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Preface 

It is my hope that the results of the work presented in this doctoral thesis will contribute 

to further increase the awareness of the necessity to investigate the microclimate in 

buildings which preserve works of art. This is truly important in the field of preventive 

conservation, since the understanding of the interactions between indoor climate 

parameters and objects plays a fundamental role in order to avoid any kind of restoration 

and guarantee a longer and safer life to the objects. Indeed, it allows reducing the issues 

associated with degradation phenomena, leading to a better management of the indoor 

environment in relation with the conservation of artefacts and the wellbeing of the users 

of these buildings. Furthermore, I hope that the results will contribute to the definition 

of more sustainable buildings, both modern and historic, with due regard for cultural 

heritage conservation. 

In 2015, I started my PhD research with the challenging task to combine the topics of 

microclimate and whole building dynamic simulation as an efficient approach in the 

field of preventive conservation. The possibility of investigating the microclimate within 

buildings which preserve cultural heritage, which was the main topic of my bachelor 

and master theses, encouraged me to decide to spend other three years on this research. 

I would also add that three years are not yet enough to have a complete overview and 

understanding of the topic. 

During these three years, I have learnt how to be an independent young researcher. I set 

the on-site measurements of indoor climate at the “Museo Archelogico di Priverno” as 

scientific participant within the multidisciplinary project “Preservation, Conservation 

and valorisation of archaeological sites: the case of ancient site of Privernum” funded by 

Sapienza University of Rome in 2015. In addition, I supervised the microclimate 

monitoring systems installed at the “Museo delle Origini” belonging to the Sapienza 

“Polo museale” and at “Villa Blanc”, one of headquarters of the LUISS Carlo Guidi 

University. My research activities were appreciated by Sapienza University of Rome, 

that funded my visiting stay at the Department Hygrothermics of the Fraunhofer 

Institute for Building Physics and my participation as speaker at the “7th International 

Building Physics Conference, Syracuse (NY, USA) September 23-26, 2018 (IBPC 2018)”. 

Moreover, I was co-advisor of two bachelor theses and one master thesis concerning the 

data mining of indoor climate in different buildings which preserve works of art. In 

addition, I was also co-supervisor of two bachelor theses in Atmospheric Sciences within 

the Erasmus exchange with the Leibniz Universität Hannover. 

It has been a great opportunity to conduct this research and I feel to dedicate some 

sincere words to whom smartly guided this last important academic path, always 

leaving me the full control of my research activities. 

I would like to thank my advisor Dr Anna Maria Siani (my mentor), professor at 

Sapienza University of Rome – Department of Physics, who trusted in me from the first 

time and shared her working space and knowledges with me far beyond the 

microclimate topics. These few words will never be enough to express my gratitude. 
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I am grateful to my co-advisor Dr Cristina Cornaro, professor at the University of Rome 

“Tor Vergata” – Department of Enterprise Engineering, who believed both in this project 

and in me, even though my academic background was different from her expertise. 

No words can describe how much I appreciate the truth placed in me. Thank you! Thank 

you all for your support and advice! 

I would also like to thank PhD Massimiliano Pedone, PhD Giuseppe Rocco Casale, prof 

Alfredo Colosimo and prof Eugenio Fazio for sharing their expertise with me. Special 

thank goes to prof Dario Camuffo for the interesting and precious courses on 

microclimate in Milan, Padua, Venice and Rome (Italy). I express also my gratitude to 

Dr Florian Antretter and all the other colleagues at the Fraunhofer Institute for Building 

Physics, Holzikirchen (Germany), for their hospitality and fruitful discussions during 

my research stay in the spring of 2017. Thank you all. 

Then, I would also like to thank the external reviewers, Prof. Targo Kalamees (Tallinn 

University of Technology, School of Engineering: Department of Civil Engineering and 

Architecture) and PhD Marcin Strojecki (Jerzy Haber Institute of Catalysis and Surface 

Chemistry, Polish Academy of Sciences), for their constructive comments and 

suggestions, that allowed improving the quality of my dissertation. 

Finally, I would like to thank Prof. Giovanni Battista Andreozzi, coordinator of my 

Doctoral school (Scuola di dottorato "Vito Volterra" in Scienze Astronomiche, Chimiche, 

Fisiche, Matematiche e della Terra) and all the members of the Ph.D. committee for their 

constructive suggestions and for the several scientific activities planned over the year. 

 

I grew up in a home filled with curiosity. My parents have always encouraged me to 

learn beyond the limits and to fix my problems with my own strength. Thank you, mom 

and dad, you supported me every time in your unique way. 

Finally, my beloved Alex, thank you for being here and for making my life such fun and 

so complete! Thank you for your patience when I am discouraged, even pathetic, and 

when I am not able to fight my demons. 

 

Francesca Frasca 
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Abstract 

The preventive conservation consists in all activities that allow to mitigate the 

degradation of cultural heritage. Among these activities, the study of environmental 

conditions is crucial to assess the degradation process as well as to manage and preserve 

the cultural heritage. The ageing of an object and the alteration of chemical-physical 

properties are activated and controlled, directly and indirectly, by the microclimate and 

its fluctuations. Any departure from the microclimate, especially the relative humidity 

(RH), that has promoted the conservation of an object (historical climate) might be 

harmful to its future preservation. For this reason, conservation scientists focus on 

methodologies able to reduce, predict and prevent the degradation. Combining 

experimental and modelling approaches in studies of indoor climate proves to be 

effective (a) to diagnose key factors that determine the microclimate and (b) to predict 

its dynamic behaviour if boundary conditions change. However, the efficacy of the 

building dynamic simulation strongly depends on the accuracy of the building model, 

that should derive both short- and long-term fluctuations of the indoor climate variables, 

especially those concerning RH, which is, besides, complex to simulate due to its 

dependence on many factors. Consequently, the use of dynamic simulation can be 

effective only when the relative humidity is accurately measured, analysed and 

modelled. 

This thesis addresses a very important timely topic in the preventive conservation 

providing a strategy in the control and management of the indoor climate within historic 

buildings which house permanent collections. To achieve this purpose, the research 

focused on combining experimental and dynamic simulation studies. Particular 

attention was paid to moisture modelling as well as to the moisture-induced damage in 

hygroscopic materials. There were four main reasons to have prompted this research: (1) 

providing an objective assessment about the quality of indoor climate measurements; (2) 

developing a damage function specific for mechanical degradation; (3) extending the 

features of a commercial building dynamic simulation software with a one-dimensional 

heat and moisture transfer model; (4) easing the set-up of the building model using 

hourly climate variables instead of energy data. The issues (3) and (4) were needed for 

using the dynamic simulation as a diagnostic tool. The issue (2) was needed for 

extending the use of simulation from a diagnostic tool to a predictive tool. The 

methodology proposed by this research consists of three steps: (i) microclimate 

monitoring and its characterization for conservation risk assessment based on dose-

response model; (ii) creation of a building model and its calibration; (iii) use of calibrated 

building and dose-response models to predict the microclimate evolution after a new 

strategy of microclimate control. The specific purposes were achieved using different 

case studies and the whole strategy (i.e. the general purpose) was successfully exploited 

in the case of “Archaeological Museum of Priverno”, which might be defined as the pilot 

case study. 

The combination of indoor climate measurements jointly with the dynamic simulation 

has demonstrated to be a powerful tool to assess a climate control solution within 
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historic buildings. The proposed approach results to be completely non-invasive, non-

destructive and with zero-costs in terms materials. Indeed, the conservative quality of 

the exhibition spaces after modification of the indoor climate is directly assessed in the 

simulation environment. In this way, outcomes can support advantageously decision-

making for a better control and management of the exhibition environment. 

 

Riassunto 

La conservazione preventiva consiste in tutte quelle attività che consentono di mitigare 

il degrado dei Beni Culturali. Tra queste attività, lo studio delle condizioni ambientali è 

fondamentale per valutare il processo di degrado così come per gestire e tutelare il 

patrimonio culturale. L’invecchiamento di un oggetto e l’alterazione delle sue proprietà 

chimico-fisiche e strutturali sono processi innescati e regolati in modo diretto e indiretto 

dal microclima e dalle sue fluttuazioni. Qualsiasi allontanamento dalle condizioni 

ambientali, in particolar modo dall’umidità relativa (UR), che ha favorito la 

conservazione del manufatto fino a oggi (clima storico), potrebbe essere deleterio alla 

sua futura tutela. Per questo motivo, l’interesse dei conservatori scientifici è rivolto a 

trovare metodologie di studio che consentano di rallentare, prevedere e prevenire il 

degrado. La combinazione di misure sperimentali e simulazione dinamica del clima 

interno risulta efficace (a) a diagnosticare le cause che determinano il microclima e (B) a 

prevedere il suo comportamento in caso di modifiche delle condizioni a contorno. 

Tuttavia, l’efficacia della simulazione dinamica degli edifici dipende fortemente 

dall’accuratezza del modello di edificio, che dovrebbe esser in grado di derivare le 

fluttuazioni a medio e lungo termine, in particolar modo quelle di UR, che è complessa 

da simulare a causa della sua dipendenza da molti fattori. Di conseguenza, l’uso della 

simulazione dinamica può essere efficace solo quando l’umidità relativa è misurata, 

analizzata e modellata accuratamente. 

Questa tesi affronta un argomento molto importante nel campo della conservazione 

preventiva, fornendo una strategia per il controllo e la gestione del microclima 

all’interno di edifici storici che ospitano collezioni permanenti. Per raggiungere questo 

obiettivo, la ricerca si è focalizzata sull’uso combinato di studi sperimentali e di 

simulazione dinamica. Particolare attenzione è stata indirizzata alla modellazione 

dell’umidità così come ai fenomeni di degrado meccanico indotti dall’umidità nei 

materiali igroscopici. Esistevano quattro ragioni per condurre questa ricercar: (1) fornire 

una valutazione oggettiva circa la qualità delle misure microclimatiche; (2) sviluppare 

una funzione di danno specifica per il degrado meccanico; (3) estendere le caratteristiche 

di una software commerciale di simulazione dinamica degli edifici con un modello 

monodimensionale di trasferimento simultaneo di calore e vapore attraverso le pareti; 

(4) facilitare il settaggio dei parametri necessari alla costruzione del modello di edificio 

a partire dai dati orari di temperatura e umidità relativa. I punti (3) e (4) erano necessaria 

per usare la simulazione dinamica come uno strumento diagnostico. Il punto (2) era 

necessario per estendere l’uso della simulazione anche a strumento prognostico. La 
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metodologia proposta da questa ricerca consiste di tre fasi: (i) monitoraggio 

microclimatico e sua caratterizzazione per la valutazione del rischio di degrado basata 

un modello dose-risposta; (ii) creazione del modello di edificio e sua taratura; (iii) uso 

dei modelli tarati di edificio e di degrado per prevedere l’evoluzione del microclima 

dopo una nuova strategia di controllo microclimatico. Gli obiettivi specifici 

precedentemente elencati sono stati raggiunti usando differenti casi studio, mentre 

l’intera metodologia è stata applicata con successo al Museo Archeologico di Priverno 

che potrebbe essere definito come caso studio pilota. 

La combinazione di misure microclimatiche insieme alla simulazione dinamica si è 

dimostrata uno strumento potente and flessibile per la valutazione di una soluzione di 

controllo microclimatico in edifici storici. L’approccio proposto risulta essere 

completamente non invasivo, non distruttivo e con costo-zero in termini di materiali (se 

si esclude il costo del monitoraggio microclimatico). Infatti, le qualità conservative degli 

spazi da esposizione dopo la modifica del microclima sono direttamente valutate 

nell’ambiente di simulazione. In questo modo, i risultati possono sostenere 

vantaggiosamente i processi decisionali riguardanti il controllo e la gestione 

dell’ambiente espositivo. 
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Chapter 1:  Rationale 

 

“For ethical reasons, the conservation of cultural heritage is a duty for all 

nations. Slowly, decision makers are beginning to understand that caring 

about cultural heritage and especially about museum, library and archival 

collection is a valuable long-term investment for their economy and in the 

interest of their citizens. The accessibility of movable heritage depends not 

only on its direct conservation but also on preventive conservation, because 

the quality of the indoor environment is crucial for the preservation of a 

collection.” 

Dario Camuffo, Vasco Fassina and John Havermans 

 

 

Context of the study 

In 1972, the General Conference of the UNESCO (United Nations Educational, Scientific 

and Cultural Organization), in the “Convention concerning the protection of the world 

cultural and natural heritage”, highlighted the importance of safeguarding the 

irreplaceable cultural and natural heritage. This meant that artefacts, that have artistic 

historic and cultural value, cannot be simply replaced, copied or reconstructed, but they 

must be preserved as far as possible in their original state and place. 

In 2004, the Italian Republic published the Legislative Decree No 42 of 24 January 2004 

(D. Lgs. 42/2004). Four articles point out the requirement on the authority on the 

conservation of cultural heritage. 

Article 31: Preventive conservation 

The protection of cultural heritage consists in practice of the activities and in the 

discipline of the direct activities, on the basis of an adequate knowledge, to individuate 

                                                      
1 The translation is provided by the author. The original text is reported. Articolo 3: La tutela consiste 

nell'esercizio delle funzioni e nella disciplina delle attività dirette, sulla base di un'adeguata attività 

conoscitiva, ad individuare i beni costituenti il patrimonio culturale ed a garantirne la protezione e la 

conservazione per fini di pubblica fruizione. 
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the cultural heritage and to guarantee the preservation and conservation aimed at public 

enjoyment purposes. 

Article 202: Forbidden intervention 

The cultural heritage cannot be destroyed, damaged or unsuitable used or such as to be 

detrimental to their conservation. 

Article 293: Conservation 

The conservation of cultural heritage is guaranteed by a coherent, coordinated and 

planned activity of study, prevention, maintenance and restoration. 

Article 304: Preservative obligations 

The State, the Regions and the territorial public institutions are obligated to guarantee 

the security and conservation of their cultural heritage. 

The awareness to preserve cultural heritage stands out both at national and international 

scale. Thus, the main objective of conservation scientists is to find solutions capable to 

reduce the degradation phenomenon as well as further damaging occurrences. This can 

be successfully achieved only through the knowledge of the chemical, physical and 

biological properties of material and its environment as well as their mutual interaction. 

Therefore, both the analysis of the problems related to conservation and the 

identification of the induced-degradation causes can be successfully conducted with a 

multidisciplinary approach, as also documented by several programmes regarding the 

conservation required and promoted by the European Community. 

 

The study of environmental conditions is crucial to assess the degradation process as 

well as to manage and preserve the cultural heritage. The ageing of an object and the 

alteration of its chemical-physical properties are activated and controlled, directly and 

indirectly, by the indoor climate and its fluctuations, also called microclimate5. Recently, 

a new concept has been introduced: the historical climate, i.e. the climate in which an 

object has, always or for a long period of time, has been kept and to which it has 

acclimatized (acclimatisation concept). Any departure from the historical climate might 

be harmful to future preservation of cultural heritage, since it might not only cause the 

acceleration of existing degradation phenomena but also trigger new ones. In this 

                                                      
2  The translation is provided by the author. The original text is reported. Articolo 20: I beni culturali non 

possono essere distrutti, danneggiati o adibiti ad usi non compatibili con il loro carattere storico o artistico 

oppure tali da recare pregiudizio alla loro conservazione. 
3  The translation is provided by the author. The original text is reported. Articolo 29: La conservazione del 

patrimonio culturale è assicurata mediante una coerente, coordinata e programmata attività di studio, 

prevenzione, manutenzione e restauro. 
4  The translation is provided by the author. The original text is reported. Articolo 30: Lo Stato, le regioni, gli 

altri enti pubblici territoriali nonché ogni altro ente ed istituto pubblico hanno l'obbligo di garantire la 

sicurezza e la conservazione dei beni culturali di loro appartenenza. 
5 The microclimate is the synthesis of the ambient physical conditions over a period representative 

of all natural and anthropic forcing factors 
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context, conservation scientists focus on developing methodologies within the 

microclimate analysis able to reduce, predict and prevent the main degradation 

processes. The microclimate analysis contributes to the preventive conservation only if 

it can individuate and assess all the ongoing climatic processes, that are strongly affected 

by the building’s features. The building, indeed, plays a key role in the indoor energy 

and moisture balance since it is a buffer of the outdoor environmental conditions. 

Sometimes, it could be sufficient to ensure adequate microclimate and air quality. 

However, both the use of powerful HVAC (Heating Ventilating and Air Conditioning) 

system and the increase of cultural tourism can be additional disturbing factors, as 

internal heat and moisture sources, responsible for unstable microclimate. 

So far, most of approaches in the microclimate study has been to analyse microclimate 

data or to use the building dynamic simulation. In the very last years, the increasing 

awareness on the interaction between climate and objects has led to explore more and 

more sophisticated methodologies, that combine indoor climate measurements with (a) 

the damage functions or (b) with the whole building dynamic simulation. The 

methodology (a) reveals to be effective in relating the degradation risk assessment with 

the microclimate, contributing to the preventive conservation activity for a better 

protection of movable and immovable works of art. The methodology (b), instead, 

mainly concerns the best performance of the HVAC system solution within a historic 

building in order to obtain the lowest aesthetic impact, the energy saving and the 

thermal comfort of users. However, little attention has been giving so far to the 

combination of long-term on-site measurements with the dynamic simulation, in terms 

of both damage functions and building modelling, as a synergic tool for preventive 

conservation. Moreover, even less attention has been paid to the modelling of the relative 

humidity, even though its influence on degradation phenomena has been widely 

demonstrated. Consequently, the use of dynamic simulation can be effective only when 

the relative humidity is accurately measured, analysed and modelled. 

The high potentialities of the above methodologies can be combined in order to define a 

multidisciplinary strategy suitable for the preventive conservation and based on 

diagnosing the microclimate and prognosing its evolution whether boundary conditions 

change. In this research thesis, such a strategy was investigated and proposed. 

Aim of the research 

The objective of my research is to demonstrate that the multidisciplinary use of 

experimental data of indoor climate combined with the dynamic simulation is a 

thorough and meticulous strategy in the field of the preventive conservation within 

historic buildings. 

Since any indoor environment behaves differently according to the features of the 

building envelope and its internal heat and moisture loads, a general approach would 

be desired in order to be successfully applied for a wide typology of buildings. For this 

reason, the multidisciplinary use of on-site measurements and of building dynamic 

simulation shows to be potentially an effective approach (a) to diagnose the actual 
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indoor climate and (b) to predict its evolution whether modifications in the boundary 

conditions occur. 

In this study, the IDA Indoor Climate and Energy (IDA ICE) was chosen as whole-

building dynamic simulation software because of its modular architecture. Indeed, it can 

be extended with the HMWall model, that allows modelling the one-dimensional heat 

air and moisture transfer through hygroscopic and porous materials, such as building 

materials. 

The achievement of this general objective implies addressing the four following issues: 

1. Is it possible to objectively assess the quality of indoor climate time series to apply the recent 

standards and guidelines? 

The recent standards and guidelines on the microclimate assessment are based on 

the acclimatisation concept. However, they can be applied, only when monitoring 

systems provide long-term historic climate data with specific requirements. This 

means that the time series of microclimate parameters (such as for example relative 

humidity and temperature) must have (1) the length and (2) the instrumental 

accuracy in accordance with the current European standards. If time series do not 

meet these characteristics, the data mining and its interpretation might provide 

erroneous information leading to ambiguous assessments. 

2. Can the observed degradation measurements be related to the indoor climate and used to 

predict the effect of new control climate strategy to control the degradation? 

Measurements related to a specific degradation phenomenon, e.g. moisture-

induced strain in hygroscopic materials, such as wood, paper, textile, etc., might be 

very useful to understand the interaction between indoor climate and material’s 

response to dynamics of environmental variables. Such an interaction, indeed, 

would depend on the heat and moisture transfer at the interface between the air and 

the material surface. If a dose-response function is established between degradation 

process and climate, it can be used as a specific damage marker. Its integration in 

the simulation environment as a goodness target would allow predicting the effect 

of different indoor climate conditions. 

3. How can a hygrothermal model be fine-tuned and then used in the field of preventive 

conservation? 

Some of commercial dynamic simulation software are extended with one- or two-

dimensional hygrothermal models (hereafter called HAM tool) to calculate the heat 

air and moisture transfer through porous materials. In IDA Indoor Climate and 

Energy environment, the HMWall model was integrated but less used due to its 

weak robustness output. The assessment of the performance model should be 

conducted using several tests or exercises with the aim to pinpoint the most relevant 

issues. Adding the moisture flow through walls in the modelling of old buildings 

might play a key role to diagnose the processes responsible for a microclimate 

dynamic. Indeed, old masonries can be characterised by uncontrolled condensation 



Scope and limitations  Chapter 1: Rationale 

5 

 

phenomena that might affect the durability of the cultural objects, both architectural 

elements and, if present, works of art preserved within the building, as well as the 

thermal comfort of users and the energy consumption within the building. 

4. Can a semi-automatic calibration of building model with indoor temperature and relative 

humidity measurements be implemented for historic buildings? 

A building model can be representative of a real case and can be advantageously 

used, only if it is accurately calibrated with respect to the measurements. Most of 

calibration procedures are based on matching of measured and modelled energy 

consumptions within tolerable limits recommended by official documents. 

However, in the case of historic buildings, such data are not always available, 

because most of these buildings are not fitted with HVAC system. This means that 

the calibration should be conducted with other measurements data that are 

recorded in continue and do not entail destructive or invasive sampling of 

architectural elements, due to their cultural and historic value. In this context, 

hourly measured indoor microclimate data might be used, since the accurate 

modelling of these variables, especially relative humidity, is fundamental to the 

assessment of the preventive conservation. However, manual calibration procedure 

can be time consuming especially in the case of historic buildings, where materials 

are not precisely known and structures of different ages are superimposed. For this 

reason, automatic or semi-automatic calibration procedure is preferred. 

Scope and limitations 

This thesis describes an effective strategy in the field of the preventive conservation 

combining on-site measurements and dynamic simulation. It focuses on modelling 

accurately the relative humidity within historic buildings and its relationship with the 

stress-and-strain cycle, i.e. mechanical degradation in restrained wooden structures. The 

methodology is applied to suggest a new climate control in the selected case study. The 

new climate control strategy is specific for the conservation of wooden material and the 

comfort of users. The energy consumptions are not considered. 

The results cannot be applied to the preventive conservation of outdoor building 

structures, e.g. façades, roofs etc., where the contributions from rainfall, wind and solar 

radiation etc. may affect in synergic way all the ongoing processes. 

In addition to the mechanical degradation, chemical and biological degradation 

processes also contribute to the conservation of Cultural Heritage. However, these 

processes were not dealt with in this thesis, since they were negligible in the selected 

case study. Nevertheless, the strategy can be extended and applied to other specific 

degradation phenomena, rearranging the monitoring system, if needed, and identifying 

other specific dose-response functions to the damage. 
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Outline of the thesis 

Chapter 2 provides the state-of-the-art about the main topics concerning my research. It 

is divided in two sections that separately deal with the evolution of methods used in 

microclimatic analysis and the novelty use of dynamic simulation to study the indoor 

climate within historic buildings. 

Chapter 3 describes the methodology I developed, structured in two sections: 

• the description of the pilot case study, i.e. the Archaeological Museum of 

Priverno; 

• the general workflow, i.e. the preventive conservation strategy. 

The latter section consists of three parts necessary in the proposed strategy: (a) the 

microclimate analysis, (b) the simulation environment and (c) the control climate 

strategy. This section also includes the procedures developed and used to solve the four 

specific issues listed in Chapter 1 and tested on different case studies. Questions 1 and 2 

are included in (a), whereas questions 3 and 4 are described in (b). The preliminary 

results of such research activities are linked into the appendices as ancillary supports. 

In Chapter 4, the most relevant outcomes derived from the proposed strategy on the 

Archaeological Museum of Priverno are shown and discussed. 

Chapter 5 draws the general conclusion of my research, the answers to the research 

questions listed in Chapter 1 and, finally, suggests implications and future possible 

researches coming from my outcomes. 

This manuscript also includes six appendices, listed from A to F, that present the 

preliminary outcomes from the four specific issues published or pre-submitted papers 

and conference papers. Finally, the Appendix G includes the manuscript related to the 

whole strategy developed in my research and applied in the case of the Archaeological 

Museum of Priverno. 

- Appendix A: 

Frasca F., Siani A.M., Casale G.R., Pedone M., Bratasz Ł., Strojecki M., Mleczkowska, 

A. (2017) Assessment of indoor climate of Mogiła Abbey in Kraków (Poland) and 

the application of the analogues method to predict microclimate indoor conditions. 

Environmental Science and Pollution Research, 24(16): 13895–13907. 

My work input: main author, analysis and critical interpretation of data, 

methodology, investigation on meteorological approaches in preventive 

conservation, writing, critical review, creation of a partnership. 

- Appendix B: 

Siani A.M., Frasca F., Di Michele M., Bonacquisti V. and Fazio E. (2018). Cluster 

analysis of microclimate data to optimize the number of sensors for the assessment 

of indoor environment within museums. Environmental Science and Pollution 

Research, 25(29), 28787-28797. 

My work input: co-author, conceptualization, analysis and critical interpretation 

of data, drafting of the manuscript, critical review. 
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- Appendix C: 

Frasca F., Lovati M., Cornaro C., Moser D. and Siani A.M. (2017) Use of photovoltaic 

modules as static solar shadings: Retrofit of a paleontological site in Rome. In 12th 

Conference on Advanced Building Skins, 2-3 October 2017, Bern, Switzerland. 

Proceedings book. pp. 1235-1245. 

My work input: main author, study conception and design, analysis and critical 

interpretation of data, critical review, creation of a partnership. 

- Appendix D: 

Frasca F., Cornaro C. and Siani A. M. (2018, June). Performance assessment of a heat 

and moisture dynamic simulation model in IDA ICE by comparison with WUFI 

Plus. In IOP Conference Series: Materials Science and Engineering (Vol. 364, No. 1, 

p. 012024). IOP Publishing. 

My work input: main author, literature review, study conception and design, 

methodology, analysis and critical interpretation of data, writing, critical review, 

oral contribution, creation of a partnership. 

- Appendix E: 

Frasca F., Cornaro C. and Siani A. M. (----). Performance assessment of a heat and 

moisture dynamic simulation model as an extension of IDA ICE. 

PRE-SUBMITTED 

My work input: main author, literature review, conception of the original 

methodology workflow, implementation of simulation code, analysis and critical 

interpretation of data, proofing outline. 

- Appendix F: 

Frasca F., Siani A.M. and Cornaro C. (2017). On-site measurements and whole-

building thermal dynamic simulation of a semi-confined prefabricated building for 

heritage conservation. In BSA 2017–Building Simulation Applications 3rd IBPSA-

Italy Conference, 8.2. 2017–10.2. 2017. BU, press. Proceedings book ISBN 

9788860461360 pp 185.-192. 

My work input: main author, study conception and design, analysis and critical 

interpretation of data, development of a semi-automatic calibration program, 

writing, critical review, oral contribution. 

- Appendix G: 

Frasca F., Cornaro C. and Siani A.M. (2019) A method based on environmental 

monitoring and building dynamic simulation to assess indoor climate control 

strategies in the preventive conservation within historical buildings. Submitted in: 

Science and Technology for the Built Environment (STBE) “IBPC Topical Issue”. 

My work input: main author, literature review, conception of the original 

methodology workflow, implementation of simulation code, analysis and critical 

interpretation of data, proofing outline. 
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Table 1 summarises a schematic outline of the appendices, identifying which one 

contributes to the formulated research questions. 

Table 1 Research questions related to appendices. 

Research 

questions 

Appendices 

A B C D E F 

1 x x     

2   x    

3    x x  

4      x 
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Chapter 2: Background 

and state-of-the-art 
 

 

 

This chapter concerns the literature about the topic of my research: (a) Evolution of the 

methods used in microclimatic analysis and control and (b) Dynamic simulation of 

indoor climate. The former overviews the methods dealing with the microclimate from 

the end of 1970s to the present time. The latter describes the potential use of the whole 

building dynamic simulation, as an effective tool to support the microclimatic analysis 

and to predict the indoor climate conditions related to any change of the current state. 

 

Evolution of the methods used in microclimatic analysis and control 

The concept of preventive conservation consists in all measures and actions that aim at 

avoiding and minimizing future deterioration or loss in cultural property (ICOM-CC 

2010). Every degradation phenomenon, including the natural cumulative and 

irreversible ageing of the objects, is strictly related to the direct and indirect interactions 

between the climate and materials both in indoor and outdoor environment. In historic 

buildings and more in general in exhibition spaces, the assessment of the indoor climate 

or microclimate, i.e. the synthesis of the ambient physical conditions over a period 

representative of all natural and anthropic forcing factors (Camuffo 2014), is 

fundamental to individuate and, if any, reduce the occurrences of damage. 

The awareness of the influence of the microclimate, especially relative humidity (RH), 

on the conservation of artworks already emerged at the beginning of 20th century, as 

extensively described by Browne and Rose (1996) and by Erhartdt et al. (2007) in their 

overview on the development of climate control in historic buildings or museums in 

Europe and in USA. 

Nevertheless, from the end of 1970s, an increasing interest in defining suitable indoor 

climate conditions can be inferred by the progressive evolution of the methodological 

approaches, the standards (or norms) and the guidelines, both at national and 

international level. As well, the main scientific research databases (Scopus, Web of 

Science, etc.) report more than four-hundred publications in the time range 1991-2017, 
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using the words “indoor climate AND cultural heritage AND conservation”, revealing an 

increasing trend for the topic year-by-year (Figure 1). 

 

Figure 1 Number of publications per year. Data retrieved from Scopus (last access September 2018) by using the words: 

“indoor climate AND cultural heritage AND conservation”. 

The first approaches to control the indoor climate were to fix hygrothermal intervals 

with the aim to limit fluctuating conditions. For example, many recommendations based 

on “The Museum Environment – 2nd edition” (Thomson 1986) suggested to keep the relative 

humidity (RH) at 50% or 55 ± 5% and temperature (T) at 19°C or 24°C ± 1°C for winter 

and summer, respectively, in the new and “important” museums. 

