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Abstract In the past years, many attempts have been made in order to model the
process of bone remodeling. This process is complex, as it is governed by not yet
completely understood biomechanical coupled phenomena. It is well known that
bone tissue is able to self-adapt to different environmental demands of both me-
chanical and biological origin. The mechanical aspects are related to the functional
purpose of the bone tissue, i.e., to provide support to the body and protection for
the vitally important organs in response to the external loads. The many biological
aspects include the process of oxygen and nutrients supply. To describe the biome-
chanical process of functional adaptation of bone tissue, the approach commonly
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adopted is to consider it as a ‘feedback’ control regulated by the bone cells, namely
osteoblasts and osteoclasts. They are responsible for bone synthesis and resorption,
respectively, while osteocytes are in charge of ‘sensing’ the mechanical status of the
tissue. Within this framework, in Lekszycki and dell’Isola (2012) a model based
on a system of integro-differential equations was introduced aiming to predict the
evolution of the process of remodeling in surgically reconstructed bones. The main
idea in the aforementioned model was to introduce a scalar field, describing the
biological stimulus regulating the interaction among all kinds of bone cells at a
macro-scale. This biological field was assumed to depend locally on certain defor-
mation measures of the (reconstructed) bone tissue. However, biological knowledge
suggests that this stimulus, after having been produced, ‘diffuses’ in bone tissue,
so controlling in a complex way its remodeling. This means that the cells which
are target of the stimulus may not be located in the same place occupied by the
cells producing it. In this paper, we propose a model which intends to explain the
diffusive nature of the biological stimulus to encompass the time-dependent and
space-time displaced effects involved in bone reconstruction process. Preliminary
numerical simulations performed in typical cases are presented. These numerical
case studies suggest that the ‘diffusive’ model of stimulus is promising: we plan to
continue these kinds of studies in further investigations.

Keywords Mechanical–biological coupling · Bone functional adaptation ·
Growth/resorption processes · Bone remodeling

1 Introduction

One of the most challenging endeavors in contemporary applied mathematics con-
cerns the formulation of mathematical models for the growth and possibly for
the resorption of soft and hard biological tissues, in one word, for their remod-
eling. In this paper, we will focus on the particular case of bone tissues, even
if we believe that there are many common features with other kinds of tissues.
Therefore we expect that our results may be applicable also in slightly different
contexts. Growth and remodeling phenomena are, indeed, very complex. They in-
volve physical, chemical, and mechanical coupled interactions and can be regarded
as emerging subjects in continuum physics and biomechanics (see, e.g., Prakash
et al. (2018); Ganghoffer (2012); Taber (2009); Holzapfel and Ogden (2006); Cowin
(2001)).

In the framework of continuous field models, various proposals were formulated
to model aforementioned coupled interactions, always aiming to capture the most
relevant aspects of mechanically driven living tissue growth and reconstruction.
To our knowledge in the present literature, it is systematically assumed that the
biological stimulus remains localized where it has been produced. In other words, if
one has introduced the concept of a material particle of the continuum describing
the tissue then the biological stimulus as perceived in one material particle de-
pends on the deformation field as measured in the same material particle. A first
generalization has been proposed in Lekszycki and dell’Isola (2012); Kumar et al.
(2011); Andreaus et al. (2014b); Giorgio et al. (2016): indeed in cited papers the
stimulus in a material particle depends on a space average (in the reference con-
figuration) of the deformation in its neighborhood. This assumption seems more
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realistic but not completely satisfactory. Indeed we are aware of the difficulties in
understanding the true nature and relevant characteristics of biological stimulus,
which although plays such a prominent role in living tissue growth. The processes
of stimulus formation, propagation and reception are surely not understood in a
satisfactory way yet. However, it seems to us clear that (see, for instance, Kühl
et al. (2000); Pinson et al. (2000); Gong et al. (2001)) a part of the biological signal
is produced by means of biochemical processes and that the produced biochemi-
cal factors which are the output of said processes are diffusing in the tissue whose
growth and resorption they are controlling. Mathematical physics has already, and
in different contexts, produced a model for this kind of diffusive phenomena. The
natural choice is, therefore, to imagine that in the growth control process one can
distinguish at least two different steps. In the first one finds the generation of the
biological signal in a certain material particle subject to a specific deformation
state at a given time instant. In the second step, the signal diffuses in space with a
certain speed (and possibly direction) thus regulating the remodeling of different
material particles in subsequent instants.

While we believe that the described approach is not present in the literature,
we believe that it may contribute to the theoretical efforts needed to model growth
phenomena. We are aware of the fact that simplification has to be searched, when
possible, and that many interesting simpler models of continua in which growth
occurs have been already proposed and carefully studied (see, e.g., George et al.
(2018b); Cluzel and Allena (2018); Allena and Cluzel (2018); Goriely et al. (2008);
Menzel (2005); Di Carlo and Quiligotti (2002); Epstein and Maugin (2000)).

Some continuum models have been imagined which introduce generalized struc-
tured continua, as those involving the concept of mixtures (Franciosi et al. 2018;
Spagnuolo et al. 2017; Ambrosi et al. 2010; Ateshian 2007), or micropolar kinemat-
ical descriptors (Goda et al. 2014; Yoo and Jasiuk 2006; Diebels and Steeb 2003;
Park and Lakes 1986), see also (Eremeyev et al. 2016; Eremeyev and Pietraszkiewicz
2016; Altenbach and Eremeyev 2015; Eremeyev et al. 2013), or deformation ener-
gies depending on the second gradient of placement (Giorgio et al. 2017a; Madeo
et al. 2013, 2012; Seppecher 2000, 1996). It is natural to imagine that their use
may be required to capture the most complex aspects of growing tissue biome-
chanics. In this paper, we will limit ourselves to consider, from the mechanical
point of view, the simplest possible model, by focusing on the complications in-
volved in considering a diffusive stimulus. We are confident that by uniting our
present approach with generalized continuum models an important step towards
the comprehension of tissue growth may be attained.

Indeed we are aware of the impressive progress in modeling bone mechanics oc-
curred in the last decades. In this paper, we exploit these results and we, therefore,
have accepted systematically the following concepts and paradigms:

(i) mechanical phenomena play a key role in bone tissue growth (Rosa et al. 2015;
Hambli 2014);

(ii) the growth of living bone tissues is controlled by a specific agent which has been
called biological stimulus: the biological stimulus in bone tissues is mechanically
driven, regulates and controls the action of some specialized cells which are
called osteoblasts (tissue producing cells) and osteoclasts (tissue destructing
cells) (Beaupre et al. 1990b; Turner 1991; Mullender et al. 1994);
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(iii) there must be a clear distinction between the process of stimulus generation
and the signal processing preceding the stimulus generation (see Lekszycki and
dell’Isola (2012));

(iv) the driving phenomenon in signal production is deformation, which can be
modeled in a more or less sophisticated way, with more or less complex con-
tinuum models (Giorgio et al. 2017a, 2016; Park and Lakes 1986; Hambli and
Kourta 2015);

(v) the biological stimulus results into a variation of the mechanical properties of
the bone (Frost 1987);

(vi) the deformation state of the tissue controls its biological activity and reactivity
(Huiskes et al. 1987; Lekszycki and dell’Isola 2012).

Many investigations have been dedicated to the aim of understanding all phe-
nomena involved in stimulus generation and stimulus activity. Its production, prop-
agation, effects on active or capable of being activated cells which are acting in
bone remodeling process (see, e.g., Komori (2013a); Bonewald and Johnson (2008);
van Hove et al. (2009); Hambli and Rieger (2012); Sansalone et al. (2013)) have
been intensively studied. At micro-level, it is possible to hypothesize that the in-
terstitial fluid flow through the lacuno-canalicular system plays an important role
in the remodeling process (You et al. 2001) as well as the number of active cells
(Rieger et al. 2011). Thus, a stimulus depending on the interstitial fluid velocity
can be assumed as done in Hambli and Kourta (2015). We claim that these inter-
esting results give us an understanding of what happens at smaller scales inside a
growing bone.

We must explicitly warn the reader here: we do not even try to model the enor-
mous complexity of growth processes which is observed at said cellular or lacuno-
canalicular level: the length scale which we call here ‘micro-level’ or ‘smaller scale’.
Instead, we are persuaded that at macro-level, it is acceptable and even reason-
able (see Chen et al. (2005); Mlodzik (2002)) to postulate that the generation
of the biological stimulus and its eventual propagation are phenomena which are
not directly and explicitly related to specific aspects of biological or mechani-
cal phenomena occurring at the smaller scale. We look for a macro-model which
is averaged enough to be able to capture the overall and global features of these
micro-phenomena which we refrain to describe. This was the spirit which animated
Lekszycki and dell’Isola (2012); Giorgio et al. (2016) where the governing equa-
tions, used to describe the mechanically driven macroscopic growth phenomena,
were postulated to be an integro-differential system incorporating the information
of overall stimulus generation in the neighborhood of osteoclasts and osteoblasts
(active cells) which are activated by the biological stimulus.

Actually, this approach does imply the concept of immediate transmission of
the biological signal as produced as a consequence of the action of sensor cells
(osteocytes) to the ‘active’ cells.

However, the proposed macro-model can be thought of as a target model in
a micro-macro homogenization process in the same spirit of Hambli and Kourta
(2015). Besides, a multi-scale modeling approach may take into account the com-
plex and hierarchical microstructure of the bone tissues (see, e.g., Rosa et al.
(2015); Hambli et al. (2011); Barkaoui et al. (2014, 2016)). To our knowledge
there is some biological evidence (Arias et al. 2018; Bonewald and Johnson 2008;
Kühl et al. 2000) and, we believe, there is a clear logical basis, of the fact that the
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biological stimulus is first produced and then diffused before reaching its target
cells, i.e., the active cells governing growth and resorption. (see, e.g., George et al.
(2017); Spingarn et al. (2017); Stern and Nicolella (2013); Himeno-Ando et al.
(2012); Bonucci (2009)). There is evidence, indeed, of the existence of mechanisms
which govern the production of ‘signaling chemical species’, of phenomena of diffu-
sion of these species in the reconstructing tissue and of their adsorption to initiate
the activation of osteoclasts and osteoblasts.

