(s;ﬁ\%)ds>dt
0 0

e—0+
o0 N, /N 1 N _N
= N2V lim e Nt (/ e M sN_lf(ENsN;ﬁEt) ds)dt
0 0

e—0t

N us e NN ! N N B2t2 — 52
— g o li —de't —pes ds | dt
e (N) st /0 ¢ (/0 ¢ (52 — 2 cos(F7)st + (32t2)2 s)

Ny [ 322 _ 52
7?5111 (N)/O </0 (82 — 2B cos(F7)st + (2t2)? ds)dt.

The integral with respect to the variable s is elementary:

1 322 — s s=1
/0 (82 — 2B cos( & )st + [22)2 ds = L? — 23 cos(F7)st + gztz} o0
1 1

T T 2B eos(R)+ 0P [t — cos(F)PP +sin’ (%)

and next

cor ot B2t? — s2 ds ) dt — 1 . cos(f) — it tzoo_ T
/o </ (5% — 28 cos(%)st + 12)2 ) Fein(%) [( sin(%) )]_ = T NBsn(E)

Consequently,

lim 000 e_’\tti’_l(/og e " f(s;8V1) ds) dt = —%. (C.2)

e—0t

Concerning the second term lying on the right-hand side of (C.1), since
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we have (in this case, interchanging the two integrals is valid)

dim [Tt ([ e o0y as )t = - i [ / ety (1505 ) asa
:—ﬂ lim e* ssNTIE, (;\//\7> ds

_ _L\a 1 _1 VA (C.3)
2 V-3V T BNV |
In the last step, we have used the result corresponding to the first case. Finally, adding (C.2) to (C.3)
yields the statement in the case where A < u|3[V. W

We can compute, with the help of Lemma C.1, the Laplace transforms of F},, (s, t; &, 8) and G, (s, t; &, 3).
On the one hand,

[ —At—pus . _ —/\t ——1 * —us . > —us . AN
/0/0 e Fo(s,t;&, 0)dsdt /0 tN [/0 e Im(s,«f)ds/o e f(s,ﬁ\/i)ds dt

e_gj\\,/lj oo At 1 1
:77%1/ e MY TIEL L (BV/ut) dt
p= o
o€ Vi

p v (VA =6

On the other hand,

/ / MG, (s, 45, B) ds dt
0 0

00 0o oo L _q oo
:/ e "L (s;6) ds/ e“ssllVl[/ efMt}\ri1 ds/ efo(t;B{V/g)dt ds
0 0 0 I'(+) 0

= e—&j/ﬁ/ e hisNTIE L(ﬁN)\s) ds
ury - Jo NN
e~ Vi
IEICTE 2
Introducing back the settings v = ¥/A+ px and § = /X, the Laplace transforms of each member

of (5.7) can be evaluated as follows. We choose § = 6,:/0y or 6;/0; with j' € J, k € K; in both cases,
we have 5 < arg(f3) < 2m — 5. Thus we can use the above results and we obtain

/°°/°° Y 0;A;Aj BrCijjri
0 Js 9#‘]71(6‘]' — Qk)

j.j'€J, keK “k

s t—s 1 _q
t—s— 0,
X {/ JﬁfllN_g(s—o;Gjnykx)do/ %ﬁf(T,#%) dT:|det
0 0

I(%)
%idit B'“ 'k o~ M—ps 0y

J.j'€J, keK
. %/ / NS Gy 2(3 t0,y — Opz, %) dedt

sgrerwer % (05— Ok)
Ly Bt o1

- T—2 —. |
L j.g'€J ke K 07720, — 1) Oky— 050

Similarly,

/m/we_xt_#s 3 0;A; Ay BrCijjrk
0 Js 0,077 720, — 01,

jgred kek Vi
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x[(t—s)fv—l/sm (s — o105y — ka)f( ,g’“ V- )da}dsdt

0 j’

0;A;A; BkO ik VI O
= Z 0 0#“7 2 A // M=ps g 1(st 5305y — Oy, P )dsdt

j.j €, keEK
9 A A Bkc i’k _ s 9
= Z 9.,9#J T 73 / / M—(Atm)s 1(5 t;0;y — O, 7 )dsdt
j.j'€J, keK I 7k
— _L Z HJAJAJ'B]CCJ]’]Q e'Y(ekI—ij)
(A 077 2(0; — 0r) Ony — 0370

Jj'ed, keK

We see that the quantities (C.4) and (C.5) are opposite which completes the proof of (5.7). B

Addendum. In [5], some constants in Formulas (2.8) and (2.9) can be simplified: since , = (—1)#/71,
HjEJ 0; =1and [[cpOr = (—1)#E we have a_yx = —fpx =1 and aq1_px = Buri1 = Eje] 0;.
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