The study of the interaction between the microclimate and the artworks was pointed out 

in the 1980’s (Camuffo 1983). However in the 1990’s, the research was dedicated to 

analyse collection degradation processes, showing the importance of differentiating the 

allowable hygrothermal intervals according to material type, storage place and 

damage/deterioration risk. This derived from the awareness that degradation 

phenomena were mainly affected by (a) the sensitivity of the object at T and RH 

fluctuations and/or (b) the recent history of the object. The main consequence was that 

climate guidelines were considered too strict (Ashley-Smith et al. 1994; Michalski 1993; 

Michalski 1994; Michalski 1996) and maintaining such narrow ranges resulted expensive 

and, in some cases, impractical (Brown 1994). 

a. The works of Mecklenburg (1991) and Tumosa (1991) and Erhardt (1998), followed 

by those of Jakieła et al. (2007) and Jakieła and Kozłowski (2008) showed crucial issues 

about the identification of climate specification based on the analysis of structural 

response, i.e. mechanical processes, of coatings, gilding, paint on canvas, wood and 

paint on wood. Mechanical degradation, indeed, is caused by stresses in the material 

due to strain of the artefact, i.e. its dimensional changes caused by fluctuating T and 

RH. Especially, RH strongly affects the absorption and desorption of moisture in 

material, provoking cracking when the stress exceeds the failure stress limit. The risk 

of cracking, indeed, depends on many aspects: the magnitude of the RH change, the 

rate of the RH change, the level of RH at which the RH change starts and the number 

of RH fluctuation cycles that the object has been subjected to in the past. These authors 
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prove that the range of 50% ± 15% of RH was tolerable and hence safe for such a 

material (Bratasz 2013). 

The increase of laboratory and in-situ tests on different historical or aged materials 

led to individuate T and RH limits suitable on the basis of material category or risk of 

degradation. Thus, the first methods for the microclimate assessment were focused 

on analysing T and RH averages and their variability (Bernardi and Camuffo 1995; 

Camuffo and Bernardi 1996; Pavlogeorgatos 2003), as well as on investigating the 

impact of external climate conditions on indoors (Camuffo et al. 1999). Then, studies 

investigated the relationship between T-RH variables and other atmospheric 

variables, such as pollutants and light. The monitoring campaigns became more 

sophisticated aiming at analysing hygrothermal vertical profiles and spatial 

gradients, e.g. for detecting processes related to the vehiculation, diffusion and 

deposition of pollutants or for individuating sinks and sources of heat and moisture 

(Camuffo et al. 2001; Camuffo and Giorio 2003; Camuffo et al. 2004; Samek at al. 2007; 

Becherini et al. 2010; Cataldo et al. 2005). In the last years, the methodological 

approach has been also oriented to assess the climate risk analysis on artworks. 

Corgnati et al. (2010) developed an index to assess the percentage of time in which T-

RH were in climate limits, as provided by standards or guidelines. Moreover, many 

damage functions were established to define the quality of environment with respect 

to chemical (Michalski 2002; Kruger and Diniz 2011), mechanical (Martens 2012) and 

biological (Adan 1994; Sedlbauer et al. 2001) degradation. This approach reveals to be 

effective for the decision-making process (Silva and Henriques 2015). It is worth to 

notice that the damage functions are material-specific and assess the indoor climate 

with respect to “ideal” or safe hygrothermal conditions. For this reason, they should 

be used as relative indicators. Moreover, some functions are based on indoor air T 

and RH, showing two issues: (1) the temperature of an object often differs from air 

temperature and (2) many degradation processes depend on moisture content (MC), 

that is difficult to measure and its relationship with RH is dynamic.  

b. The attention was also paid to the recent history of the object, related to the so-called 

acclimatisation concept or historic climate, i.e. the climate to which the objects, 

especially those made of organic and hygroscopic materials suffering from shrinkage 

and swelling, have been acclimatized and adapted over their time life (Bratasz et al. 

2007a; Bratasz et al. 2007b). It was assumed that the risk of further mechanical damage 

(beyond that already accumulated in the past) from fluctuations which do not go 

beyond the proofed pattern is extremely low. The proofed fluctuation concept 

(Michalski 2007) eliminates any need for elaborate mechanical response calculations 

and offers a risk assessment based just on past climate records. The studies prove that 

climate limits, especially RH limits, had to correspond to the T-RH variability that has 

been found satisfactory for conservation by qualified specialists. However, 

conservation treatments, changing the dimensional and mechanical properties of 

materials, and some fluctuations, even if not exceeding the historical levels, or their 

combination could increase the risk of damage, since physical damage can be 
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cumulative rather than catastrophic (Bratasz 2013). This approach has transformed 

the practices of microclimate investigations, since it has brought out the importance 

of long-term monitoring to detect all cycles (seasonal and daily) due to natural and 

anthropic factors. 

In this context, new methodologies were developed to compare the historic climate 

(defined at present with measurements) with the reconstructions of past and future 

indoor climate. The aim was to investigate past climate-induced damage and to 

predict future climate-induced damage on artworks in order to plan suitable 

conservation strategies. The climate reconstructions can be performed by means of 

heat transfer functions (Lankester and Brimblecombe 2012; Bertolin et al. 2015) or 

with the use of more detailed models (see section  

Dynamic simulation of indoor climate), starting from data of past (proxies for far past 

and instrumental observations for near part) and future (climate scenario models) 

outdoor climate (Camuffo et al. 2014). 

The conventional practice in exhibition spaces (museums, galleries, archives, historic 

buildings, etc.) has always been to control T and RH of the rooms in which the most 

valuable artworks are preserved and to keep them at constant levels according to 

standards, guidelines or museums’ procedure. This led to use increasing powerful 

HVAC (Heating Ventilating and Air Conditioning) systems, that have showed several 

weaknesses and disadvantages. Firstly, it was found that to guarantee strict limits the 

HVAC systems required lots of energy, whose consumption became an issue of relevant 

importance after the OPEC6 crisis (Brown and Rose 1996) and for the latest directives on 

energy efficiency around the world. An example is given by Rota et al. (2015), that 

demonstrated the necessity of systematic approaches for actions oriented to investments 

for energy retrofitting, appropriated for the existing context and based on the real needs 

of museums. Secondly, the use of HVAC systems could not be justified, especially in 

historic buildings, if they compromised the acclimatisation of artworks in their 

environment. For example, the European project “Friendly Heating: both comfortable for 

people and compatible with conservation of art works preserved in churches” (2002-2005) 

demonstrated the potential impact of indoor heating on the conservation of organic-

hygroscopic artworks, when the heating system were used to only satisfy thermal 

comfort of users (Bratasz et al. 2007; Camuffo and Della Valle 2007; Camuffo et al. 2010). 

The preliminary conclusion was that the environmental conditions, most suitable for 

historic churches and their contents, were less suitable in terms of the comfort of 

churchgoers. This outcome could apply to all historic buildings which preserve climate-

sensitive artworks. 

The requirement to provide documents that guide experts in the control of indoor 

climate and in the choice of the most suitable instruments for indoor climate monitoring 

campaigns led to the development of standards and guidelines. A review of the initial 

                                                      
6 The acronym OPEC stands for (Organization of the Petroleum Exporting Countries). 
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use and development of recommendations can be found in Erhardt et al. (2007) and 

Bratasz (2012). 

The European Committee for Standardization (CEN) has already published seven 

standards through the Technical Committee TC 346 (Fassina 2008; Johnsen 2012), as 

reported in Table 2. These standards aim at specifying methodologies, procedures and 

instruments for accurate measurement of the indoor climate and its interactions with 

materials constituting cultural heritage. They have to be accepted by each National 

Standardization Body, member of the CEN, with the duty to withdraw any existing 

national standard that conflicts with the new European Standard. For example, the 

Italian Body of Standardization (UNI) has withdrawn and replaced the standards 

reported in Table 3. 

Table 2 Summary of the European standards published by the European Committee for Standardization 

(CEN) and developed by the Technical Committee 346 (TC 346) within the Working Group 4 “WG 4 – 

Environment” (until 2012), then become “WG 4 – Protection of collections” and the Working Group 7 “WG 

7 – Specifying and measuring Indoor/outdoor climate”. The standards published by the old WG 4 have an 

asterisk (*), those by the new WG4 have a circle (°) and those by the WG 7 have a dagger (†). The light-green-

highlighted standards concern the specification of instruments and measuring methods. 

Reference Title 

EN 15757:2010 (*) Conservation of Cultural Property - Specifications for 

temperature and relative humidity to limit climate-induced 

mechanical damage in organic hygroscopic materials 

EN 15758:2010 (*) Conservation of Cultural Property - Procedures and 

instruments for measuring temperatures of the air and the 

surfaces of objects 

EN 15759-1:2011 (*) Conservation of cultural property - Indoor climate - Part 1: 

Guidelines for heating churches, chapels and other places of 

worship 

EN 16242:2012 (†) Conservation of cultural heritage - Procedures and 

instruments for measuring humidity in the air and moisture 

exchanges between air and cultural property 

EN 16682:2017 (†) Conservation of cultural heritage - Methods of measurement 

of moisture content, or water content, in materials 

constituting immovable cultural heritage 

EN 15759-2:20018 (†) Conservation of cultural heritage - Indoor climate - Part 2: 

Ventilation management for the protection of cultural 

heritage buildings and collections 

EN 16893:2018 (°) 

 

Conservation of Cultural Heritage - Specifications for 

location, construction and modification of buildings or 

rooms intended for the storage or use of heritage collections 

Related to the Michalski expertise (2007), the Handbook of the American Society of 

Heating, Air-Conditioning and Refrigerating Engineers (ASHRAE) was integrated with 

the Chapter 23 dedicated to “Museums, Galleries, Archives and Libraries” (ASHRAE 

2011). The chapter is a support design for HVAC systems related to the conservation of 

collections and to quantify the damage risks (biological, mechanical, and chemical) of 
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environments already active. It is worth to notice that the proofed band for relative 

humidity at 50±15%, based on the scientific evidence above mentioned, fits with the only 

possible moderate-cost strategy available to historic buildings and museums, i.e. Class 

of Climate Control B. 

Table 3 Summary of the Italian standards withdrawn and replaced by the European ones. 

Italy Europe 

UNI Reference Title EN Reference 

UNI 10969:2002 Beni culturali - Principi generali per la 

scelta e il controllo del microclima per la 

conservazione dei beni culturali in 

ambienti interni 

EN 15757:2010 

UNI 11120:2004 Beni culturali - Misurazione in campo 

della temperatura dell'aria e della 

superficie dei manufatti 

EN 15758:2010 

UNI 11131:2005 Beni culturali - Misurazione in campo 

dell'umidità dell'aria 
EN 16242:2012 

 

Dynamic simulation of indoor climate 

The dynamic simulation7 has revealed an innovative approach for the preventive 

conservation in old buildings, because it is a flexible tool and can produce accurate 

results when joint with on-site measurements. It has been considered one of the best 

tools to approach the historic buildings’ refurbishment in terms of sustainability and 

energy performance evaluation (Martínez-Molina et al. 2016). 

A review of the existing simulation tools is not the aim of this thesis. However, it was 

already demonstrated that neither a simulation tool either a methodological approach is 

possible to recommend for the modelling of historic buildings (Widstrom 2012). 

The first applications of dynamic simulation regarded the assessment of the thermal 

comfort of users (Cardinale et al. 2010) and the energy retrofitting solutions (Balocco and 

Grazzini 2007; Ferdyn-Grygierek 2014). The last topic mainly concerned the 

improvement of thermal insulation and the renovation of HVAC systems trying to 

minimize their impact in terms of consumption and costs of energy. This requirement 

was strongly related to the objectives of European Community, that aimed at reducing 

the greenhouse gas emissions (Directives 2002/91/CE and 2010/31/EU), at increasing the 

share of renewable sources (Directive 2009/28/CE) and at enhancing the energy 

performance of existing buildings, especially in the construction sector belonging to the 

public institutions (Directive 2012/27/EU). The Italian situation showed a peculiarity. It 

was estimated that about the 30% of public building stock was built before 1945, i.e. they 

are historical buildings, and that a 2% of these belongs to the cultural heritage according 

                                                      
7 The simulation enables the realistic reproduction of a process by means of physical or mathematical 

models, in which boundary conditions and reliable input parameters are defined. 
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to the Legislative Decree No 42 of 24 January 2004 (D. Lgs. 42/2004), i.e. they are historic 

buildings (De Santoli 2015; Filippi 2015; Mazzarella 2015). Since the Italian Legislative 

Decree No 192 of 19 August 2005 (D. Lgs. 192/2005) claims that in the case of historic 

buildings the conservation requirements have priority with respect to the energy retrofit, 

some studies were focused on the use of simulation as an effective tool to know in 

advance the impact of the refurbishment on the esthetical and architectural features of 

such buildings. Thus, several approaches were proposed with the aim to balance 

architectural conservation and energy efficiency (Ascione et al. 2015; Bellia et al. 2015; 

De Berardinis et al. 2014; Cornaro et al. 2016; Franco et al. 2015; López and Frontini 2014; 

Tronchin and Fabbri 2017). The attention paid to this topic is also revealed by the several 

projects funded by the European programmes in the last two decades. The Intelligent 

Energy Europe (IEE) programme funded New4Old – New energy for old buildings (2007-

2010) for integrating renewable energy and energy efficiency technologies into historic 

buildings protecting their values, and SECHURBA – Sustainable Energy Communities 

in Historic Urban Areas (2008-2011) so to encourage energy efficiency practices and 

renewable energy systems in historical buildings. Within the Baltic Sea Region 

Programme (2007-2013), the Co2ol Bricks – Climate Change, Cultural Heritage & Energy 

Efficient Monuments (2010-2013) was funded with the purpose to reduce the energy 

consumption of historical buildings without destroying their cultural value and identity. 

The 7th Framework Programme (EU FP7) funded 3ENcult – Energy Efficiency for EU 

cultural heritage (2010-2014) in order to use energy efficient retrofit for structural 

protection as well as for comfort and conservation requirements, and the EFFESUS – 

Energy Efficiency for EU Historic Districts´ Sustainability (2012-2016), with the aim of 

developing technologies and systems for energy efficiency in European historic urban 

districts. 

Even though the whole building dynamic simulation is mainly used for the energy 

performance evaluation, it can be used as a diagnostic tool for achieving a 

comprehensive assessment of the current indoor climate (Janssen and Christensen 2013). 

Another potential use is related to the assessment of the impact of climate change on the 

indoor climate, especially the global warming, as already demonstrated in the CIBSE TM 

36:2005, in which a building of 19th century was simulated to suggest adaptation to avoid 

overheating. This is important since any change in the heat and moisture exchange 

between indoor and outdoor has a direct influence not only on the energy performance 

of the building but also on the conservation of artworks (Cassar and Pender 2003). Some 

relevant publications over the last 5 years demonstrated the potentiality of the dynamic 

simulation as a tool for conservation risk assessment (Huijbregts et al. 2012; 

Kompatscher et al. 2017; Kramer et al. 2013; Kramer et al. 2015; Muñoz-González et al. 

2016; Sciurpi et al. 2015; Schito and Testi 2017). 

This issue was the main topic of the European project Climate for Culture (CfC – 2009-

2014) funded within the 7th Framework Programme (EU FP7). The project was based on 

a multidisciplinary research team with the aim to identify the damage potential of the 

cultural heritage at risk and to encourage the development of strategies to mitigate the 

effects of climate change. This project, indeed, reflected the interest of scientific 



Chapter 2: Background 

16 

 

community to take advantages from the dynamic simulation (Leissner et al. 2013). It 

used high-resolution climate change evolution scenarios (derived by REMO 

simulations) with whole building simulation models to give the risk assessment on 

artworks at near future (2021–2050) and far future (2071–2100) with respect to the 

reference period (1961–1990). However, the prediction capability of such a method is 

particularly complex, since it should consider at least the uncertainty related to (1) the 

future outdoor climate, (2) the building model and (3) the damage functions 

(Leijonhufvud et al. 2012). 

The uncertainty in the future outdoor climate depends on the climate models, that 

resolve in a simplified way all relevant processes. 

The efficacy of the dynamic simulation strongly depends on the accuracy of the 

building model, that should be able to detect short- and long-term fluctuations of the 

indoor climate variables, especially the relative humidity (Bilchmair et al. 2012; Antretter 

et al. 2013; Kupczak et al. 2018). This variable is particularly complex to simulate, since 

many factors should be simultaneously considered. Most of simulation codes were 

developed to model moisture exchanges between indoor and outdoor environments 

setting a specific moisture storage capacity to the interior of the building (Holm et al. 

2003) and not to model the moisture flow between the air and porous surfaces (Rode and 

Woloszyn 2007). For this reason, in the last 30 years, some dynamic simulation tools were 

developed to model moisture exchanges also through porous materials (Delgado et al. 

2012), allowing to study issues related to uncontrolled condensation typical of old 

masonries (O’Leary et al. 2015). Furthermore, in the case of old buildings, the complexity 

in geometry and the heterogeneity in materials make extremely complicated and time 

consuming the model building setting (Coakley et al. 2014; Coelho et al. 2018). Thus, the 

calibration of the building model becomes of essential importance to solve such an issue. 

As opposed to manual calibration, Caucheteux et al. (2013) and O’Neill and Eisenhower 

(2013) demonstrated the effectiveness of the semi-automatic calibration by means of the 

Sensitivity Analysis for identifying the most influential input parameters to be 

considered in order to minimise the discrepancy between modelled and measured 

energy data. Indeed, most of the calibration procedures is based on matching of energy 

data at different time scale (Ascione et al. 2011) or indoor air/surface temperature at 

hourly scale (Pernetti et al. 2013; Roberti et al. 2015) and few studies use relative 

humidity data. 

The efficacy of damage functions relies on three kind of uncertainty: epistemic, 

aleatory and ambiguous (Refsgaard et al. 2013). The first depends on the input data and 

the lack of knowledge about processes, especially those related to the hygroscopic 

materials subject to the moisture content exchange. The second regards the randomness 

of mechanisms and the synergetic effects that cannot be included in the functions. The 

third, finally, relates to the interpretation of the output, that must be used as a relative 

predictor. 
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Chapter 3: Methodology 

 

 

 

This chapter concerns the description of the case study selected for testing the preventive 

conservation strategy developed within this research and the explanation of the general 

workflow. The general workflow includes three subsections that also describe the four 

specific tasks defined in Chapter 1. 

 

The case study 

The case study is the historic building “Valeriani-Guarini-Antonelli Palace”, located at 

Priverno (Latina) in the central Italy at about 70 km SE far away from Rome (Lat. 41.5° 

and Long. 13.2°), which houses the Archaeological Museum of Privernum, hereafter 

called museum. The site currently is a three-storey building and constitutes an 

architectural complex with the cathedral (12th century) and the historic town hall (13th 

century) which all together enclose the town square. 

The first construction of the palace dates back to Medieval age (13th century) as still 

evident by the double-arched windows at the first floor (Figure 2), by the will of the 

illustrious Valeriani family. 

At the beginning of 15th century, the Guarini family – new owners – wanted to enlarge 

the palace adding the second floor and the lateral wings that led to the current size of 

the building, as documented on the architrave inscription (Petrus Johannes Guarinus. 

1514). 

In 1924, the palace was bought at auction by the Antonelli family, who commissioned 

the retrofit of the façade and the interiors’ decoration. The restoration lasted two years. 

The façade was restored by the sculptor Angelo Domenico Cives in Renaissance style 

with an amaranth and lead-grey graffito decoration (Figure 2). Valuable ceilings were 

decorated in late-Liberty style by Giulio Sordoni and Pietro Campeggi. The former 

depicted the ceilings at the first floor with tempera on plaster with grotesque, zodiac 

allegories, herms and caryatids that support neorococò cornucopias filled with fruit and 

flowers or clipei with interesting urban views of the Priverno (Figure 3); whereas the 

latter painted the wooden ceilings at the second floor with oil paintings with geometric 

patterns typical from Viennese school (Figure 5). 
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In 2012, the building was bought and restored in order to house the Archaeological 

Museum of Priverno. 

The palace is oriented in the SW-NE direction with respect to the main entrance and has 

an internal courtyard and a terrace in the north-west side. The courtyard is accessible 

from the corridor close to the room 4 whereas the terrace from the room 13. The west-

side of the palace is contiguous with another historical building; whereas the east-side 

overlooks a narrow street. 

At the ground floor, there are the ticket office, the bookshop and the restroom. The 

thirteen rooms of the museum are deployed between the first (from room 1 to room 7) 

and second floor (from room 8 to room 13) following a path according to the historical 

events, from the Bronze Age to the Roman Age, of the ancient Priverno. Each room 

exhibits the evidences from the near archaeological area. The collection mainly consists 

of sculptures, architectural elements, ceramics, inscriptions, etc. The most valuable 

artefacts, e.g. jewellery and pottery, are exhibited in black glass-and-metallic showcases 

arranged along walls. In the room 9 at the second floor, there is the most important 

evidence of the museum - the Nilotic sill or Soglia Nilotica - that is often loaned for 

temporary exhibition around the world. 

The dark interior design allows standing out all the evidences (mainly white) thanks to 

a LED lighting system used inside and outside the showcases (Figure 3). 

 

Figure 2 The Archaeological Museum of Privernum (Latina, Italy): the main entrance (second door from left 

at the ground floor), the double-arched windows (first floor) and the façade in Renaissance style with an 

amaranth and lead-grey graffito decoration. 

All rooms are opened-adjoining and, except for the west-side ones, have one or more 

wooden-framed windows shaded by wooden shutters and black-roller blinds (Figure 3 

and Figure 4). 



The case study  Chapter 3: Methodology 

19 

 

A HVAC system connected to fan coils for the temperature control is turned on during 

the opening hours by staff both in cold season (from November to April) and in warm 

season (from June to August). All fan coils are installed under the windows and some 

devices are covered by black drilled-metallic panels (Figure 4). The system is set to 18°C 

and 26°C for heating and cooling hours, respectively. However, rigid internal 

temperatures in winter and warm temperatures in summer make the indoor climate 

unpleasant to visitors. 

 

Figure 3 A detail of the exhibition’s configuration in room 4 (first floor): a detail of the ceiling decorated with 

tempera on plaster by Giulio Sordoni (top-left side); the windows shaded by wooden shutters and black 

roller-blinds. 

To preserve the works of art, the conservation staff carries out periodical surveys to 

check the conservation state of the objects, belonging to the collection, and to the wooden 

ceilings at the second floor. The wooden ceilings, indeed, were restored in 2012, since 

evident degradation phenomena were visible in terms of painted-layer detachments, 

panels’ deformations and cracks along the tangential section of wood (Figure 5). After 

the restoration, no further damage was observed by the restorer. 

 

Figure 4 Black drilled-metallic panels cover fan coil installed under a window shaded by wooden shutters 

and a black roller blind. 
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The museum was object of the research study - “Preservation, conservation and valorisation 

of archaeological sites: the case of the ancient site of Privernum” - funded by Sapienza 

Università di Roma in 2015 and coordinated by Prof Silvia Fedeli (Department of 

Economics and Law, Sapienza Università di Roma). The microclimate monitoring 

campaign, indeed, was inserted within this framework. 

 

Figure 5 Details of the wooden ceilings decorated with oil paintings by Pietro Campeggi at the second floor. 

Cracks are visible along the tangential sections of wood. 

The general workflow 

The workflow methodology of the research is schematised in Figure 6. The four issues 

reported as specific questions in Chapter 1 are shown as background-coloured boxes in 

the figure. Each issue is separately described in the following subsections and has been 

distinctly analysed using different case studies, whose preliminary outcomes are 

reported as ancillary support at the end of this dissertation. Besides, Figure 6 identifies 

the main three subsections of the workflow as dashed boxes. 

The first step of the methodology consists in collecting experimental data of the main 

indoor climate parameters, i.e. temperature (T) and relative humidity (RH) in the room, 

the surface temperature (Ts) and the crack-width (C) close to objects, if needed. The latter 

parameter, indeed, is used as a damage marker for the mechanical degradation of 

hygroscopic materials. The monitoring should last one year, at least, in order to 

significantly record short- and long-term variability of indoor climate over seasons. 

Then, the quality and representativeness of collected data are evaluated before 

conducting any further investigation on the indoor climate and on the degradation risk 

assessment. Thereafter, climate and damage-marker data are investigated to find 

whether a strong relation exists between them. In such a case, a dose-response function 

of the damage-marker can be derived and calibrated with the measurements. It is 
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specific for the observed degradation, since it depends on the environmental conditions 

at which object has been kept, at least, over a whole year. 

 

Figure 6 Schematic workflow methodology. Background-coloured boxes are the specific purposes of the 

dissertation. Dashed boxes correspond to the three subsections: 1. The microclimate analysis; 2. The 

simulation environment; 3. The control climate strategy. 

In parallel, a building model is created based on geometric and stratigraphy features of 

the building envelope. In this research, the whole-building dynamic simulation is 

performed with IDA Indoor Climate and Energy (IDA ICE) software integrated with a 

one-dimensional heat and moisture transfer model, i.e. the HMWall model, with the aim 

to include the sorption effect of hygroscopic and porous materials. The last modelling is 

of crucial importance to accurately and thoroughly model the indoor moisture dynamic 

and behaviour. This aspect becomes decisive in the case of historic building, since old 

masonries might experience uncontrolled condensation phenomena that can negatively 

affect the duration of the building and the preservation of hygroscopic movable and 

immovable artworks. 

Then, the building model calibration is carried out. In this project, a calibration 

procedure is developed using hourly indoor climate parameters, i.e. T and RH. This is a 

further reason to trigger the assessment of high-quality T-RH data. The calibration 

concerns those periods in which the indoor climate is exclusively affected by outdoor 

climate in order to skip the setting of HVAC system, if any, whose feature rarely are 

available in historic buildings. 

After the calibration of the dose-response function and of the building model simulation, 

climate control strategies and/or retrofitting interventions can be modelled in the 

simulation environment and assessed with respect to the current conservation state of 

the object. 

It is worth to notice that this general workflow has been tested for studying the 

mechanical degradation of restrained hygroscopic materials, i.e. the wooden ceiling at 

the second floor of the Archaeological Museum of Priverno. However, it can be extended 

and applied to other specific degradation phenomena. This implies the rearrangement 
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of the monitoring system, if needed, and the identification of another dose-response 

function specific to the damage. 

The following three subsections describe in detail the strategy. The first section concerns 

the microclimate analysis and includes the description of the monitoring system, the 

microclimate assessment and the derivation of the dose-response function. The second 

section describes the setting of the building model within the dynamic simulation 

environment and is supported by the description of the HMWall model and the 

calibration procedure developed within this research. Finally, the third section provides 

a description of a climate control strategy defined to reduce stress-and-strain cycle in 

material also guaranteeing pleasant temperature for visitors

The microclimate analysis 

This section describes in detail the on-site monitoring system, the analysis of 

microclimate data and the derivation of the dose-response function specific of the 

mechanical degradation in restrained wooden structures. 

On-site monitoring system 

The monitoring campaign lasted from August 2016 till November 2017. 

Four indoor temperature (T) and relative humidity (RH) sensors were installed in three 

of the most representative rooms of the museum, coded as 4, 9 and 10 and indicated by 

colours in Figure 7. Each location allowed characterizing a different partition typology 

of the building. All probes were supported by black stands in order to fit with the interior 

design and were protected with a polycarbonate plastic cage and a polyethylene dust 

filter. In room 9, indicated as yellow room in Figure 7, the two T-RH probes were 

positioned at 1 m and 2m, coded as 9d and 9u respectively, in order to individuate any 

vertical gradient responsible for unstable hygrothermal conditions. In the same room, a 

surface temperature sensor (Ts) and a crack-width meter (C) were installed on a crack of 

a wooden panel ceiling, as shown in Figure 7. The aim was to detect the evolution of the 

crack width related to the environmental conditions at the interface between air and 

surface layer. The Ts sensor was fixed on the wood via paraloid and lied on the crack-

width meter support. The support, i.e. a parallelepiped of 15-by-15-by-10 mm, had a “L” 

clamp (size 15-by-15 mm) and was fixed on the wood with an epoxy on a substrate of 

gauze and paraloid. 

A probe with T-RH sensor, coded as out, was also installed at the terrace to record the 

outdoor hygrothermal conditions (blue circle in Figure 7). The external probe was 

shaded from radiation and protected from ventilation. 

The list of sensors and their technical features are reported in Table 4. The metrological 

features of T and RH sensors are in accordance with the highest accuracies suggested by 

the current European standards EN 15758:2010 and EN 16242:2012, respectively. 

All the sensors were connected to four dataloggers “Grillo Bee”, each corresponding to 

the three rooms and the outdoor spot, developed and distributed by Tecno.El S.r.l. 

(Italy), with a remote data transmission by GSM/GPRS technology (Global System for 

Mobile Communications/General Packet Radio System). Data were transmitted to the 
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server allowing their visualization and download via the web application “OLINDA”. 

The acquisition time was set to 5 minutes and the processing time was set to 30 minutes, 

providing the average, minimum and maximum of the recorded parameters. 

 

 

Figure 7 Exploded view of the “Valeriani-Guarini-Antonelli Palace”. All coloured rooms belong to the 

Archaeological Museum of Priverno. The green area indicates the internal courtyard. Probes were installed 

in room 4 (red), 9 (yellow) and 10 (orange). Blue circle indicated the external probe. 

Table 4 The technical features of sensors used within the monitoring campaign. 

 T RH Ts C 

sensor Pt100 1/3 DIN 
film capacitor 

“Rotronic” C94 
thermistor NTC 

potentiometer 

in conductive 

plastic 

operating 

range 
-40°C to +60°C 0 – 100% -30°C to +150°C 10 mm 

accuracy ±0.3°C +1.5% ±0.1°C +0.025 mm 

The mixing ratio of moist air (MR) and the dew point (DP), both indoors and outdoors, 

was calculated from T and RH readings, using the equation reported in the European 

standard EN 16242:2012 and taking into account the standard value of the atmospheric 

pressure (p = 1013 hPa). 