In this paper, we cannot describe in a careful way all these complex and some-
how obscure mechanisms. Therefore we refrain to reach a detail of description
which is valid at the smaller scale and limit ourselves to formulate a model which
is i) valid at macro-scale ii) accounting for the biological stimulus diffusion during
the process of tissue remodeling and growth iii) describing the diffusive time delay
and space displacement phenomena which must be expected.

The simple ansatz which we accept is the following: at macro-level the biological
stimulus diffuses in space and time by following the rule given by Fourier-Fick
diffusion process, in which we postulate the presence of both sink and source
terms. We further postulate that these source and sink terms can be determined
by means of some specific constitutive laws in which the mechanical deformation
energy and the stimulus itself appear. By conjecturing the result of the previously
evoked homogenization process we assume that i) the stimulus production (source)
term depends on the local value of mechanical deformation energy ii) the metabolic
action which leads to the degradation of the stimulus intensity (sink) is governed
by a simple mechanism: this mechanism leads to a decay which is proportional to
the local (in space and time) stimulus concentration.

We are aware that some local aspects of the microscopic biological complexity
of considered system are completely neglected but we expect that, for what con-
cerns the considered macroscopic averaged biomechanics quantities which we have
included in our model, the postulated assumptions are descriptive of real phenom-
ena. We are confident that the obtained macro predictions are close to describing
effectively some overall biomechanics phenomena.

Referring to the wide and complex problem of the functional adaptation of bone
tissue subjected to mechanical loadings, therefore, aim of this paper is proposing
a phenomenological model at macro-scale based on a description of bone tissue
as a homogenized generalized continuum, and accounting for the evolution of the
bone mass density due to the transmission of an activation signal from the sensor
cells to the cells responsible of bone synthesis and resorption. In particular, the
proposed model focuses on the macro-level mechanism of the transmission of the
signal through a diffusive way, which averagely and macroscopically represents the
diffusion phenomena of the ‘signaling factors’, and which occurs at micro-scale,
relating the signal diffusion with the macroscopic phenomenon of the remodeling
process, or in other words relating biological phenomena with mechanical ones at
continuum level. In addition, the proposed model has been formulated aiming at
conceiving, designing and guiding feasible experimental tests able to identify the
constitutive parameters of the model, by measuring observable quantities, which
pertain to the evolution of the main global quantities interesting the present study,
namely the mass density of bone tissue, beyond the analysis of diffusion of single
signal factors at micro-scale.

To make meaningful the conceptual effort presented in this work we prepared
some numerical simulations performed with COMSOL Multiphysics R©. They are
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somehow preliminary, as they describe some meaningful, but academic, situations.
They will be presented in full detail in the sequel. We believe that they prove that
the model which we propose here is really promising and will deserve our future
efforts to be developed and generalized.

2 Basic kinematical fields and fundamental modeling assumptions

We start this section, devoted to the specification of the set of fields which describe
the kinematics in the considered model, by remarking that if one wants to describe
growth and resorption in living tissues one must assume that the referential mass
density of every material particle may change in time. This observation must be
extended to include also at least the variability, in time, of material symmetry
group for each material particle, as remodeling can change its intrinsic mechanical
properties. Referential mass density and the material symmetry group are changed
by biological agents as a response to mechanical deformation induced by external
loads. Indeed, mechanical deformation triggers the biological actions of the des-
ignated cells which are present in the living tissue so that one can observe the
establishment of a self-reorganization process (Roux 1895) in the living tissue.

It is useful to reinterpret the whole bone remodeling process as a process con-
trolled by robust feedback and to study it with the methods of the theory of control
(see Frost (1987); Turner (1991)).

In the remodeling process, the mechanical properties of the living tissue are
to be regarded as the controlled quantities. On the other hand, the total mass of
bone and its distribution at the lower scale must be considered as the controlling
quantities. In other words, we can assume that the change of total bone mass and of
the macroscopic material symmetry group are changing because of the remodeling
process and as a consequence of the biological action triggered by the externally
applied loads.

In fact, in order to supply the mechanical strength needed to resist to externally
applied loads, some active cells, which can be regarded as the process ‘actuators’,
can be driven to resorb or to synthesize bone tissue. The observations made during
the remodeling process indicate that the whole system has efficient feedback which
aims to obtain an optimized distribution of bone mass (and of its structure at the
lower level) so that the most appropriate deformation pattern is maintained in
the tissue. One can say that the bone microstructure and mass results from a
‘functional adaptation’ which is attained by a process of constrained optimization.
Given the total amount of available mass, it has to be distributed in order to get the
maximum of resistance with the minimum use of living tissue. Bone mass is costly
and its cost has to be limited. However, too low bone mass leads to bone fragility
and the consequent lack of functionality must be avoided. Together with osteoclasts
and osteoblasts (the active cells adsorbing and constructing bone tissue), one finds
in the living bone also another type of cells: osteocytes. They are sensors which
detect the biological stimulus, i.e. the feedback signal in our scheme from the
theory of control, which is a consequence of the current mechanical deformation
state. This signal has to be compared with a certain threshold, i.e., a certain
interval of set-point values for the stimulus. The difference (or as it is called in
the theory of control: the error) between the measured stimulus and the threshold
values is the biological ‘command’ used to initiate the action of actuator cells.
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We summarize the whole previously described process in the feedback diagram
presented in Fig. 1.

FeedbackAcquired 
mechanical 
state

‘Error’ signal:
Biological 
command

Current output: 
mechanical properties

Control ‘device’

Sensor network 

Osteoblasts 
and 

Osteoclasts

-

+ 

Osteocytes

Mechanical loads

Bone tissue
Reference input:
desired
mechanical 
state

REMODELLING PROCESS 
Hormones,
nutrients,
oxygen

Fig. 1 A feedback control scheme to represent the biological activity involved in the remod-
eling process.

The analysis which we present in this paper for the bone remodeling process
is based on the following limiting assumptions:

1. The model used for bone tissue is not sophisticated enough to distinguish
among the different possible kinds of bone tissues: in other words, it is not
distinguishing among woven, trabecular or compact bone tissue, etc. We are,
however aware of the fact that growth and resorption have different rates for
said different kinds of bone tissues. On the other hand, we are persuaded that
the described feedback control mechanism has the same fundamental features
in every bone tissue (Turner 1991).

2. We choose a unique characteristic time for the complex bone remodeling pro-
cess: it is fixed to have a value in the interval 120–200 days. This choice is
suggested by the fact that the longest period seems to be that characteristic of
trabecular bone, while it is believed that this time interval gives the average
duration of a complete and single turnover cycle (Agerbaek et al. 1991; Eriksen
2010).

3. All kinds of bone tissue are assumed to be well described by the model given
by a non-linear elastic (Davy et al. 1999; Morgan et al. 2001) or viscoelastic
(Gottesman and Hashin 1980) porous (Cowin 1999; Smit et al. 2002) material.

4. The material symmetry group and all other properties of these materials de-
termined by the bone internal microstructure (Eremeyev and Pietraszkiewicz
2016) are determined as a consequence of the action of only the three types of
cells already described, that is osteoblasts, osteoclasts, and osteocytes.

5. The osteoblast and osteoclast, i.e. the actor or actuator cells, are the living
entities which are determining the synthesis or the resorption of bone tissue,
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respectively. Their activation is controlled by the biological stimulus. This stim-
ulus is produced by the third kind of considered cells: the osteocytes, which are
also called the sensor cells (Turner 1991; Katagiri and Takahashi 2002; Matsuo
and Irie 2008).

6. In fact, osteocytes are producing the ‘feedback signal’, in our control process. It
is assumed to be mainly produced as a response of the density of deformation
energy. This assumption has been already discussed in the introduction and it
is based on the hypothesis that deformation energy can be regarded as a good
macroscopic indicator of the microscopic mechanical state, which is reliable
independently of the true nature of the more fundamental mechanism deter-
mining the osteocytes response. This mechanism is being still debated and may
not be unique. (Aarden et al. 1994; Santos et al. 2009; Komori 2013b; Graham
et al. 2013). It is however unanimously accepted that osteocytes are organized
in a network of cells interconnected each other by means of dendritic processes,
namely protuberances, and they are completely surrounded by mineral bone
and placed in appropriate cavities, namely lacunae and canaliculi (Burger and
Klein-Nulend 1999).

7. The quantity of osteocytes which are active in a single ‘material particle’ of
the used continuum model is related to the mass of the bone tissue present in
a unit volume (Mullender et al. 1996; Baiotto and Zidi 2004). Moreover, when
a certain material particle is in a certain state of deformation, the amount of
signal inside the same material particle increases with the number of activated
sensor cells.

8. We assume that the said increasing dependences are both linear: that is the sig-
nal is proportional to the number of activated osteocytes and that the number
of osteocytes is proportional to the bone mass density.

9. The intensity of the signal, as produced by some osteocytes, decreases with the
distance between actor cells and osteocytes (Mullender et al. 1994).

10. The actuator cells receive all signals which reach them sent by surrounding
sensor cells (Matsuo and Irie 2008).

11. The reference signal or the set-point is assumed to be regulated by hormone
activity or by the presence of oxygen and nutrients (Bednarczyk and Lekszycki
2016; Lu and Lekszycki 2018).

12. Living bone tissue can be resorbed or synthesized, because osteoblast and os-
teoclasts are always present together with osteocytes. However, the sensor cells
can be located only in a real living tissue and not in artificial graft, then in
artificial grafts, the stimulus is not produced and therefore, in absence of stim-
ulus diffusion, the only activated cells are osteoclasts: as a consequence, arti-
ficial grafts can be resorbed at higher rates than living tissue (Lekszycki and
dell’Isola 2012).