N 

Crack-width meter (C) 

Surface temperature 

sensor (Ts) 

T-RH sensor (9d and 

9u) 

External probe with T-RH sensor 

(out) 

Internal probe with T-RH sensor 

(4 and 10) 
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For both derived variables, the maximum propagation of uncertainty was calculated. 

The uncertainty related to MR and DP was 0.3 g/kg and 0.6°C, respectively. 

Analysis of microclimatic data series 

The first step of the microclimate analysis was a synthetic visualization of the 

hygrothermal behaviour by means of box-and-whisker plots (McGill et al. 1978). The line 

inside the box is the median value; the top and bottom of each box are the 25th and 75th 

percentiles of the samples, respectively. The whiskers are lines extending above and 

below each box. Here, they were set as 1.7 times the interquartile range (IQR) away from 

the 75th and 25th percentiles, respectively, instead of the common value of 1.5×IQR. In this 

way, a 99.9% data coverage is considered. Data outside this range are defined outliers or 

suspected outliers and indicated as black circles in figures. Outliers can be rejected 

whether they are not within the sensor’s operating range or are not physically consistent 

(data cleaning). As support of this analysis, the Wilcoxon test with a significance level of 

=0.05 was performed to identify any significant difference on the basis of median 

among variables recorded in the same room (Gibbons and Chakraborti 2011). 

Since data mining of data collections with several missing values might be little reliable, 

an objective quality assessment of time series plays a key role in providing a realistic 

data interpretation and, hence, a significant damage risk analysis. Three indexes were 

used before performing data mining and determining the historic climate: the 

Completeness Index (CoI); the Continuity Index (CI) and the Microclimatic Quality 

Index (MQI). The indexes range between zero and unity. The CoI and the CI should be 

used in complementary way. For values higher than 0.6, reliable and robust results can 

be provided by data mining. The MQI is specifically developed for the investigation on 

historic climate according to the EN 15757:2010, but it can be also extended for the 

application of the American guideline ASHRAE 2011. The MQI synthetises the 

information about the length of the time series, as required by climate documentations 

(at least 12 months), and the sensors’ accuracy, as suggested by the current European 

standards, i.e. EN 15758:2010 for temperature sensors and EN 16242:2012 for relative 

humidity sensors. For the same length, the MQI is 0.7 or 1 if the sensor’s accuracy is low 

or high, respectively. The indexes were tested for the first time with hygrothermal data 

collected for 24 months within the Mogiła Abbey, located in Krakow – Poland. The 

Appendix A provides a detail description of the indexes and their interpretation. The 
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indexes were also successfully used to identify the most proper period within a longer 

data collection (seven years), which had several missing intervals of values due to the 

malfunction of sensors over years (Appendix B). 

The Spearman’s rank correlation coefficient (rs) with a significance level of =0.05 was 

calculated by pairing T-RH variables in order to assess the relationship between two 

variables using a monotonic function, i.e. without any assumption on data distribution. 

Thereafter, short-term variability of the indoor climate was investigated as daily span, 

i.e. the difference between the maximum and minimum value observed during each day. 

The analysis allowed to study both the variability of the hygrothermal parameters 

finding possible disturbing internal factors and the short-term stresses of environmental 

conditions experienced by the material. 

Besides, to understand how the indoor climate is affected by external conditions both in 

terms of heat and vapor exchanges, the scatter plots of the indoor T and MR monthly 

means vs the corresponding outdoor monthly means were provided. 

As the restorer claimed that no further damage was observed after the restoration, the 

historical climate was defined according to the EN 15757:2010. The procedure is based 

on the calculation of (1) the 30-day central moving average (MA) to define the seasonal 

cycle; (2) the deviation of raw data from MA to extract the short-term fluctuations; (3) 

the safe band of RH defined as the 7th and the 93rd percentiles of the short-term 

fluctuations. 

Moreover, the ASHRAE 2011 was applied in order to couple a climate type, defined as 

Class of Climate Control, to the risks and benefits that this climate poses to mixed 

collections (Martens 2012), as reported in Table 5. The six classes, from AA (associated 

with no risk to most objects) to D (protection only from dampness), help to fit a proper 

climate into a building, that is classified according to a combination between various 

types of the building envelope and the climate control. The former considers the building 

construction, the type of building and the building use. The latter concerns the climate 

system in use and the limit of the practical limit of climate control according to the 

building type and the outdoor climate. In such a way, six building classes are identified 

and grouped in three categories of the climate control: uncontrolled, partial control, and 

climate controlled, as reported in Table 6. The Archaeological Museum of Priverno 

would belong to the class V within the controlled climate. It means that the climate 

classes of control AA, A, As and B would be sustainable in relation to the energy usage. 

Since no degradation phenomena of artworks occurred over the last years as claimed by 

the restorer and the HVAC system does not allow the RH control, a higher class of 

control, such as AA and A, would mean an excessive energy cost for the museum. Thus, 

the classes of control As and B were chosen in accordance with the characteristic of: 

• the building envelope: heavy masonries and double glazing; 

• the typical building use: gift shop, walk-through visitors only and education 

groups; 

• the HVAC system: simple fan coils for heating and cooling. 

Finally, T-MR data were plotted into a psychrometric chart in order to provide a 

synthetic visualization of data with respect to the short-term fluctuations’ limits as 

defined by the chosen classes of climate control (Martens 2012).  
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The dose-response function 

The wood, as a hygroscopic material, responds to variations in relative humidity (RH) 

by absorbing and desorbing moisture. This in turn results in dimensional changes, i.e. 

swelling and shrinkage of wooden fibres. Generally, the movement of wood is not the 

source of its damage when the element can move freely without any kind of restraint. 

On the contrary, restraint of movement, resulting from a rigid construction, can have 

damaging effect on objects such as components of furniture-doors, sides of cabinets and 

table tops, frames, or other types of wooden structures. Wooden materials can also 

experience internal restraint, as the moisture diffusion is not instantaneous and uneven 

moisture change induces uneven dimensional response. This occurs when a quick 

response to variations in ambient RH is experienced by the outer parts of wooden 

elements that are restrained by the core beneath. This is typical of bulky and massive 

objects, like sculptures. In this context, the monitoring of the crack width can be 

reasonably conceived as a marker-tracking of microdamage of wood structure at the 

crack tip due to stress concentration through the mechanism related to the fatigue 

process. Since the interaction between climate and object is dynamic and cumulative, the 

highest risk for the conservation of organic and hygroscopic material strongly depends 

on the extent and rapidity at which environmental conditions change. For this reason, 

the RH propagation within the material was investigated, starting from the estimation 

of hygrometric conditions (RHs) at the surface-air layer (eq. 3) and supposing that the 

water vapour gradient (MR) was constant from air ambient to the interface between air 

and wooden surface. 

( )
( )

( )
( )

s 7.65 T 7.65 T

243.12 T 243.12 T

MR p
RH

38.015 10 0.06112 10 MR

 

+ +


=

 +  

  (3) 

The central moving average (smoothed-RHs) at 3h, 24h, 48h and 1 week were calculated 

from RHs values with the aim to approximate the hygrometric gradient from superficial 

layer to the inner layers of panel. Then, the deviation of RHs from smoothed-RHs values 

was computed to extract the short-term fluctuations. The safe band variability was 

defined as the third step of the procedure suggested by the EN 15757:2010, i.e. the 7th 

and the 93rd percentiles of the short-term fluctuations. Finally, the hygrometric gradient 

was compared with the crack width evolution in order to pinpoint any physical relation 

between RHs and C. 

After that, a procedure was developed to define a dose-response function which related 

the strain of hygroscopic objects with the hygrothermal variables. It is schematised in 

Figure 8 and can be summarised in the following steps: 

1. computation of air mixing ratio (MR) or dew point (DP) from indoor air 

temperature (T) and relative humidity (RH) according to the equation provided 

by the EN 16242:2012; 

2. computation of the relative humidity at the interface between the surface and the 

air layer (RHs) from MR or DP and the surface temperature (Ts) with the inverse 

formula; 
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3. investigation on the monotonic correlation of the measured crack width (C) with 

Ts and RHs, using the Spearman's rank correlation coefficient (rs) and assuming 

any distribution of data. The procedure continues, if the modulus of rs is higher 

than 0.6, i.e. the paired variables are highly correlated. 

4. calculation of the crack width (Cm) from Ts and RHs using the non-linear multiple 

regression reported in eq. 4: 
b c

m s s
C a RH T=     (4) 

where a, b and c are coefficients; 

5. comparison between C and Cm using the root-mean-square-error (RMSE) as 

target function. If RMSE is close to the accuracy of the crack-width meter, the 

empirical model can be successful exploited. 

The empirical model was applied for the first time to the soil which supports faunal 

fossils in the palaeontological excavation of La Polledrara di Cecanibbio (Appendix C). 

 

Figure 8 The workflow for the identification of a dose-response function of cracks in restrained wooden 

material. Formulas for the computation of missing ratio (MR), dew point (DP) and relative humidity at the 

interface air-surface (RHs) are reported in equations (1), (2) and (3), respectively. 

The simulation environment 

Dynamic building simulation for indoor climate analysis was performed using the IDA 

Indoor Climate and Energy (IDA ICE) 4.8 developed and distributed by EQUA 

simulation AB. The IDA ICE software was chosen in this research as it has a modular 

architecture, that allows extending his features at advanced level with an object that 

implements a one-dimensional heat and moisture transfer model, i.e. the HMWall 

model. The extension with the HMWall model allows including the vapour sorption 

effect of opaque components, made of porous and hygroscopic materials, in the relative 

humidity modelling. In this dissertation, IDA ICE was extended with the HMWall model 
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only for the modelling of monitored rooms (4, 9 and 10). The performance assessment 

and the validation of the HMWall model is described in (Appendix E). Four exercises at 

increasing complexity were used in order to fulfil the three requirements suggested by 

Judkoff and Neymark (1995) for validation procedure: analytical verification, empirical 

validation and comparative test. 

The following subsections are focused on the descriptions of The hygrothermal model and 

The building model calibration. The reader, if wish, can directly skip to The museum model 

construction and calibration, in which the modelling of the museum is provided. 

The hygrothermal model 

The hygrothermal assessment concerns the analysis of temperature (T or ϑ), relative 

humidity (RH or ) and moisture content (w) within buildings. This assessment is of 

crucial importance, because an accumulation of indoor RH due to uncontrolled 

condensation in the wall can strongly affect the human comfort and the energy savings 

as well as the durability of materials sensitive to moisture-induced damage. To cite as a 

few, the moisture in building elements, such as solid walls, strongly affects the heat 

transfer of the building envelope (Barclay et al. 2014). For this reason, at the end of fifties, 

the research was focused on the simulation of the heat, air and moisture transport 

through the opaque components. 

Since the heat and moisture flows are transient, sophisticated one- and two-dimensional 

dynamic models were implemented with the aim to give more detailed and accurate 

information than the Glaser method8 (Glaser 1958). The one- or two-dimensional dynamic 

modelling is generally performed with the so-called HAM model, i.e. Heat Air and 

Moisture model, that combines the equations of heat and moisture flows with the energy 

and mass balances. 

In this context, the whole moisture exchange in a building can be mainly modelled using 

the co-simulation or extending the dynamic building simulation (DBS) software 

architecture. The co-simulation is one of the most advanced and versatile method 

(Nicolai et al. 2007; Steeman et al. 2010; Tariku et al. 2010; Djedjig et al. 2012; Spitz et al. 

2013; Ferroukhi et al. 2016), since it consists in combining two existing software (Gomes 

et al. 2018), one for whole building dynamic simulation and the other one for the 

                                                      
8 The most common method used in the hygrothermal assessment was, for long time, the Glaser 

method, which provides an assessment of critical interstitial condensation and considers only 

steady-state conditions of heat and vapour diffusion in light-weight buildings. The method, 

standardized in the EN ISO 13788:2002, consists in a simplified calculation procedure based on 

monthly average of temperature and vapour pressure and steady-state conduction of heat. The 

moisture transfer is calculated as pure water vapour diffusion. The method assumes that the 

built-in water has dried out and no effect of moisture content on material intrinsic properties. 

This means that it can be applied only in those cases where these effects are negligible (Hagentoft 

et al. 2004). The Glaser method is mainly used when an approximation of reality is enough for 

understanding the building issues, as demonstrated in Ramos et al. (2009) and Magrini et al. 

(2017). 
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hygrothermal transfer modelling (Ferroukhi et al. 2015). On the contrary, the DBS 

extension has the main advantage to use a single simulation tool. As far as reported by 

Delgado et al. (2012), nine software are available as commercial programs (1D-HAM, 

BSim2000, Delphin, GLASTA, hygIRC-1D, IDA-ICE extended with HMWall, MATCH, 

MOISTURE-EXPERT and WUFI); whereas five are available as freeware software 

(EMPITIED, HAMLab, HAM-Tools, MOIST and HUMIDUS). 

The HMWall model 

The HMWall model belongs to the family of HAM tools (heat air and moisture model). 

In IDA ICE, it can be used either as a single independent wall-object or as a component 

of a larger system, by simply replacing the default thermal wall selected by the program. 

It is not available in the release of IDA ICE, but it can be integrated on request. 

The first version of the HMWall model, the so-called HAMWall model, was developed 

in 1999 by Kurnistki and Voulle (2000). The moisture transfer was modelled by one 

moisture-transfer potential, i.e. the humidity by volume (ν), neglecting the temperature 

dependence; whereas the liquid water transport and the hysteresis of moisture transport 

were not considered. This version, coupled with IDA ICE 3.0, was used within the IEA 

Annex 41 (Kalamees, report meeting) and reported in the review of the whole building 

dynamic simulation software given by Woloszyn and Rode (2008). It was also used to 

model the hygrothermal behaviour inside three historical buildings located in Estonia 

after the refurbishment of the HVAC system (Napp et al. 2015; Napp et al. 2016a; Napp 

et al. 2016b). In 2011, the HMWall code was edited according to the balance heat and 

moisture equations and the driving potentials given by Hartwing Künzel and used in 

WUFI family tools (Künzel 1995). The previous code, indeed, could be run only with 

hygrometric properties of materials that were mostly unknown in literature. WUFI was 

chosen because it was validated by means of comparative test and analytical verification 

more than other hygrothermal simulation tools demonstrating its high quality and 

robustness (Holm 2003; Karagiozis 2010). The main differences between the IDA ICE 

extended with the HMWall object and WUFI as well as the basic governing equations 

are reported in Appendix D. Currently, a correct implementation of wind driven rain 

and its impact on the building envelope remains a weakness as well as any liquid 

moisture source within the wall layer. 

The basic governing equations 

The HMWall model used in this research was updated according to the results reported 

in Appendix E. 

The total enthalpy (  H/  t) through the building component consists of the enthalpy of 

the dry building material, i.e. the Fourier's law, and the latent heat related to the phase 

transition of moisture as water vapour diffusion. 
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( )( )v v

H
h g

t


= −    + 


  (5) 

where  is the thermal conductivity, hv is the evaporation enthalpy of water and gv is the 

vapour diffusion flux. 

Figure 9 shows the difference in  when w is modelled through the wall (dashed line) 

and when not (solid line). Indeed, there is a relation between  and w, that can be 

calculated as follows: 

( ) 0

s

w
w 1 b

 
 =  + +  

 

  (6) 

where 0 is the thermal conductivity of material in dry condition, b is the thermal 

conductivity supplement and s is the bulk density of material in dry condition. This 

means that  in (5) should be replaced  calculated in (6). 

 

Figure 9 Thermal conductivity () vs water content (w), when w is modelled through the wall (dashed line) 

and when not, i.e. the  of material in dry condition (solid line). 

The moisture transfer (  w/  t), instead, includes the vapour diffusion flux density (gv) 

and the liquid transport flux density (gw) and is calculated as follows: 

( )w v

w
g g

t


= − +


   (7) 

The driving potentials for vapour and liquid flux density are the vapour partial pressure 

(pv) and the relative humidity ()9, respectively. 

                                                      
9 Based on the Darcy formula (Janssen 2014), the liquid flux density is driven by the capillary 

suction pressure (pk), that strongly depends on the water content (w) within the material. 

Substituting pk with the Kelvin’s equation (Skinner and Sambles 1972) and considering negligible 

the temperature gradient, the relative humidity () can be used as driving potential in liquid flux 

density. This variable is preferred, because it is a material-independent moisture transport 

potential that is continuous also at the boundary layers. 
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( ) ( )( )v p v p sat
g p p= −   = −       (8) 

where p is the water vapour permeability of the material calculated as the ratio between 

the water vapour permeability of air (0), derived from the Schmirer's equation (Slanina 

and Šilarová 2009), and the water vapour diffusion resistance factor (). psat is the 

saturated vapour pressure of water. 

( )w
g D


= −     (9) 

where D is the liquid conduction coefficient. The calculation of D is executed starting 

from the liquid transport coefficient for suction (Dws) and assuming no difference 

between suction and redistribution processes, i.e. no difference between absorption and 

desorption as below explained. 

( ) f

2 w
1

ww
ws

f

A
D w 3.8 1000

w

− 
=   

 

  (10) 

where Aw is the water penetration coefficient. D and Dws are related each other as 

reported in Künzel (1995): 

ws

dw
D D

d
= 


  (11) 

where dw/d is the derivative of moisture storage curve. The moisture storage curve, 

i.e. the dependence between moisture in material and environmental conditions (Künzel 

1995), is calculated as a function of : 

( )
( )

f

b 1
w w

b

− 
 = 

− 
  (12) 

where wf is the free water saturation,  is the relative humidity and b is the 

approximation factor (Torres and de Freitas 2003). b must always be greater than one 

and it is calculated from the equilibrium water content at 80% of relative humidity (w80) 

(Künzel 1995). 

In this context, the effect of the temperature can be disregarded, so the moisture storage 

curve can be described as sorption isotherms. Besides, the hysteresis between absorption 

and desorption isotherms is not very distinct in most building material, therefore the 

absorption isotherm is enough to characterise the moisture storage of a building 

material. 

The equations for the heat balance (5) and the moisture balance (7) are closely coupled 

and can be solved when the number of variables is limited to two: temperature (ϑ) and 

relative humidity (). 
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( ) ( )( )v v sat

dH
h p

d t


 =    −    

 
  (13) 

( )( )v sat
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D p

d t 


 =   +   

 
   (14) 

Indeed, the heat balance closely depends on the water content (w) at the first term and 

on the vapour diffusion flux (gv) at the second term of the equation. Moreover, the 

saturated vapour pressure of water (psat) in the moisture balance equation exponentially 

depends on the temperature. 

The effect of the heat transfer on the water vapour transfer (gv) between the wall surface 

and the boundary air layer close to it is not considered, since its contribution is negligible 

as demonstrated in Appendix D. 

To be run, the HMWall model needs for the hygrothermal properties listed below: 

• thermal conductivity () 

• density () 

• specific heat (cp) 

• free water saturation (wf) 

• equilibrium water content at 80% of relative humidity (w80) 

• thermal conductivity supplement (b)  

• vapour diffusion resistance factor () 

• water absorption coefficient (Aw) 

All these properties, collected by seven research institutes, are available in the MASEA 

geprüfte DatenBank web site for most of building materials (https://www.masea-

ensan.de/). The web site is written in German. 

The building model calibration 

For historic buildings, the manual calibration can be time consuming especially when 

building materials are not precisely known and structures of different ages are 

superimposed. As opposed to manual calibration, the semi-automatic calibration (SAC) 

might widely boost this phase in the building modelling. Figure 10 shows the workflow 

proposed for the SAC of historic building model by using hourly temperature (T) and 

relative humidity (RH) data. The SAC has the main advantage to control step-by-step if 

input parameters are consistent with the real conditions. The procedure can be 

summarised in five steps: 

1. architectural surveys and microclimate analysis for identifying the potential input 

parameters that should be adjusted and the period of calibration; 

2. creation of a building model, the so-called first guess model, using as input 

parameters the data provided by standards or database; 

3. selection of the most influencing input parameters along with uncertainty ranges 

through the Sensitivity Analysis (SA). The SA is based on the Elementary Effects 

method (EEs). Here, IDA ICE is communicated with the MATLAB environment, 

that iteratively run the building model after elaborating the setting of the input 

parameters using the Morris sampling matrix (Morris 1991). The experimental plan 
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is built considering the number of EEs (r) for each parameter and the number of 

levels (p) in which parameters range. The total number of simulations (N) is 

calculated as follows: 

( )N k r 1=  +   (15) 

Thus, the input set parameter matrix given by Morris sampling is N-by-k. The mean 

absolute error (MAE) is used as target function for the calculation of the EEs from T 

and RH data. The EEs ascribed to each parameter are defined as the difference in 

the output between two following simulations divided by the variation of the input 

parameter (Saltelli et al. 2004). The EEs are computed as follows: 

( )
( ) ( )1 2 i 1 k

y x ,x ,...,x x ,...,x y x
EEs x

x

+  −
=


  (16) 

where x is the set of parameters, y(xi) is the target function for the n-model, y(x) is 

the target function for the first guest model and Δx is the variation of the input 

parameter. Finally, the absolute values (*) of the mean of the EEs () associated 

with each parameter, the standard deviation () and the ratio / * are calculated. 

* provides a measure of the parameter relevance and the effect on the response y 

(Campolongo et al. 2011): higher *, more relevant is the input parameter and 

monotonic is its effect.  estimates the dependence on the effect of xk of the values 

taken by the other factors (Saltelli et al. 2004). The ratio / * is an indicator of the 

linearity of each parameter effect with respect to other parameters and to whole 

modelled building. It assumes that the EEs are normally distributed and, hence, 95% 

of EEs are within * ± 1.96  for * ≈  As a consequence, if / * < 0.1, 95% of EEs 

is in a range of ± 20% around * (Sanchez et al. 2014). In the EEs scatter plot ( vs 

*), four areas delimited by / * < 0.1 (linear), 0.1 ≤  / * < 0.5 (monotonic), 0.5 

≤ / * < 1 (almost monotonic) and / * ≥1 (non-monotonic) allows highlighting 

whether outcomes from SA are physically consistent. 

4. model calibration: 

- manual calibration: the input parameter setting is defined by the user after each 

simulation run. The minimization of the discrepancy between measured and 

modelled data can be evaluated with the Taylor Diagram (Taylor 2001), as 

applied in Appendix F. 

- automatic calibration: IDA ICE is communicated with GenOpt® by means of a 

module called Parametric Run, which is already integrated in the simulation 

software. The calibration of the building model is performed with the Particle 

Swarm Optimization – General Pattern Search of Hooke-Jeeves (PSO-GPSHJ) 

genetic algorithm, which is a hybrid algorithm. The mean absolute error (MAE) 

and the root mean square error (RMSE) are used as objective targets. Finally, the 

coefficient of variation of RMSE (CV-RMSE) is calculated: the lower is the CV, 

the smaller is the residuals relative to the predicted value, i.e. a good model fit. 

5. model validation comparing modelled and measured T-RH data in a period not 

included in the calibration. Target functions are calculated again. 

The procedure succeeds if the target functions achieved in the calibration and the 

validation steps are comparable. Since threshold limits of statistical criteria for 
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calibration with hourly T and RH data are not available in the literature or standards, a 

general criterion can refer to the accuracy of hygrothermal sensors. More the targets are 

close to sensor accuracy, more the building model fits the actual building. 

 

Figure 10 The workflow of the calibration procedure. The third point of the procedure was developed by 

communicating IDA ICE with the MatLab environment. 
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The equation of the statistical parameters mentioned in the procedure and used in this 

thesis are reported below: 
N

i i
i 1

y x

MAE
N

=

−

=


  (17) 

( )
N

2

i i
i 1

y x

RMSE
N

=

−

=


  (18) 

RMSE
CV RMSE

x
− =   (19) 

where yi is the i-th modelled data, xi is the i-th measured data, N is the number of all the 

possible data pairs analysed and <x> is the average of measured data. 

The museum model construction and calibration 

The geometry of the building 

model was created starting from 

the architectural survey provided 

by Arch. Lucia Di Noto. The 

building model, sketched by the 

dynamic building simulation 

(DBS) tool and shown in Figure 

11, consisted of sixteen zones 

included the stairwell, the crawl 

space under the roof and the 

spaces at the ground floor. It was 

oriented in the SW-NE direction 

with respect to the main entrance 

(indicated by a black arrow in 

figure). In Figure 11, rooms with 

measurements were shown by 

different colours: room 4 as red, 

room 10 as orange and room 9 as 

yellow. 

The default thermal model (BDFWall) used by the DBS tool for wall modelling was 

replaced by the HMWall model only in the case of room 9. This room was chosen as the 

pilot room, for testing the climate control strategy described in the following section. 

The wall stratigraphy was retrieved from literature referred to construction techniques 

in lower Latium in the Middle Age and was assumed to be unchanged over time except 

for ceilings, which were rebuilt after the restoration in 1924-26. The hygrothermal 

properties of opaque components were gathered from the MASEA Datenbank and 

reported in Table 7. In Table 8, the stratigraphy of opaque components is discretised as 

in the HMWall model. These values were used in the initial model. It is worth to notice 

Figure 11 3D model of the museum obtained with the 

dynamic building simulation tool. Rooms 4, 9 and 10 are 

indicated with different colours, i.e. red, orange and yellow, 

respectively, according to Figure 7. The black arrow indicates 

the main entrance of the building 

N 
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that only the first three columns of Table 7 were needed for the default thermal wall 

modelling. 

On the contrary, glazing system parameters were retrieved during the preliminary 

survey conducted to design the microclimate monitoring system. They consisted of 

wooden frames with low-emitted double pane glazing filled with air (6mm - 12mm - 

6mm). The internal and external emissivity were 0.04 and 0.84, respectively. The glazing 

system parameters were set with a U-value of 1.59 W/m2‧K and solar heat gain coefficient 

(SHGC) value of 0.38 for the glazing and U-value of 1.0 W/m2‧K for the frame. All 

windows were shaded with black interior roller shades in PVC. 

The infiltrations were set fixed at 0.09 ACH and the wind profile was defined as in the 

case of urban centre, due to the position of the building. 

The ground floor properties were left by default according to the standard ISO 

13370:2007, since they only affected the basement of the building. 

Table 7 The hygrothermal properties of building materials for opaque components gathered from MASEA 

Datenbank both for the default thermal model (BDFWall) and for the HMWall model. For the BDFWall, 

only the first three columns were needed. 

 Hygrothermal properties 

Material 
 cp   w80 wf Aw 

kg/m3 J/(kg‧K) W/(m‧K) - kg/m3 kg/m3 kg/(m2‧h0.5) 

brick 1900.0 1000.0 1.07 28.0 24.9 250.0 2.70 

concrete 2104.0 776.0 1.94 76.1 101.0 144.0 0.75 

lime plaster 1600.0 850.0 0.70 7.0 30.0 250.0 3.00 

lime-cement render 1900.0 850.0 0.90 19.0 45.0 210.0 2.00 

restoration plaster 590.0 1000.0 0.17 8.6 11.9 500.0 0.24 

floor brick 1952.0 863.0 0.96 19.4 123.0 161.0 8.51 

light mortar 830.0 1000.0 0.21 13.2 26.3 423.0 1.63 

wood 740.0 1400.0 0.81 223.0 104.0 349.0 0.10 

Table 8 Stratigraphy of opaque components used in the HMWall model. Cell numbers and thickness of each 

layer of the material (m) are summarised; the internal surface is at the left side (+ in, – out). 

 

The weather file used to run the model was determined from Tout and RHout 

measurements. Wind variables (direction and speed) and global horizontal solar 

irradiance, measured at Maenza station (Lat. 41.5° and Long. 13.2°) belonging to the 

ARSIAL (Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura del Lazio), 

Cell № + 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 -

Thickness, m + 0.01 0.01 0.01 0.03 0.03 0.04 0.05 0.05 0.06 0.07 0.05 0.05 0.04 0.03 0.03 0.01 0.01 0.02 -

Cell № + 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 -

Thickness, m + 0.015 0.01 0.01 0.03 0.03 0.04 0.05 0.05 0.06 0.07 0.05 0.05 0.04 0.03 0.03 0.01 0.01 0.015 -

Cell № + 1 2 3 4 5 6 7 8 9

Thickness, m + 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.01 0.03

wooden slab

Cell № + 1 2-9

Thickness, m + 0.03 0.05

external wall

internal wall

-

-

floor

-

-
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were also included in the weather file. The global horizontal solar irradiance (GHI) was 

split in the direct (dr) and diffuse (df) solar irradiance components. The former was 

derived with the Maxwell model (Ineichen et al. 1992); whereas the latter was derived as 

follows: 

( )( )df GHI dr cos ZA= −    (20) 

where ZA is the solar zenith angle. 

The calibration was carried out using data collected from May 15th, 2017 till May 31st, 

2017, with an initialization period from February 1st, 2017 till May 14th, 2017 due to the 

high inertia of historic buildings. In this period, it was sure that no internal gain was 

present. First, the model was calibrated referring to the T-RH measurements taken in all 

the three monitored rooms, according to the procedure described in The building model 

calibration. The error procedure was carried on finding the best hourly T and RH trends 

match, simultaneously for data gathered at the three measurement points. Thus, the 

Sensitivity Analysis (SA), based on the Elementary Effects method (EEs), was carried out 

for identifying the most effective input parameters of the building model, which were 

mostly unknown, such as thermal bridges and infiltrations. The EEs was applied using 

hourly indoor T and RH. The Morris matrix (N-by-k) was defined considering 18 input 

parameters (k), listed in Table 9. The experimental plan was built so that the number of 

EEs (r) was 10 for each parameter and the number of discretized levels (p) was 4. 

According to eq. (15), the resulting computational effort (N) was of 198 simulation runs. 

Table 9 Parameters used for the initial model and parameter ranges used for the sensitivity analysis. Each 

parameter is identified by a code. Parameters’ abbreviation:  = thermal conductivity, s = thickness, TB = 

thermal bridge, EXT-WALL tot = external walls envelope, EXTWL-SLAB = external wall-slab, EXTW-INTW 

= external-internal wall, EXTW-CORN = external wall-inner corner, WIN = windows, ROOF = roof, INTW-

ROOF = internal wall-roof, EXTW-INC = external slab and wall-inner corner, ROOF-INC = roof-inner corner, 

SLAB-INC = slab-inner corner, INFILT = infiltration. 

cod. Parameter Unit Initial model value Range for SA 

X1  brick W/(m‧K) 1.00 0.80 – 1.20 

X2  concrete W/(m‧K) 1.94 1.55 – 2.33 

X3  lime plaster W/(m‧K) 0.70 0.56 – 0.84 

X4  lime plaster W/(m‧K) 0.17 0.14 – 0.20 

X5  light concrete W/(m‧K) 0.21 0.17 – 0.25 

X6  wood W/(m‧K) 0.81 0.65 – 0.97 

X7 s wooden slab m 0.20 0.16 – 0.24 

X8 TB EXT-WALL tot W/(m2‧K) 0 0.00 – 0.90 

X9 TB EXTW-SLAB W/(m‧K) 0 0.00 – 1.05 

X10 TB EXTW-INTW W/(m‧K) 0 0.00 – 1.00 

X11 TB EXTW-CORN W/(m‧K) 0 0.00 – 0.40 

X12 TB WIN W/(m‧K) 0 0.00 – 1.00 

X13 TB ROOF W/(m‧K) 0 0.00 – 0.85 

X14 TB INTW-ROOF W/(m‧K) 0 0.00 – 0.40 

X15 TB EXTW-INC W/(m‧K) 0 -0.21 – 0.00 

X16 TB ROOF-INC W/(m‧K) 0 -0.10 – 0.00 

X17 TB SLAB-INC W/(m‧K) 0 -0.18 – 0.00 

X18 INFILT ACH 0.09 0.01 – 0.20 
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Then, an automatic calibration was performed on the basis of the most influential 

parameters resulted from the SA. It was performed using the Particle Swarm 

Optimization – General Pattern Search of Hooke-Jeeves (PSO-GPSHJ) genetic algorithm, 

implemented in GenOpt®. The aim was to minimize the discrepancy between modelled 

and measured T-RH data, calculated as the root mean square error (RMSE) and the 

coefficient of variation of RMSE (CV-RMSE) with respect to the average of measured 

data. In this way, the building model was calibrated taking into account its thermal 

behaviour. At this step, the opaque building components of room 9 were update with 

the HMWall model in order to consider the simultaneous heat and moisture transfer 

through building materials, that are porous and hygroscopic. The effect of moisture 

transfer on the heat transfer was clear, therefore a further calibration of the room was 

carried out. It is worth to notice that the HMWall model is still in implementing phase 

and it is not possible to perform an automatic calibration. For this reason, room 9 and 

the above crawl space of roof were cloned in a new file as shown in Figure 12 and 

manually calibrated. Here, the internal wall and floor were defined as adiabatic 

components and, for this reason, layers from + to 9 (internal walls) and from + to 5 

(internal floor) reported in Table 8 were considered. They were connected to a RH value 

of 50%, since it corresponded to the monthly averages of room 10 (close to the internal 

wall) and room 4 (close to the internal floor). The internal wooden ceiling was thermally 

connected with the crawl space and with a RH value of 55%. The wooden ceiling was 

not connected with the RH modelled in the crawl space, due to the high uncertainty on 

RH modelling in historic building explained and integrated in Appendix E. The manual 

calibration concerned the setting of the hygrothermal properties of the wooden ceiling, 

since it was mostly affected by the crawl space and, hence, by outdoor conditions. As 

well, the thermal properties of external walls were adjusted. 

In this case, the calibration procedure can be defined as mixed, since it consists in an 

automatic (first phase) and manual (second phase) calibration. It should be added that 

for the manual calibration the Taylor diagram was not exploited to visualize modelled 

data, since few modifications were done on the building model. 

 

Figure 12 3D model of the room 9 and the above crawl space obtained with the dynamic building simulation 

tool after the cloning of the whole building. 
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After that, the building model, both the whole building and the single room 9, was 

validated using data collected from September 24th, 2017 till October 8th, 2017. In the case 

of room 9, the RH above the ceiling was set to 50%, since the validation was performed 

after a warm period where RH was, on average, less than 50% in the other rooms of the 

building. 

The calibration and validation periods were selected so that no occupancy and internal 

gains were present. In this way, any misleading related both to the set-up of the HVAC 

system and to the schedule and features of occupants, i.e. the metabolic rate (MET) and 

the clothing factor, was not included in the simulation. Moreover, both periods were 

representative of two different outdoor conditions, since they came after a cold and a 

warm season, respectively. 

Finally, the calibrated room 9 model was used to carefully assess the impact of a new 

control climate strategy suitable for the conservation of the wooden ceiling integrating 

the thermal comfort requirements. 

The control climate strategy 

The optimization of the indoor climate control strategy was addressed to update the set-

point controller of the existing HVAC system without any modification of the plant. The 

HVAC was designed in the simulation environment as simple fan coils. The fan coils 

were set to a maximum heating power of 3500.0 W and a maximum cooling power of 

3000.0 W. In this step, only room 9 was evaluated, since it was calibrated and validated 

using the HMWall model. The simulations were run over a whole year using the same 

weather file of Priverno described in the previous section. 

The new control strategy of the indoor climate was tested using a dynamic set-point for 

temperature (T), as suggested in Kramer et al. (2017). The indoor relative humidity (RH) 

was evaluated a-posteriori and left in free-floating. The new climate control aimed at 

assessing the effect of a rational use of the HVAC system taking into account both the 

conservation of wooden ceilings and the thermal comfort of users. 

The workflow consists in three steps as schematised in Figure 13 and described below: 

 

Figure 13 Workflow to calculate the dynamic temperature setpoints. 
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1. Conservation T set-point safe band. To assess mechanical conservation risk, T set-point 

is computed from the class of climate control As, as recommended in ASHRAE (2011) 

and reported in Table 5. The class As was chosen because it fitted for the building 

features of museum (building type V) and provided less mechanical degradation risk 

than the class of climate control B. The set-point was derived as follows. From indoor 

air T measurements, the 90-days centred moving average is calculated and seasonally 

adjusted with respect to the annual average according to +5/-10 K (Tseas). The upper 

(TAs_up_lmt) and lower (TAs_lo_lmt) limits are defined as ±2 K of Tseas and shown in Figure 

14 (upper panel). 

As _ up_ lmt seas
T T 2= +   (21) 

As _ lo _ lmt seas
T T 2= −   (22) 

2. Comfort T set-point safe band. The Adaptive Temperature Limits (ATL) were chosen as 

T set-point limits for the thermal comfort requirement (Nicol and Humphreys 2002). 

The T set-point is dynamic because it depends on the phenomena of adaptation and 

expectation of people with respect to the outdoor temperature (Tout) (Van der Linden 

et al. 2006). The ATL is calculated on the basis of procedure suggested by Kramer et 

al. (2018) for temperate climates. The thermal sensation and clothing level of users are 

related to the reference outdoor temperature (Tout,ref) and calculated as follows: 

out ,i out ,i 1 out ,i 2 out ,i 3

out ,ref

T 0.8 T 0.4 T 0.2 T
T

2.4
− − −

+  +  + 
=   (23) 

where Tout,i is the average Tout on the survey day and Tout,i-x is the average Tout of x-

days before. T set-point is related to the Tout,ref for defining upper (TATL_up_lmt) and 

lower (TATL_lo_lmt) limits. The limits are shown in Figure 14 (mid panel). 

ATL _ up_ lmt out ,ref
T 20.7 0.175 T= +    (24) 

ATL _ lo _ lmt out ,ref
T 18.3 0.175 T= +    (25) 

3. T set-point safe band. T set-point, both for upper and lower limit, is determined 

comparing for each hourly value the most stringent limits according to the collection 

safe band and the comfort safe band. After that, T limits are smoothed out as shown 

in Figure 14 (lower panel). 

After simulation, the modelled RH values were compared with limits recommended in 

the ASHRAE (2011) to check if the system also indirectly guarantees the RH control. The 

RH limits according to Class of Climate Control As are defined as for T limits. From 

indoor air RH measurements, the 90-days centred moving average is calculated and 

seasonally adjusted with respect to the annual average according to ±10% (RHseas). The 

upper (RHAs_up_lmt) and lower (RHAs_lo_lmt) limits are defined as ±5% of RHseas and shown 

in Figure 15. 
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As _ up_ lmt seas
RH RH 5= +   (26) 

As _ lo _ lmt seas
RH RH 5= −   (27) 

The estimated indoor variables were replaced in the equation (4) to analyse the effect of 

the new control strategy on the crack width with respect to no control strategy, i.e. the 

free-floating indoor climate. 

 

Figure 14 The three steps used for defining the dynamic temperature set-point: 1. Conservation 

requirements as Class of Climate Control As; 2. Comfort requirements as Adaptive Temperature Limits 

(ATL) and 3. Smoothed-integration of conservation and comfort requirements. 

 

Figure 15 RH dynamic set-point defined according to the Class of Climate Control As. 
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Chapter 4: Results 

and discussion 
 

 

This chapter shows the most relevant outcomes following the strategy proposed by this 

thesis. It contains the three sections that follow the structure used in The general 

workflow described in the previous chapter. 

 

The microclimate analysis 

The first screening of recorded data of temperature (T) and relative humidity (RH), both 

inside and outside, has shown that all probes properly worked in their operating range. 

Quality of time series 

Table 10 reports the Completeness Index (CoI) and the Continuity Index (CI) values for 

each internal and external probe, since the indexes both for T and RH are the same. In 

the case of room 9, the indexes also summarise the time series of surface temperature 

(Ts) and crack-width (C). The MQI was determined only for the RH time series. All the 

time series resulted to be of high quality (> 0.993) and, hence, suitable for the exploratory 

data analysis and to define the historical climate in the case of organic and hygroscopic 

materials. The lower values of the CoI and the MQI (= 0.938) achieved in room 9 are due 

to an erroneous transmission of data by the data logger in January 2017. 

Table 10 Summary of the results of the Completeness Index (CoI), the Continuity Index (CI) and the 

Microclimate Quality Index (MQI) for each of probes inside the museum (room 4, 9 and 10) and for that 

outdoors (out) 

Probe CoI CI MQI 

room 4 0.984 0.999 0.984 

room 9 0.938 0.999 0.938 

room 10 0.993 0.994 0.993 

out 0.998 0.999 -- 

Box-and-whiskers plots 

Figure 16 and Figure 17 show the box-and-whiskers plot grouped by season for T and 

RH, respectively. Figures are supported by Table 11 for T and Table 12 for RH, that 

provide a synthetic summary of the main statistics over the whole period. Outliers were 
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identified both for T and RH. However, since they are not due to instrumental problems 

but to the climate evolution, they were included in the following analysis. 

Temperature (T) 

On average, T values recorded in room 4 are significantly different from the other rooms, 

especially in winter. Moreover, during this season, some outliers were detected in room 

9 and 10, that can be related to the use of the heating system. The annual T4 mean is 

22.6°C, whereas T means in other rooms are, on average, lower than 21.3°C. On the 

contrary, the maximum annual variability (x, i.e. max - min) in room 4 is the lowest and 

corresponds to 18.1°C; whereas the highest x has been found in room 9u (x = 24.9°C). 

It is worth to notice that this behaviour is strongly related to the rooms’ position with 

respect to the building orientation. Room 4 is at the first floor and has only one external 

wall and two windows, meaning that it is more protected than room 9, that is in the 

south corner of the building at the second floor and has three external walls and five 

windows. Even though boxes related to room 9 overlap in all season (Figure 16), the 

Wilcoxon test has shown that T9d and T9u are significantly different with a p-value of 

10-4. This means that a stratification of the air might occur. 

Considering the whole period, the mean value of internal T medians is 20.5°C, ranging 

between 17.1°C (the mean of the 25th percentile) and 27.1°C (the mean of the 75th 

percentile), whereas Tout has a lower median (17.1°C) and a greater variability, as 

expected (25th percentile = 11.4 °C and 75th percentile = 23.8 °C). 

Table 11 Summary the statistics of outdoor and indoor temperature (T) within the three rooms, coded as 

out, 4, 9d, 9u and 10, respectively (min: minimum; 25th per: 25th percentile or first quantile; 75th per: 75th 

percentile or third quantile; max: maximum; IQR: inter-quantile range (75th per - 25th per); x: max - min). 

 Tout (°C) T4 (°C) T9d (°C) T9u (°C) T10 (°C) 

min -4.4 13.2 8.6 8.5 8.9 

25th per 11.4 19.0 16.4 16.5 16.6 

median 17.1 21.4 20.1 20.2 20.2 

mean 17.8 22.6 21.1 21.3 21.3 

75th per 23.8 27.2 26.9 27.2 27.1 

max 39.3 31.3 32.8 33.4 32.6 

IQR 12.4 8.3 10.5 10.7 10.5 

x 43.6 18.1 24.2 24.9 23.8 

Over seasons (Figure 16), it was found as follows: 

­ winter: the mean value of internal T medians is 15.2°C, ranging between 13.7°C 

and 16.5°C with room 4 warmer than the others, whereas Tout has a lower 

median (8.8°C) ranging between 4.5°C and 11.7°C; 

­ spring: the mean value of internal T medians is 20.1°C, ranging between 18.4°C 

and 21.8°C, whereas Tout has a lower median (16.3°C) ranging between 12.7°C 

and 20.7°C; 

­ summer: the mean value of internal T medians is 29.4°C, ranging between 28.5°C 

and 30.2°C, whereas Tout has a lower median (27.4°C) ranging between 23.7°C 

and 31.7°C; 
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­ autumn: the mean value of internal T medians is 20.6°C, ranging between 18.6°C 

and 23.8°C, whereas Tout has a lower median (17.6°C) ranging between 14.2°C 

and 21.2°C. 

 

Figure 16 Box-and-whiskers plot of temperature (T) for each room grouped by season over the whole 

monitoring period. 

Relative humidity (RH) 

RH values are significantly different among rooms in all season except in summer. In 

addition, the Wilcoxon test has shown that no significant difference is between RH9d 

and RH9u (p-value = 0.65). The maximum annual variability (x) is 53.7% in room 10 

and lower than 36.4% in room 9. 

Considering the whole period, the mean value of internal RH medians is 50.7%, ranging 

between 46.3% (the mean of the 25th percentile) and 54.2% (the mean of the 75th 

percentile), whereas RHout has a higher median (63.7%) and a greater variability (25th 

percentile = 48.7% and 75th percentile = 77.2%). 

Over seasons, it was found as follows: 

­ winter: the mean value of internal RH medians is 51.2%, ranging between 46.7% 

and 53.2% with room 4 and room 10 drier than room 9, whereas RHout has a 

higher median (69.2%) ranging between 57.3% and 79.2%; 

­ spring: the mean value of internal RH medians is 51.3%, ranging between 49.0% 

and 52.8% with room 4 and room 10 drier than room 9, whereas RHout has a 

higher median (60.9%) ranging between 45.6% and 74.9%; 

­ summer: the boxes of internal RH overlap with a median of 45.2%, ranging 

between 43.4% and 47.1%, whereas RHout has a slightly higher median (48.9%) 

ranging between 37.5% and 61.7%; 

­ autumn: the mean value of internal RH medians is 56.2%, ranging between 53.8% 

and 58.9% with room 4 and room 10 drier than room 9, whereas RHout has a 

higher median (75.0%) ranging between 61.7% and 83.8%. 
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Table 12 Summary the statistics of outdoor and indoor relative humidity (RH) within the three rooms, coded 

as out, 4, 9d, 9u and 10, respectively (min: minimum; 25th per: 25th percentile or first quantile; 75th per: 75th 

percentile or third quantile; max: maximum; IQR: inter-quantile range (75th per - 25th per); x: max - min). 

 RHout (%) RH4 (%) RH9d (%) RH9u (%) RH10 (%) 

min 18.0 21.9 37.2 35.3 20.3 

25th per 48.7 45.0 47.9 47.5 44.8 

median 63.7 47.8 52.9 53.0 49.3 

mean 62.4 47.7 52.3 52.3 48.9 

75th per 77.2 50.8 56.3 56.7 53.0 

max 98.8 69.6 71.3 71.6 74.0 

IQR 28.5 5.8 8.5 9.2 8.2 

x 80.8 47.7 34.1 36.4 53.7 

In all seasons except for summer, RH values in room 4 as well as room 10 show to be 

drier than those recorded in room 9, even though room 9 and 10 are open-adjoining. This 

is probably due to the combined effect of ventilation, coming from the hallway close to 

room 4 and 10 and connected to the stairwell, and of the efficacy of the heating system 

in winter time. The former allows moisture removal and depends on the MR of the air 

mass; on the contrary, the latter affects the saturated pressure of water vapour in the air. 

 

Figure 17 Box-and-whiskers plot of relative humidity (RH) for each room grouped by season over the whole 

monitoring period. 

To understand if RH values mainly depended from T, the Spearman’s rank correlation 

coefficient (rs) was calculated. It was found that T and RH data were not correlated each 

other inside room 4 (rs = 0.01), meaning that RH is governed by source or sink of water 

vapour. On the contrary, rs between T and RH were -0.51 and -0.68 inside room 10 and 

9, respectively. In general, the thermal and moisture behaviour among rooms were 

highly correlated (rs > 0.98). 

Daily span 

Figure 18 shows the RH daily span (RH) versus the T daily span (T) calculated as the 

difference between the maximum and minimum value observed during each day for the 
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three rooms. In room 4 (upper-left panel), T never is higher than 4°C, whereas RH 

generally is lower than 20%. Moreover, in summer time (red dots) RH has more 

occurrences above 10% with respect to the other rooms. The data from room 10 (upper-

right panel) show larger daily cycles than those from the other three rooms, especially 

in winter. The maximum of T and RH is 8°C and 28%, respectively, and mainly occurs 

in winter time or when the heating system is on (late autumn and early spring). In room 

9 (lower panels), RH is always lower than 20%, whereas T overcomes 7°C in some 

winter days. In all the rooms, winter data (blue dots) assemble a distinct area with 

respect to the other season, standing out the effect of the heating system on the indoor 

climate. Large RH could induce mechanical damage in hygroscopic materials. 

 

Figure 18 Scatter diagram of daily RH span (RH) vs daily T span (T) for room 4 (upper-left panel), 10 

(upper-right panel), and 9d-9u (lower panels). The daily span is calculated as the difference between the 

maximum and minimum values. Blue, green, red and orange dots indicate winter, spring, summer and 

autumn, respectively. 

Outdoor climate influence 

The scatter plots of the indoor temperature (T) and mixing ratio (MR) monthly means as 

a function of the corresponding outdoor monthly means are shown in Figure 19 and 

Figure 20. 

Looking at the temperature scatter plots (Figure 19), Tin values are always above the 

bisector, i.e. internal thermal conditions are warmer than outdoors as already shown in 

Figure 16. In winter time, the difference with respect to outdoors is from 6°C (room 9 

and 10) up to 10°C (room 4), whereas in summer time, internal thermal conditions are, 

on average, 2°C warmer. Even though the heating system was switched on during cold 

days from November to April, its effect is slightly visible in room 9 (lower panels) and 

10 (upper-right panel), probably due to the effect of the roof, which is not insulated. 

Instead, in room 4 (upper-left panel), Tin was, on average, 2°C higher than Tin of other 

rooms, showing a pattern closer to heated buildings. 
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Figure 19 Indoor vs outdoor monthly averages of temperature data (Tin vs Tout) for room 4 (upper-left panel), 

10 (upper-right panel) and 9 (lower panels). The averages were calculated from September 1st, 2016 to 

August 31st, 2017. 

The monthly indoor MRs do not differ largely from the external variations (Figure 20) 

as shown by the values which are placed close to the bisector. On September-October in 

room 9 (lower panels) and 10 (upper-right panel), the smaller internal MR values, with 

respect to external ones, could be due to the ventilation responsible for the water vapour 

removal. 

 

Figure 20 Indoor vs outdoor monthly averages of mixing ratio data (MRin vs MRout) for room 4 (upper-left 

panel), 10 (upper-right panel) and 9 (lower panels). The averages were calculated from September 1st, 2016 

to August 31st, 2017. 
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The application of EN 15757:2010 

The use of the standard EN 15757:2010 requires that the objects stored have no recent 

damages. After the restoration in 2012, the restorer claimed that the wooden ceilings 

have not suffered from further degradation phenomena. This means that the 7th and the 

93rd percentiles of deviations from the 30-days centred-moving-average (MAC) with 

respect to RH readings delimit the safe band of allowable RH fluctuations, i.e. the 

historical climate at which the wooden ceiling has been acclimatised. RH measured from 

September 2016 till August 2017 together with the historic climate expressed in terms of 

the annual mean, the 30-day MAC and the safe band (the 7th and the 93rd percentiles of 

deviations from the MAC) are shown in Figure 21 and Figure 22 for room 9 and 10, 

respectively. These rooms were chosen because located at the second floor where there 

are the wooden ceilings. 

Looking at Figure 21, the seasonal increase of RH, with respect to the annual average, is 

9.3% and occur in November; on the contrary, the seasonal decrease, with respect to the 

annual mean, is 9.1% and occur in August. 

Looking at Figure 22, the seasonal increase of RH, with respect to the annual average, is 

10.4% and occur in October; on the contrary, the seasonal decrease, with respect to the 

annual mean, is 5.9% and occur in January. Most of occurrences below the lower limit is 

from November till May and probably are due to the effect of the heating system that is 

switched on during the opening hours. 

Data below the lower limit (too dry environment) can be related either to the heating 

episodes, as they mainly occur between December and April, or to summer temperature 

peaks, as it is visible between June and August, combined with moisture removal, as 

already shown in Figure 20. These occurrences might cause risky shrinkage of wooden 

fibres. RH values higher than the upper limit can be correlated with additional indoor 

sources of moisture. 

 

Figure 21 RH data (grey dots) measured from September 2016 till August 2017 at room 9 (upper level); the 

seasonal RH cycle (black line) determined as the 30-day central moving average of the readings; the lower 

and upper limits (“safe band”) correspond to 7th and the 93rd percentiles of the short fluctuations (dotted 

lines). The yearly RH average is marked by a horizontal dashed-line. 
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Figure 22 RH data (grey dots) measured from September 2016 till August 2017 at room 10; the seasonal RH 

cycle (black line) determined as the 30-day central moving average of the readings; the lower and upper 

limits (“safe band”) correspond to 7th and the 93rd percentiles of the short fluctuations (dotted lines). The 

yearly RH average is marked by a horizontal dashed-line. 

The application of ASHRAE 2011 

Figure 23 shows the comparison of the T-RH data, measured in room 9 from September 

2016 till August 2017, within the class of climate control, from AA to B, suggested by 

ASHRAE 2011 and described in Table 5. 

In this research, a particular attention was paid to the class of climate control As and B, 

since no degradation phenomena of artworks occurred over the last years as well the 

HVAC system does not allow the RH control. T-RH data fit the class of climate control 

As in 60.0% of time and the class of climate control B in more than 90% of the time. This 

means that a moderate risk of mechanical damage may occur to highly vulnerable 

artworks in less than 10% of time. 

To provide a thorough comprehension of indoor climate with respect to the classes of 

climate control, Table 13 summarises the percentage of data in which the T-RH measured 

in all the three rooms fits into the classes from AA to D. The difference between room 9d 

and 9u is mainly related to T readings, since no significant difference was individuated 

in RH data. 

Table 13 Summary of the percentage of data in which the climate fits into the classes of climate control, from 

AA to D, as suggested by the ASHRAE 2011 and reported in Table 5. 

Class of Climate 

Control 
Room 4 Room 9d Room 9u Room 10 

AA 58.2 42.3 37.8 36.9 

A 77.7 63.0 59.9 56.0 

AS 70.3 60.0 57.2 51.2 

B 90.3 92.5 87.8 86.5 

C 92.9 93.1 88.9 93.9 

D 92.9 93.1 88.9 93.9 
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The psychrometric charts with T and RH data measured in room 9 (upper level) were 

seasonally plotted and compared with the short-fluctuations calculated from the annual 

average of T and RH, as suggested by the ASHRAE 2011 in the case of the class of climate 

control As (Figure 24) and B (Figure 25). 

The allowable limits are indicated in figures as an area delimited by blue lines (T limits) 

and blue curves (RH limits). Temperature limits are defined as the annual average 21.3°C 

ranging between 2°C for class As and 5°C for class B. Relative humidity limits are 

defined as the annual average 52.3% ranging between 5% for class As and 10% for class 

B. The intensity of the colour in each season is related to the percentage of cases 

characterized by similar hygrothermal values. It follows that more data are scattered and 

more indoor climate is fluctuating. Seasonal monthly averages are also displayed. Each 

psychrometric chart includes a 3-by-3 matrix at the right that reports, on yearly and 

seasonal basis, the percentage of time that indoor conditions are within the guidelines 

(second row and column), above the T and RH maxima (first row (too warm) and third 

column (too humid), respectively) and below the T and RH minima (third row (too cold) 

and first column (too dry), respectively). 

It was found that the percentage of total data within the guideline’ limits is 13.1% for the 

class As (Figure 24) and 41.8% for the class B (Figure 25). 

Following the seasonal interpretation, it was found that: 

- in winter (blue data), T values are lower than limit in 98% and 82.6% of time, 

respectively, with January as the coldest month. 

- In spring (green data), T limits imposed by class As (Figure 24) show that the 

environment is too cold and too warm in 35.7% and 16.9% of time, i.e. in March and 

May, respectively. On the contrary, more than 88.0% of time T-RH data are within 

limits of class B (Figure 25). 

- In summer (red data), the environment is too warm for both classes (100.0% and 

99.0%, respectively) and alsotoo dry for class As (81% of time). 

- In autumn (orange data), looking at Figure 24, the environment is too warm in 

September in 19.8% of time and too humid in 57.4% of time (October and November). 

Instead in Figure 25, the environment results to be too humid only in 15.7% of time. 

The dose response function for crack-width 

The hygrothermal conditions at the interface air-surface (Ts – RHs) were compared with 

the crack-width (C), as shown in Figure 26. The RHs was derived from equation (3) and 

its uncertainty (4.5%) was calculated starting from T and MR uncertainties. It was found 

that an increase of Ts  = 10.0°C and a decrease of RHs  = 10.0% over the year with respect 

to the annual averages (upper panel in Figure 26) cause an increase of C equal to 0.12 

mm (lower panel in Figure 26). This confirms that too dry environmental conditions (= 

stress), mainly related to too warm thermal conditions, could be responsible for C 

widening (= strain) and, hence, risky for conservation requirements. Besides, C was 

compared with Ts RHs by using the Spearman’s rank correlation coefficient (rs). It 

resulted that rs(C, Ts) = 0.67 and rs(C, RHs) = -0.91, showing that C is highly correlated 

with both hygrothermal variables, as expected. 
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Figure 24 Psychrometric chart. Indoor climate within room 9 is seasonally represented: blue (winter), green 

(spring), red (summer), and orange (autumn). Seasonal monthly averages are also displayed. The Class of 

Climate Control As area is delimited by two horizontal blue lines (T = 21.3 ± 2°C) and two blue curves (RH 

= 52.3 ± 5%). The T and RH limits divide the chart into nine parts and the percentage of data within limits is 

represented by the 3-by-3 matrixes on the right. 

 
Figure 25 Psychrometric chart. Indoor climate within room 9 is seasonally represented: blue (winter), green 

(spring), red (summer), and orange (autumn). Seasonal monthly averages are also displayed. The Class of 

Climate Control B area is delimited by two horizontal blue lines (T = 21.3 ± 5°C) and two blue curves (RH = 

52.3 ± 10%). The T and RH limits divide the chart into nine parts and the percentage of data within limits is 

represented by the 3-by-3 matrixes on the right. 
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Figure 26 Upper panel. Relative humidity (blues dots) and temperature (red dots) evolution at the interface 

air-surface (Ts – RHs) over the whole year. Lower panel. Crack width (C) evolution over the whole year. 

To pinpoint the RHs gradient within the monitored wooden panel, the difference (RHs) 

between RHs at the surface and RHs smoothed at 3h, 24h, 48h and 1w was calculated and 

displayed in Figure 27 along with the safe band calculated as the 7th and 93rd percentile 

of RHs. In this way, the 14% of occurrences represents the riskiest hygrometric 

conditions for the stress-and-strain cycle of wooden material. Positive values correspond 

to drier conditions of inner layer than those in surface; whereas negative values indicate 

drier conditions at the surface than those in inner layers. Greater is RHs, i.e. the 

moisture gradient, higher will be the internal stress. Here, negative values are more 

frequent from June till August and from December till April. 

Looking at the daily span of Ts – RHs shown in Figure 28, in the former period (red dots), 

the large daily RHs (up to 10.0%) are probably due to moisture removal from the 

environment jointly with a high thermal level of the ambient air. The RHs daily span is 

probably governed by the daily-night cycle buffered by the building envelope. This 

causes that the difference with the inner RHs may be large. Indeed, Ts never exceeds 

2°C. On the contrary, in the latter period (blue dots), the intermittent use of the heating 

system provokes large daily fluctuations of Ts (up to 6°C), that indirectly affect daily 

fluctuations of RHs. In this way, drops in RHs values are suddenly replaced by RHs 

peaks. 

Once again it is clear how microclimate variables and their mutual relations are of crucial 

importance in interpreting the damage process. 
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Figure 27 Relative humidity gradient (RHs) through the wooden panel (from surface to inner layers) 

calculated as the difference between RHs at the superficial layer and RHs smoothed at 3h, 24h, 48h and 1w. 

Blue bands are the allowable limits defined as the 7th and 93rd percentile of RHs. 