13. The density of actuator cells available in a material particle depends on the
local value of porosity of (possibly reconstructed) bone tissue. If the bone tissue
has a current value of its porosity which is close to the maximum possible then
the density of active osteoclasts or osteoblast is vanishing. Indeed, these cells
can act only when they are deposited on the inner surface of the internal tissue
pores. If the amount of surface available to the adhesion of actor cells is too
small neither resorption nor creation of bone tissue is possible. On the other
hand, actuator cells are absent when the porosity is vanishing: in fact, in this
case, there is no space for the presence of active cells. As a consequence, it is
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possible to conjecture that there is a value for porosity which is optimal, for
what concerns the largest available number of actor cells which can act (Martin
1984; Beaupre et al. 1990a).

The model which we present in this paper incorporates the aforementioned
assumptions. They surely limit the range of its applicability. On the other hand,
the simplifications which are made possible by their use allow for the formulation
of effective numerical codes, whose predictive capacity will be discussed in what
follows.

Assuming that the material body, described as a continuum, is the model
of a certain class of living bone tissues, we consider the following kinematical
Lagrangian fields, all to be evaluated in the position X belonging to the three-
dimensional Euclidean space E (see Lekszycki and dell’Isola (2012) for more de-
tails):

a) the Lagrangian bone tissue macroscopic mass density %(X, t). Its value gives
the mass density of the bone but referred to the whole Lagrangian volume
occupied by it: this volume includes both the empty voids and the regions
occupied by the bone. For this reason one can call it: ‘apparent’ Lagrangian
bone mass density.

b) the Lagrangian bone tissue porosity ϕ(X, t). It is the fraction of the Lagrangian
volume which is actually ‘empty’ (at the small scale), i.e., not being occupied
by bone tissue;

c) the biological stimulus S(X, t). We assume that the results of the biological
feedback of living tissue can be represented simply by a scalar field. Its value
at the position X and at the instant t is an estimate of the activation signal
produced by the sensor cells and then transmitted to the actor cells, that is
osteoblasts, responsible for synthesis of bone tissue, and osteoclasts, responsible
for resorption of bone tissue.

d) the scalar field W (X, t), which represents the volume density of strain (or
deformation) elastic energy stored at the point X and at the instant t in the
bone tissue. It is the energy which is used in (locally) deforming the bone tissue
starting from the reference configuration —which we assume stress-free— into
the configuration at the instant t;

e) The Lagrangian density of osteocytes dOC(X, t). It is the number of sensing
cells which are alive in the Lagrangian unit volume. These are the cells which
can really ‘estimate’ the mechanical deformation state of bone tissue, can pro-
duce the feedback signal and effectively send it ‘towards’ the actuator cells.

Lagrangian fields are not sufficient to describe completely the deformation state
of a body. We must, therefore, related the just defined scalar fields

%(X, t), ϕ(X, t), S(X, t), W (X, t), dOC(X, t) (1)

to the reference configuration. It is, indeed, necessary to link them to a kinematics
of bone tissue described in terms of placement from a given reference configura-
tion. The conceptual framework in which we are operating is that which is called
the finite elasticity of continua endowed with microstructure. Once specified the
reference C∗ and the current Ct configurations to define the ‘stress-free’ config-
uration used to label material particles and their configuration at the instant t,
the placement of the body ‘bone tissue’ in the Eulerian E space of positions is
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given by the mapping χ, which is assumed to be a function which is continuous,
differentiable and one-to-one:

x = χ(X, t), (2)

where with x we denote the position occupied by the material particle labelled by
X belonging to the bone tissue at instant t. The following standard notation is
used:

F = Gradχ, J = detF , 2G = F>F − I (3)

where i) with the symbol F we denote the so-called gradient of placement or defor-
mation gradient, ii) with J the determinant of F : it describes the volume variation
in the transformation from Lagrangian to Eulerian configurations, iii) with Grad(·)
we denote the gradient operator when using the Lagrangian coordinates, iv) with
G we denote the Green-Lagrange deformation (strain) tensor, and v) with I the
identity tensor.

Remark that linearity in small strain for bone tissue is sometimes regarded
as a too much simplifying assumption, since experimental evidence reported in
literature as Morgan et al. (2001); Davy et al. (1999) leaves open the possibility
of considering non-linearities. Indeed, we remark that a non-linear behavior has
been observed even at small strain, namely below 0.4 %, in a range which can be
considered important from a clinical and biomedical point of view (Morgan et al.
2001). This behavior may be probably due to hierarchical and complex structure
of bone as well as to the presence of micro-cracks inside the bone tissue that can
trigger nonlinearities (Davy et al. 1999; Giorgio and Scerrato 2017).

The placement function specified in Eq. (2) gives the conceptual basis of the
Lagrangian description of the kinematics of bone tissue.

Of course the material frame-indifference of deformation energy is a necessary
requirement. Therefore, we must assume that W must be a function of χ(X, t) via
the Green-Lagrange strain tensor G only.

We recall that our description of bone tissue biomechanics is formulated at
a macro-level i.e. at a larger scale. One should need a careful homogenization
procedure for deducing such a macro-model from a micro-model including all the
lower scale biomechanics phenomena which may be known. We refrain from this
for two reasons: i) clearly not all relevant micro-phenomena are fully understood
or known ii) the complexity of micro-phenomena have macroscopic effects which
(hopefully) can be simplified in overall average behavior. We try to describe this
last simplified behavior with a direct macroscopic approach, which, however, tries
to take into account the most relevant aspects of micro-phenomenology.

At higher scale level, therefore, we have introduced the porosity field, as an
extra kinematical descriptor. Moreover, we will assume to be able to conjecture
the results of said ‘homogenization’ procedure for getting an expression for defor-
mation energy in terms of ‘microscopic’ phenomena occurring at a smaller scale
(see Section 5). In order to be able to formulate such a conjecture, we will need to
introduce a specific extra kinematical descriptor.

In poromechanics (see, e.g., Lurie et al. (2018); Khalili and Selvadurai (2003);
Misra et al. (2015, 2013)), and coherently to what done in the Biot model, we
introduce the Lagrangian field ζ(X, t) defined as the change of the effective volume
of the voids per unit volume in the transformation from Lagrangian to Eulerian
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configuration. In formulas

ζ(X, t) = ϕ(X, t)− ϕ∗(X, t) (4)

where, as already assumed before, the superscript ∗ refers to the reference con-
figuration. It is well-known that reference configuration is to be specified clearly,
as it constitutes the domain in which all kinematical fields are to be defined. The
present case which deals with the process of bone remodeling does not represent
an exception to such a general rule.

Moreover, we have chosen a Lagrangian (that is referential) description be-
cause it is surely the most suitable also when the problem of getting computational
predictions is confronted. Lagrangian description has to be preferred to Eulerian
description in general, as this last description needs time-varying domains of defi-
nition of all involved fields.

3 The evolution equations for bone mass describing in remodelling
process

For the sake of simplicity, in this section, we postulate an evolution equation for
bone mass density without deriving it from a variational principle. This important
conceptual step will be formulated in future works. Here we simply remark that the
evolution equation which we formulate below should be deduced from a Hamilton-
Rayleigh principle by using a suitable dissipation functional.

Our approach follows the now standard approach which determines the evo-
lution of the Lagrangian bone mass density by means of a first order ordinary
differential equation (see Beaupre et al. (1990b); Mullender et al. (1994); Lekszy-
cki and dell’Isola (2012)). In this way, we believe to be able to capture the most
important features of the bone adaptation process even if we are aware that it is
much more complex. The postulated evolution rule for the Lagrangian apparent
mass density is:

∂%∗

∂t
= A(S, ϕ) (5)

In the previous equation (5) on the RHS a function A appears. It is assumed to be
able to account for some phenomena which are of purely biological nature, some
mechanical interactions and some interactions involving mechanical and biological
couplings.

Indeed the rate of change of the mass density is postulated to be driven by the
biological stimulus, S. The stimulus is influenced by the osteocytes which respond
to the current mechanical configuration which they sense. The osteocytes produce
a source of biological stimulus which diffuses in the bone tissue. On the other
hand, the cells activated by the stimulus need to deposit on the internal surface
of the bone pores to start their action. It is indeed the specific available surface
of bone (Martin 1984) which is the place where the resorption or the synthesis of
bone tissue can occur. We assume that this specific available surface is determined
as a function of the current ‘effective’ porosity. With effective porosity we mean
the fraction of porosity which is indeed involved in the deposit of active cells and
is therefore really involved in the remodeling, growth and resorption, process.

It is clear that the effective architecture, at the lower scale, of the bone tissue,
is very relevant in the determination of specific surface available to cell deposit. In
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the literature, it is observed that there are, in bone tissue, different kinds of poros-
ity (Cowin 1999) and this classification is an important feature in the evolutionary
phenomenon in study. It has been, indeed, observed that namely osteoblasts and
osteoclasts, can be effectively activated only on some specific surfaces produced by
the inner porosity on the bone tissue: we refer, in particular to the inter-trabecular
surface (on saucer-shaped Howship’s lacunae (Clarke 2008)) when dealing with the
cancellous bone, to the Haversian canals or to the endosteal or periosteal surface
(inside the so-called ‘cutting cones’) for cortical bone (Harrison and Cooper 2015).