 

Figure 28 Scatter diagram of daily RHs span (RHs) vs daily Ts span (Ts). The daily span is calculated as the 

difference between the maximum and minimum values. Blue, green, red and orange dots indicate winter, 

spring, summer and autumn, respectively. 

As above described, the riskiest periods for conservation of wooden ceilings seem to be 

when the heating system is on and during summer time. Figure 29 shows the RHs 

calculated with a time lag of one-week and the crack width evolution over the whole 

year. It is clear that, when the heating system is on, the moisture-induced strain is closely 

related to the daily fluctuations of hygrothermal conditions; whereas, in summer time, 

it is strongly affected by the moisture gradient within the material, since the inner layers 

are more humid than the surface layer. On the other hand, when RHs is within the safe 

band, C is stable as occurred in September-October and in April-May. 
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Figure 29 RHs calculated as RHs smoothed at 1w (inner layer of wooden panel) and crack width evolution. 

The high relation between C and Ts-RHs allowed deriving the dose-response function by 

minimising the coefficients of the equation (4). The coefficients are reported in Table 14. 

Figure 30 shows the measured C and the C modelled (Cm) starting from Ts-RHs. The 

discrepancy between C and Cm, expressed as RMSE, is 0.014 mm, i.e. lower than the 

crack-width meter’s accuracy (Table 4), as well the coefficient of determination (R2) is 

0.86 (Figure 31), meaning that the model well replicates the observed outcomes. The dose 

response function, indeed, is well calibrated and can be used for the following purposes. 

Table 14 Equation coefficients calculated by a non-linear multiple regression. 

a b c 

6.4790 -0.0542 -0.0004 

 

Figure 30 Measured crack width (C) and modelled crack width (Cm) from September 2016 to August 2017 

are plotted as blue and orange lines, respectively. The uncertainty related to Cm is 0.008 mm. 
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Figure 31 Scatter diagram of modelled crack width (Cm) vs measured crack width (C). Dashed line is the 

linear fitting, whose equation is reported on the top right. Solid line is the bisector. 

The simulation environment 

The results from the Sensitivity Analysis (SA) by means of the Elementary Effects 

method (EEs) was carried out using the eighteen general input parameters reported in 

Table 9. Figure 32 shows that the indoor T is strongly affected by the thermal bridge of 

external walls envelope (X8) and external wall-slab (X9) in all the three rooms. The effect 

is monotonic – almost monotonic, since / * is lower than 0.5. This means that most of 

EEs, i.e. 95% with the assumption of normal distribution, has the same sign and the 

model response can be considered as monotonic with respect to the input factor (Xi). 

 

Figure 32 Scatter plot (σ vs μ*) of Elementary Effects method performed using the Mean Absolute Error 

(MAE) from hourly temperature data as target function. The eighteen input parameters are indicated as 

coloured dots and labelled as in Table 9. Four areas delimited by the ratio σ/μ* indicate the effect of 

parameter on model: dash-dotted line is σ/μ* = 0.1 (linear effect), dotted line is σ/μ* = 0.5 (monotonic effect), 

dashed line is σ/μ* = 1 (almost monotonic effect). The area above σ/μ* = 1 represents a non-linear and/or a 

non-monotonic effect. 
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Figure 33 shows that the indoor RH of building model is strongly affected by the 

infiltration rate (X18), especially in the case of room 9 (mid panel) and 10 (right panel), 

and on average from the thermal bridges (X8 and X9) as in the case of EEs calculated for 

temperature. The effect of the infiltration rate is clearly non-linear and non-monotonic, 

since the absolute average * is very different from the absolute average (i) and the 

input parameter’s effect is more influenced by . 

 

Figure 33 Scatter plot (σ vs μ*) of Elementary Effects method performed using the Mean Absolute Error 

(MAE) from hourly relative humidity data as target function. The eighteen input parameters are indicated 

as coloured dots and labelled as in Table 9. Four areas delimited by the ratio σ/μ* indicate the effect of 

parameter on model: dash-dotted line is σ/μ* = 0.1 (linear effect), dotted line is σ/μ* = 0.5 (monotonic effect), 

dashed line is σ/μ* = 1 (almost monotonic effect). The area above σ/μ* = 1 represents a non-linear and/or a 

non-monotonic effect. 

Starting from the outcomes of SA, the building model was calibrated using the most 

influential input parameters by means of the PSO-GPSHJ genetic algorithm. In this step, 

the thermal properties of wooden slabs were added in order to furtherly include the 

surface temperature (Ts) of the wooden ceiling in the calibration of room 9. The 

automatic calibration lasted about 3 hours and consisted of 225 simulation runs. 

Table 15 reports the statistics about the automatic calibration for the three rooms. The 

MAE is, on average, 0.3°C for T, 1.6% for RH and 0.2°C for Ts. The RMSE is, on average, 

0.4°C for T, 2.1% for RH and 0.2 for Ts. The CV-RMSE is less than 2.0% for T, less than 

1.0% for Ts and less than 5.0% for RH. The building model is well calibrated, since the 

discrepancy between modelled and measured data is close to the instrumental accuracy 

as reported in Table 4. Finally, the correlation between modelled and measured data is 

rs > 0.9 for T, rs > 0.6 for RH and rs = 0.9 for Ts. 

Then, the building model was run in the validation period (from September 24th, 2017 

till October 8th, 2017). It was found that the discrepancy between modelled and measured 

data increases. Indeed, the RMSE is, on average, 0.6°C for T, 3.2% for RH and 0.5 for Ts; 

as well as the CV-RMSE is less than 3.0% for T, less than 3.0% for Ts and less than 8.0% 

for RH. The correlation between modelled and measured data decreases for all 
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parameters. The decrease of statistics during the validation might be due to the effect of 

the summer cooling, i.e. the building is still not acclimatised with the outdoor climate. 

Table 15 Summary of the calibration statistics of air temperature (T) and relative humidity (RH) in rooms 4, 

9 and 10, and the surface temperature (Ts) in room 9 (MAE: mean absolute error; RMSE: root mean square 

error; CV-RMSE: coefficient of variation of RMSE; rs: Spearman’s rank correlation coefficient). 

Statistics T RH Ts 

 Room 4 

MAE 0.4°C 1.5%  

RMSE 0.5°C 2.1%  

CV-RMSE 1.8% 4.3%  

rs 0.8 0.6  

 Room 9 

MAE 0.4°C 1.6% 0.2°C 

RMSE 0.4°C 2.0% 0.2°C 

CV-RMSE 1.7% 3.9% 1.0% 

rs 1.0 0.7 0.9 

 Room 10 

MAE 0.3°C 1.6%  

RMSE 0.4°C 2.2%  

CV-RMSE 1.6% 4.6%  

rs 1.0 0.7  

Table 16 reports the statistics about the manual calibration performed for room 9 

modelled with the HMWall model. It is clear that the use of the HMWall model allows 

better simulate the relative humidity inside the room, halving the error between 

modelled and measured RH and increasing their correlation from 0.7 to 0.9. As well, 

indoor temperature is better modelled. This outcome encourages the use of 

hygrothermal tool for historic building modelling. Figure 34 shows measured and 

modelled T (upper panel) and RH (lower panel) trends taking into account the 

instrumental uncertainty of T-RH sensors (shaded area). 

Table 16 Summary of the calibration statistics of air temperature (T), relative humidity (RH) and the surface 

temperature (Ts) in room 9 modelled extending IDA ICE with the HMWall model (MAE: mean absolute 

error; RMSE: root mean square error; CV-RMSE: coefficient of variation of RMSE; rs: Spearman’s rank 

correlation coefficient). 

Statistics T RH Ts 

 Room 9 (HMWall model) 

MAE 0.2°C 0.8% 0.4°C 

RMSE 0.3°C 1.0% 0.5°C 

CV-RMSE 1.2% 2.0% 2.1% 

rs 1.0 0.9 0.9 

In the validation period, the discrepancy between modelled and measured T does not 

change. On the contrary, it was found for RH: MAE = 1.0%, RMSE = 1.2%, CV-RMSE = 

2.4% and rs = 0.7. 
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Figure 34 Measured (blue dots) and modelled (red dots) temperature (T) and relative humidity (RH) trends 

inside room 9. The shaded area represents the measurement uncertainties: ±0.3°C and ±1.5%, respectively. 

The calibrated room 9 model is characterised by the hygrothermal properties reported 

in Table 17; whereas the infiltration and the thermal bridges were summarised in Table 

18. A summary of the main features of room 9 is listed below: 

• a floor area of 62 m2 and a volume area of 185 m3; 

• three external walls of 0.6 m a thermal transmittance (U-value) of 1.4 W m-2 K-1 

(material properties in Table 17); 

• an adiabatic internal wall of 0.6 m with a U-value of 1.1 W m-2 K-1 and connected 

to a RH value of 50% (material properties in Table 17); 

• an adiabatic floor with a U-value of 2.7 W m-2 K-1 and connected to a RH value of 

50% (material properties in Table 17); 

• an internal wooden ceiling of 0.08 m with a U-value of 3.5 W m-2 K-1 and 

connected to a RH value of 55% with the above crawl space (material properties 

in Table 17); 

• poor thermal bridges (Table 18); 

• a fixed infiltration at 0.02 ACH (Table 18); 

• a glazing system with wooden-framed low-emission double panes (6-12-6 mm 

filled with air) characterised by a U-value of 1.6 W m-2 K-1 and a solar heat gain 

coefficient (SHGC) of 0.4. All windows have an area of 1.5 m2 and are covered by 

black interior roller shades. 
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Table 17 The list of building materials and the changed hygrothermal properties (as bold) of building 

materials obtain from the calibration of room 9. 

Material 

Hygrothermal properties 

 cp   w80 wf Aw 

kg/m3 J/(kg‧K) W/(m‧K) - kg/m3 kg/m3 kg/(m2‧h0.5) 

brick 1900.0 1000.0 1.06 28.0 24.9 250.0 2.70 

concrete 2104.0 776.0 1.81 76.1 101.0 144.0 0.75 

lime plaster 1600.0 850.0 0.65 7.0 30.0 250.0 3.00 

light mortar 830.0 1000.0 1.20 13.2 26.3 423.0 1.63 

wood 740.0 740.0 0.81 223.0 155.0 349.0 15.00 

Table 18 Parameters update with respect to the initial building model and used in the calibrated building 

model. Each parameter is identified by a code as in Table 9. Parameters’ abbreviation: TB = thermal bridge, 

EXTW-INTW = external-internal wall, EXTW-CORN = external wall-inner corner, WIN = windows, ROOF 

= roof, INTW-ROOF = internal wall-roof, INFILT = infiltration. 

cod. Parameter Unit Calibrated model value 

X10 TB EXTW-INTW W/(m‧K) 0.6667 

X11 TB EXTW-CORN W/(m‧K) -0.07 

X12 TB WIN W/(m‧K) 1.0 

X13 TB ROOF W/(m‧K) 0.85 

X14 TB INTW-ROOF W/(m‧K) 0.40 

X18 INFILT ACH 0.02 

 

The control climate strategy 

The calibrated room model was used to estimate the effect of the dynamic temperature 

control strategy on the conservation of wooden ceilings, by replacing the estimated T-

RH into equation 1. The conservation needs and the thermal comfort requirements were 

both considered. 

For the above control strategies inside room 9, the peak demand is 2.6 kW during heating 

hours and 1.6 kW during cooling hours; whereas the annual energy consumption is 4532 

kWh and 1877 kWh, respectively. 

Figure 35 shows the psychrometric chart of the estimated T-RH data related to the new 

climate control configuration. The annual averages of T and RH are 22.3°C and 54.9%, 

respectively. The hygrothermal data are less scattered with respect to the actual 

environmental conditions (T ranges between 19.8°C and 25.8°C and RH ranges between 

47.7% and 65.4%). T-RH data are within the allowable limits in 41.5% of time. 

Specifically, in Winter, T is 91% of time below the lower T limit (20.3°C); whereas RH is 

56% of time above the RH upper limit (59.9%), never exceeding the value of 64.5%. In 

Spring, T-RH data are within the allowable area in more than 85% of time, even though 

RH is below the lower limit and above the upper limit in 5% and 8% of time, respectively. 

In Summer, T is always above the upper limit (24.3°C), however it never exceeds 25.8°C; 

whereas RH is below the lower limit (49.9%) in 18% of time. Finally, in Autumn, warmer 
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episodes than the upper T limit (on average 15%) are related to September; whereas RH 

is lower than 49.9% in 5% of time. Moreover, the daily spans are less than 2.5°C for T 

and less than 4.0% for RH. 

 

Figure 35 Psychrometric chart. Indoor climate within room 9 with the new climate control strategy is 

seasonally grouped: blue (winter), green (spring), red (summer), and orange (autumn). Seasonal monthly 

averages are also displayed. The class of climate control As area is delimited by two horizontal blue lines (T 

= 22.3 ± 2°C) and two blue curves (RH = 54.9 ± 5%). The T and RH limits divide the chart into nine parts and 

the percentage of data within limits is represented by the 3-by-3 matrixes on the right. 

Figure 36 shows the histogram with the percentage of occurrences of C in: i) current 

climate conditions (black-white bins); ii) the free-floating (red bins) and iii) the new 

climate control strategy (blue bins). Cm is calculated from the equation 1 in ii) and iii) by 

replacing Ts and RHs with those retrieved as output from the simulation file. 

In i) case, the observed cracks range between 5.15 mm and 5.35 mm and, among those, 

about 20% is above 5.25 mm, corresponding to the Summer. 

In ii) case, the T-RH conditions allow to meet the conservation requirements in 22% of 

time, since T is below the lower limit in 47% of time and above the upper limit in 32% of 

time. The thermal comfort requirement of visitors, instead, is reached only in 10% of 

time, since T is below the ATL lower limit in 58% of time in cold season and above the 

ATL upper limit in 32% of time in warm season. Finally, RH is about 51% of time below 

the RH lower limit in the warm season. In these climate conditions, as shown in Figure 

11a, about 15% of data is within the range of 5.00-5.05 mm, when, in cold period, T is 

<15°C and RH is >60%. Instead, about 27% of data is within the range of 5.25-5.35 mm, 

when, in warm period, T increases up to 31°C and RH decreases below 40%. 

On the contrary, in iii) case, the new control of the indoor climate determines a reduced 

annual variation between minimum and maximum width of wooden cracks, since it is 

0.10 mm instead of 0.20 mm in current conditions and 0.25 mm in free-floating. This 
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means that, when both thermal comfort and conservation needs are satisfied, wooden 

panels would experience less stresses and, consequently, less strains. 

 

Figure 36 Histogram plot with the percentage of occurrences (%) of crack width (C) observations (black-

and-white bins), when the indoor climate is free-floating (red bins) and when it is controlled by a dynamic 

T safe-band (blue bins). 

Looking at Figure 36, i.e. the histograms of daily span of Cm (ΔCm), the current 

conditions is characterised by daily stresses up to 0.06 mm. On the contrary, the free-

floating strategy might induce daily stress up to 0.03 mm per day. If a control of indoor 

climate is considered, the daily span is less than 0.01 mm in more than 80% of the 

occurrences. 

 

Figure 37 Histogram plot with the percentage of daily span (ΔC) of crack width observations (black-and-

white bins), when the indoor climate is free-floating (red bins) and when it is controlled by a dynamic T 

safe-band (blue bins). 

It results that a dynamic temperature control is more effective to reduce the stress-and-

strain cycle in wooden ceilings, since it reduces both the annual spread of cracks and, 

especially, their daily spans. It is worth to notice that the T control, so as that designed, 



Chapter 4: Results  The control climate strategy 

66 

 

can guarantee the control of RH as recommended by the class of climate control As in 

more than 70% of time. Nevertheless, this implies that a new climate control strategy 

cannot be designed only with the temperature control, because the HVAC system should 

be integrated with a de/humidifying device in order to guarantee the RH control, as well. 
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This final chapter describes the general conclusions and the answers to the research 

questions, reported in Chapter 1. Finally, some suggestions are proposed for further 

researches. 

 

General conclusions 

My thesis addresses a very important timely topic in the preventive conservation 

providing a strategy in the control and management of the indoor climate within historic 

buildings which house permanent collections. To achieve this purpose, my research 

focused on combining experimental data and dynamic simulation approach. Particular 

attention was paid to the simultaneous modelling of heat and moisture through the walls 

of the building as well as to the stress-and-strain cycle in hygroscopic materials related 

to moisture-induced dynamics. There were four main reasons which have prompted this 

research: (1) providing a robust quality assessment of the microclimate measurements; 

(2) developing a specific dose response function for mechanical degradation of 

restrained hygroscopic materials; (3) extending the features of a commercial whole 

building dynamic simulation software, the IDA Indoor Climate and Energy, with a one-

dimensional heat and moisture transfer model (the HMWall model); (4) easing the set-

up of the building model for historic buildings using hourly temperature and relative 

humidity data. The issues (3) and (4) were needed for using the dynamic simulation as 

a diagnostic tool. The issue (2) was needed to exploit the simulation as a predictive tool. 

The dynamic simulation, as a diagnostic tool, allows to identify sources or sinks of heat 

and moisture that determine and affect the dynamic behaviour of environmental 

conditions. The dynamic simulation, as a predictive tool, provides useful data on the 

indoor climate within the building as the result of changes in boundary conditions or 

air-conditioning systems. Empirical and specific degradation model, i.e. a dose-response 

function, allows to know how the estimated indoor conditions affect the conservation 

state of the artworks. 

The specific purposes were achieved using different case studies and the whole 

methodology (i.e. the general objective of my research) was successfully exploited in the 
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case of the Archaeological Museum of Priverno, which might be defined as the pilot case 

study in the developed preventive conservation strategy. 

The application of the method to the case study of the Archaeological Museum of 

Priverno has proved that the building model which more accurately simulates the 

indoor temperature and relative humidity dynamics is that in which a hygrothermal 

transfer model of opaque building components is included in the dynamic simulation 

software. Furthermore, the semi-automatization of calibration method using hourly 

measurements of climate variables is effective to design a building model as 

representative as possible of the actual case. 

In addition, the study has demonstrated that long-term indoor climate observations 

coupled with the monitoring of the crack width of wood can be effectively used to 

investigate on the indoor climate aimed at reducing the stress-and-strain cycle of 

valuable wooden ceilings, and improving the thermal comfort. The new climate control 

strategy has the main advantage to consider the historical climate at which wooden 

ceilings have been kept over the last years. This means that the application of the 

dynamic temperature safe-band does not imply any abrupt changes in the indoors, 

highly reducing further triggers of degradation. 

It is worth to notice that this methodology takes advantages only if a thorough 

knowledge of the indoor climate and its interaction with the objects is reached. Even if 

the method has been applied to a particular case study, the Archaeological Museum of 

Priverno (Italy), it can be potentially exploited for other cases in which also other types 

of degradation are present, providing that a degradation response function or its 

empirical evaluation of object is available. 

The proposed approach results to be completely non-invasive, non-destructive and with 

zero-costs in terms materials. Indeed, the conservative quality of the exhibition spaces 

after modification of the indoor climate is directly assessed in the simulation 

environment. In this way, outcomes can support advantageously decision-making for a 

better control and management of the exhibition environment. 

To sum up, a thorough and meticulous assessment of the microclimate, given by the 

combination of on-site measurements and dynamic simulation, plays a crucial role in 

investigating the interaction between hygrothermal variables and the degradation 

process, estimated by means of degradation markers. Besides as emerged in the 

literature review and in this thesis, the relative humidity strongly affects the degradation 

processes of hygroscopic materials and, for this reason, it must be measured, modelled 

and predicted as accurately as possible. Only when this is achieved, it is possible to use 

consciously the dynamic simulation tools in the field of the preventive conservation. 

Answers to research questions 

In this section, the answers to research questions are listed: 
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1.  Is it possible to objectively assess the quality of indoor climate time series to apply the recent 

standards and guidelines? 

Yes, it is possible to objectively assess the quality of temperature and relative 

humidity time series. Three indexes have been proposed to objectively assess the 

quality of time series: the Completeness Index (CoI), the Continuity Index (CI) and 

the Microclimate Quality Index (MQI). The indexes range between zero and unity. 

The CoI and the CI should be used in complementary way. It was found that for CoI 

and CI values > 0.6 reliable and robust results are provided by data mining. The MQI 

was specifically defined for the analysis of historic climate. The MQI synthetises the 

information about the length of the time series, as required by climate records (at least 

12 months), and the sensors’ accuracy, as suggested by the current European 

standards. For the same length, the MQI ranges between 0.7, if the sensor’s accuracy 

is low, and 1.0, if it is high. The indexes were tested for the first time in the Mogiła 

Abbey – Krakow, Poland (Appendix A). The indexes were also successfully used to 

identify the most proper period within a longer data collection (seven years), which 

had several missing intervals of values due to the malfunction of sensors over years 

(Museo Napoleonico – Rome, Italy) (Appendix B). In the case of the Archaeological 

Museum of Priverno, the indices were used to assess the robustness of the monitoring 

system in gathering and recording data. 

 

2. Can the observed degradation measurements be related to the indoor climate and used to 

predict the effect of new control climate strategy on degradation? 

Yes, it can. The shrinkage-swelling of organic-hygroscopic materials (wood, textile, 

paper, etc.) due to indoor climate is not the source of its damage unless the object is 

restrained. In such a case, a relationship can be found between the T-RH variables 

and the strain of material measured as crack width (C). A dose-response function of 

C can be derived using a no-linear multiple regression. The dose-response function 

was applied to two different hygroscopic materials: the faunal remains (La Polledrara 

di Cecanibbio – Rome, Italy) and the wooden ceilings of a historic building (the 

Archaeological Museum of Priverno –Italy). The dose-response function proved to be 

effective as a damage tracking, when it is used to assess a retrofitting solution or a 

new climate control strategy in the environment simulation. In both cases, the 

estimated T-RH data can be inserted in the dose-response function to pinpoint the 

extent of the crack width behaviour. In the case of La Polledrara di Cecanibbio 

(Appendix C), a retrofitting strategy was evaluated based on the use of building 

integrated photovoltaics (BIPVs) as shading elements and ancillary source of 

electrical power. The dose-response function allowed to evaluate the dynamic 

behaviour of C both in passive (air-conditioning system is off) and active control (air-

conditioning system is on) of indoor climate. It was found that the only control of 

temperature in winter might induce a C widening with respect to the initial 

conditions due to drops in RH values. In the case of the Archaeological Museum of 

Priverno, the estimated hygrothermal variable from the novel control strategy, which 
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considers the historical climate at which the wooden ceiling has been kept over the 

last years, has demonstrated to be effective in reducing the annual variability of crack-

width and the maximum daily fluctuations with respect to the current hygrothermal 

conditions. 

3. How can a hygrothermal model be validated and then used in the field of preventive 

conservation? 

The performance of the HMWall model, as an extension of the IDA Indoor Climate 

and Energy (IDA ICE) software, was carried out and assessed using exercises at the 

increasing complexity: i) a semi-infinite wall, ii) an adiabatic building envelope, iii) a 

modern building and iv) a historic building. 

The validation was based on: a) the general standard procedure (analytical 

verification) for exercise i; b) output provided by another simulation code 

(comparative test) for exercise ii; c) experimental data collected during field 

campaigns (empirical validation) for exercise iii and iv. The general standard 

procedure showed that the HMWall code properly calculated the heat transfer and 

underestimated the moisture transfer. The comparative test, indeed, has revealed that 

the code did not properly calculate the saturated pressure of water vapour (psat) and 

did not include the water vapour transfer (gv) between the wall surface and the 

boundary air layer close to it. However, the latter parameter showed to be not 

relevant and not affecting the moisture flow (Appendix D). I improved the HMWall 

code concerning psat and the liquid transfer coefficient (D). The modified HMWall 

code revealed to be more performing with respect to the original code, providing 

more realistic results in all exercises (Appendix E). It is worth to notice in the exercise 

iv (Chiesa di Santa Rosalia – Palestrina, Italy) that the integration of the IDA ICE with 

the updated HMWall model improves the simulation of the moisture behaviour with 

respect to the IDA ICE as it is, halving the discrepancy between the measured and 

modelled relative humidity. Moreover, good results were achieved in the case of the 

Archaeological Museum of Priverno, since a better modelling of indoor temperature 

and relative humidity was performed. These outcomes encourage the use of the 

building dynamic simulation tool integrated with a hygrothermal code in modelling 

those buildings where the moisture plays a key role in degradation phenomena. 

4. Can a semi-automatic calibration of building model with indoor temperature and relative 

humidity measurements be implemented for historic buildings? 

Yes, it can. To better calibrate the building model of a historic building, the existing 

calibration procedure was integrated with the Sensitivity Analysis (SA) by using the 

Elementary Effects (EEs) method. This step is fundamental to find the most relevant 

input parameters of the building model before of reducing the discrepancy between 

modelled and measured data by means of a manual calibration, i.e. input parameters 

have changed step-by-step by the user, or of genetic algorithms, i.e. input parameters 

automatically change to achieve the minimisation. The integration was performed 

coupling IDA ICE with the MatLab environment. The MatLab code was programmed 
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to iteratively: set the input parameters, initialize IDA ICE, run simulations and 

execute the EEs. The output of SA provides the principal statistic outcomes and 

visualizes the scatter plot of EEs. This allows busting the choice of input parameters 

to use in the Genetic Optimization (GenOpt®, already implemented in IDA ICE 

library). GenOpt uses a hybrid approach coupling the Particle Swarm Optimization 

with the General Pattern Search of Hooke-Jeeves (PSO-GPSHJ) to minimize the 

discrepancy between modelled and measured hourly data. The whole calibration 

procedure lasts about 24-36 hours, depending on the complexity of the building 

model. In the calibration procedure hourly indoor climate data (T and RH) were used 

as target variables. Since no recommendation exists on the acceptable tolerance of the 

calibration using hourly indoor climate data, it has been estimated that the 

discrepancies between measured and modelled data must be close to the instrumental 

accuracies. This is a further reason to trigger the assessment of high-quality T-RH 

data. The procedure has been tested for the calibration of a modern building (La 

Polledrara di Cecanibbio – Rome, Italy) (Appendix F). It has also revealed to be 

successfully exploited for the calibration of historic buildings, as demonstrated in the 

case of the Archaeological Museum of Priverno (Latina, Italy). 

 

Future researches 

The achieved outcomes are encouraging for the integration of other crucial elements in 

the preventive conservation activities. 

The potential use of empirical dose-response functions as a damage target for assessing 

the environmental quality of the exhibition space leads to develop sustainable 

conservation strategy based on multi-objective optimization. In this way, the climate 

control or the retrofitting solution can be addressed in order to simultaneously consider 

the conservation of artworks, the thermal comfort of users, the energy and costs savings. 

Most of the research was dedicated to investigating the performance of the HMWall 

model as an extension of the IDA ICE software for modelling the heat air and moisture 

transfer through walls. Even though the main errors in the code was solved, some crucial 

elements should be still integrated. The first is the implementation of a library with the 

hygrothermal properties of the most common building materials. This would ease the 

use of the modelling object that has to be filled in and used at advanced level. The second 

is the optimization of liquid water loads at wall level that poses new interesting research 

goals. This is very important to study the effect of precipitation on the heat and moisture 

balance of the building envelope and to assess the presence of liquid water in damp sites, 

such as hypogea, crypts, cellars and underground storage spaces. The latter aspect is a 

topic very little explored till now and suggests the potential use of such a dynamic model 

in other fields, such as food and drink storage and conservation. 
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Abstract 

In the last years, a commensurable interest has been shown in the use of the 

hygrothermal assessment by means of the analysis of temperature, relative humidity 

and moisture content within buildings. It provides valuable information needed for 

decision-making, since it helps to understand the enclosure behaviour and the building 

performance issues. For this reason, numerical models of the heat air and moisture 

transfer through porous have been developed to extend or combine existing building 

dynamic simulation tools. The HMWall model is a one-dimensional hygrothermal 

model. This study aims at validating the IDA ICE software extended with the HMWall 

object by means of four exercises at increasing complexity. The validation is performed 

using HMWall as an independent object (exercise 1) and as a component of a larger 

system (exercises 2-4). The validation considers analytical verification, empirical 

validation and comparative test. All exercises demonstrate the efficacy of the HMWall 

object for hygrothermal assessment. Especially, the last exercise confirms that IDA ICE 

extended with HMWall provides more accurate RH time series with respect to the 

default one. 

 

Introduction 

In the last years, a commensurable interest has been shown in the use of the 

hygrothermal assessment by the analysis of temperature, relative humidity and 

moisture content within buildings. It provides valuable information needed for decision-

making, since it helps not only to the understanding of enclosure behaviour but also to 

the identification of building performance issues in terms of energy consumptions and 

human comfort. 

Almost all building materials are porous in nature and are completely dry when water 

is only chemically bounded. Otherwise, they can contain water as solid (ice), liquid 

(water) and gas (vapour) state (Straube and Burnett 1991). The moisture can migrate by 

three modes of transports: vapour transport, liquid transport and phase changes 

(evaporation/condensation and freeze/thawing). These processes strongly affect the 

building behaviour and are an important aspect of the overall performance of the 

building (Holm et al. 2004), as the inside moisture may change the envelope’s durability 

or the thermal performance and affect the indoor air quality, becoming a driving 

potential for mould and dust infection (Hens 2009). The above issues show the 
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importance of measuring and modelling the heat and moisture transfer through 

hygroscopic materials with an accurate and reliable way. 

The aim of the study 

The aim of this paper is to investigate the performance of the IDA Indoor Climate and 

Energy (ICE) software extended with the HMWall model in four exercises: 1) a semi-

infinite wall as stated in the EN 15026:2007; 2) an adiabatic building envelope; 3) the 

Common Exercise 3 (CE3) from the International Energy Agency – Annex 41; and 4) an 

historical building. The exercises were set up so that various combinations of climatic 

loads and materials were modelled. The four exercises are separately presented. More 

attention is paid to the second and the fourth exercise, since they were set up by the 

authors. The code validation was based on the three requirements suggested by Judkoff 

and Neymark (1995), i.e. analytical verification, empirical validation and comparative 

test. An appendix is added with the equation of statistics using in the analysis. 