The most fundamental property to be accounted for is therefore exactly the
bone porosity, as it is exactly the presence of porosity which permits to the bone
tissue to be biologically active. Indeed not only the presence of porosity allows for
the possibility to deposit active cells but also it allows for the diffusion of the said
cells (or of their biological precursors) through the bone tissue so that they can be
activated where they are needed. Finally, porosity allows to the nutrition supply to
be made available where it is needed allowing for the building of the transporting
vascular network. For this reason, in the macroscopic model which we propose
here, a main role is attributed to the scalar field describing bone tissue porosity.
The previous considerations motivate the following choice for the structure of the
function A:

A(S, ϕ) = a(S)H(ϕ), (6)

In the previous equation (6) the function a(S) is designed to calculate, when the
current value of porosity allows such production, i.e. the production (or resorption)
rate of the bone mass density. For clear phenomenological reasons, it is assumed
to be a piece-wise linear function of the local, in space and time, value for the
biological stimulus.

On the other hand, the function H triggers said production rate, by supplying a
suitable weight term. Its role consists in allowing for the calculation of the specific
available deposit surface. In other words, the function H supplies, at the macro-
level, the needed geometric information from the microstructures architecture of
the bone tissue which is being remodeled. We assume that a specific regularity in
such architecture can be recognized so that the shape, and therefore the area, of
internal deposit surfaces, can be uniquely determined, for physiologic reasons and
for each kind of bone tissue, as a function of the current porosity.

To be more precise, we will assume that the function a(S) is given by the
formulas:

a(S) =


sb (S(X, t)− P s

ref
) for S(X, t) > P s

ref

0 for P r
ref

6 S(X, t) 6 P s
ref

rb (S(X, t)− P r
ref

) for S(X, t) < P r
ref

(7)

We believe that it is important, also in the simplified context of the model
which we present here, to introduce the concept of ‘lazy zone’ (see, e.g., Beaupre
et al. (1990a); Ruimerman et al. (2005); Giorgio et al. (2016)) as a factor which
influences the biological stimulus. Indeed it has been observed that there is an
interval in the values of biological stimulus in which the activation of osteoclasts
and osteoblasts does not occur. The feedback system active in bone remodeling
is, in a sense, stabilized by this lazy zone. There are situations in which the bone
tissue behaves as if it were well adapted to the external loads and therefore it has
not the tendency to change its structure.
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The lazy zone is an interval characterized by two thresholds P r
ref

and P s
ref

. The
first threshold is the relative to the resorption process and the second to bone
tissue synthesis. This interval characterizes the so-called homeostatic physiologic
equilibrium configuration for the bone tissue.

The constitutive parameters sb and rb can be possibly different one from the
other and represent respectively the synthesis rate and the resorption rate for
given bone tissue. It is not useless to remark that the equation governing the bone
mass production or resorption has a structure similar to the equation which is
governing the velocity of a phase interface in the theory of phase transition (see,
e.g., Abeyaratne and Knowles (2006); Berezovski et al. (2008); Engelbrecht and
Berezovski (2015); Eremeyev and Pietraszkiewicz (2009, 2011)). This circumstance
should not surprise too much, however, if one thinks at the deposit mechanism
of active cells which has been discussed before. Bone mass is growing exactly
because of an interface between calcified bone tissue and the other components
of bone tissue, those which fill its porosity space. To make our analysis more
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Fig. 2 The specific ‘effective’ surface function H(ϕ).

specific, we estimate heuristically, the function H by calculating the available
surface for a cellular square lattice, which is assumed to be able to represent
faithfully enough the bone trabecular pattern. The obtained results, using different
values of porosity (see for more details Giorgio et al. (2016)) are depicted in Fig. 2).
In conclusion, the function H must be postulated to give the specific ‘effective’
surface which plays a role in the remodeling process. For trabecular bone tissue, we
expect that the curve depicted in Fig. 2 reflects the effective geometrical situation
of bone microstructure. Remark that in the said figure there is a zone between the
vanishing porosity value and the porosity value from which the plotted function
has non-vanishing values. This interval of porosities refers to a bone tissue which
we can call ‘cortical bone’. The value of porosity for compact bone, ϕ = 0.166,
is based on experimental data (Martin 1984). For purely computational reasons
we will consider, for the cortical type of bone tissue a small and non-vanishing
positive value for the function H. This is needed for not inhibiting completely the
remodeling process when the trabecular bone becomes cortical.
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3.1 A generalization of a previous model in which stimulus did not diffuse

It is clear that the most important concept in our modeling procedure regards the
biological stimulus and the modalities in which it is produced starting from the
mechanical configuration of the bone tissue.

We start by recalling that it is widely accepted in the literature that the osteo-
cytes embedded in a given portion of bone tissue produce, as a response to mechan-
ical deformation, a signal. This signal, when it is received, activates osteoblasts
and osteoclasts. Of course, the signal can be received only in a neighborhood of the
osteocytes’ location. The questions arise: How is the signal triggered by mechani-
cal deformation? How far is traveling the signal? In which time interval does the
signal reach a certain target cell? Several possible simplifying assumptions have
been proposed to give an answer to these questions. Each of these set of assump-
tions produced a mathematical algorithm to be used for calculating the scalar
field modeling the biological stimulus. Some algorithms base their calculations on
the estimate of the value of deformation energy, others start from the comparison
of the current values for stress or strain with suitable effective values. In other
more sophisticated models, it is introduced a measure of bone tissue damage and
the signal production is related to this damage level (see for more insight on this
subject Prendergast and Taylor (1994); Hambli (2014); Hambli et al. (2015) and
also Placidi et al. (2018b,a); Placidi and Barchiesi (2018); Contrafatto and Cuomo
(2006); Cuomo et al. (2014)).

Simply for heuristic reasons, and being ready to generalize suitably the model,
we follow the choice made in Lekszycki and dell’Isola (2012). In that paper, the
stimulus has been represented, in an integral way, as a functional of the strain
energy density W . To be more precise the signal received by each actuator cell
is assumed to be the integral of all signals produced by the surrounding osteo-
cytes. Of course, ‘far’ osteocytes are assumed to have a lower influence than closer
osteocytes.

The functional used to calculate the perceived signal is therefore characterized
by two weight functions: i) the density of osteocytes, dOC (Lekszycki and dell’Isola
2012) and ii) and a function, K(X,Y , t, τ), which accounts for the influence of far
(in space and time) osteocytes on a given material particle of bone tissue.

The implicit assumptions accepted here are: i) the number of present osteocytes
is assumed to be proportional to their overall activity; ii) the functionK(X,Y , t, τ)
is sufficient to characterize the influence in space and time of each of the active
group of osteocytes.

The functional postulated for calculating the biological stimulus which is the
response to the mechanical deformation state is:

S(X, t) =

t∫
0

∫
V ∗

K(X,Y , t, τ)W (Y , τ)dOC(Y , τ) dY dτ, (8)

In this equation V ∗ is the volume occupied by the bone tissue in the chosen
reference configuration, t is the current time instant, τ is a dummy integral variable
denoting time, Y is the variable characterizing the location of considered signaling
cell and X is the location where the signal may be able to active osteoblasts or
osteoclasts.
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Mathematically speaking S is the result of a non-local interaction, of the kind
already studied by Piola (dell’Isola et al. 2015). This modeling procedure is some-
how standard and it is used in viscoelasticity and in the so-called non-local elastic-
ity. Of course, some further relations are needed to make our modeling algorithm
well-posed. There are some relationships among macro-fields which need to be
postulated as a consequence of some features of considered systems which can be
perceived only al lower scale. Refraining, once more, from any effort to introduce
any homogenization procedure we postulate some constitutive relations as follows.

The constitutive relation allowing for the calculation of the density of sensor
cells is assumed to be:

dOC = η (1− ϕ∗), 0 < η ≤ 1, (9)

In the last equation (9), η is a further constitutive parameter. As just formulated
constitutive equation assumes that the osteocytes are uniformly distributed in the
bone tissue, so that their number is proportional to the volume fraction occupied
by living bone tissue, the interpretation of the coefficient η is immediate. We
conjecture that each kind of bone tissue will be characterized by its own value of
this parameter.

If one assumes that there is an instantaneous transmission of the biological
signal, its algorithmic expression can be simplified. This assumption implies that
the transmission time scale can be neglected when compared with the character-
istic time of the whole bone tissue growth-resorption phenomenon. In the case of
instantaneous transmission the stimulus functional assumes the form:

S(X, t) =

∫
V ∗

k(X,Y )W (Y , t)dOC(Y , t) dY , (10)

In the last equation the weight function k(X,Y ) has not any explicit dependence
on time. It has to be a decreasing function of the distance between X and Y .
In the literature, one finds (Mullender et al. 1994; Lekszycki and dell’Isola 2012;
Andreaus et al. 2014a) at least two of such functions

k(X,Y ) = e−
‖X−Y ‖

D or k(X,Y ) = e−
‖X−Y ‖2

2D2 . (11)

The introduced D plays the role of a novel characteristic length-scale, which con-
trols the phenomena of signal perception.

It is now suggestive to notice that all the previously discussed influence func-
tions have a lot of similarities with the Green function for the heat equation, both
in their structure and in their properties.

4 A particular model of stimulus diffusion

The natural way for describing the process of exchange of signal from osteocytes to
the actuator cells is to consider that the signal is diffusing in the bone tissue and
that osteocytes excite the diffusion by means of the production of some source
of signal. Mathematically speaking this is equivalent to state that the integral
functional (8) or (10) must be replaced by the operator which solves a diffusive
evolution equation.
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This assumption has several advantages: i) its biomechanics and physiologi-
cal interpretation is immediate and can be related to the diffusion of chemical
species inside the bone tissue ii) from the computational point of view it allows
for immediate implementation of the model.

Indeed, in many standard and commercial FEM programs, many kinds of diffu-
sive PDEs are already implemented, while, on the contrary, very often the convolu-
tion integral formulation is avoided. Moreover, by accepting to formulate a known
evolutionary equation for biological stimulus it is easier to account for possible
surface effects and to implement the correct boundary conditions.