State of art 

The hygrothermal analysis is a valuable tool for design, assessment and study. For 

example, Martinez (2017) demonstrated by means of thermal transmittance (U-value) 

measurements how a pre-fabricated hemp-based timber-frame envelope system, i.e. a 

new building made of low impact materials, has large capability to achieve high 

insulation levels combining with a good moisture buffering for the indoor environment. 

Kraus (2017), instead, showed that the complex health problems connected with the Sick 

Building Syndrome (SBS), such as tearing eyes, nose irritation, wheezing, coughs and 

frequent respiratory infections, can be strictly related to the hygrothermal performance 

of the building envelope with respect to the use of HVAC system or as a function of 

season variability. In Litti et al. (2015), non-invasive techniques were used to investigate 

the thermal performance of a heritage building and its alteration due to the moisture 

distribution variation. They demonstrated how water can locally or globally modify the 

thermal behaviour of the envelope, since it has higher specific heat and thermal 

conductivity with respect to the traditional dry materials. 

Although the hygrothermal assessment using measurements of T and RH gives 

important information of the current state of the building, a powerful tool for prevention 

and prediction of building performance and for research and development of novel 

materials or systems is the whole building dynamic simulation. At the end of fifties, the 

research was focused on the simulation of the heat, air and moisture transport through 

the opaque components (Hens 2009). One of the first simple evaluation was the Glaser 

method (Glaser 1958), that aimed at scaling the interstitial condensation using two 

steady state transports: the heat flow by conduction and the water vapour flow by 

diffusion. The method was standardized in the EN ISO 13788:2002 and assumes that the 

built-in water has dried out and no effect of moisture content occurs on material intrinsic 

properties. This means that it can be applied only in those cases where the previous 

effects are negligible (Hagentoft 2004). The Glaser method is mainly used when an 

approximation of reality is enough for understanding the building issues, as 
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demonstrated in Ramos et al. (2009) and Magrini et al. (2017). Since the heat and moisture 

flows are transient, more sophisticated one- and two-dimensional dynamic models can 

give more detailed and accurate information. Most of simulation codes were developed 

to model moisture exchanges between indoor and outdoor environments setting a 

specific moisture storage capacity to the interior of the building (Holm et al. 2003) and 

not to model the moisture flow between the air and porous surfaces (Rode and Woloszyn 

2007). The latter modelling has been generally implemented with the so-called HAM 

model, i.e. Heat Air and Moisture model, and combines the heat and moisture flow 

equations with the mass and energy balances. In the case of the moisture transfer, which 

includes both liquid and vapour flow, it was established that the driving factors were 

the capillary pressure (pk) and the vapour partial pressure (pv), (Janssen 2014). The whole 

moisture exchange in a building can be mainly modelled using the co-simulation or 

extending the building simulation software architecture. The co-simulation is one of the 

most advanced and versatile method (Nicolai et al. 2007; Steeman et al. 2010; Tariku et 

al. 2010; Djedjig et al. 2012; Spitz et al. 2013; Ferroukhi et al. 2016). It consists in combining 

two existing software (Gomes et al. 2018), one for whole building dynamic simulation 

and the other one for the hygrothermal transfer modelling (Ferroukhi et al. 2015). A 

review of hygrothermal tools available in literature identified 57 models, however only 

14 are available to the public (Delgado et al. 2012). Nine belong to commercial programs 

(1D-HAM, BSim2000, Delphin, GLASTA, hygIRC-1D, IDA-ICE coupled with HAMWall, 

MATCH, MOISTURE-EXPERT and WUFI) and five are freeware programs (EMPITIED, 

HAMLab, HAM-Tools, MOIST and HUMIDUS), all briefly described in Delgado et al. 

(2012). In some of them, such as WUFI and IDA ICE, the hygrothermal transfer 

modelling is included within the software architecture. This is a very important feature, 

because the hygrothermal assessment can be performed by using only one simulation 

tool. The WUFI family tools were extensively used for testing the building material 

performance (Allison and Hall 2010; Antretter et al. 2012; Pasztory et al. 2012; Barclay et 

al. 2014; Hamid and Wallestein 2017) and the occupants’ health (Hall et al. 2013), or as a 

predictive tool for retrofitting solutions in historical buildings (Antretter et al. 2011; 

Antretter et al. 2013; Bichlmair et al. 2015; O’Leary et al. 2015; Kupczak et al. 2018). 

In any case, many validation examples are necessary to test the accuracy and enhance 

the performance of a hygrothermal model. In fact, the building model response can be 

strongly affected by the behaviour of materials, whose properties are defined in 

laboratory test at steady-state conditions. This means that the materials might react 

differently when they are, instead, exposed to transient conditions (Holm et al. 2004). 

The validation of dynamic building simulation models is particularly difficult, since 

drawbacks are mainly due to the definition of general equations which simultaneously 

and accurately describe both heat and moisture transport over time. However, the 

European standard EN 15026:2007 is the first attempt to define an international norm for 

the validation procedure of dynamic simulation model, since it provides: a) the 

description of the physical model and its possible equations; b) the necessary input 

parameters; and c) a benchmark example with an analytical solution. Except for the EN 
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15026:2007, there is no standard for the validation of a hygrothermal whole building 

simulation software at the European level. 

In the last 30 years, international projects were developed in order to create platforms 

useful at assessing the performance of HAM transport in building physics. These 

projects were important for updating standards and certifications for existing HAM 

models or for new calculation tools. 

In 1991-1997, the International Energy Agency (IEA) Energy Conservation in Buildings 

and Community Systems program (ECBCS) issued the Annex 24 – Heat, Air and 

Moisture Transfer in Highly Insulated New and Retrofitted Envelopes – with the aim of 

studying the physics of heat, air and moisture transfer related to the insulation 

requirements and analysing the consequences for energy use, hygric response and 

durability of building components (Hens 1996). The Annex, joined by fourteen countries, 

consisted of five subtasks: 1) modelling; 2) environmental conditions; 3) materials 

properties; 4) experimental verification and 5) practice. The first subtask included both 

the state-of-the-art review and the model validation by means of six common exercises 

restricted to one-dimensional problems: concrete flat roof, timber-framed wall, cavity 

wall, industrial metallic roof, timber flat roof cassette and crawl space. In the final report, 

further intermodal comparisons were claimed to be necessary (Hens 1996). 

In 2000-2002, the European Committee funded the HAMSTAD project, whose aim was 

to support the use the HAM models instead of the Glaser method. It represented one of 

the first attempt to create a platform for the control of the HAM models’ accuracy. The 

project had two Work Packages (WP). WP1 focused on standards and methodologies for 

determination of moisture transfer coefficients and moisture properties of building 

materials. WP2 dealt with HAM models and assessment methods for the validation of 

one-dimensional hygrothermal simulations. Five benchmarks were developed which 

included at least two transfer mechanisms: insulated roof, analytical case, lightweight 

wall, response analysis and capillary active inside insulation. Reasonable consensus 

solutions were found (Hagentoft 2004). 

In 2004-2007, the IEA – ECBCS issued the Annex 41 which was a cooperative project on 

“Whole-Building Heat, Air, and Moisture Response” (MOIST-ENG), joined by 

seventeen countries. The project was structured in four subtasks: 1) modelling principles 

and common exercises; 2) experimental investigation; 3) boundary conditions and 4) 

applications. In the subtask 1, modelling principles and common exercises (CEs) were 

dealt with to gauge the HAM model performance and to stimulate the participants in 

the development of new model or in the advanced use of the existing ones (Rode and 

Woloszyn 2007). The CEs were developed so that the validation of simulation codes was 

done by analytical verification, empirical validation by means of experimental data and 

comparative tests. The project concluded that more validation cases should be executed 

in order to achieve a reasonable consensus solution among models for a more accurate 

simulation of reality. 
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The above literature review shows the fundamental issue to accurately simulate the 

indoor relative humidity and the difficulties in validating heat and moisture transfer 

modelling tools. Indeed, these tools should be able to integrate several factors, such as 

moisture sources, airflows and moisture exchange with materials, that are strongly 

dependent on each other. This research gives a further contribution to improve the 

whole building dynamic simulation, especially for those buildings, such as historical 

buildings, in which the indoor relative humidity plays a key role on the durability of 

building components, the energy consumption and the perceived air quality. 

Materials and methods 

In this paper, the validation of the HMWall model as an independent object and as a 

component of a larger system in IDA ICE 4.7.1 was carried out as shown in the schematic 

workflow in Figure 1. The workflow consisted of four exercises at increasing complexity 

of the building model, briefly reported in Table 1 The exercises were selected in order to 

use various combinations of climatic loads and materials. The modelled data were 

validated with the measurements in the exercises coded as 1, 3 and 4; whereas they were 

compared with the results achieved by using WUFI Plus in the exercise coded as 2. In 

this way, the validation was conducted taking into account analytical verification, 

empirical validation and comparative test. 

 

Figure 1 Schematic workflow of the validation procedure. Each exercise is coloured by grades of saturation 

and they are connected by an arrow to show the increasing complexity of the procedure. The exercises 

bordered by dot-dashed line have in common the knowledge about boundary conditions and hygrothermal 

properties of materials. The exercises bordered by continuous line use HMWall as an independent object 

(lower box) and as a component of a larger system (upper box). 
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Table 1 Summary of the four exercises used in this paper. Every exercise is briefly defined taking into 

account the model complexity, the climate loads, the wall stratigraphy, the duration and the validation. 

 
 

Model 

complexity 

Climate loads 
Stratigraphy Duration Validation 

 Indoor Outdoor 

E
xe

rc
is

e
 

1 

Semi-

infinite 

wall 

n.a. 

 

Layer 

conditions 

T = 20°C 

RH = 50% 

T = 30°C 

RH = 95% 

Mono-layered 

wall 

 

Thickness = 19m 

a. 168 h 

b. 720 h 

c. 8760 h 

Standard 

2 

Adiabatic 

building 

envelope 

T = 10°C 

RH = 50% 

T = 10°C 

a. RH = 60% 

b. RH = 40% 

c. RH = 42-57% 

Mono-layered 

walls 

 

Thickness = 

0.2m 

8760 h 

Compariso

n with 

other 

simulation 

model 

3 

Two real 

identical 

rooms 

(CE3) 

Controlled: 

 

T = 20°C 

 

Scheduled 

moisture 

loads 

EW(1) 

TRY of 

Holzkirchen 

 

IW(2) 

controlled 

Insulated walls 

coated by: 

a. Aluminium 

foils 

b. Gypsum 

board on walls 

c. Gypsum wall 

on walls and 

ceiling 

a. 408 h 

b. 816 h 

c. 624 h 

Indoor 

climate 

experiment

al 

validation 

4 
Historical 

building 

Uncontrolle

d 

EW(1) 

Weather file 

 

IW(2) 

Adiabatic 

conditions 

Multi-layered 

walls suffered 

by degradation 

phenomena 

2160 h 

Indoor 

climate 

experiment

al 

validation 

(1) External Wall; (2) Internal Wall 

The HMWall model 

The IDA Indoor Climate and Energy (IDA ICE) software, distributed by EQUA 

simulation AB, was chosen in this study as it has a modular architecture. It allows to 

extend his features at advanced level with an object that implements a one-dimensional 

heat and moisture transfer model, i.e. the HMWall model. This can be used either as a 

single independent wall-object or as a component of a larger system, by simply replacing 

the default thermal wall selected by the program. The HMWall model belongs to the 

family of HAM tools and, in this paper, it has been called HMWall with the aim to 

distinguish it from the first version documented in Kurnistki and Voulle (2000). The 

HMWall object is not available in the release of IDA ICE, but it can be integrated on 

request. 

The HAMWall model was firstly developed in 1999 by Kurnistki and Voulle (2000). The 

moisture transfer was modelled by one moisture-transfer potential, i.e. the humidity by 



Appendix E 

 

volume (ν), neglecting the temperature dependence; whereas the liquid water transport 

and the hysteresis of moisture transport were not considered. This version, coupled with 

IDA ICE 3.0, was used within the IEA Annex 41 (Kalamees, report meeting) and reported 

in the review of the whole building dynamic simulation software given by Woloszyn 

and Rode (2008). It was also used to model the hygrothermal behaviour inside three 

historical buildings located in Estonia after the refurbishment of the HVAC system 

(Napp et al. 2015; Napp et al. 2016a; Napp et al. 2016b). 

In 2011, the HMWall code was edited according to the balance heat and moisture 

equations and the driving potentials given by Hartwing Künzel and used in WUFI 

family tools (Künzel 1995). This hygrothermal model was chosen because WUFI was 

validated by means of comparative test and analytical verification more than other 

hygrothermal simulation tools demonstrating its quality and robustness (Holm 2003; 

Holm 2005; Karagiozis 2010). The transfer potentials for liquid and vapour transfers are 

the relative humidity ( or RH) and the vapour partial pressure (pv), respectively. The 

relative humidity can be used as driving potential for liquid transfer because it is related 

to the capillary pressure by the Kelvin’s equation (Skinner and Sambles 1972). The main 

differences between the IDA ICE extended with the HMWall object and WUFI as well 

as the basic governing equations are reported in Frasca et al. (2018). Currently, a correct 

implementation of wind driven rain and its impact on the building envelope remains a 

weakness as well as any moisture source within the wall layer. 

In the HMWall model, the moisture storage curve is calculated as a function of relative 

humidity as follows (eq. 1): 

( )1
f

b
w w

b





− 
= 

−
  (1) 

where w is the water content, wf is the free water saturation,  is the relative humidity 

and b is the approximation factor. b must always be greater than one and it is calculated 

from the equilibrium water content at 80% of relative humidity (w80) (Künzel 1995). 

The HMWall model used in this research was updated with respect to the versions 

shown in Frasca et al. (2018). In this version, the calculation of liquid conduction 

coefficient (D) is executed starting from the liquid transport coefficient for suction 

(Dws) (eq. 2) and assuming no difference between suction and redistribution processes. 

( ) f

2 w
1

ww

f

A
Dws w 3.8 1000

w

− 
=   

 
  (2) 

where Aw is the water penetration coefficient. D and Dws are related each other as 

reported in Künzel (1995) as follows (eq. 3): 

dw
D Dws

d
 = 


   (3) 
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where dw/d is the derivative of moisture storage function and  is a further notation 

for relative humidity. 

The effect of the heat transfer on the water vapour transfer (gv) between the wall surface 

and the boundary air layer close to it is not considered, since its contribution is negligible 

as demonstrated in Frasca et al. (2018). 

The upgrading of the HMWall model was mainly due to the lack of hygrometric 

properties of materials required to run the previous code. In this version of the HMWall 

model, the hygrothermal properties are listed below: 

­ heat conductivity () 

­ density () 

­ specific heat (c) 

­ free water saturation (wf) 

­ equilibrium water content at 80% of relative humidity (w80) 

­ thermal conductivity supplement (b)  

­ vapour diffusion resistance factor () 

­ water absorption coefficient (Aw) 

All these properties, collected by seven research institutes, are available in the MASEA 

geprüfte DatenBank web site for most of building materials (https://www.masea-

ensan.de/). The web site is written in German. 

The semi-infinite wall 

The European standard EN 15026:2007 provides a minimum criterion for simulation 

software used to predict one-dimensional transient heat and moisture transfer in multi-

layer building components exposed to transient climate conditions in both sides. 

Moreover, it specifies the equations to be used in a dynamic simulation model for 

calculating heat and moisture transfer through building structures. These equations 

consider one-dimensional transport phenomena and should not be applied in case of: 

convection in pores, two-dimensional effects, hydraulic or osmotic or electrophoretic 

forces and when the daily mean temperature in component is more than 50°C. 

In this exercise, a semi-infinite wall is modelled using the HMWall as a single 

independent object and setting four layers with the same hygrothermal properties for a 

total thickness of 25 m. This is needed for taking the temperature (T) and water content 

(w) loads at the thickness specified by the standard, since the HMWall allows only a 

linear spacing of the layer. Figure 2 shows the layer structure and connection how they 

should appear at the advanced level of the IDA ICE software. The boundary conditions 

were fixed on both side and set to T = 30°C and RH = 95% on external side and T = 20°C 

and RH = 50% as initial values inside the material. The wall was perfectly airtight and 

no boundary resistance or rain impact were considered. 

The exercise aimed at testing T and w profile loads in the material after a period in which 

the wall experienced the outdoor T-RH conditions. The three periods were 7, 30 and 365 
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days. The modelled distribution of T and w inside the material were compared with the 

limits of validity for results provided by the norm in the Annex A. 

The thermal properties of the material were provided by the norm, whereas the hygric 

properties were set by minimizing the errors between the hygrothermal curves 

computed by our code and those given by the norm. This was necessary because it is not 

possible to enter the values of curves calculated according to the norm also as a table of 

discrete function values that can be linearly interpolated. This feature was implemented 

in the WUFI family tools. In the case of HMWall, we used the percentage bias (PB) to 

estimate whether the HMWall curves consistently under- or overestimated those of the 

norm taken as the reference. 

 

Figure 2 Sketch of the schematic model built in advanced level of IDA Indoor Climate and Energy: x is the 

thickness of layer and n is the number of nodes. Red lines are the thermal flow connections whereas blue 

lines are the moisture flow connections. The HMWall is used as an independent model. 

Figure 3 shows the moisture storage curve for both calculation methods. The two curves 

tended to significantly deviate when RH is lower than 70%. The PB between the two 

curves was minimized at -3.8% in the RH range 50-95%, i.e. the humidities occurring in 

the exercise, which meant that the w calculated by HMWall underestimated w given by 

the norm. 

 

Figure 3 The moisture storage curves, water content (w) versus relative humidity (φ), calculated according 

to the EN 15026:2007 (blue line) and HMWall (red line). The vertical lines indicate the φ range occurring in 

the exercise. 

In the norm, the vapour diffusion coefficient (0) is a function of w as well as the vapour 

diffusion resistance factor (), which is the ratio between the vapour diffusion in still air 
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() and 0. In the case of the HMWall, since only a value of  can be used, the 0 is solved 

as a single value for the whole w range. In this way, 0 changes only with T, since  is 

calculated by means of the Schmirer's equation (Slanina and Šilarová 2009). For this 

reason, we selected a  so that the 0 = 5.97·10-13 was the average of the 0 computed by 

the norm and occurred in the RH range 50-95%. As above, we selected Aw = 0.0012 

(kg/(m2·s0.5) as the average of the Aw derived from the Dws calculated from the norm. 

The PB of the logarithm of Dws is 0.5% in the RH range 50-95%. 

The hygrothermal properties used in this exercise are listed in Table 2. 

Table 2 List of hygrothermal properties needed in HMWall tab according to the minimization of 

hygrothermal curves calculated according to the European Standard EN 15026:2007. 

Exercise 

Parameters 

  c wf w80 b  Aw 

W

m K
 

3

kg

m
 

J

kg K
 

3

kg

m
 

3

kg

m
 −  −  

2 0.5

kg

m s
 

1 1.5 1000 1842 146.00 80.06 10.534 324 0.0012 

The adiabatic building envelope 

The exercise 2 consisted of the dynamic simulation of an adiabatic building envelope, 

that appears as in Figure 4 in the IDA ICE advanced level. The building had a volume of 

26.0 m3 with a height of 2.6 m, a length of 2.5 m oriented in the east-west direction and 

of 4.0 m in the north-south. It was designed without windows and with a flat ceiling. 

The walls were a mono-layer of lime silica brick of 0.2 m, whose hygrothermal properties 

are reported in Table 3. The wall thickness was chosen as a limit for detecting a 

significant transport of relative humidity through a wall. Air changes by infiltration were 

set to 0.0 h-1 and no thermal bridges were taken into account. Solar radiation and 

ventilation were not included in the climate file to avoid any misleading with input 

parameters, such as wind, infiltration or radiation, whose setting might vary from a 

simulation code to another code. The indoor T and RH were 10°C and 50%, respectively. 

The climate file had only T and RH values taken at 1-hour time slot. Two simulations 

were run with outdoor temperature Tout = 10°C and relative humidity RHout = 60% (the 

first simulation) and RHout = 40% (the second simulation). A third simulation was run 

setting RHout as a sinusoidal curve (RHout,min =42.0% and RHout,max = 58.0%), in order to 

assess the indoor climate response when there was a seasonal variation of RH over a 

year. It is worth to notice that, considering the definition of RH given by the WMO 

(World Meteorological Organization), in this exercise the variations of RHin depended 

only on the water vapour partial pressure (pv) gained by walls, since the saturated 

pressure (psat) was constant (Tin = Tout = 10°C). The simulations were performed over 365 

days at 1-hour step. 

The exercise aimed at investigating the capability of IDA ICE extended with the HMWall 

to model the amount of indoor air RH (RHin) depending only on the moisture transfer 
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across the walls. The validation was based on a comparative test with the well know 

simulation tool, WUFI Plus, because it is one of the most validated simulation tools and 

because the HMWall model uses the same one-dimensional heat and moisture balance 

equations. The response of the indoor RHin was assessed by a comparison of the 

modelled RH data. 

Table 3 List of hygrothermal properties used in the HMWall tab and in WUFI Plus as provided by MASEA 

Datenbank - Materialdatensammlung für die energetische Altbausanierung. 

Exercise 

Parameters 

  c wf w80 b  Aw 

W

m K
 

3

kg

m
 

J

kg K
 

3

kg

m
 

3

kg

m
 −  −  

2 0.5

kg

m s
 

2 1 1830 850 257.12 27.47 4.000 27 0.0590 

 

 

Figure 4 Sketch of the schematic model of the adiabatic building envelope in advanced level of IDA Indoor 

Climate and Energy. The HMWall is used as an extension of a complex system. 

The Common Exercise 3 

The Common Exercise 3 (heareafter called CE3) belongs to one of the six Common 

Exercises developed in the framework of the IEA Annex 41. This exercise was used in 

Ferroukhi et al. (2016) for validating TRNSYS–COMSOL co-simulation tool and in the 

European project Climate for Culture (2011-2014) for validating different dynamic 

simulation tools of choice (Leissner et al. 2015). The CE3 was an experimental exercise, 

that was developed by the Fraunhofer Institute for Building Physics. It consisted of two 

identical and insulated rooms: the test room and the reference room (Holm et al. 2003). 

A detailed description of this exercise can be found in Woloszyn and Rode (2008). Four 
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boundary conditions around the rooms were set, so that internal walls were surrounded 

by controlled T and RH areas, whereas external walls were exposed to weather data of 

Holzkirchen (Germany, Lat. 47.9° and Lon. 11.7°), i.e. its TRY (Test Reference Year-type) 

weather data. The indoor T was controlled by a small radiator (with maximum heat 

dissipation of 1000 W) at 20±2°C. The moisture production was scheduled by means of 

an ultrasonic evaporator at 2.4 kg/day with two peaks at 400 g/h during 6-8 h and 200 

g/h during 16-22 h, which corresponded to the equivalent amount for a household of 

three persons (Woloszyn and Rode 2008). Natural air changes by infiltration 

corresponded to 0.09 h-1 for the reference room and 0.07 h-1 for the test room, whereas 

the mechanical ventilation was set to 0.63 h-1 and 0.66 h-1, respectively. The CE3 allowed 

investigating the moisture buffering capacity of the test room with respect to the 

reference room that kept the same wall stratigraphy over the experiments. The exercise 

consisted in three steps, in which the cladding material of the wall stratigraphy of the 

test room was modified: 1) test room only with aluminium foil (from January 17th till 

February 2nd); 2) test room with gypsum boards on the walls (from February 14th till 

March 20th); and 3) test room with gypsum boards on the walls and roof (from March 

27th till April 22nd). 

The aim of this exercise was to investigate the indoor RH response modelled by IDA ICE 

4.7.1 extended with HMWall, when RHin was governed by the moisture buffering effect 

of different materials for a controlled indoor climate. It was conducted by a comparison 

with the measurements. Moreover, a further comparison was made with the available 

data modelled by WUFI Plus and those by IDA ICE 3.0 extended with HAMWall 

(version 1999), with the aim to achieve more confidence with results. All these data were 

shown in the final report of the IEA ECBCS Annex 41. 

The box-and-whisker plot was used for a synthetic visualization of all data without any 

assumption of data distribution. The Wilcoxon-Mann-Whitney test was used to establish 

if any significant difference was among each pair measured RH and RH data modelled 

by the simulation tools. The null hypothesis is that two independent data are samples 

from continuous distributions with equal medians and are not normally distributed. The 

significance level was set to 5%. Moreover, the mean absolute error (MAE), the root mean 

square error (RMSE), the Coefficient of Variation of the RMSE (CV-RMSE) and the 

Spearman’s correlation coefficient (rho) were performed to assess the agreement 

between the modelled and measured data. Finally, we analysed the discrepancies 

between the models and the measurements considering the RH span at 6-8 h (eq. 4) and 

16-22 h (eq. 5) to evaluate the sorption effect of cladding material when the production 

of moisture reached 400 g/h and 200 g/h, respectively. 

6 8 8:00 6:00
RH RH RH

−
 = −   (4) 

16 22 22:00 16:00
RH RH RH

−
 = −   (5) 

The historic building 
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In the case of historic building, the achievement of robust simulation is hard due to the 

complexity of establishing accurate hygrothermal properties of materials. This is mainly 

due to the way a material was manufactured, which generally concerned local skills, and 

how it was damaged along its life, for example because of uncontrolled condensation 

(O’Leary et al. 2015). 

The HMWall model was applied to a building previously studied, the Chiesa of Santa 

Rosalia (hereafter called the church). The church, located in the central Italy close to 

Rome (Palestrina, Lat. 41.8° and Lon. 12.9°), was built in the 17th Century on the 

Francesco Contini's project by Maffeo Barberini (Figure 5). Most of internal side of walls 

are cladded by decorative marble slabs. The water infiltration from the north side of the 

church, due to rocky front behind the wall, is causing chromatic alteration of marble 

slabs and their detachment from calcareous mortar. For this reason, a hygrothermal 

analysis was conducted coupling on-site indoor climate measurements with whole 

building dynamic simulation in order to have a comprehensive assessment of the above 

issues. A monitoring campaign of indoor and outdoor climate parameters (T and RH 

with an accuracy of 0.3°C and 1.5%, respectively), was performed from January 1st till 

March 31st, 2015. The building model was created starting from the architectural survey 

provided by LAREA (LAboratorio di Rilievo E Architettura belonging to University of 

Rome Tor Vergata) and using the hygrothermal properties reported in MASEA 

Datenbank for opaque components. Since the calculations were based on idealised 

homogeneous walls, the wall in contact with the rocky front was split in order to 

accurately simulate the area with the altarpiece, also close to the rocky front. The weather 

file was compiled with outdoor measured T and RH, whereas wind and radiation data 

belonged to the weather station ESTER – Università degli Studi di Roma “Tor Vergata” 

(Italy, Lat. 41.8° and Lon. 12.6°), which is very close to Palestrina. Even though HMWall 

does not allow implementing a source of water inside a wall component or on one side 

of the wall, the issue is overpassed setting the RH loads to 100%. 

 

Figure 5 The Chiesa di Santa Rosalia in Palestrina (Italy): outside (left panel) and inside (right side). 

The exercise aimed at assessing the performance of IDA ICE extended with HMWall, 

when one side of a historical building is wetted due to water infiltration mainly driven 

by rain. The church was modelled using IDA ICE as it is, and IDA ICE extended with 

HMWall, in order to stand out the differences when a hygrothermal model is inserted in 

the simulation. The building was modelled using IDA ICE, as it is, and IDA ICE 
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extended with the HMWall object. Both T and RH modelled data were compared with 

the measurements in order to point out which building model was more accurate. The 

boxplot was performed to visualize the distributions of measured and modelled RH 

data. The MAE, the RMSE and the CV-RMSE were calculated to evaluate the 

discrepancies between modelled and measured data. 

Results 

The semi-infinite wall 

Figure 6 shows the thermal profiles of the semi-infinite wall modelled by HMWall (blue 

dots) and the limits of validity (red area) defined by the European standard EN 

15026:2007. In all three step changes, the modelled Ts are within the limits along the 

whole wall thickness. 

In Figure 7, the w distribution modelled by HMWall (blue dots) shows an acceptable 

agreement only in the third step change, i.e. when the wall experienced RH = 95% for 

365 days (right panel). That area corresponds to the range of relative humidity in which 

the discrepancy between the moisture storage curves is small. When the perturbation of 

the initial conditions inside the wall is short (left and mid panels), the moisture profiles 

differ from the limits of validity (red areas) up to 14 kg/m3. This depends on the range of 

RH within the first 0.01 m of thickness, which suddenly passes from 95% to 60%, i.e. in 

the range in which the moisture storage curves are different. 

It is worth to notice that in Figure 8 the RH profile (blue dots) modelled by HMWall at 7 

days is within the limits of validity (red area), calculated as the inverse function of the 

moisture storage function. 

 

Figure 6 The temperature (T) distributions along layer thickness (x) at 7 days, 30 days and 365 days: HMWall 

results (blue dots) and the analytical results from EN 15026:2007 (red area) that represents the permissible 

error range. 
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Figure 7 The water content (w) distributions along layer thickness (x) at 7 days, 30 days and 365 days: 

HMWall results (blue dots) and the analytical results from EN 15026:2007 (red area) that represents the 

permissible error range. 

 

Figure 8 The relative humidity (RH) distributions along layer thickness (x) at 7 days: HMWall results (blue 

dots) and the analytical results from EN 15026:2007 (red area) that represents the permissible error range 

calculated as the inverse function of the moisture storage curve. 

The adiabatic building envelope 

Figure 9 shows the scatter diagrams of modelled RH values (IDA ICE – HMWall vs 

WUFI Plus) over a year for all three cases. There is a high agreement between the two 

codes with the linear fitting very close to the bisector. The slope, indeed, is always close 

to the unity. However, when RHout = 40% (mid panel), IDA ICE tends to reach the 

equilibrium with the outdoor condition more quickly than WUFI. This is probably due 

to the way in which WUFI generates the estimated table with the liquid transport 

coefficients for redistribution (Dww). Indeed, in WUFI, Dww is equal to Dws (eq. 2) 

except when w = wf and Dww is one-tenth of Dws; whereas in HMWall, Dww is always 

equal to Dws. The error between the simulation tools is within the accuracy of relative 
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humidity sensors used for indoor monitoring campaign in the RH range 20% - 80% for 

all three cases. 

 

Figure 9 Scatter diagram of modelled RH values (HMWall versus WUFI) over a year. The indoor RH starts 

from 50% (red dot). The linear fitting (grey line) and its equation are reported for each case. The hygrometric 

boundary conditions are set to: RH = 60% (case 1), RH = 40% (case 2) and RH as a sinusoidal curve. T was 

constant (Tin = Tout = 10°C). 

The common exercise 3 

To simplify the readability of results, Wufi Plus, IDE ICE 3.0 extended with HAMWall 

and IDA ICE 4.7.1 extended with HMWall are hereafter called WUFI, HMWallM and 

HMWall, respectively. 

The summary of statistics for calculating the agreement between each simulation with 

respect to the measurements is reported in Table 4 for each case test. 

Test 1 

In test 1, the walls of the test room are coated by aluminium foils, which are characterized 

by no sorption effect, i.e. the walls do not absorb or desorb water vapour from the air. In 

Table 4 (Test 1), WUFI has the lowest errors with MAE and RMSE lower than 2.0%. The 

correlation between modelled RHs and measured RH is close to the unity for the three 

simulation tools in both rooms. It is worth to notice that HMWall has, on average, a 

better agreement with the measurements than HMWallM, where the values, instead, are 

generally doubled. 

Figure 10a shows the box-and-whisker plots of reference (right panel) and test room (left 

panel). This graph seems to suggest that the two rooms are very similar each other. In 

both panels, the box plots totally overlap, showing that no difference is among the 

modelled and measured indoor RH data. In reference room (left panel), the median of 

measured RH is 31.9%, whereas the 25th and the 75th percentile are 25.8 and 41.8%, 
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respectively. Considering the simulation tools in order of appearance in plot, the boxes 

of modelled RHs have these values: the median at 32.5% between 26.3 and 42.5%, 29.9% 

between 22.9% and 41.9% and, finally, 32.4% between 24.7% and 41.9%, respectively. In 

test room (right panel), the median of measured RH is 31.9%, whereas the 25th and the 

75th percentile are 23.2% and 42.9%, respectively. As for the simulation tools, the boxes 

of modelled RHs have these values: the median at 31.8% between 23.0% and 44.3%, 

27.2% between 19.6% and 41.0% and, finally, 31.8% between 24.3% and 42.1%, 

respectively for each simulation tool. 

The Wilcoxon-Mann-Whitney test demonstrates that in both rooms the median value of 

RH modelled by HMWall has the highest agreement (p > 0.5) with the median of 

measurements. On opposite, the median of RH distribution modelled by HMWallM is 

slightly different from the median of measurements with p < 0.03. 

Figure 11a shows the median of RH fluctuations and minimum – maximum deviations 

for ΔRH6-8 (left panel) and ΔRH16-22 (right panel), which are related to the daily moisture 

production peaks at 400 g/h and 200 g/h, respectively. Both measurements and WUFI 

and HMWallM show that the fluctuations in the test room (red bars) are higher than 

those in the reference room. This is due to the effect of aluminium foils, that is not able 

to absorb or desorb the RH from indoor air. HMWall, instead, seems to not properly 

model the no-sorption effect of aluminium especially during the moisture production at 

200 g/h (right panel), so that the differences in ΔRH between rooms, if any, are mainly 

due to the infiltrations. At this step, HMWall shows a weakness since it is not possible 

to build a moisture storage curve equal to zero in whole range of RH: wf (free saturation 

water) and w80 (equilibrium water content at RH = 80%) have to be always higher than 

zero. 

Test 2 

In test 2, the walls of the test room are coated by gypsum boards. The aim is to test the 

capabilities of simulation tools to detect the moisture buffering effect of gypsum on the 

indoor RH. In Table 4 (Test 2), it can be noticed that in both rooms the RH modelled by 

HMWall has the lowest values of RMSE, i.e. 3.5% in reference room and 2.6% in test 

room, and CV-RMSE, i.e. 10.5 in reference room and 7.8% in test room, showing a better 

agreement with the measured RH data with respect to the other simulation tools. In 

general, HMWallM is the worst among the simulation tools, especially in the reference 

room. The correlation between modelled RHs and measured RH is still high in both 

rooms and close to the unity. 

Figure 10b shows the box-and-whiskers plots for the RH data in reference room (left 

panel) and test room (right panel), respectively. The box plots for both rooms overlap 

each other. Moreover, the inter-quartile-range (IQR), i.e. the distance between the 25th 

percentile and the 75th percentile of the boxes, of the test room are less than those of the 

reference room, clearly showing the sorption effect of gypsum on indoor RH. The 

suspected outliers (black dots), i.e. the values either 1.5×IQR or more above the 75th 

percentile, or 1.5×IQR or more below the 25th percentile, are considered in the analysis, 
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because they correspond to the maximum indoor RH reached after every moisture 

production. 

If we compare the median values by the Wilcoxon-Mann-Whitney test, the RH data 

modelled by HMWallM and HMWall do not have a statistical difference with the 

measured RH data (p > 0.3) instead of WUFI (p < 0.02) in both rooms. 

For a better interpretation of moisture buffering capacity of gypsum boards, Figure 11b 

shows the median values and their maximum deviation of ΔRH6-8 (left panel) and ΔRH16-

22 (right panel). If we consider the measurements, in test room (red bars), the gypsum 

boards reduce, on average, the fluctuations in RH of 12.0% during the peak at 6-8 h and 

of 5.0% at 16-22 h. If we consider the modelled ΔRHs, WUFI shows a reduction of 13% 

in reference room and 6% in test room, HMWallM of 15% and 4% and finally, HMWall 

of 10% and 6%, respectively. 

All simulation tools can estimate the effect of gypsum boards on indoor RH with 

different accuracy. 

Test 3 

In test 3, both walls and ceiling of the test room are coated by gypsum boards. In this 

step, the moisture buffering effect of the gypsum boards is again put in evidence. This 

step has been renamed Test 3*, because, as shown in Figure 12, from April 17th an 

anomalous behaviour of measured RH has been detected. This might be due to an 

erroneous operation of the ultrasonic evaporator, since the time plot does not show any 

peak corresponding to the moisture production hours. 

Table 4 (Test 3*) summarises the statistics of modelled vs measured RH data taking into 

account the period from March 27th till April 16th. In this step, HMWall has, on average, 

the minimum values in statistics with respect to the other simulation tools. Especially, 

in test room, the CV-RMSE calculated for HMWall is 8.8%, indicating less residual 

variance with respect to those calculated for WUFI and HMWallM, which correspond to 

10.7% and 9.5%, respectively. The modelled RHs by all simulation tools are highly 

correlated with measurements (0.72 ≤ rho ≤ 0.89) in both rooms.  

Figure 10c shows the box-and-whiskers plots for the RH data in reference room (left 

panel) and test room (right panel), respectively. In reference room, the box plots overlap 

each other. However, there is no significant differences among medians only in the 

reference room (p > 0.1). Looking at the box plots of test room, the median of measured 

RH is 46.4%, whereas the 25th and the 75th percentile are 41.6 and 51.5%, respectively. 

Considering the simulation tools in order of appearing in plot, the boxes of modelled 

RHs have these values: median of 50.5% between 46.4 and 54.3%, 49.6% between 43.7 

and 55.7% and, finally, 49.9% between 43.8 and 55.2%, respectively. The IQR of WUFI is 

2.1% less than the IQR of measurements, showing that the simulation overestimates the 

moisture buffering effect of gypsum; whereas the IQR of HMWall is only 1.4% higher 

than measurements. In general, the values of modelled RHs are higher than the 

measurements and, at the same time, they are very similar each other. This can suggest 
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that the simulation tools have been set correctly with respect to the instructions, but the 

reality in the room changed over time with respect to the initial conditions. 

Figure 11c shows the medians and their maximum deviation of ΔRH6-8 (left panel) and 

ΔRH16-22 (right panel), respectively. The ΔRH in test room (red bars) is usually less that 

ΔRH in reference room (blue bars) due to the moisture buffering effect of gypsum. 

HMWall is the simulation tool which more precisely simulate the ΔRH, especially in the 

test room. In the reference room, the ΔRH6-8 are 30.6% and 31.9% and the ΔRH16-22 are 

21.5% and 24.2% for measurements and HMWall, respectively. In the test room, the 

ΔRH6-8 are 19.2% and 17.3% and the ΔRH16-22 are 15.7% and 15.8% for measurements and 

HMWall, respectively. 

Table 4 Summary of the statistics of modelled vs. measured RH data for three whole-building dynamic 

simulation software: WUFI Plus, IDA ICE 3.0 extended with HMWallM (version 1999) and IDA ICE 4.7.1 

extended with HMWall (version 2018). Four statistics are considered: MAE = mean absolute error; RMSE = 

root mean square error; CV-RMSE = coefficient of variation of RMSE; rho = Spearman correlation). Test 3* 

concerns a reduced time interval from March 27th, 2005 till April 16th, 2005, since measurements show an 

anomalous behaviour. 

  Reference room Test room 

  WUFI HMWallM HMWall WUFI HMWallM HMWall 

T
es

t 
1

 

MAE 1.0 2.7 1.5 1.4 3.3 1.8 

RMSE 1.6 3.5 1.9 2.0 4.2 2.5 

CV-RMSE 4.5 10.2 5.6 6.0 12.5 7.5 

rho 0.99 0.97 0.99 0.99 0.97 0.98 

T
es

t 
2

 

MAE 2.2 3.2 2.3 1.9 1.9 1.8 

RMSE 3.8 4.8 3.5 2.8 2.8 2.6 

CV-RMSE 11.4 14.3 10.6 8.3 8.4 7.9 

rho 0.95 0.93 0.96 0.97 0.96 0.96 

T
es

t 
3*

 

MAE 1.7 3.0 1.9 4.1 3.4 3.0 

RMSE 2.9 4.2 2.5 5.0 4.4 4.1 

CV-RMSE 5.8 8.7 5.1 10.7 9.5 8.8 

rho 0.87 0.86 0.89 0.72 0.82 0.82 

* From March 27th, 2005 till April 16th, 2005 
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a)

b)

c)  

Figure 10 Box-and-whisker plots of relative humidity (RH) in reference room (left panels) and test room 

(right panels) for each case test: a) Test 1 – test room with aluminium foils on walls; b) Test 2 – test room 

with gypsum boards on walls; and c) Test 3 – test room with gypsum boards on walls and ceiling. The line 

inside the box is the median value, with the 25th and 75th percentiles as lower and upper sides of the box, 

respectively. The lowest and the highest value of the data set are plotted as whiskers when they are not 

outliers, indicated as the circle (i.e., above or below 1.5*IQR, IQR interquartile range). 
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a)

b)

c)  

Figure 11 Plots of relative humidity span (ΔRH) at moisture production peak of 400g/h at 6-8 h (left panels) 

and of 200 g/h at 16-22 h (right panels) for each case test: a) Test 1 – test room with aluminium foils on walls; 

b) Test 2 – test room with gypsum boards on walls; and c) Test 3 – test room with gypsum boards on walls 

and ceiling. The reference room is depicted as blue dot; whereas the test room is depicted as red dot. 
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Figure 12 Time evolution of relative humidity (RH) in reference room (grey line) and test room (black line) 

when walls and ceiling of test room are coated by gypsum boards. The red band individuates the anomaly. 

A historical building 

In this step, the thermal model of wall is replaced by the HMWall model and no change 

of the other parameters are done. Table 5 summarises the statistics of modelled vs 

measured T and RH data taking into account IDA ICE 4.7.1 with the default thermal 

model (hereafter called thermal model) and IDA ICE 4.7.1 extended with the HMWall 

(hereafter called HMWall). 

Table 5 Summary of the statistics of modelled vs. measured T and RH data taking into account both the IDA 

ICE as it is and IDA ICE extended with the HMWall object (MAE = mean absolute error; RMSE = root mean 

square error; CV-RMSE = coefficient of variation of RMSE; rho = Spearman correlation). 

 IDA ICE IDA ICE & HMWall  

 T RH T RH 

MAE 0.2 °C 7.4 % 0.2 °C 3.6 % 

RMSE 0.2 °C 8.9 % 0.2 °C 4.7 % 

CV-RMSE 2.0 % 14.8 % 1.8 % 7.8 % 

rho 0.95 0.92 0.95 0.88 

 

If we consider the temperature, there is no significant difference between the values 

modelled by the thermal model and the HMWall. Both simulation tools are highly 

correlated (rho = 0.95) with measurements, and both MAE and RMSE are 0.2°C and are 

statistically consistent with the instrumental accuracy. However, the CV-RMSE of the 

HMWall is 1.8% and indicates a less residual variance than that of the thermal model 

(2.0%). 
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The HMWall-performance errors for RH data are MAE = 3.6%, RMSE = 4.7% and CV-

RMSE = 7.8%. These values are, on average, the half of those calculated for the thermal 

model. This means that the HMWall can give a more accurate representation of the 

indoor climate with respect to the thermal model. Looking at Figure 13, it is clear that 

the box of RH distribution modelled by HMWall overlaps that of measurements. The 

medians are 58.7% and 60.8%, respectively; whereas the IQRs are 10.0% and 12.5%, 

respectively. The RH values modelled by the thermal model, instead, underestimate the 

measurements with the median at 55.1% and show a higher variability with IQR = 15.4%. 

Figure 14 shows the time evolution of modelled and measured RH in the church. The 

RH modelled by HMWall (black line) well estimates peaks and drops of measured RH 

(grey line) over time with respect to the thermal model (dark grey line), that 

underestimates the drops in correspondence of high ex/infiltration (red areas). This 

means that the thermal model is not able to well represent the indoor climate because it 

does not take into account the effect of walls on the moisture equilibrium in the ambient 

air. From March 6th, both modelled RHs are slightly moved forward with respect to the 

measured data. It might depend on the weather data used for the creation of the climate 

file. Indeed, it was found that the same low-pressure area was delayed of 3 hours 

between the two sites, Palestrina and ESTER station. 

 

Figure 13 Box-and-whisker plots of relative humidity (RH) measured in the church and modelled by IDA 

ICE and IDA ICE extended with the HMWall object. The line inside the box is the median value, with the 

25th and 75th percentiles as lower and upper sides of the box, respectively. The lowest and the highest value 

of the data set are plotted as whiskers when they are not outliers, indicated as the circle (i.e., above or below 

1.5×IQR, IQR interquartile range). 
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Figure 14 Time evolution of relative humidity (RH) measured (red line) and modelled by IDA ICE (grey 

line) and IDA ICE extended with HMWall (black line). The occurrences of high ex/infiltrations are depicted 

as red area. 

Conclusion 

This study analysed the performance of the HMWall model as an independent object 

and as a component of a larger system in IDA ICE 4.7.1 using four exercises at increasing 

complexity of climatic loads and envelope structures. The exercises were performed so 

that the performance of HMWall was assessed by means of analytical verification, 

empirical validation and comparative test. This study allowed to point out the 

advantages and limitations of HMWall so to encourage its application, as an extension 

of IDA ICE for the hygrothermal analysis, and its further implementation. 

In the first exercise, the analytical benchmark described in the European standard EN 

15026:2007 was carried out, in which the HMWall model was used as an independent 

object. It well modelled the temperature uptake within the specimen for the three step 

changes, since the retrievals were within the permissible error range given by the 

standard. However, the moisture distribution agreed with the permissible error range 

only when the specimen experienced a step change of 365 days. This was due to the 

difference in the calculation of the moisture storage function in the standard and in 

HMWall, that resulted as a good approximation only when RH ranged between 70 and 

95%. This pointed out that an implementation of the code is necessary, since the HMWall 

does not allow to enter the hygrothermal function as discrete values that can be linearly 

interpolated. This might be very useful when a more accuracy is demanded and 

experimental data, especially moisture dependent properties, are measurable and 

available. 

In the second exercise, a comparative test was performed using two simulation tools 

(IDA ICE extended with HMWall and WUFI Plus) that had in common the governing 

equations for the one-dimensional heat and moisture transfer through walls. The results 

perfectly agreed in two of three test cases. In fact, when the indoor relative humidity was 

higher than the outdoor, IDA ICE extended with HMWall tended to reach the 



Appendix E 

 

equilibrium more quickly than WUFI Plus. This difference was probably due to the 

calculation of the liquid transport coefficients for redistribution, that, in WUFI, is one 

tenth of the free water saturation when RH = 100%. However, this feature will not be 

taken into account in further implementation of HMWall code, since the difference in 

modelled RH values did not overcome the accuracy of RH sensor used monitoring of 

the indoor climate. 

In the third exercise, the Common Exercise 3, developed by the Fraunhofer Institute for 

Building Physics within the IEA ECBCS Annex 41, was used to test the capability of IDA 

ICE extended with HMWall to model the moisture buffering effect of different cladding 

material on the indoor relative humidity. The validation was carried out comparing the 

modelled relative humidity values with the measurements for an empirical validation 

and with the values modelled by WUFI Plus and IDA ICE 3.0 extended with the first 

version of HAMWall for a comparative validation. For the three test cases, HMWall had 

a better agreement with the measurements in comparison with the HMWallM. However, 

when the walls were coated by aluminium foils, HMWall did not properly simulate the 

effect of no sorption on the indoor relative humidity. This means that the HMWall needs 

for a further implementation which might be specific for materials that behave as vapour 

barrier. When the walls were coated by gypsum boards, HMWall was able to gather both 

the overall evolution of measured RH and the RH span occurring during the two-daily 

peaks of moisture productions. It showed a better agreement with measurements with 

respect to the other two simulation tools. 

In the fourth exercise, an historical building with a wall exposed to a wet rocky front, 

the Church of Santa Rosalia in Palestrina, was modelled and the indoor climate variables 

were compared with the measurements performed during a winter monitoring 

campaign. The exercise pointed out that even though it was not possible to add a 

moisture source to the HMWall object, the simulation tool was able to detect the 

moisture uptake from walls setting the wet front as RH = 100% load. Moreover, it 

emerges that for a comprehensive hygrothermal assessment the IDA ICE should be 

extended with HMWall since it allows to model the moisture equilibrium in the ambient 

air as the sum of the moisture buffering and the moisture uptake from the walls 

(HMWall) together with the moisture exchange due to the infiltration and the moisture 

capacity of the building (IDA ICE). Since both MAE and RMSE for RH data are less than 

5.0%, we assumed that the building model was a very good representation of the church. 

This exercise represents a typical situation in the hygrothermal assessment of unknown 

structures, whose materials cannot be sampled for investigating their hygrothermal 

properties due to their cultural and/or historic worth. 

We concluded that the simulation tool IDA ICE + HMWall can be used for hygrothermal 

assessment and, also, in the case of historical buildings which are characterised by high 

uncertainty related to hygrothermal properties of materials and other envelope features. 

The HMWall object is easy to handle with both as independent object and as a 

component of a larger system. It can well model the one-dimensional heat and moisture 

transfer for hygroscopic materials, even if it is not possible to enter the hygrothermal 

curves as discrete values and the liquid conduction coefficient is calculated taking into 
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account the same moisture storage curve both for suction and redistribution. Finally, 

when IDA ICE is extended with HMWall does not change the duration of simulation 

and lasts a few seconds when HMWall is used as independent object. 
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Appendix 

The formulas of the statistical parameters mentioned in the paper are reported below. 
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where yi is the ith modelled data, xi is the ith measured data, N is the number of all the 

possible data pairs analysed and <x> is the average of measured data. 
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where ri is the ith rank of measured data and r its average, si is the ith modelled data and 

s its average. 
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Abstract 

This paper proposes a multidisciplinary method to assess a strategy for a better 

conservation and thermal comfort of visitors in historical buildings. The method 

combines microclimate observations along with the dynamic simulation of the building 

and an empirical evaluation of the degradation of hygrosocopic artifacts. It was applied 

to a historic building in Priverno (Italy) where cracks along the tangential direction in 

valuable wooden ceilings have been observed. The method has allowed to identify a 

strategy of temperature control that, if applied, would reduce the total spread of cracks 

from 0.25 mm to 0.10 mm. 

 

Introduction 

The refurbishment of existing buildings to reach the decarbonisation of the construction 

sector is one of the most crucial issues that Europe and the world are now facing. 

In this framework, the Italian situation shows a peculiarity. It was estimated that about 

30% of public building stock was built before 1945, i.e. they are historical buildings, and 

that a 2% of these belongs to the cultural heritage i.e. they are historic buildings 

(Mazzarella 2015). In addition, the Italian Legislative Decree No 192 of 19 August 2005 

(D. Lgs. 192/2005) establishes that historic buildings should not be retrofitted in order to 

accomplish the priority of conservation requirements. For this reason, researches were 

focused on the use of simulation as an effective tool to know in advance the impact of 

the refurbishment on the esthetical and architectural features of such buildings. Thus, 

several approaches were proposed with the aim to balance architectural conservation 

and energy efficiency (to cite but the few: Cornaro et al., 2016; Roberti et al., 2017; 

Tronchin and Fabbri 2017). 

Generally, the whole building dynamic simulation has been mainly used for the energy 

performance evaluation in the refurbishment of existing buildings. However, it can be 

exploited as a diagnostic tool to achieve a comprehensive assessment of the current 

indoor climate (Janssen and Christensen 2013). Another potential use is related to the 

assessment of the impact of climate changes on the indoor climate. This is important 

since any change in the heat and moisture exchange between indoor and outdoor has a 

direct influence not only on the energy performance of the building but also on the 
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conservation of artworks (Cassar and Pender 2003). Indeed, indoor climate and its 

fluctuations, directly and indirectly, activate and control the ageing of an artefact and 

the alteration of its chemical-physical properties (Camuffo 2014). Some recent 

publications demonstrated the potentiality of the dynamic simulation as a tool for 

conservation risk assessment (e.g. Kompatscher et al., 2017; Schito et al., 2018;). 

This issue was the main topic of the European project Climate for Culture (CfC – 2009-

2014) funded within the 7th Framework Programme (EU FP7). The project was based on 

a multidisciplinary research team with the aim to identify the damage potential of the 

cultural heritage at risk and to encourage the development of strategies to mitigate the 

effects of climate change (Leissner et al., 2015). However, the prediction capability of 

such a method is particularly complex, since it should consider at least the uncertainty 

related to (1) the future outdoor climate, (2) the building model and (3) the damage 

functions (Leijonhufvud et al., 2012). The efficacy of the dynamic simulation strongly 

depends on the accuracy of the building model, that should be able to detect short- and 

long-term fluctuations of the indoor climate variables, especially the relative humidity 

(Bilchmair et al., 2012; Antretter et al., 2013; Kupczak et al., 2018). This variable is 

particularly complex to simulate, since many factors, such as infiltrations and moisture 

exchanges with hygroscopic materials, should be simultaneously considered. Most of 

simulation codes were developed to model moisture exchanges between indoor and 

outdoor environments setting a specific moisture storage capacity to the interior of the 

building (Holm et al., 2003) and not to model the moisture flow between the air and 

porous surfaces (Rode and Woloszyn 2007). For this reason, in the last 30 years, some 

dynamic simulation tools were developed to model moisture exchanges also through 

porous materials (Delgado et al., 2012), allowing to study issues related to uncontrolled 

condensation typical of old masonries (O’Leary et al., 2015). Furthermore, in the case of 

old buildings, the complexity in geometry and the heterogeneity in materials make 

extremely complicated and time consuming the model building setting (Coakley et al., 

2014; Coelho et al., 2018). Yet, the calibration of the building model is also of relevant 

importance and it requires a particular attention. However, most of the calibration 

procedures is based on matching of energy data (Ascione et al., 2011) or indoor 

air/surface temperature at hourly scale (Pernetti et al., 2013; Roberti et al., 2015) rather 

than the relative humidity data (Napp and Kalamees 2015). The calibration of relative 

humidity plays, indeed, a key role in the historic building modelling and in the risk 

degradation assessment. 

To our knolwdge few investigations are available regarding the risk assessment of 

cultural heritage involving environmental monitoring and building dynamic simulation, 

especially with regard to the relative humidity modelling. In particular, only few 

simulation tools provide the combined transport of heat and moisture through the 

building walls. Moreover, as far as the authors know, the use of degradation response 

functions, which input variables are provided by building dynamic simulation to predict 

the degradation behaviour, is still not thoroughly explored. On the contrary, this 

approach can be of relevance for the conservators, since it allows to test various 

strategies of climate management evaluating those most suitable for the specific case. 



Appendix G 

 

This paper proposes a methodological approach which uses indoor microclimate 

measurements along with simulations for a complete characterization of the indoor 

climate conditions. The method also includes an analytical relationship of mechanical 

degradation response function of an artifact with the objective to test a new strategy for 

the climate and/or occupancy control and retrofitting interventions, taking into account 

comfort conditions of the occupants and reducing to a minimum the artefact degradation 

risk. The vapour migration across the building walls has been investigated through one 

simulation tool, i.e. IDA Indoor Climate and Energy (IDA ICE), provided with a custom 

module accurately evaluated and tested, i.e. the HMWall model. 

 

Materials and methods 

The case study 

The “Museo Archeologico di Priverno” (hereafter called Museum) is housed in the 

Palazzo Valeriani-Guarini-Antonelli (Figure 1a), in the central Italy at about 70 km SE 

far away from Rome (Lat. 41.5° and Long. 13.2°). It is a three-storey building, built 

between 13th and 16th century and restored in 1924-1926. During this restoration, the 

wooden ceilings at the second floor were finely decorated by Pietro Campeggi with oil 

paintings characterised by typical geometric patterns of the Viennese school. In 2012, the 

building was restored in order to house the museum. 

The palace is oriented in the SW-NE direction with respect to the main entrance and has 

an internal courtyard and a terrace in the north-west side. The west-side of the palace is 

contiguous with another historical building, whereas the east-side overlooks a narrow 

street. 

The thirteen rooms of the museum are deployed between the first (from room 1 to room 

7) and the second floor (from room 8 to room 13) following a historical theme, from the 

Bronze Age to the Roman Age of the ancient Priverno. The collection mainly consists of 

sculptures, architectural elements, ceramics, inscriptions, etc (Figure 1a). In room 9 at the 

second floor, there is the most important piece of the museum - the Nilotic sill or Soglia 

Nilotica - that is often loaned for temporary exhibition around the world. All rooms are 

adjoining and, except for the west-side ones, have one or more wooden-framed windows 

shaded by wooden shutters and/or black-roller blinds. 

A HVAC system connected to fan coils for the temperature control is turned on during 

the opening hours by staff both in cold season (from November to mid April) and in 

warm season (from June to August). All fan coils are installed under the windows and 

some devices are covered by black drilled-metallic panels. The temperature set-point of 

the system is set to 18°C and 26°C during the cold and warm seasons, respectively. 

Nevertheless the rigid temperatures in winter and the warm temperatures in summer 

affect the indoor climate which becomes unpleasant to visitors. 

The conservation staff carries out periodical surveys to check the conservation state of 

the collections and of the wooden ceilings at the second floor. The wooden ceilings were 
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restored in 2012, after that painted-layer detachments, panels’ deformations and cracks 

along the tangential section of wood (Figure 1b) occurred. After the restoration, no 

further damages was observed at the surface layer of the ceiling by the restorer. 

 

Figure 15 a) The “Museo Archeologico di Priverno”: outside (left panel) and inside (right panel). b) Details 

of the wooden ceilings decorated with oil paintings by Pietro Campeggi at the second floor. Cracks are 

visible along the tangential sections of wood. 

Methodology 

A flow chart of the methodology proposed in this study is shown in Figure 2 for a better 

description on how the different tasks are interrelated. 

 

Figure 16 Schematic workflow methodology. Dashed boxes correspond to the main three steps of the 

procedure. 

The first step of the methodology consists in collecting experimental data of the main 

indoor climate parameters, i.e. temperature (T) and relative humidity (RH) in the room 

under study, the surface temperature (Ts) and the crack-width (C) close to objects if 

needed to monitor the mechanical degradation (i.e. swelling and shrinkage) of 

hygroscopic materials (in this case study close to the wooden ceiling). The monitoring 
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should last one year in order to significantly record short- and long-term variability of 

indoor climate over seasons. Then, the quality and representativeness of collected data 

are evaluated before conducting any further investigation on the indoor climate and on 

the degradation risk assessment. Thereafter, climate and crack-width data are 

investigated to find whether a strong relation exists between them. In such a case, an 

empirical evaluation of the dose-response function related to the degradation can be 

derived and validated with the crack-width measurements. It is specific for the observed 

degradation, since it depends on the features of the material and the environmental 

conditions at which object has been kept over a whole year. 

In parallel, a building model is created based on geometric and stratigraphy features of 

the building envelope. The whole-building dynamic simulation software should be 

integrated with a heat and moisture transfer model in order to include the sorption and 

desorption effect of hygroscopic building materials. The above task is of crucial 

importance to accurately and thoroughly model the indoor moisture dynamics. The 

building model calibration is carried out using hourly T and RH data. This is a further 

reason for the assessment of high-quality T-RH data. 

Finally, after the validation of the dose-response function and after the calibration of the 

building model, climate control strategies and/or retrofitting interventions can be 

modelled in the simulation environment and assessed with respect to the current 

conservation state of the object. 

Microclimate observations 

On-site monitoring system 

Four indoor temperature (T) and relative humidity (RH) sensors were installed in three 

of the most representative rooms of the Museum and indicated by colours in Figure 3a. 