Again it is clear that we must consider the more useful Lagrangian description,
so that the following parabolic evolution equation for biological stimulus S is
postulated

∂S

∂t
= Div (κ∇S) + r + s, (12)

In the previous equation (12), κ is introduced as the permeability to the biological
stimulus of considered bone tissue. Remark that in general, due to the microstruc-
ture of considered tissue, it is, in general, a second-order tensor field.

Most important is the source term postulated in the previous parabolic equa-
tion for the biological stimulus. We assume that there is a driving force from which
the stimulus is originated. It is the source r which is assumed to depend on the cur-
rent mechanical deformation. We will choose in the sequel the following expression
for said source:

r = $(%∗)W (G), (13)

In the previous equation (13), we have introduced the weighting function $(%∗).
To this function, one has to attribute a role which is very similar to the role
plaid by the previously introduce coefficient dOC . More precisely to the function
$(%∗) must be attributed, continuing our parallel with the ideas from the theory
of control, the role of ‘measure of the efficiency of the sensor network’.
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Fig. 3 Efficiency function of the sensor network $(%∗).

In the numerical simulations which we present in this paper, the particular
form chosen for this efficiency function (see Fig. 3) is given by:

$(%∗) = arctan(ξ%∗)Hv(%∗), (14)
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The coefficient ξ is a signal-saturation constitutive parameter (Giorgio et al. 2017b).
The reason for which this assumption is made and the meaning of the further pa-
rameter is clear when one inspects Fig. 3. When a certain amount of sensor cells
is present, that is when a certain mass density of bone tissue is reached, then the
sensor network reaches its maximum efficiency. On the other hand, with fewer cells
(corresponding to less dense bone tissue) the produced signal fades. Useless to say:
there is no signal in the absence of sensing cells.

Remark also that in the previous equation (12) a sink term appears: it is a
field which models the action of metabolic tissue activity directed to resorb the
stimulus. A reasonable assumption for such sink term may be

s = −RSHv(S), (15)

The constant R controls the rate of stimulus resorption, while the Heaviside func-
tion Hv(·) starting from zero value has been introduced. Its presence is necessary
for reasons of mathematical consistency if one wants that the signal s remains
always negative.

In order to describe the physical meaning of the parameters introduced in the
Eqs. (13) and (15) it is possible to resort to an interpretation of the biological
phenomena at the cell scale, and then go back to the macroscopic level through a
homogenization process of averaging. In particular, regarding the source term of
the signal r in Eqs. (13)-(14), the signal formation was hypothesized to be modu-
lated by a weight function applied to the mechanical stimulus to account for the
influence of sensor cell density on signal efficiency. Specifically, it can be assumed
that in a situation of scarcity of sensor cells, the signal quality is poor, while as
soon as a certain critical density has more or less rapidly reached (rapidity is
modulated by the parameter ξ), the signal quality stabilizes at a constant value.
Regarding the sink term, s, in Eq. (15) it can be assumed that at the cellular level
the osteocytes, mechanically stimulated, secrete chemical, enzymatic, hormonal
and nutritive signals, the so-called ‘signaling factors’, that are released and trans-
mitted through the lacuno-canalicular system and reach the actuator cells. It can
be assumed that these signaling factors remain active for a certain time interval
even after the mechanical stimulus has ceased and are physiologically reabsorbed
(minus sign in Eq. (15)) in a finite amount of time. With reference to Eq. (15) the
parameter R, assumed to be constant for simplicity, was introduced to represent at
a macro scale the phenomena described above assuming a simple proportionality
between the sink and the stimulus. From the quantitative point of view, it can be
thought to identify the values of the parameters introduced in the Eqs. (13)-(15)
(ξ and R), evaluating, e.g. with reference to Fig. 5, the rapidity of formation of
the bone tissue and the value attained at equilibrium. The proposed model has
been designed with a focus on the possibility of tailoring experiments in which it is
possible to measure observable quantities (the apparent mass density of the bone
tissue) and then to identify the above parameters from the quantitative point of
view.

One can observe (observation by Cattaneo (1958)) that the diffusion equation
discussed up to now sees a signal which propagates with infinite speed. To obviate
to this difficulty, and therefore to introduce a finite signal speed propagation, one
can further modify Eq. (12). For instance, one could postulate for the evolution of
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signal the following PDE

t∗
∂2S

∂t2
+
∂S

∂t
= Div (κ∇S) + r + s, (16)

in which the characteristic wave time t∗ is introduced.
The proposed diffusion model can be surely improved and better adapted to

try to catch the features observed in bone tissues. Besides, the intrinsic discrete
nature of the sensor network system of the osteocytes present in remodeling bone
may require treatment similar to the one presented in Colangeli et al. (2016, 2017)
in the context of generalizing the diffusive part of presented model Allen-Cann
type equations may be of use: for the mathematical properties of this equations
see De Masi et al. (1995).

5 A model for growing bone tissues using concepts from
poromechanics

As already announced when introducing the Lagrangian field of variation of poros-
ity, in the previous section, we will adapt the standard conceptual framework used
in poromechanics to the present situation. As in every Lagrangian postulation of
mechanics has to be done, we start by postulating an expression of Lagrangian
elastic energy density. Our ansatz is the following: Lagrangian elastic energy W is
assumed to be a function of i) the Green-Lagrange strain tensor G, ii) the change
of porosity ζ, and iii) the considered material particleX (this assumption is needed
for accounting for possible inhomogeneities. In formula

W = W (G, ζ,X). (17)

The reader will remark that, as it is usually the case in continuum mechanics,
the postulated deformation energy is not an explicit function of time. On the other
hand, differently from what happens usually in standard continuum mechanics,
the Lagrangian mass density does evolve with time. However, differently to what
happens in the mass varying problems similar to those concerning rocket dynamics,
we can assume that the mass density variations are slow enough and therefore their
variations on inertial phenomena and on kinetic energy are negligible. Moreover, we
do not include any ‘kinetic energy’ effects related to the process of mass variations,
postponing to future investigations such considerations.

We will postulate and use a particular expression for the constitutive equa-
tion (17) being guided by the results available in the literature on porous mate-
rials. Indeed the bone, from the mechanical point of view, must be regarded as a
porous medium.

We remark that our aim here is to propose a model that, at macro-scale, is able
to describe in an average sense the mechano-transduction activity which drives the
remodeling process. Therefore, for the sake of simplicity, an isotropic expression
for deformation energy is assumed to be valid to avoid unneeded complexity in the
mechanical formulation (Cowin 1999). Indeed, some comparative studies between
isotropic and anisotropic modeling of bone show that the differences in the results
are sufficiently small and, as a first approximation, an isotropic model can be
adopted (Peng et al. 2006). We are aware that for a complete and exhaustive
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mechanical formulation an anisotropic model should be adopted but this choice
introduces only more details not much relevant at this stage of model development.
The strain-energy density which we conjecture has the following expression:

W (G, ζ,X) = µ tr
(
G2
)

+
λ

2
(tr G)2 +

1

2
Kc ζ

2 +
1

2
Knl (∇ζ)2 −Kcp ζ tr G, (18)

where we introduce a dependence of the Lamé moduli on Lagrangian porosity
Lekszycki and dell’Isola (2012):

µ = µ0

(
1− ϕ∗

)β
; λ = λ0

(
1− ϕ∗

)β
, (19)

In the previous formulas µ0, λ0 are assumed to be, in general, functions of X
in order to be able to account for non-homogeneous material. We recall from the
definition of porosity that, in the presence of only bone tissue, the volume fraction
occupied by living bone tissue is

%∗

%Max
=
(
1− ϕ∗

)
(20)

The interpretation of the quantity %Max is easy: it represents the maximum value
possible for bone density.

We have assumed (but this assumption can be easily relaxed) that the Lamé
moduli produce a constant Poisson ratio, ν. As a first approximation, in what
follows we set it to 0.3. On the other hand, the Young modulus is given by the
expression

Y = Y0
(
1− ϕ∗

)β
. (21)

Of course, the assumption of isotropic bone is not completely realistic, also
at the macro-scale which we have used for our modeling procedure. However, the
reader will agree that it is easy to generalize the previous constitutive assump-
tion to incorporate anisotropies. This generalization will be the subject of future
investigations.

In the paper Giorgio et al. (2016), it was proven that the value β = 2 is a
reasonable choice. Clearly, we will associate to Y0 the value of the Young modulus
as estimated for the compact bone. One has to remark that the power low (21)
has some bases in the literature: indeed it has been systematically used for the
formulation of the models for cellular solids, for instance, see Gibson and Ashby
(1997); Ashby et al. (2000).

Again basing our considerations on the results from poromechanics, it is pos-
sible to estimate the compressibility stiffness Kc as follows

Kc =

(
ϕ∗

Kf
+

(αB − ϕ∗)(1− αB)

Kdr

)−1

(22)

by considering the so-called drained bulk modulus of the porous bone matrix,

Kdr =
Y

3(1− 2ν)
, (23)

and the bulk modulus Kf of the fluid which may fill the pores, namely bone marrow
or interstitial fluid. The parameter αB ∈ [ϕ∗, 1] is what has been called Biot-Willis
coefficient.
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The parameterKnl in Eq. (18) is a modulus related to the non-local interactions
between neighboring pores and is assumed to be constant for the sake of simplicity.
It is worth noting that the term in Eq. (18) which takes into account the gradient of
the change of porosity allows us to also apply boundary conditions on the porosity
which otherwise are not sustainable. Some studies have been proposed to better
characterize the complex behavior of systems as bone tissue, see, e.g., Li et al.
(2019); Camar-Eddine and Seppecher (2001); Lekszycki et al. (2017); Misra and
Poorsolhjouy (2015); Abali et al. (2012); Chatzigeorgiou et al. (2014).

We assume that the coupling parameter Kcp related to the interaction between
the Green-Lagrange strain measure and the Lagrangian porosity is given by the
following expression

Kcp =
√
ĝ(ϕ∗)λKc (24)

In it the function ĝ(ϕ∗) is postulated to have the form

ĝ(ϕ∗) =
Ak3

π

{
atan

[
sk3

(
ϕ∗ − 1

2

)]
+ atan

(sk3

2

)}
(25)

where Ak3
∈ (0, 1] and sk3

are suitable extra material coefficients.
In order to get the parts of the governing equations which refers to specifically

mechanical principles for the considered continuum model, as we have argued
before, we accept that there are no inertial effects of relevance, when the loads are
applied to the bone tissue with a characteristic time scale which is the same as
the typical characteristic time of the remodeling process. We are therefore aware
of the fact that in the present model we cannot describe the growth phenomena,
induced by loads having some specific (relatively high) frequencies, which have
been observed in some clinical situations.

In order to be consistent with this assumption, we must consider applied to the
bone tissue only loads which are varying very slowly, so that one can be assured
that a quasi-static deformation process takes place.

By applying in the considered situation the Principle of Virtual Work we get
that the following variational equality

δWint + δWext = 0 (26)

holds for any regular subbody B included in the considered body.
Having specified the function which assigns the density of deformation energy,

the virtual work of internal interactions is given by the expression

δWint = −
∫
B
δW dV, (27)

Instead, the external virtual work, that is the work expended on virtual dis-
placements by the external loads, is given by

δWext =

∫
∂τB

τiδuidS +

∫
∂B
Ξ δζdS, (28)

In the last expression i) the symbol τi, represents the surface traction on the
boundary ∂τB: it expends work on the virtual displacement having components
ui, ii) the symbol Ξ, represents the micro-structural action which is associated
with the local dilatation of matrix pores: it expends work on the virtual change of
porosity ζ.
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6 Forecasting capabilities of considered models: targeted numerical
simulations

The aim of this section is to prove that the theoretical efforts presented in the
previous sections give some promising modeling possibilities. Indeed we have per-
formed some numerical simulations which deal with some representative academic
cases, which can be regarded as benchmarks for future investigations. We believe
to have concluded that the actual forecasting capacities of the introduced model
are very interesting. In particular, we deal with remodeling situations in which the
mechanical stimulus guides the process in a way that the results obtained via the
proposed diffusive model of the stimulus, Eq. (12), can be compared with the pre-
viously developed non-local instantaneous model, Eq. (10), from both qualitatively
and quantitatively point of view.

We start by the consideration of the remodeling process occurring to a rect-
angular specimen of bone tissue when it is subjected to some extension tests. We
treat the evolution process occurring in the presence of several different values of
the externally applied loads and explore the situations in which the deformation is
both uniform or non-uniform. These tests are inspired by the aim of simulating the
physiological behavior of a portion of bone tissue subjected to a load continuously
varying in time. Secondly, we consider a sample with a wide area characterized by
the absence of osteocytes, from which area no stimulus is originated. The assumed
situation could be referred to as partially necrotic tissue, and the consequent re-
modeling activity could be thought of as a healing process. Of course, the healing
stage is a very complex process involving angiogenesis into the diseased zone of
bone which is driven by a set of mechanobiological and biochemical factors. A
reliable model of angiogenesis effect on healing bone tissues has been already pro-
posed, e.g., by Lu and Lekszycki (2017), thus we analyzed only the following stages
after that this first preliminary step is completed.

As already announced before, it was possible to perform the numerical sim-
ulations by using, with few technical expedients, a commercial software: that is
COMSOL Multiphysics R©. As it is well known this software is based on the Finite
Element Method. There are no specific computing difficulties in treating the more
general three-dimensional evolution and remodeling problem. For making a first
interpretation of the novelties of the presented model we study here a simpler two-
dimensional problem. The geometry is very simple, also, and we refrained from
introducing any complex geometrical or mechanical feature. We want to be sure
that the first results which we obtain have a straightforward interpretation and
can be understood in a univocal way.

6.1 Physiological remodeling

The simulations deal with a rectangular specimen having aspect ratio 2:1. We
consider the constitutive parameters to be those of a cancellous bone. Since the
remodeling process is more active in cancellous bone than in cortical bone due
to wide availability of space (inter-trabecular porosity) and supply of nutrients
coming from bone marrows and blood vessels, we do choose to consider as the
initial state of our simulations the spongy tissue which provides a more complete
and exhaustive case to be analyzed. Due to the complexity of cancellous bone
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Table 1 Material parameters used in the numerical simulations.

Y0 %Max Kf Knl

17 GPa 1800 kg/m3 0.1Y0 1.7 × 105 N

sb rb Pref
s Pref

r

4.9 × 10−15 s/m2 6.13 × 10−15 s/m2 3.4 × 104 kN/m2 3.4 × 103 kN/m2

structure, the proposed macro-model is quite effective (being a coarse-grained
model) to predict the evolution of the bone mass density which may resolve also
in a cortical bone in presence of a sufficiently high level of deformations. The
specimen has a length L = 1 cm and its initial porosity is uniform and equal to
0.5. In table 1, we give the constitutive parameters which are used in the presented
simulations.

6.1.1 The remodeling resulting from a uniform loading

The first performed simulations considered those boundary conditions which are
needed to produce a uniform distribution of deformation energy along the whole
considered specimen. These conditions are: i) on the left short edge (see Fig. 4)
the longitudinal displacement is imposed to be zero, ii) the displacement of one
point of the same side is imposed to vanish (so that rigid motions are not allowed),
and iii) a spatially uniform load, which is also constant in time, is applied to the
right short edge so that an extension of the specimen is determined (see Fig. 4).

We remark again here that, in the present context, the fact that the load is
constant in time means simply that, in the considered class of phenomena, the
loads are varied ‘slowly’, when compared to the remodeling characteristic time.
Five different levels of externally applied loads were considered: the level of these
loads have been calibrated in order to estimate when the condition of homeostatic
equilibrium is already present with the initial considered bone configuration (see
the Fig. 5 and refer to the label ‘1’).

Other values of externally applied loads increased by a factor of 1.3 and 1.5
(reported on the labels in Fig. 5) induce growth phenomena which increase the
value of bone mass density in homeostatic equilibrium. Finally, to induce resorption
at homeostatic equilibrium it was considered a decrease in the applied force, by
multiplying the initially homeostatic force times a factor of 0.4 and 0.3 (values
again used as labels in Fig. 5). We report that the externally applied load to
assure that the initial configuration was already in a homeostatic state was FH =
3.1× 10−3 Y0 L.

Figure 5 is introduced to show how the bone apparent mass density evolves in
the bone material particle located at the geometrical center of the specimen. To
get the non-dimensional evolving value of the bone mass density we have used the
maximum value of bone mass density (%Max) as reference quantity while to get
non-dimensional time scale we have considered as characteristic time the period
of 200 days.

Obviously, the deformation energy density is uniform, in the considered in-
stance. Therefore also the biological stimulus as estimated with the equation (12)
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Fig. 4 Uniform extension test: a physiological case.

results to be uniform. In this elemental case, all the material points of the specimen
experience the same time evolution.

By inspection of the results obtained, as presented in the previously mentioned
plots, we can conclude that: 1) with increasing applied loads, the bone tissue mass
growth increases; 2) there is at least a specific value for the externally applied load
which leads to homeostatic equilibrium; 3) for values of the applied loads smaller
than the homeostatic load, the resorption increases with smaller loads; 4) the time
of approach towards the homeostatic equilibrium seems to be approximately the
same for all growth and all resorption processes. However, the resorption process
is surely slower than the growth process.

Subsequently, the same extension test for a growing bone tissue is simulated
with the model in which the stimulus is given with the nonlocal instantaneous
biomechanical interaction described in formula (10). In this last formula, the func-
tion k is postulated to have the structure specified in formula (11)2 and the char-
acteristic signal influence range is assumed to have the value D = 0.1L. In Fig. 6
one finds the obtained results for the spatial average of the apparent bone mass
density in the case in which the considered extension test is performed with the
same settings as in the previously presented numerical simulations which concern
the stimulus diffusive model. Indeed, the distribution of the biological stimulus
with the instantaneous model is not uniform for the presence of significant bound-
ary effects despite the uniformity of the deformation energy density. This lack of
uniformity for the stimulus entails an evolution of the bone mass density which
is not uniform over the sample. Figures 7 and 8 show indeed the distribution of
the bone mass density at the end of the simulation and the time history of the
maximum and minimum values of it, respectively. In Fig. 7 the distribution related
to the homeostatic value of the load FH has been dropped out because the bone
tissue remains in the homeostatic state without any evolution.

The reasoned comparison of Figs. 5 and 6, leads to conclude that the predicted
evolutions, with the two models, are rather different and different is also the final
product of the evolutionary growth/resorption processes.

Indeed, in the case of the instantaneous signal model, the final structure of
remodeled bone represents a non-uniform homeostatic equilibrium condition. On
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the other hand in the diffusive model for stimulus propagation, we observe that
different levels of porosity are finally reached when different are the values of the
applied loads. This feature of diffusive stimulus model is rather promising, as it
seems to be able to describe the observed experimental evidence.

In the instantaneous nonlocal stimulus model the final consequence of the dif-
ference in the values of the applied loads is a difference in the characteristic time
needed for reaching homeostatic equilibrium: if the loads are more intense this
time becomes shorter, and the remodeling process is faster at least for the loads
larger than the homeostatic value. We also note that the boundary condition iv)
for the diffusive model (see before) allows for the uniformity of growth and defor-
mation processes, while in the nonlocal instantaneous stimulus model, because of
some obvious border effects (related to the nature of the integral operator used
for calculating the stimulus), the calculated stimulus, and as a consequence the
evolving bone mass density, elastic stiffnesses, and deformation fields, are not uni-
form. This circumstance does not seem to be related to any physiological situation
and requires an ad hoc correction of the integral functional to be used close to
the specimen boundaries (for more details the reader is referred to Giorgio et al.
(2016)).