Each site allowed the characterization of a different area typology of the building. In 

room 9, indicated as yellow room in Figure 3a, the two T-RH probes were positioned at 

1m and 2m in order to study whether the air mass is stable or unstable. In the same room, 

a surface temperature sensor (Ts) and a crack-width meter (C) were installed on a crack 

of a wooden panel ceiling. C can be reasonably conceived as a marker-tracking of 

microdamage of wood structure at the crack tip due to the stress concentration, i.e. the 

environmental conditions at the interface between air and surface layer, through the 

mechanism related to the fatigue process. The Ts sensor was installed on the wood via 

paraloid and lied on the crack-width meter support, that was fixed on the wood with an 

epoxy on a substrate of gauze and paraloid. 

A probe with T-RH sensor, coded as out, was also installed at the terrace to record the 

outdoor hygrothermal conditions (blue circle in Figure 3a). The external probe was 

shaded from solar radiation and protected from ventilation. 
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Figure 17 a) Exploded view of the “Valeriani-Guarini-Antonelli Palace”. All colored rooms belong to the 

Archaeological Museum of Priverno. The green area indicates the internal courtyard. Probes were installed 

in room 4 (red), 9 (yellow) and 10 (orange). Circles indicate the indoor T-RH probe (as black), the Ts and C 

sensors (as purple) and the external T-RH probe (as blue). b) 3D model of the building obtained with the 

dynamic building simulation (DBS) software. Rooms 4, 9 and 10 are indicated with different colors, i.e. red, 

orange and yellow, respectively. The black arrow indicates the main entrance of the building. 

The list of sensors and their technical features are reported in Table 1. The metrological 

features of T and RH sensors are in accordance with the accuracies suggested by the 

European standards EN 15758:2010 and EN 16242:2012, respectively. All the sensors 

were connected to four dataloggers “Grillo Bee”, each corresponding to the three rooms 

and the outdoor spot, developed and distributed by Tecno.El S.r.l. (Italy), with a remote 

data transmission by GSM/GPRS technology. The acquisition time was set to 5 minutes 

and the processing time was set to 30 minutes, providing the average, minimum and 

maximum of the recorded parameters. 

Table 6 The technical features of sensors used within the monitoring campaign. 

 T RH Ts C 

sensor Pt100 1/3 DIN 
film capacitor 

“Rotronic” C94 

thermistor 

NTC 

potentiometer 

in conductive 

plastic 

operating 

range 
-40°C to +60°C 0 – 100% 

-30°C to 

+150°C 
10 mm 

accuracy ±0.3°C +1.5% ±0.1°C +0.025 mm 

 

Moreover, the mixing ratio of moist air (MR), both indoors and outdoors, was calculated 

from T and RH readings, using the equation reported in the European standard EN 
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16242:2012 and taking into account the standard value of the atmospheric pressure 

(p=1013 hPa). The uncertainty related to MR was 0.3 g/kg. 

The monitoring campaign was conducted over the period from August 2016 till 

November 2017; whereas the analysis concerned the period from September 2016 till 

August 2017. 

Microclimate analysis 

First, the quality of the T-RH data series was assessed using the Completeness Index 

(CoI) and the Continuity Index (CI) (Frasca et al., 2016). The indexes range between 0 

(poor quality) and unity (high quality, i.e. no missing values). 

Thereafter, the ASHRAE 2011 was applied in order to couple a climate type, defined as 

Class of Climate Control, to the risks that this climate may affect the collections. The 

Museum would belong to the class V within the controlled climate. It means that the 

climate classes of control AA, A, As and B would be sustainable in relation to the energy 

usage. Since no degradation phenomena of artworks have occurred over the last years 

and the HVAC system does not allow the RH control, a higher class of control, such as 

AA and A, would imply an excessive energy cost for the Museum. Thus, the classes of 

control As and B were chosen in accordance with the characteristic of the building 

envelope (heavy masonries and double glazing), the typical building use (walk-through 

visitors only and education groups) and the HVAC system (simple fan coils for heating 

and cooling). Thus, T-MR data were plotted into a psychrometric chart in order to 

provide a synthetic visualization of data with respect to the short-term fluctuations’ 

limits as defined by the class of climate control. The psychrometric chart also includes a 

3-by-3 matrix that reports, on yearly and seasonal basis, the percentage of time that 

indoor conditions are within the guidelines (second row and column), above the T and 

RH maxima (first row (too warm) and third column (too humid), respectively) and 

below the T and RH minima (third row (too cold) and first column (too dry), 

respectively). 

Thereafter, the short-term variability of the indoor climate was investigated as daily 

spans, i.e. the difference between the maximum and minimum value observed during 

each day. The analysis allowed to study both the variability of the hygrothermal 

parameters and the short-term stresses of environmental conditions experienced by the 

material. 

The wood, as a hygroscopic material, responds to variations in relative humidity (RH) 

by absorbing and desorbing moisture. Since the interaction between climate and object 

is dynamic and cumulative, the highest risk for the conservation of organic and 

hygroscopic material strongly depends on the extent and rapidity at which 

environmental conditions change. For this reason, the relationship between the crack 

width (C) and hygrothermal data at the surface-air interface (Ts-RHs) was assessed by 

using Spearman’s rank-order correlation (rs) with a confident level (α) of 5%. RHs was 

derived from Ts and MR using the inverse formula in the EN 16242:2012 and assuming 

that the water vapour gradient (ΔMR) was constant from air ambient to the interface 
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between air and wooden surface. The RHs propagation within the material, i.e. the 

approximation of the hygrometric gradient from superficial layer to the inner layers of 

panel (Camuffo personal communication, 2016), was investigated as the central moving 

average of RHs (smoothed-RHs) at 3h, 24h, 48h and 1 week. The deviation of RHs from 

smoothed-RHs values, i.e. the internal stresses of material, was computed to extract the 

short-term fluctuations and a safe band variability was defined as the 7th and the 93rd 

percentiles of the short-term fluctuations. 

Simulation environment 

Empirical evaluation of the dose-response function 

A dose-response function between crack width (C) in wooden panel and Ts – RHs data 

was derived as a non-linear multiple regression: 

b c

m s s
C a RH T=    (1) 

where a, b, and c were coefficients. The coefficients were calibrated using daily values of 

Ts and RHs over a whole year in order to detect the long-term response of the crack 

evolution. In this way, the coefficients are specific to the material type and the 

hygrothermal conditions at which it has been kept over the last years. In this way, Cm 

can allow to know in advance if a new control strategy of the indoor climate is capable 

to reduce the mechanical degradation risk in the wooden panel. 

Building modelling 

The dynamic building simulation (DBS) for indoor climate analysis was performed 

using the IDA Indoor Climate and Energy (IDA ICE) 4.8 developed and distributed by 

EQUA simulation AB. 

The geometry of the building model was created starting from the architectural survey. 

The building model, shown in Figure 3b, consisted of sixteen zones. It was oriented in 

the SW-NE direction with respect to the main entrance (indicated as a black arrow in 

figure) at a height of 150 m of m.s.l. The thermal model (BDFWall), used by the DBS for 

the modelling of walls, was replaced by the HMWall model only in the case of room 9. 

This room, indeed, was chosen as the pilot study room for testing the new climate control 

strategy within the Museum. 

The stratigraphy of the wall was retrieved from literature and referred to construction 

techniques in lower Latium in the Middle Age. It was assumed to be unchanged over 

time except for ceilings, which were rebuilt after the restoration in 1924-26. The 

hygrothermal properties of opaque components were extracted from the MASEA 

Datenbank (https://www.masea-ensan.de/) and reported in Table 2. These values were 

used to initialize the building model. It is worth to notice that only the first three columns 

of Table 2 were needed for the BDFWall. In Table 3, the stratigraphy of opaque 

components is reported as discretised layers in the HMWall model. 
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The glazing system consisted of low-emitted double pane glazing filled with air (6 mm 

– 12 mm – 6 mm) with wooden frames. Its internal and external emissivity was 0.04 and 

0.84, respectively. The thermal parameters of glazing system were set with a trasmittance 

(U-value) of 1.59 W m-2 K-1 and a solar heat gain coefficient (SHGC) value of 0.38 for the 

glazing and U-value of 1.0 W m-2 K-1 for the frame. All windows were shaded with black 

interior roller shades in PVC. The infiltrations were set at 0.09 ACH and the wind profile 

was taken as that of a urban site. The properties of the ground floor were taken those 

reported in the standard ISO 13370:2007. 

Table 7 The hygrothermal properties of building materials for opaque components extracted from MASEA 

Datenbank both for the BDFWall model and for the HMWall model. For the BDFWall model, only the first 

three columns were needed. List of properties:  = density; cp = specific heat;  = thermal conductivity;  = 

vapour diffusion resistance factor; w80 = equilibrium water content at 80% of relative humidity; wf = free 

water saturation; Aw = water absorption coefficient. 

 Hygrothermal properties 

Material 
 cp   w80 wf Aw 

kg/m3 J/(kg‧K) W/(m‧K) - kg/m3 kg/m3 kg/(m2‧h0.5) 

brick 1900.0 1000.0 1.07 28.0 24.9 250.0 2.70 

concrete 2104.0 776.0 1.94 76.1 101.0 144.0 0.75 

lime plaster 1600.0 850.0 0.70 7.0 30.0 250.0 3.00 

lime-cement render 1900.0 850.0 0.90 19.0 45.0 210.0 2.00 

restoration plaster 590.0 1000.0 0.17 8.6 11.9 500.0 0.24 

floor brick 1952.0 863.0 0.96 19.4 123.0 161.0 8.51 

light mortar 830.0 1000.0 0.21 13.2 26.3 423.0 1.63 

wood 740.0 1400.0 0.81 223.0 104.0 349.0 0.10 

 

Table 8 Stratigraphy of opaque components used in the HMWall model. Cell numbers and thickness of each 

layer of the material (m) are summarized; the internal surface is at the left side (+ in, - out). 

   external wall  

Cell № + 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 - 

Thickness 

(cm) 
+ 1.0 1.0 1.0 3.0 3.0 4.0 5.0 5.0 6.0 7.0 5.0 5.0 4.0 3.0 3.0 1.0 1.0 2.0 - 

 
                    

   internal wall  

Cell № + 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 - 

Thickness 

(cm) 
+ 1.5 1.0 1.0 3.0 3.0 4.0 5.0 5.0 6.0 7.0 5.0 5.0 4.0 3.0 3.0 1.0 1.0 1.5 - 

 
                    

   floor          

Cell № + 1 2 3 4 5 6 7 8 9 -         

Thickness 

(cm) 
+ 2.0 2.0 2.0 2.0 3.0 3.0 2.0 1.0 3.0 -         

                     

   wooden 

slab 
               

Cell № + 1 2-9 -               

Thickness 

(cm) 
+ 3.0 5.0 -               
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External climate conditions (Tout and RHout) used to run the climate file were provided 

by outdoor measurements. Wind variables (direction and speed) and global horizontal 

solar irradiance, measured at Maenza station (Lat. 41.5° and Long. 13.2°) belonging to 

the ARSIAL (Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura del 

Lazio), were also included in the climate file. The global horizontal solar irradiance was 

divided in the direct and diffuse solar irradiance components using the Maxwell model 

(Ineichen et al., 1992). 

Our purpose was to calibrate the building envelope when the HVAC system, both for 

heating and for cooling, was not in operation. Thus, the calibration and validation 

procedures were run in May and September/October, respectively. 

The calibration procedure comprises a first automatic step and a second manual step. It 

was carried out using data collected from May 15th, 2017 till May 31st, 2017. To take into 

account the high inertia of historic buildings, the initialization period started from 

February 1st, 2017. 

The first step consists of the calibration of the building model with the T-RH 

measurements taken in all the three monitored rooms. The calibration was carried out 

by searching the best hour T and RH match. Thus, the Sensitivity Analysis (SA), based 

on the Elementary Effects method (EEs), was conducted to identify the most effective 

input parameters of the building model, such as thermal bridges and infiltrations, which 

were mostly unknown. The SA was performed in order to achieve 10 EEs for each of 18 

input parameters, that were discretized into 4 ranges of values. The EEs were calculated 

using hourly indoor T and RH as reported in Roberti et al. (2015). Then, the Particle 

Swarm Optimization – General Pattern Search of Hooke-Jeeves (PSO-GPSHJ) genetic 

algorithm, implemented in GenOpt®, was used to minimise the discrepency between 

modelled and measured T-RH data. The root mean square error (RMSE) and the 

coefficient of variation of RMSE (CV-RMSE) with respect to the average of measured 

data (Fabrizio and Monetti 2015) were used using as target functions. Since the 

thresholds of the above statistical parameters for the calibration with hourly T-RH data 

were not available in the literature, the accuracy of T-RH sensors was assumed as 

rejection criteria. More the targets were close to the sensor accuracy, more the building 

model reproduced the actual building. 

The second step consists of replacing the BDFWall model of opaque components in room 

9 with the HMWall model in order to consider the heat and moisture transfer through 

porous building materials. It is worth to notice that the HMWall model calibration is 

currently manual and further implementations will be developed. For this reason, the 

room 9 model and the above crawl space of the roof were included in a new file and 

manually calibrated. The internal wall and the floor were defined as adiabatic 

components and connected to a RH value of 50% experienced by room 10 (close to the 

internal wall) and room 4 (close to the internal floor). The internal wooden ceiling was 

thermally connected to the crawl space and to a RH value of 55%, assumed as a 

compromised value between internal and external hygrometric conditions. 
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After that, the validation of the whole building model and of the room 9 model was 

performed using data collected from September 24th, 2017 till October 8th, 2017 with an 

initialization period from June 1st, 2017 till September 23rd, 2017. In the case of room 9, 

the RH above the ceiling was set to 50%, since the validation was performed after a warm 

period where RH was, on average, less than 50% in the other rooms of the building. 

Climate control strategy 

The improvement of the indoor climate control strategy in the room 9 was aimed at a 

new set-point of temperature in the existing HVAC system taking into account both the 

conservation of wooden ceilings and the thermal comfort of users. The HVAC was 

designed in the simulation environment as simple fan coils, set to a maximum heating 

power of 3500 W and a maximum cooling power of 3000 W. 

The new control strategy of the indoor climate was tested using a dynamic set-point for 

temperature (Kramer et al., 2017). The indoor relative humidity was assumed as free-

floating and evaluated a-posteriori with respect to the conservation requirements 

suggested by ASHRAE 2011. The workflow consists of three steps: 

Temperature safe-band for the conservation. The class of climate control As (ASHRAE 2011) 

was chosen because it is associated with less mechanical degradation risks than the class 

of climate control B. The T safe-band was calculated starting from the 90-days centred 

moving average of recorded T data, seasonally adjusted according to As class (+5/-10°C 

with respect to the annual average) and taking into account the upper and lower limits 

of proofed short-term fluctuations (±2°C) (Figure 4a). 

Temperature safe-band for the thermal comfort. The Adaptive Temperature Limits (ATL) 

were chosen as T safe-band for the thermal comfort (Nicol and Humphreys, 2002). The 

ATL is calculated on the basis of the procedure reported by Kramer et al. (2018) for 

temperate climates (Figure 4b). 

Temperature safe-band for both conservation needs and thermal comfort. T safe-band was 

determined comparing for each hour the T safe-band for the conservation with that for 

the thermal comfort, and choosing the less wide safe-band among the allowable 

thresholds. After that, T safe-band were seasonally smoothed out (Figure 4c). 

Finally, the estimated indoor variables were replaced in the equation 1 to analyse the 

effect of the new control strategy on the crack width with respect to the current indoor 

climate conditions and to no control strategy, i.e. the free-floating indoor climate. 
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Figure 18 The three steps for the dynamic temperature safe-band: 1) Temperature safe-band for the 

conservation; 2) Temperature safe-band for the thermal comfort; 3) Temperature safe-band for both 

conservation needs and thermal comfort. 

Results 

Microclimate analysis 

The quality assessment of the variables recorded in room 9 has revealed that the time 

series are continuous and complete, since CoI is 0.94 and CI is 0.99. This means that the 

whole data set can be used to thoroughly characterize the microclimate in room 9 and 

that T-RH time series can be also exploited for the calibration of the building model. 

Taking into account both the seasonal behaviour of hygrothermal parameters and their 

short-term fluctuations, it was found that T-RH data fit the class of climate control As in 

60.0% of time. This means that a small risk of mechanical damage may occur to highly 

vulnerable artworks in less than 40% of time. 

The psychrometric chart (Figure 5) shows the distribution of T and RH data collected in 

room 9 over the whole year. Data are seasonally grouped by different colours. The blue 

horizontal lines is determined as the T short-term fluctuations (±2°C) added to the 

annual average (21.3°C); the same is for the blue RH lines (±5%) added to the annual 

average (52.3%). It follows that more data are scattered and more indoor climate is 

fluctuating. In this case, T ranges between 8.5°C and 33.4°C whereas RH ranges between 

35.3% and 71.6% over the whole year. The percentage of T-RH data within the As class 

is 13.1%. It was found that: in Winter (blue data), T values are lower than limit in 98% of 

time and January is the coldest month; in Spring (green data), T limits show that the 

environment is too cold in March (41% of time) and too warm in May (20% of time); in 

Summer (red data), the environment is always too warm and also too dry in 81% of time; 

in Autumn (orange data), the environment is too warm in September in 20% of time and 

too humid in 57% of time between October and November. 
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Figure 19 Psychrometric chart. Indoor climate within room 9 is seasonally grouped: blue (winter), green 

(spring), red (summer), and orange (autumn). Seasonal monthly averages are also displayed. The class of 

climate control As area is delimited by two horizontal blue lines (T = 21.3 ± 2°C) and two blue curves (RH = 

52.3 ± 5%). The T and RH limits divide the chart into nine parts and the percentage of data within limits is 

reported by the 3-by-3 matrixes on the right. 

Figure 6 shows the RH daily span (ΔRH) versus the T daily span (ΔT). ΔRH is always 

lower than 20%, whereas ΔT overcomes 6°C in few days. In Winter data (blue dots) are 

assembled in a distinguishable area with respect to the other seasons, standing out the 

combined effects of the intermittent use of the heating system on the indoor climate with 

the too low outdoor temperatures. On the contrary, in Summer, the effect of the cooling 

system is not visible. 

 

Figure 20 Scatter diagram of daily RH span (ΔRH) vs daily T span (ΔT). The daily span is calculated as the 

difference between the maximum and minimum values per each day. Blue, green, red and orange dots 

indicate winter, spring, summer and autumn, respectively. 

The temperature and relative humidity at the interface air-surface (named Ts and RHs) 

were related with the crack-width (C), as shown in Figure 7. It was found that an increase 

of ΔTs=10.0°C and a decrease of ΔRHs=10.0% over the year with respect to the annual 

averages (Figure 7a) can cause an increase of C equal to 0.12mm (Figure 7b). This 
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confirms that too dry environmental conditions mainly related to too warm thermal 

conditions, could be responsible for C widening (i.e strain in the material) and, hence, 

risky conditions for the conservation of the material. Besides, the Spearman’s rank 

correlation coefficient resulted 0.67 (C, Ts) and -0.91 (C, RHs), showing that C is highly 

correlated with both hygrothermal variables. The most critical periods for the 

conservation of wooden ceilings seem to be connected when the heating system was on 

and during Summer. 

 

Figure 21 a) Relative humidity (blues dots) and temperature (red dots) temporal behavior at the interface 

air-surface (RHs – Ts) over the whole year. b) Crack width (C) temporal behavior over the whole year. 

Moreover, Figure 8 shows the RHs calculated with a time lag of one-week and the crack 

width temporal behaviour over the whole year. It can be noticed that, when the heating 

system is on, the moisture-induced strain is closely related to the daily fluctuations of 

RHs and of Ts (not shown); in Summer time, the moisture-induced strain is strongly 

affected by the RHs gradient within the material, since the inner layers are moister than 

the surface layer. On the other hand, when RHs is within the safe band, C is stable and 

this occurred in September-October and in April-May. 

 

Figure 22 ΔRHs1w calculated as the difference between RHs and RHs smoothed at 1week (inner layer of 

wooden panel) and crack width evolution. 
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Dynamic simulation analysis 

Empirical evaluation of the dose-response function 

The relation between C and Ts-RHs allowed to derive an analytical relationship for the 

dose-response function by minimising the coefficients of the equation (1). The 

coefficients found are: a = 0.6479 (mm/(100b‧°Cc)); b = -0.0542 and c = -0.0004. It can be 

noticed that RHs has the highest effect on the crack behaviour, since the coefficient b is 

two orders of magnitude greater than c. The RMSE is 0.014 mm, i.e. lower than the crack-

width meter’s accuracy (Table 1). 

Building modelling 

The results from the Sensitivity Analysis (SA) have demonstrated that the indoor RH of 

the building model is strongly affected by the rate of infiltration, whereas the indoor T 

by the thermal bridges. The whole building model was automatically calibrated starting 

from these two parameters with the aim to minimize the RMSE between modelled and 

measured hourly T-RH data. Then, the room 9 model was further manually fine-tuned 

after having included the HMWall model. Table 4 reports the main statistic parameters 

about the calibration performed to model room 9 without the HMWall model and with 

the HMWall model. It can be noticed that the use of the HMWall model has allowed to 

better simulate the relative humidity inside the room, halving the error between 

modelled and measured RH and increasing their correlation from 0.7 to 0.9. Table 4 

shows that the indoor temperature is also better modelled. This outcome encourages the 

use of the HMWall model in the historic building modelling. Figure 9 shows measured 

and modelled T (Figure 9a) and RH (Figure 9b) temporal behaviour and displays the 

instrumental uncertainty of T-RH sensors as shaded areas. 

 

Figure 23 Measured (blue dots) and modelled (red dots) temperature (T) and relative humidity (RH) trends 

inside room 9. The shaded areas are the measurement uncertainties: ±0.3°C and ±1.5%, respectively. 
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Finally, the validation phase of room 9 was conducted and it was found that the 

discrepancy between modelled and measured T does not change (Table 4). In this case 

the statistic parameters calculated on modelled RH are: MAE=1.0%, RMSE=1.2%, CV-

RMSE=2.4% and rs=0.7. 

Table 9 Summary of the calibration statistics of air temperature (T), relative humidity (RH) and the surface 

temperature (Ts) in room 9 modelled with IDA ICE (no HMWall) and extended IDA ICE with the HMWall 

model (HMWall). List of parameters: MAE = mean absolute error; RMSE = root mean square error; CV-

RMSE = coefficient of variation of RMSE; rs = Spearman’s rank correlation coefficient. 

Room 9 MAE RMSE CV-RMSE rs 

T 
no HMWall 0.4°C 0.4°C 1.7% 1.0 

HMWall 0.2°C 0.3°C 1.2% 1.0 

RH 
no HMWall 1.6% 2.0% 3.9% 0.7 

HMWall 0.8% 1.0% 2.0% 0.9 

 

In conclusion, the building model was characterised by an infiltration rate of 0.02 ACH 

and poor thermal bridges. Besides, the calibrated room 9 was also characterised by the 

hygrothermal properties reported in Table 5. 

Table 10. The list of building materials and the changed hygrothermal properties (as bold) obtained from 

the calibration of room 9. 

Material 

Hygrothermal properties 

 cp,   w80, wf, Aw, 

kg m-3 J kg-1 K-1 
W m-1 

K-1 
- kg m-3 kg m-3 kg m-2 h-0.5) 

brick 1900.0 1000.0 1.06 28.0 24.9 250.0 2.70 

concrete 2104.0 776.0 1.81 76.1 101.0 144.0 0.75 

lime plaster 1600.0 850.0 0.65 7.0 30.0 250.0 3.00 

light mortar 830.0 1000.0 1.20 13.2 26.3 423.0 1.63 

wood 740.0 740.0 0.81 223.0 155.0 349.0 15.00 

 

Climate control strategy 

The calibrated room model was used to estimate the effect of the dynamic temperature 

control strategy on the conservation of wooden ceilings, by replacing the estimated T-

RH into equation 1. The conservation needs and the thermal comfort requirements were 

both considered. 

For the above control strategies inside room 9, the peak demand is 2.6 kW during heating 

hours and 1.6 kW during cooling hours; whereas the annual energy consumption is 4532 

kWh and 1877 kWh, respectively. 

Figure 10 shows the psychrometric chart of the estimated T-RH data related to the new 

climate control configuration. The annual averages of T and RH are 22.3°C and 54.9%, 

respectively. The hygrothermal data are less scattered with respect to the actual 
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environmental conditions (T ranges between 19.8°C and 25.8°C and RH ranges between 

47.7% and 65.4%). T-RH data are within the allowable limits in 41.5% of time. 

Specifically, in Winter, T is 91% of time below the lower T limit (20.3°C); whereas RH is 

56% of time above the RH upper limit (59.9%), never exceeding the value of 64.5%. In 

Spring, T-RH data are within the allowable area in more than 85% of time, even though 

RH is below the lower limit and above the upper limit in 5% and 8% of time, respectively. 

In Summer, T is always above the upper limit (24.3°C), however it never exceeds 25.8°C; 

whereas RH is below the lower limit (49.9%) in 18% of time. Finally, in Autumn, warmer 

episodes than the upper T limit (on average 15%) are related to September; whereas RH 

is lower than 49.9% in 5% of time. Moreover, the daily spans are less than 2.5°C for T 

and less than 4.0% for RH. 

 

Figure 24 Psychrometric chart. Indoor climate within room 9 with the new climate control strategy is 

seasonally grouped: blue (winter), green (spring), red (summer), and orange (autumn). Seasonal monthly 

averages are also displayed. The class of climate control As area is delimited by two horizontal blue lines (T 

= 22.3 ± 2°C) and two blue curves (RH = 54.9 ± 5%). The T and RH limits divide the chart into nine parts and 

the percentage of data within limits is represented by the 3-by-3 matrixes on the right. 

Figure 11a shows the histogram with the percentage of occurrences of C in: i) current 

climate conditions (black-white bins); ii) the free-floating (red bins) and iii) the new 

climate control strategy (blue bins). Cm is calculated from the equation 1 in ii) and iii) by 

replacing Ts and RHs with those retrieved as output from the simulation file. 

In i) case, the observed cracks range between 5.15 mm and 5.35 mm and, among those, 

about 20% is above 5.25 mm, corresponding to the Summer. 

In ii) case, the T-RH conditions allow to meet the conservation requirements in 22% of 

time, since T is below the lower limit in 47% of time and above the upper limit in 32% of 

time. The thermal comfort requirement of visitors, instead, is reached only in 10% of 

time, since T is below the ATL lower limit in 58% of time in cold season and above the 

ATL upper limit in 32% of time in warm season. Finally, RH is about 51% of time below 

the RH lower limit in the warm season. In these climate conditions, as shown in Figure 

11a, about 15% of data is within the range of 5.00-5.05 mm, when, in cold period, T is 



Appendix G 

 

 

<15°C and RH is >60%. Instead, about 27% of data is within the range of 5.25-5.35 mm, 

when, in warm period, T increases up to 31°C and RH decreases below 40%. 

On the contrary, in iii) case, the new control of the indoor climate determines a reduced 

annual variation between minimum and maximum width of wooden cracks, since it is 

0.10 mm instead of 0.20 mm in current conditions and 0.25 mm in free-floating. This 

means that, when both thermal comfort and conservation needs are satisfied, wooden 

panels would experience less stresses and, consequently, less strains. 

Looking at Figure 11b, i.e. the histograms of daily span of Cm (ΔCm), the current 

conditions is characterised by daily stresses up to 0.06 mm. On the contrary, the free-

floating strategy might induce daily stress up to 0.03 mm per day. If a control of indoor 

climate is considered, the daily span is less than 0.01 mm in more than 80% of the 

occurrences. 

 

Figure 25 a) Histogram plot with the percentage of occurrences (%) of crack width (C) observations (black-

and-white bins), when the indoor climate is free-floating (red bins) and when it is controlled by a 

dynamic T safe-band (blue bins). b) Daily span (ΔC) of crack width observations (black-and-white bins), 

when the indoor climate is free-floating (red bins) and when it is controlled by a dynamic T safe-band 

(blue bins). 
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It results that a dynamic temperature control is more effective to reduce the stress-and-

strain cycle in wooden ceilings, since it reduces both the annual spread of cracks and, 

especially, their daily spans. It is worth to notice that the T control, so as that designed, 

can guarantee the control of RH as recommended by the class of climate control As in 

more then 70% of time. Nevertheless, this implies that a new climate control strategy 

cannot be designed only with the temperature control, because the HVAC system should 

be integrated with a de/humidifying device in order to guarantee the RH control, as well. 

 

Conclusions 

The management of historic buildings in Italy is strongly related to the priority of 

preservation of architectural components. So, the control of the indoor climate should 

mainly concern the optimization of the current climate control system with respect to 

the degradation of artifacts. This paper proposed a method that allows to assess 

strategies for better conservation and thermal comfort of the visitors, by coupling the 

climate monitoring and the building dynmic simulation. The method can be generally 

applied to historic buildings that need for refurbishment or new control strategies and 

where the conservation of artworks has the priority. 

The application of the method to the case study of “Museo Archeologico di Priverno” 

has proved that the building model which more accurately simulates the indoor 

temperature and relative humidity dynamics is that in which a hygrothermal transfer 

model of opaque building components is included in the dynamic simulation software. 

Furthermore, the semi-automatization of calibration method using hourly 

measurements of climate variables is effective to design a building model as 

representative as possible of the actual case. 

In addition, the study has demonstrated that long-term indoor climate observations 

coupled with the monitoring of the crack width of wood can be effectively used to 

investigate on the indoor climate aimed at reducing the stress-and-strain cycle of 

valuable wooden ceilings, and improving the thermal comfort. The new climate control 

strategy has the main advantage to consider the historical climate at which wooden 

ceilings have been kept over the last years. This means that the application of the 

dynamic temperature safe-band does not imply any abrupt changes in the indoors, 

highly reducing further triggers of degradation. 

It is worth to notice that this methodology takes advantages only if a thorough 

knowledge of the indoor climate and its interaction with the objects is reached. Even if 

the method has been applied to a particular case study, the “Museo Archeologico di 

Priverno” (Italy), it can be potentially exploited for other cases in which also other types 

of degradation are present, providing that a degradation response function or its 

empirical evaluation of object is available. 
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