It has to be remarked, also, that the properties of remodeled bone tissues as
predicted with the use of the diffusive stimulus model seem to be more consis-
tent with the experimentally observed porosity distributions in physiological and
pathological bone tissues, at least from a qualitative point of view.

In this context it is worth to recall one of the so-called rules for bone adapta-
tion: Turner (1998): “Bone cells accommodate to a customary mechanical loading
environment, making them less responsive to routine loading signals”. The diffu-
sive stimulus model, by including the metabolical resorption of stimulus and its
removal by diffusion from the region in which it was originated, seems able to pre-
dict the aforementioned rule: indeed, as already observed before (see Fig. 5), in the
diffusive model the remodeling process, in presence of a continuously applied load,
tends to be less and less responsive when the application interval of time becomes
greater and greater. Indeed when the stimulus is outside the lazy zone the diffusive
model manages to predict the existence of different bone densities under different
load values, always reaching a homeostatic equilibrium state. When the lazy zone
reduces to a point, the diffusive stimulus model still allows for the prediction of
the bone tissue tendency to homeostatic equilibrium, a tendency which is widely
proven experimentally.

Instead, the instantaneous nonlocal stimulus model leads to a different predic-
tion: when one simulates with it the remodeling tissue process in the presence of a
constant load, which produces a stimulus outside the lazy zone, it seems that the
final produced tissue exhibits a trend, at the local level, towards the attainment
of only two values for the field of porosity (as indeed confirmed by the findings of
Mullender and Huiskes (1995)): i) that characteristic of cortical bone, ii) that for
which the bone is completely resorbed (void volume fraction equal to 1). In the
instantaneous nonlocal stimulus model, one can attain a homeostatic equilibrium
state only with loads producing signals inside the lazy zone. Moreover when the
lazy zone reduces to a point then the only two homeostatic equilibria predicted
by the instantaneous nonlocal stimulus model are the cortical bone and the ab-
sence of bone. It seems to us that to induce homeostatic equilibrium by triggering
the thresholds and the width of the lazy zone for the signal is rather artificial.
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We, therefore, believe that the instantaneous stimulus model shows some relevant
limitations in its predictive capacities.
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Fig. 5 Time history of the apparent bone mass density at the center of the sample with the
diffusive model of the stimulus.
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Fig. 6 Time history of the average apparent bone mass density with the nonlocal instanta-
neous model of stimulus under uniform tension load.
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a) b)

c) d)

Fig. 7 Normalized mass density for the nonlocal instantaneous model of stimulus under uni-
form tension load at the end of simulation: a) 1.5FH ; b) 1.3FH ; c) 0.4FH ; d) 0.3FH .
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Fig. 8 Time history of the apparent bone mass density with the nonlocal instantaneous model
of stimulus under uniform tension load: a) minimum value; b) maximum value.

6.1.2 The remodeling induced by a non-uniform tension test

In physiological situations, bone tissues are often subject to loads which produce
non-uniform space distributions of the deformation energy density. To test the
performance of the diffusive stimulus model we have simulated the effect on the
bone growth process of some applied loads whose density varies linearly as shown
in Fig. 9. The maximum amplitude of the force is assumed to be FH = 4.51 ×
10−3 Y0 L. The other features of considered specimens are exactly the same as in
the already treated uniform extension test. We start by showing in Fig. 10 the
values for the biological stimulus when the modeling process begins. As it was
expected, the stimulus values vary inside the specimen being influenced by those
of the deformation energy density. This influence is mainly governed by the field of
permeability coefficient κ. In fact, this is the parameter which controls the speed
at which the diffusion process occurs. Of course, if the permeability is modeled
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with a tensor quantity, by generalizing the assumption of isotropic diffusion, then
its values will determine also the directions of stimulus propagation.

To be more precise: if the value of κ is very large then the transient regime
related to the stimulus diffusion is too short and, as a consequence, the scalar field
describing the biological stimulus becomes quickly uniform in space. This seems
against the experimental evidence (see Cowin (2001)). Therefore the choice of the
values for the permeability κ has to be performed using a careful fitting procedure.
The global properties of the remodeled bone and the process of approaching the
homeostatic equilibrium, as predicted by the diffusive stimulus model, depend in a
very sensitive way on permeability! The performed fitting process which produced
the simulations described in this section led to the identification, for the physical
and biological characteristic values for the specimens used in this paper, of the
following value κ = 1.0 × 10−4L2/tref. This value has been checked to be that
which allows for the description of a phenomenon often observed in real clinical
cases: the non-uniform initial bone mass distribution and initial deformation en-
ergy distribution affect greatly the final homeostatic equilibrium attained and the
whole time-dependent process of bone remodeling.

The just described effect is proven by our numerical simulations and in par-
ticular by Fig. 11 and Fig. 12. In them i) two probe points in the specimen are
chosen and the time history of their mass density is shown; ii) the mass density
distribution in the specimen is shown in two important time instants: that is in an
intermediate stage of remodeling (occurring after 2 days) and the final one (after
200 days).

Fig. 9 Non-uniform extension test: a physiological case.

Also in this case study, we perform numerical simulations with the nonlocal
instantaneous model of stimulus. In this case, the maximum amplitude of the
linearly varying force (see Fig. 9) is increased to FH = 1.64× 10−2 Y0 L to obtain
an evolution showing a bone growth similar to the previously examined model.
The previous value of the force results in a homeostatic value. Figure 13 exhibits
the distribution of the biological stimulus with the nonlocal instantaneous model.
It is quite different from the diffusive model for the presence of boundary effects
directly related to the integral formulation of the stimulus. Hence, in this regard,
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Fig. 10 Biological stimulus at the beginning of the non-uniform tension test with the diffusive
model of the stimulus.
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Fig. 11 Time history of the apparent bone mass density in two probe points located at the
center Pb1 and near a long side of the sample Pb2 for the non-uniform tension test with the
diffusive model of the stimulus. The normalized time is represented in logarithmic scale.

similar considerations can be made like in the previous tests. Figs. 14 and 15
show, respectively, the evolution of the apparent bone mass density in the two
probe points Pb1 and Pb2 and the normalized mass density in an intermediate
and the final stage of the evolution. Also, in this case, the time history is very
different for the two considered models. The only qualitative similarity with the
diffusive model here is the presence of cortical bone tissue near the verges due to
the distribution of the external load.
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a) b)

Fig. 12 Normalized mass density in non-uniform tension test with the diffusive model of the
stimulus. a) intermediate stage; b) final stage.

Fig. 13 Biological stimulus at the beginning of the non-uniform tension test with the nonlocal
instantaneous model of stimulus.

6.2 Obtained predictions in a healing process

We consider here a specimen characterized exactly by the same biomechanics pa-
rameters as done in the previous examples, thus we assume that it is constituted,
in the initial state, by cancellous bone. We assume that the externally applied
loads are inducing, in the initial configuration of the bone, a uniform deformation
and that the initial porosity field is constant in space and its value equals 0.5.
Moreover, we assume that some injury, or a disease or some medical treatment
has killed all the osteocytes in the right portion of the specimen (see Fig. 16).
This is what one could call a model for a necrotized area of the cancellous bone.
In our modeling process this biomechanical case is represented by assuming that
the initial value of the stimulus S, is vanishing in the necrotized area and that,
in the initial bone tissue configuration, the source of the biological signal in the
right portion of the specimen has initially become zero. During the process of
remodeling, the biological activity activates the remodeling evolution also in the
necrotic area. This means that the function $(%∗) which models the biological
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Fig. 14 Time history of the apparent bone mass density in two probe points located at the
center Pb1 and near a long side of the sample Pb2 for the non-uniform tension test with the
nonlocal instantaneous model of stimulus. The normalized time is represented in logarithmic
scale.

a) b)

Fig. 15 Normalized mass density in non-uniform tension test with the nonlocal instantaneous
model of stimulus. a) intermediate stage; b) final stage.

action of the osteocytes, is initially equal to zero and becomes non-vanishing only
when new bone tissue is synthesized: indeed only with the production of newly
built bone tissue new active osteocytes are formed and are active. In the numerical
simulations presented in this section, the intensity of the externally applied load
is assumed to be equal to 5.5× 10−3 Y0L.

The results of the simulations we have conceived for predicting the effects of
the healing process subsequent to necrosis by using the diffusive stimulus model
are described in Fig. 17. In it, one finds plotted the predicted distribution of the
apparent mass density in the bone being remodeled in four different time instants.
We believe that they are representative of the main stages of the remodeling pro-
cess which is being modeled here. In the initial configuration, the bone is assumed
to have a uniform distribution of porosity: as already said this constant value is
assumed to be equal to 0.5. In the first stage of the evolution, the bone subject
to remodeling is characterized by a biological activity starting in the healthy area
in which bone tissue growth occurs. In the two subsequent stages of evolution,
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Fig. 16 Set-up of the healing process under the extension test.

one can observe the synthesis of newly formed bone in the bone region where at
the initial stage the necrotic area was present. The synthesis of bone tissue in the
previously necrotic area is followed by the formation of osteocytes (which are a
biological evolution of osteoblasts), which start to colonize it. In the last stage,
one can observe a bone tissue specimen characterized by a uniform porosity field
and whose physiological functionality is completely re-established.

Being completely aware of the fact that the considered evolution is simply
exemplary of the potential performance of the introduced model we can, however,
conclude that the presented results show without any doubt that it is able to model
the observed non-localized effects of the biological stimulus on bone reconstruction.
This point must be stressed: many simplified models presented in the literature are
not capable to describe the onset of new bone tissue in a necrotized area, which,
however, is observed experimentally. In said simplified models, which have indeed
many merits, necrotic areas are predicted to remain in their state, as the stimulus
is assumed to remain where it was produced. On the contrary, when using the
models presented in this paper, while at the initial stage of the remodeling process
the necrotic area cannot evolve towards any other biomechanical configuration,
in the subsequent evolutionary stages the biological signal which is produced by
the osteocytes present in the living tissues does diffuse in the initially necrotic
area. The presence of this signal in a tissue having the appropriate porosity (i.e.
the porosity which allows for the penetration of the precursor cells which can
evolve into osteoblasts and osteoclasts and which allows for their deposit in the
internal bone tissue surfaces) will start the biological activity needed to regenerate
necrotic bone tissue. This regeneration will be operated by osteoclasts, with their
action of necrotized bone tissue removal, and by osteoblasts, whose action rebuilt
healthy bone tissue. Of course, in this preliminary stage, in our model we assume
that there is the possibility to transport nutrients in the necrotized area: we are
aware of the fact that a theoretical effort is needed to describe also this aspect
of considered phenomena. Indeed in the present model, we neglect effects related
to a transient phase, considering a constant and continuous supply of nutrients
and that the process of cells migration has been already completed. However, a
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a) b)

c) d)

Fig. 17 Normalized mass density. a) initial stage; b) bone growth in the healthy zone; c)
growth of new bone in the necrotic zone; d) final stage.

possible generalization of the biological aspects may include the effects of nutrient
concentration, e.g., oxygen, and glucose (as the most important factors for cell
survival) and the migration of actor cells, as described in George et al. (2018a).

7 Conclusions and perspectives

This paper is dedicated to the preliminary study of the potential descriptive capac-
ities of a novel diffusive stimulus model aimed to describe the remodeling process
in bone tissues. We have compared this novel model with a previously introduced
one (see Lekszycki and dell’Isola (2012)), in which the biological stimulus, which
already had a non-local nature, is instantaneously perceived in the neighborhood
of the site of its production. The biological stimulus, indeed, plays a relevant role
in the feedback control process governing bone remodeling and the problem of
modeling its generation, its transmission, and its effects is of great relevance.

We are aware of the complex nature of all phenomena occurring in the bone re-
modeling process. There are, most likely, many different concurring biomechanical
processes which occur at different length scales and which determine the macro-
scopic behavior of bone tissues. We are not surprised by observing this complexity:
indeed vertebrates were evolved about 525 million years ago. The synthesis of bone
tissue caused, most likely, the Cambrian species explosion, which consists, in prac-
tice, in the enormous organism diversity which is observed nowadays on Earth.
The subphylum Vertebrata consists of at least 69,276 species (those which are
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presently described). In 525 million years evolution could try several methods for
controlling bone growth and, most likely, many of these mechanisms currently co-
exist in living bone tissues. Again one should not be surprised if i) many different
micro-scale feedback growth control systems are being described in the literature
ii) a macroscopic simplified description of all of them is possible. Together with
Darwin we share the belief that evolution may produce the coexistence of different
organs and biological mechanisms collaborating synergistically for a common aim.

In the described spirit we discuss in this paper to model, at a suitably large
scale, the transmission of biological stimulus in bone tissue as a phenomenon oc-
curring in space-time. For the sake of simplicity, we use the standard diffusion
equation: i.e. the equation which is sometimes called Fourier’s equation for the
heat or Fick’s equation for the concentration of chemical species in a fluid. We are
aware of the debate concerning the physical plausibility of this equation: we will
explore in the future if the correction proposed by Cattaneo to Fourier equation
can have a biological application in the present context.

Here we remark that, obviously, the integral formulation introduced in the
previous papers (see Lekszycki and dell’Isola (2012); Giorgio et al. (2016)) can
be easily generalized to include the case treated here: it is sufficient to introduce
there a suitable time-dependent Green’s function. Another important step in our
modeling procedure was to assume that i) the generation of stimulus is controlled
(we repeat once more: at macroscopic level!) by the deformation energy density,
ii) the stimulus resorption is determined by a standard decay process. The most
important feature of the novel model introduced consists in the introduction of a
‘characteristic time’ which governs the time needed to the stimulus to travel inside
the bone tissue before being resorbed. Both the present model and that used in
Lekszycki and dell’Isola (2012); Giorgio et al. (2016) are non-local: however, the
model introduced in the just cited papers neglect the (obviously important) time
delay occurring between the signal (stimulus generation) and the action which
is determined by it. Obviously, also the range of validity of the novel proposed
model is limited. This range is defined by the assumed hypotheses which can
be summarized as follows. From a purely mechanical point of view, bone tissue
is represented as a micro-structured medium whose behavior is assumed to be
isotropic, non-linear elastic, and viscous. In the framework of poroelastic materials,
the additional kinematical descriptor of the microstructure is the change of the
effective volume of the fluid content per unit volume. From a biological point of
view, the stimulus is evaluated at a macro scale without formulating explicitly
its dependence on the signaling factors which act at a micro level. As a result,
the stimulus is assumed to be depended on a scalar quantity as the strain energy
density which averagely represents the effects of phenomena (e.g. velocity of fluid
flow at the lacuno-canalicular system, damage due to fatigue and micro-cracks
onset etc.) at small scales. Moreover, the spatial density of sensor cells is assumed
to be proportional to the apparent mass density of bone tissue; the spatial density
of actor cells depends on the porosity of bone tissue according to the parabola-
like law (see Fig. 2). Finally, biological migration is neglected during mass density
evolution of bone.

In this article, the most relevant point of novelty consists in describing the
transmission of the stimulus in a non-local time-delayed way by a diffusion model
in which the stimulus evolves according to a differential equation conceived to
match its behavior as observed at a macro scale. Then this new model is com-
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pared with a previously developed non-local model of the stimulus. In this former
description, the stimulus is defined through a convolution integral extended to the
whole domain and it is assumed to be instantaneously transmitted. In the new
formulation, instead, the diffusion differential equation allows taking into account
the time delay due to the diffusion of the stimulus. A further point of novelty of
this work lies in the development of a model that is also able to take into account
the permanence of the signal even after the cessation of the stimulus for a limited
period of time (Sims and Martin 2014; Crane and Cao 2014) due to the presence
of the sink term (reabsorption of the signal) in the diffusion Eq. (12) according to
the definition of Eq. (15).

To make our modeling analysis more explicit and in order to show the per-
formance of the introduced model, we considered some specific study cases. 1) A
remodeling process in a physiological situation: in this process, a specimen of bone
tissue is subject to different external loads determining its extension. 2) A healing
process, in which a specimen of bone tissue partially necrotic in a large area is
loaded with a mechanical load. In the introduced model the necrosis is described
by assuming that the generation of stimulus is blocked. Mathematically this is im-
plemented by assuming that in the source term of the postulated diffusion equation
for biological stimulus a coefficient depending on osteocyte concentration appears.
This coefficient is assumed to vanish when osteocytes are absent. In a healthy
bone a mechanically active material particle is also biologically active because of
its ‘equipment’ of osteocytes: in this situation, it can produce a source of stimu-
lus. We assume that this source of stimulus is proportional to the local density of
deformation energy measured. In this first stage of our investigations, we wanted
to avoid the introduction of complicated further evolution equations. We expect
that such a more sophisticated model may be needed to describe carefully enough
clinical cases. However, we want to build our model step by step by checking its
performance and by initiating a scientific debate. Therefore presently and for the
presented numerical simulations we conjecture that the density of osteocytes can
be assumed to be proportional to the bone density, in the physiological case. Necro-
sis, in this context, has to be described by a total absence of biological stimulus
source.

A necessary condition for having postulated a model whose true applicability
can be assessed consists in its capacity to describe: i) physiological remodeling
processes, including the attainment of homeostatic equilibrium ii) regeneration of
necrotic tissues, which are in contact with living bone tissues.

To verify such necessary condition we have considered, at first, a bone sam-
ple in the physiological case and in a uniform tension test: different values of the
load are applied and different evolutions of the bone mass density field are simu-
lated. The obtained numerical results demonstrate that for uniform tension tests:
i) in a suitable range of values of the external loads, they produce a physiological
homeostatic equilibrium for bone tissues having a certain porosity, ii) for external
loads having greater values than those in the previously determined range one can
observe the growth of cancellous bone, iii) for lower load values one observes re-
sorption. As a second test we have considered a non-uniform load: more specifically
we have considered a linear distribution of the externally applied mechanical load.
We have observed a consequent non-uniform evolution of the bone mass density:
it is dictated by and parallels the calculated field of the deformation energy den-
sity in all the subsequent equilibrium configurations calculated in the evolutionary



On mechanically driven biological stimulus for bone remodeling 35

process. Finally, we have simulated the healing process after necrosis. The results
which we have obtained in these simulations are very promising and indicate, in
our opinion, that the proposed model deserves to be further developed. Indeed
the numerical results provide a prediction for the bone mass density evolution
which is qualitatively very close to what has been experimentally observed. In our
numerical simulations we have clearly distinguished three characteristic growth
and remodeling stages: i) initially the bone tissue is remodeled in the healthy zone
only and a biological stimulus is produced there; ii) subsequently a new bone tissue
starts to be synthesized in the necrotic zone (where the osteocytes are supposed to
be initially not active, i.e. either absent or died and where the present not living
part of the bone tissue supplies, however, the mechanical support to remodeling
process); iii) finally, the whole specimen of bone tissue acquires again its full func-
tionality: indeed after the formation of new bone tissue, new osteocytes colonize
anew what had been a necrotic tissue.

We can, therefore, conclude that the behavior of the proposed model does
mimic indeed, from a qualitative point of view, the actual remodeling process
which can be observed in living bone tissue. Moreover, the introduced model does
explain the coexistence of different levels of bone porosity with different externally
applied load. In the immediate future, we plan to try to get a deeper insight in the
bone remodeling process by studying the most efficient tuning of the introduced
physiological parameters to get some quantitative coincidence with experimental
evidence. Indeed, while the selected results are fully demonstrating the potentiality
of the proposed diffusive model, it is clear that its further validation is necessary.
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